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Abstract— In recent years, multi-agent path finding (MAPF)
has attracted widespread attention in the fields of artificial
intelligence and robotics. Its main goal is to find paths for
multiple agents, each having specified start and end locations
on a grid, without collisions, while minimizing the total travel
time. In this work, we present a new algorithm called P4
(Pruning and Prediction-based Priority Planning), designed to
accommodate large numbers of agents with enhanced scalabil-
ity. The P4 method combines three key components: Point-to-
Point (PnP) algorithm, dynamic window approach, and path
direction prediction. In this way we reduce the search space
and increase the speed of the computation. Our experiments
show that P4 consistently achieves shorter execution times and
produces solutions that are close to optimal. For example, for
200 agents and real map orz900d, P4 is 4× faster than optimal
algorithm CBSH while the sum of delays is within 15% of
optimal. The P4 method outperforms other existing suboptimal
methods in both performance and solution quality. We also
show that our approach exceeds existing methods in success
rate under time constraints. As time limit is increased from 0.1
to 100 seconds, success rate of P4 increases from 50% to 100%.
On the other hand, the success rate for alternative sub-optimal
methods is less than that of P4.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) [1], [2] is a critical
problem in the field of artificial intelligence and robotics,
which involves the coordination of multiple agents in a
shared environment. The environment is typically repre-
sented as a grid map, where each agent is assigned a unique
start and target location. The primary objective of the MAPF
problem is to determine collision-free paths for all agents
such that the cumulative travel time (Sum Of Delays) is
minimized.

In the MAPF problem, the agent can have two types of
actions: move or wait. Both actions consume one timestep
and incur a unit cost. The move action means that the agent
moves to an adjacent cell in the grid map, and the wait action
means that the agent waits in its current cell for a timestep.

The MAPF problem has many applications in vari-
ous domains, including autonomous systems, logistics, and
robotics [3]. It can be used to plan the paths of autonomous
vehicles to avoid collisions or coordinate the movements of
multiple robots in a shared environment to perform tasks
efficiently. Although widely applicable, the MAPF problem
remains computationally challenging due to the explosion of
possible paths for each agent and further increases exponen-
tially with numbers of agents and grid map size. Therefore,
developing efficient and scalable solutions for the MAPF
problem represents an significant research challenge.
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Definition of the MAPF Problem: Formally, the Multi-
Agent Path Finding (MAPF) problem [1][2] can be defined
as follows.

Given a strongly connected, simple graph G = (V,E),
we consider a set of m agents A = {A1, A2, . . . , Am} with
|A| ≤ |V |, and each agent having its own initial vertex Si ∈
V and target vertex Gi ∈ V .

At each discrete timestep t, agents have two choices for
their actions: move to an adjacent vertex or remain where
they are. Their path Pi is comprised of consecutive vertices
between Si and Gi, and can either consist of adjacent or
identical vertices to indicate a move action or wait action;
we assume agents remain or disappear at their goal vertices
indefinitely once reached.

The agents must avoid two types of conflicts: vertex con-
flicts, where two agents occupy the same vertex at the same
timestep, and swap conflicts, where two agents exchange
their positions.

A solution to the MAPF problem is a set of collision-
free paths P = {P1, P2, ..., Pm}, one for each agent, that
ensures all agents reach their respective target vertices. The
objective is to find such a solution that minimizes the sum
of paths

∑
Ai∈A l(Pi), where l(Pi) is the length of path

Pi, thus effectively minimizing the Sum of Delays(SoD =∑
Ai∈A (l(Pi))∑

Ai∈A dist(Si,Gi)
) for agents. SoD is the normalized way to

evaluate the quality of solutions. In this work the offline
version of problem is considered where all paths are
preplanned on a server without involvement of agents.
Then the paths and actions are communicated to agents
that then execute the plan.

