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Abstract. We consider the problem of constructing embeddings of large
attributed graphs and supporting multiple downstream learning tasks.
We develop a graph embedding method, which is based on extending
deep metric and unbiased contrastive learning techniques to 1) work
with attributed graphs, 2) enabling a mini-batch based approach, and
3) achieving scalability. Based on a multi-class tuplet loss function, we
present two algorithms — DMT for semi-supervised learning and DMAT-i
for the unsupervised case. Analyzing our methods, we provide a gener-
alization bound for the downstream node classification task and for the
first time relate tuplet loss to contrastive learning. Through extensive ex-
periments, we show high scalability of representation construction, and
in applying the method for three downstream tasks (node clustering,
node classification, and link prediction) better consistency over any sin-
gle existing method.
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1 Introduction

Last several years have seen much interest in developing learning techniques on
attributed graphs, i.e., graphs with features associated with nodes. Such graphs
are seen in multiple domains such as recommendation systems [28], analysis of
citation or social networks [22, 11], and others. Of particular interest are the deep
learning based graph embedding methods [21,29, 31,6, 32] that encode graph
structural information and node features into low-dimensional representations
for multiple downstream tasks. Current approaches use Graph Convolutional
Networks (GCN) [32] or graph filters [29, 31, 6], but either way, the methods do
not scale to large graphs. At a high level, these graph embeddings are designed
with the primary objective of pulling examples with distinct labels apart from
each other, while pushing the ones sharing the same label closer. It turns out that
the spirit of deep metric learning [19, 16] is also almost the same, though to date
this idea has been primarily applied to learn visual representations [2,30,13].
However, besides the challenges of tailoring these methods for attributed graphs,
scalability is also a concern. Specifically, deep metric learning requires: 1) explicit
sampling of tuplets such that one or more negative examples is against a single
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positive example [16], and 2) expensive search to increase negative hardness of
samples, which is needed for enhanced learning power [19,7, 15].

This paper addresses these problems in applying deep metric learning to at-
tributed graphs in a scalable fashion. First, we employed an extended version
of multi-class tuplet loss function [20] capable of working with multiple positive
samples, building on a similar loss function has been discussed in [10] for image
classification. Next, we use (approximate) Generalized PageRank (GPR) [3] as
a scalable graph filter, which also leads to a compact node representation and,
as we observe, increased negative sample hardness. Finally, we further achieve
scalability by mini-batch training; specifically with each batch serving as a nat-
ural tuplet comprising multiple positive and negative samples; and eliminate
the cost of sampling. With this basic framework, we build multiple algorithms,
specifically, Deep Metric Learning with Multi-class Tuplet Loss (DMT) for
semi-supervised learning and DMAT-i for unsupervised conditions.

To summarize the novelty of our contributions — we connect DMAT-i with an
extensively applied contrastive loss [4] and theoretically establish how it leads to
a bound on the generalization error of a downstream classification task. Equally
important, our theoretical analysis explains why contrastive learning is successful
for graph representation learning from a deep metric learning perspective. On the
experimental side, we compare our methods with the state-of-the-art baselines
in semi-supervised node classification, node clustering, and link prediction, and
show more consistent level of accuracy as compared to any existing method, and
state-of-the-art results in several cases. Finally, we also show greater scalability
with our methods.

2 Preliminaries

Deep Metric Learning. We denote x € X as the input data, with corresponding
labels y € Y. Let C: X — Y be the function of assigning these labels, i.e.,
y = C(x). In deep metric learning, we denote x™ as a positive sample of x (i.e.,
C(zT) =C(x)) and x~ as the negative sample (i.e., C(z~) # C(z)). Define p} (z’)
to be the probability of observing z’ as a positive sample of z and p; (2’) the
probability its being a negative sample. We assume the class