A. Prior Work

The MAPF problem is a topic of significant inter-
est. Various methods have been devised to address it,
including CBSH [4], Explicit Estimation Conflict-Based
Search (EECBS) [5], Priority Planning [6], Priority-Based
Search [7], LaCAM [8]. CBSH is an advanced algorithm
that builds upon traditional Conflict Based Search (CBS) [9],
[10]. It employs a two-level framework to resolve conflicts
between agents. At the low level, individual paths are
planned for each agent. At the high level, a conflict tree
is constructed and explored to resolve collisions. CBSH
improves upon CBS by introducing Pairwise symmetry rea-
soning and rectangle and corridor reasoning techniques [4].
EECBS [5]uses Explicit Estimation Search for node selection
on the high level and an informed heuristic for the high
level that makes EECBS-Bounded to solve MAPF Problem
suboptimal. Priority Planning [6] is a method that adopts
a sequential approach to solve the MAPF problem. Each



agent is assigned a priority, and paths are found in the order
of these priorities. While simple and easy to implement,
this method can be inefficient in scenarios where high-
priority agents block the paths for lower-priority agents.
Some priority-based methods have show their potential ad-
vantages in MAPF problem [8]. Its main advantage lies
in its straightforward nature, but it lacks in optimality and
scalability [6]. However, scalability remains a persistent
challenge [11], especially as the number of agents grows.
The MAPF problem remains a challenging topic, especially
in the context of scalability. While above methods offer
unique approaches to solve the issue, each has its own set of
advantages and limitations. Further research [12]is needed to
develop methods that are both scalable and optimal. Finally,
LaCAM [8] shows how to find sub-optimal solution quickly.

The Conflict-Based Search (CBS) algorithm, in particular,
has seen extensive exploration [11], [13]. Boyarski et al. [14]
further refined this approach, suggesting methods to bypass
conflicts without resorting to path splitting. Moreover, Li
et al. [15] introduced improved heuristics for MAPF using
CBS, showcasing the algorithm’s adaptability. Also, there are
other improvements for CBS such as those by Li et al. [16].
PBS [7] combines priority based search with CBS.

Besides traditional pathfinding techniques, other
paradigms have emerged. Biswas [12] proposed the
X* algorithm, an anytime approach that employs window-
based iterative repairs, that is especially suitable for sparse
domains. While in [12], the window-based iterative repairs
expand to cover the global path and find the optimal
solution. In this paper, inspired by the above general idea,
we develop a Window-Based Pruning algorithm that uses
path directions to predict and dynamically adjust the window
size to find sub-optimal solution in the local window that
eliminates a collision.

Recent advancements have also seen the fusion of neural
networks with MAPF [17], [18]. An approach proposed by
Onken [17] uses neural networks to linearly scale with the
control problem’s dimension, addressing the curse of dimen-
sionality. Similarly, Chen [18] combines deep reinforcement
learning with a supervised contrastive loss, incorporating a
self-attention mechanism in the policy network.

B. Motivation

Despite the significant advancements in the field of Multi-
Agent Path Finding (MAPF), existing methods often struggle
with scalability issues when managing a large number of
agents as shown in Fig. 1. The computational complexity
of these methods tends to increase exponentially with the
number of agents, making them inefficient for large-scale
applications. Also, most of the existing methods explore
the entire search space, which can be very large and filled
with a large number of invalid paths. This exhaustive search
strategy increases the computational burden and makes the
path finding process inefficient. There is a clear need for
a more targeted search strategy that focuses on the most
promising paths and prunes the search space to improve
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Fig. 1: Scalability of MAPF Algorithms.

efficiency. In the paper we propose the P4 algorithm to
achieve this goal.

II. OUR APPROACH: THE P4 METHOD

In this paper we introduce the P4 method, a novel ap-
proach to the MAPF problem that is specifically designed
to address scalability issues and improve computational
efficiency. Within the architecture of P4, three strategies
are combined. First, we use the Point-to-Point (PnP) algo-
rithm [19], which is a useful way to find the best paths for
individual agents. Next, we apply a dynamic window method
that resolves conflicts that might occur among multiple
agents. Finally, we use a path direction prediction technique
that predicts where agents will go in the future by looking
at the paths they have taken in the past. By combining these
three strategies, the P4 method not only offers an efficient
and scalable solution to the MAPF problem, it also achieves
high solution qualities.

A. The P4 algorithm

The proposed P4 algorithm, detailed in Algorithm 1,
presents a novel solution to the Multi-Agent Path Finding
(MAPF) problem. It achieves scalability and efficiency by
integrating three main strategies: initial path planning us-
ing the Point-to-Point (PnP) algorithm, dynamic window
management for conflict resolution, and priority-based path
adjustment.

a) Overall Workflow for P4: The algorithm starts by
computing the initial paths for each agent using the PnP
algorithm [19] and assigns a unique priority to each agent
based on path length. It then iteratively monitors the agents’
progress, dynamically handles conflicts through window ad-
justments, and updates priorities and paths accordingly until
all agents reach their destinations.

b) Initial Path Planning and Priority Assignment:
• Lines 1-2: For each agent Ai, compute the initial

shortest path Pi from the start node Si to the goal node
Gi using the PnP algorithm.

• Lines 3-4: Assign a unique priority based on the short-
est path, sorting them in descending order, and introduce
a random uniqueness parameter for tie-breaking.



Algorithm 1 P4: Pruning and Prediction-based Priority
Planning.

Require: Graph G = (V,E), AgentsA = {A1, A2, ..., An},
Start and Goal nodes Si, Gi for Ai

1: for each Ai in A do
2: Initialize paths Pi from Si to Gi using PnP algorithm
3: Assign a unique priority based on PnP shortest path

descending sorted πi with random uniqueness parameter
4: Sort Pi according to πi

5: end for
6: while not all agents have reached their destinations do
7: for each node v in V do
8: Calculate the safe interval Iv
9: end for

10: for each agent Ai do
11: if Conflict exists on Pi then
12: Let C be the set of conflict points on Pi

13: Determine the dynamic window diameter Dw

as the distance to the midpoint of the nearest conflict in
C

14: Split the conflicting part of Pi into two paths
Pi1 and Pi2 within the range defined by Dw, leaving the
non-conflicting parts unchanged. Inherit the priority of
Pi for both Pi1 and Pi2

15: for each path Pij in {Pi1, Pi2} do
16: Let Pij be the current path
17: If Pij = Pi1, then wait at the current

conflict point
18: If Pij = Pi2, then use the PnP algorithm

to find a new path using the remaining safe nodes within
the dynamic window

19: If the above steps lead to a stuck agent,
perform backtracking on Pij

20: end for
21: Choose the path, either Pi1 or Pi2, that has

the lowest cost, if backtracking was necessary
22: end if
23: end for
24: for each agent Ai do
25: Update the priority and safe intervals for all

nodes on Pi

26: Adjust Pi according to new priorities
27: end for
28: end while

c) Safe Interval Calculation:
• Lines 7-9: For each node v in the graph G, calculate

the safe interval Iv during which node is unoccupied.

d) Conflict Resolution via Dynamic Window Man-
agement:

• Lines 11-13: For each agent Ai, if a conflict exists on
path Pi, determine the set of conflict points and the
dynamic window diameter Dw.

• Line 14: Split the conflicting path into two paths within
the range defined by Dw, leaving non-conflicting parts

unchanged.
• Lines 15-20: For each of the two paths, handle conflicts

by either waiting or by finding a new path within the
dynamic window.

• Line 21: Perform backtracking if necessary and choose
the path with the lowest cost.
e) Priority Update and Path Adjustment:

• Lines 25-26: For each agent Ai, update the priority and
safe intervals for all nodes on Pi.

• Line 27: Adjust the paths according to the new priorities
to ensure collision-free navigation.

By combining these strategies, the P4 algorithm offers
an effective and flexible solution to the MAPF problem. It
ensures that all agents reach their goal without collisions,
while avoiding conflicts and reducing the search space. This
method is very effective for scenarios with a large number
of agents. In Figure 2 we illustrate the different steps of the
P4 algorithm.

B. Bi-directional Point-to-Point Algorithm

The Two-Phase Point to Point Algorithm [19] is a bidi-
rectional search strategy, aimed at efficiently determining the
reachability and shortest path from a source to a destination
in a given graph. We use this Algorithm in P4 to find the
initial paths for agents. Also, we use the length of path
to decide that the agent with shorter path will be modified
more to find a new path and the agent with longer path will
experience relatively less change.

The Two-Phase Point to Point Algorithm is designed for
determining the reachability and value at a destination or
source point in a graph. The algorithm operates as follows:

1) Initialization: Two sets of active vertices, FActive
and BActive, are initialized for forward and back-
ward searches starting from the source s and
destination d, respectively. Arrays VisitF[] and
VisitB[] are used to keep track of visited vertices,
and a safeApprox initialization is performed for
approximating reachability.

2) Phase 1 - Bidirectional Search: The algorithm up-
dates the active vertex sets and checks for vertices
visited by both forward and backward searches to
update their estimates. The phase terminates based on
a prediction condition related to the sizes of FActive
and BActive.

3) Phase 2 - Convergence: Depending on the prediction
made in Phase 1, the algorithm iterates in either the
forward or backward direction until the active set is
empty. Finally, it returns the reachability status and
the value at either d or s.

C. Window-Based Pruning for Conflict Resolution

Our approach to window-based pruning is inspired by the
work of Vedder and Biswas [12], yet it includes key differ-
ences that make it more efficient. Our algorithm, detailed in
Algorithm 2, addresses the challenges of conflict resolution
between agents Ai and Aj . Unlike the global search window
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Fig. 2: P4 Illustration: The figures represent various stages of the P4 algorithm, detailing the steps involved in its execution.

proposed in [12], our algorithm uses a dynamic, localized
window that centers around conflict points. This allows for
quicker resolution of conflicts and efficient computation,
particularly in environments with sparse obstacles.

1) Overview: For initial path planning, the algorithm em-
ploys a basic point-to-point search technique. The window-
based pruning comes into play when conflicts arise between
agents. The algorithm seeks to resolve these conflicts by
dynamically adjusting a local window around the conflict
points and finding alternative paths for the lower-priority
(with shorter initial path) agent.

2) Algorithm Components and Explanations:
a) Initialization:

• The algorithm starts by identifying the point and time
where the conflict occurs between agents Ai and Aj .

• An initial window size ϵ is set to a small value, thereby
limiting the search area for quicker conflict resolution.

b) Main Loop:

• The loop continues to execute as long as conflicts exist
between the agents.

• A localized window Wϵ is created around the identified
conflict points.

• The algorithm then attempts to find a new local path
for the lower-priority agent Ai within this window.

• If a new path is found or Ai can stay in place without
moving, the agent’s path is updated, and the conflict is
resolved.

• If no resolution is found, the window size ϵ is dynami-
cally adjusted within predefined bounds (ϵmax and ϵmin)
to explore new paths.

c) Termination Condition:

• The algorithm terminates when either the conflict is
resolved or the window size ϵ reaches its maximum
limit ϵmax.

3) Mathematical Definitions: Several mathematical con-
structs are utilized to formalize the problem.

• Wϵ describes a window of width ϵ around the conflict.
• ϵmax and ϵmin are the bounds for window size ϵ. And δ is

used to incrementally adjust the window width initially
with one grid unit.

4) Dynamic Window Adjustment: The window size ϵ is
dynamically adjusted during the algorithm’s execution. It
starts with a small value for quick conflict resolution and
can be expanded up to ϵmax based on the local environment’s



Algorithm 2 Window-Based Pruning

Require: Graph G, agents Ai and Aj , window width ϵ, ϵmax,
ϵmin

1: Determine the conflict point and time for Ai and Aj

2: ϵ← set to initial small value ▷ Initial window size
3: while Conflict exists do
4: Create a local window Wϵ around conflict point for

Ai & Aj

5: NEW PATH← FindLocalPath(Ai,Wϵ)
6: if NEW PATH exists or Ai can wait in place then
7: Update Ai’s path with NEW PATH
8: Resolve conflict and break loop
9: else if ϵ < ϵmax then

10: ϵ← ϵ+ δ ▷ Increase window size
11: else if ϵ ≥ ϵmax then
12: Conflict unresolved; take another action or report

failure
13: Break loop
14: end if
15: end while
16: function FINDLOCALPATH(Ai,Wϵ)
17: Find a local path within Wϵ for Ai or determine if

Ai can wait in place return NEW PATH or Wait
18: end function

complexity and the number of unresolved conflicts. This en-
sures that the algorithm remains both effective and efficient.

D. Path Direction Prediction

As depicted in Algorithm 3, the path direction prediction
is divided into three functions: PathPlanning, AdjustPathsIn-
Window, and AdjustDirection. These functions form an inte-
gral part of our proposed method, leveraging historical path
data to predict the future direction of each agent. With the
Path Direction Prediction, Our P4 approach can change the
path based on the parameters from the initial paths.

The underlying assumption is modeled by:

d⃗t+1 = αd⃗t + (1− α)⃗ht (1)
where:
• d⃗t+1 represents the predicted direction at time t+ 1.
• d⃗t is the actual direction at time t.
• h⃗t is the historical average direction up to time t.
• α is a weighting factor, 0 ≤ α ≤ 1, that determines

the influence of the current direction over the historical
data.

The PathPlanning function initializes the OPEN set
with the start location and continues to adjust paths within a
specified window. This process is repeated until the OPEN
set is empty. The AdjustPathsInWindow function takes
charge of iterating over the nodes in OPEN. It adjusts the
direction of nodes whose cost has changed and are located
within window W . The direction adjustment is carried out
by the AdjustDirection function.

The AdjustDirection function computes the original
and predicted directions and adjusts the deviation while

Algorithm 3 Path Direction Prediction

1: function PATHPLANNING(G, s, g,H,W,α, β)
2: Initialize set OPEN with start location s
3: while OPEN is not empty do
4: OPEN ← AdjustPathsInWindow(OPEN,

g,G,H,W,α, β)
5: end while
6: end function
7: function ADJUSTPATHSINWINDOW(OPEN,

g,G,H,W,α, β)
8: Initialize set NEWOPEN
9: for all n ∈ OPEN do

10: for all m ∈ neighbors(n) do
11: if cost(n,m) has changed and m ∈W then
12: m← AdjustDirection(m,H,α, β)
13: Add m to NEWOPEN
14: end if
15: end for
16: end for
17: return NEWOPEN
18: end function
19: function ADJUSTDIRECTION(m,H,α, β)
20: Compute original direction d⃗t based on H
21: Compute predicted direction: d⃗t+1 = αd⃗t+(1−α)⃗ht

22: while conflict exists at m do
23: Adjust deviation: p⃗new = p⃗old + β∆p⃗
24: Update m based on p⃗new
25: end while
26: return madjusted
27: end function

conflicts exist at the given node. This adjustment is based
on:

p⃗new = p⃗old + β∆p⃗ (2)
where:
• p⃗new and p⃗old are the new and old path vectors, respec-

tively.
• ∆p⃗ is the path deviation vector.
• β determines the extent of deviation from the original

path.
This gradual adjustment strategy optimizes the solution

locally while maintaining the overall direction, aiming for
a more efficient and safe path. It not only helps swiftly
identify optimal paths but is particularly valuable in dynamic
environments, where the path-finding algorithm needs to be
re-invoked frequently.

III. EXPERIMENTAL EVALUATION

a) Experimental Settings: Experiments were con-
ducted on a system with macOS 12.6.1, an Intel Core
i9 2.3 GHz CPU, and 16 GB RAM, using Python (ver-
sion 3.9.7). We evaluated P4, Conflict-Based Search with
heuristic (CBSH) [4], Explicit Estimation Conflict-Based
Search (EECBS) with bounded-suboptimal [5], Priority-
Based Search(PBS) [7], lazy constraints addition search



for MAPF (LaCAM) [8], and Priority Planning(PP) [6].
The experimental design was geared towards maximizing
completeness and ensuring accurate comparisons.We run 20
instances to get the average result for each number of agents
on each map.

b) Metrics: Performance was evaluated based on fol-
lowing metrics:

1) Efficiency: This was measured as the running time
from the start of the algorithm until it found a solution
or terminated.

2) Success Rate: This refers to the ratio of the number of
agents for which path planning was completed within
a given time, to the total number of agents. If an
algorithm cannot complete path planning for all agents,
its success rate can be calculated as the ratio between
agents successfully arrived their goals over total agents.

3) Solution Quality: This was assessed as the Sum of
Delay (SoD =

∑
Ai∈A (l(Pi))∑

Ai∈A dist(Si,Gi)
) for the algorithms.

c) Maps Used: Algorithms were evaluated on several
types of maps: real-world maps, randomly generated grid
maps, and maze grids. Next we present our results.

A. Results for Real Maps
The orz900d is a 1491×656 map with 96,603 available

grid points and the NewYork is a 1024×1024 map with
792,676 available grid points. Next we compare P4 with
existing methods using these maps.

(a) orz900d (b) NewYork

Fig. 3: Real Maps Used in Evaluation.
1) Runtime Performance: The runtime performance re-

sults are show in Figure 4. We observe that P4 algorithm
exhibits robust scalability. For orz900d, for 200 agents,
P4 is over 4× faster than CBSH. With number of agents
increasing , P4’s performance advantage over other methods
increases. These findings affirm the suitability of the P4
method for complex multi-agent scenarios, particularly in
applications where time efficiency is more important and the
number of agents is large.LaCAM has a similar running time
to P4 but it is not as good as P4, because we find that LaCAM
has higher SoD than P4 in most scenarios from Figure 6.

2) Success Rates for Real Maps: P4 demonstrates a
higher success rate than the other tested algorithms, under a
fixed time limit. As shown by Figure 5, the success rates of
P4 are higher than other methods. As time limit is increased
from 0.1 to 100 seconds, success rate of P4 increases from
50% to 100%. On the other hand, for the fast Priority Plan-
ning success rate increases from 40% to 80% and for CBSH
that tries to find the optimal solution maximum success rate
is 40%. The results affirm P4 as a reliable choice for multi-
agent path finding, particularly in time-sensitive applications.
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Our method exhibits the capability to achieve higher success
rates more rapidly in a continuous time framework. This
characteristic underscores the efficiency of our approach,
particularly in scenarios where time responsiveness is crucial,
validating the applicability and robustness of our proposed
algorithm in various multi-agent path-finding contexts.

3) Solution Quality: CBSH is an algorithm for opti-
mal path solution while P4 and others are all suboptimal.
Therefore we normalize the SoD metric (i.e., the measure
of quality) for the suboptimal algorithms with respect to
CBSH (optimal) and plot it in Figure 6 for comparison. We
noticed that P4 is superior to other suboptimal solutions. We



also observe that, as expected, the suboptimality of P4 with
respect to CBSH grows with number of agents due to its
local search. However, we observe that for real maps, for
100 and 200 agents, the SoD for P4 is within 5% and 10%
of the optimal. While for EECBS-Bounded or LaCAM SoD
are 50% and 75% more and for the other methods,like PP
the SoD are 2× higher.
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Upon analyzing the paths generated by the CBSH and P4

algorithms in Figure 7, we can sort them from shortest to
longest for comparison. The results indicate that although
CBSH has an advantage in terms of the overall sum of
path lengths, P4 manages to come close to CBSH’s optimal
solution in terms of the total path delay for agents. This is
achieved by P4 making more adjustments to shorter paths
and fewer modifications to longer ones. This suggests that
P4 is effective in maintaining a competitive total path delay,
even if its overall path lengths may be slightly longer. The
shortest path in P4 is just 18% longer than the one in CBSH
solution while the longest path in P4 is shorter than the one
in CBSH by 13%.

These findings confirm the efficacy of P4 in tackling
complex multi-agent path finding problems, outperforming
state-of-the-art methods across various metrics and scenarios.

B. Results for Randomly Generated Grids and Maze Maps

For random grids of sizes 32×32 and 64×64 with obstacle
ratios (ORs) of 10% and 20%, the results are presented
in TableI. The experiment on random maps with different

obstacle ratios evaluates the algorithms’ adaptability in both
sparse and dense environments.

TABLE I: Time and SoD Comparisons of Algorithms for
MAPF on Random and Maze maps.

Map, number of agents Algorithm Time SoD

Random-32×32-10(OR), 100

P4 2.1s 1.05
CBSH 12.1s 1.0

EECBS-Bounded 5s 1.05
PBS 4s 1.1

Priority Planning 3.4s 1.3
LaCAM 2.1s 1.25

Random-32×32-20(OR), 100

P4 3.5s 1.10
CBSH 18.2s 1.0

EECBS-Bounded 15s 1.06
PBS 6s 1.2

Priority Planning 4.8s 1.40
LaCAM 3.2s 1.55

Random-64×64-10(OR), 200

P4 2.5s 1.05
CBSH 15.2s 1.0

EECBS-Bounded 7s 1.06
PBS 5s 1.3

Priority Planning 3.8s 1.5
LaCAM 2.2s 1.35

Random-64×64-20(OR), 200

P4 2.5s 1.1
CBSH 20s 1.0

EECBS-Bounded 8s 1.05
PBS 6.5s 1.4

Priority Planning 3s 1.5
LaCAM 2s 1.3

maze-32×32, 100

P4 6.5s 1.15
CBSH Timeout

EECBS-Bounded 65s 1.1
PBS 45s 1.3

Priority Planning 10s 1.7
LaCAM 5s 1.5

maze-128×128, 100

P4 3s 1.1
CBSH Timeout

EECBS-Bounded 25s 1.02
PBS 15s 1.3

Priority Planning 5s 1.6
LaCAM 4s 1.55

From the data in Table I, we observe the following:

• In 32× 32 grids with 100 agents, P4 is the most time-
efficient, outperforming CBSH by approximately 5×.
LaCAM is slightly faster but with a higher SoD value
of about 20% or more.

• In 64 × 64 grids with 200 agents, P4 scales well, es-
pecially in denser environments (20% obstacles), where
it is 7× faster than CBSH and keep a lower SoD than
other sub-optimal method.

These results highlight the balanced performance of the P4
algorithm in execution time and solution quality on random
maps, making it an effective approach for multi-agent path
planning.

In maze maps, the possible path is very narrow and it
is hard for all methods to find the path. Especially, CBSH
methods cannot compute the solution within the time bound.
On the other hand, sub-optimal solutions are able to generate
the solution though the Sum-of-Delay is larger as the number
of agents increases. This is because they benefit from the
underlying priority based scheduling used to handle agents
one by one.



TABLE II: Ablation Experiment on P4

Experiment Time Conflicts SoD
W/O PnP ↑ 150% ↑ 15% ↑ 25%
W/O WP ↑ 85% ↑ 45% ↑ 55%
W/O PDP ↑ 65% ↑ 90% ↑ 75%

C. Ablation Experiment and Analysis
We do the ablation experiment for our approach by

replacing three main components: Bi-directional Point-to-
Point Algorithm, Window-Based Pruning and Path Direction
Prediction with the base approach as Single Agent One-Way
Path Planning (W/O PnP), no Window-Based Pruning (W/O
WP), and no Path Direction Prediction (W/O PDP). The
ablation experiment is on empty 128 × 128 map with 500
agents. The results are in the Table II and are normalized
with the original P4 experiment result.

The ablation experiment results shows that these three
components are all important for the whole approach. Spe-
cially, Bi-directional Point-to-Point Algorithm will improve
the P4 algorithm running time 1.5×. Window-Based Pruning
and Path Direction Prediction work in reducing the conflicts
and sum of delays (SoD).

P4 vs. CBSH: CBSH is a variant of the CBS optimal solver
that guarantees both the discovery of the optimal solution
and the completeness of the solving process. P4 tends to
perform more tuning on shorter path which means with low-
priority in P4 compared to CBSH, and less on longer path
which means with high-priority in P4. This allows P4 to
get closer to the optimal solution quality of CBSH under
different conditions and constraints, and the length of higher
priority paths can be close to or even better than some of
the paths in CBSH, results are shown in Figure 7. Also
as the number of agents increases, P4 demonstrates better
scalability, reducing the runtime by more than 50%. In sparse
maps, P4’s local window technique is advantageous, while in
dense areas, its point-to-point approach is effective. Overall,
P4 is more scalable than CBSH in multi-agent path planning.

P4 vs. other sub-optimal methods P4 outperforms other
sub-optimal methods in terms of solution quality and running
time. By employing local path adjustment, P4 is able to
reduce the total delays in scenarios with a large number
of agents. P4 achieves a better balance between algorithm
solution time and solution quality. It ensures that the solution
quality approaches the optimal path by using local win-
dows and priority planning based on the initial path length.
Meanwhile, the solution time is significantly reduced through
point-to-point algorithms and dynamic window expansion.
The advantage of P4 stems from the local path adjustments
we implemented. This helps it maximize the utilization of
existing paths and minimize additional search.

IV. CONCLUSION

In this paper, we propose the P4 method for the Multi-
Agent Path Finding problem, a method that can effectively
scale to a large number of agents. P4 enhances computa-
tional efficiency and accuracy by integrating techniques like
pruning, predictive priority planning, and dynamic windows.

This greatly strengthens the scalability for handling multiple
agents. We have assessed the P4 algorithm through extensive
experiments on various metrics, including running time,
solution quality, and success rate within a limited time
frame. Additionally, the high scalability of P4 provides a
solid foundation for exploration in large-scale fields like
artificial intelligence and robotics. Future work should focus
on further optimizing P4 and exploring its application in
more diverse and challenging environments.
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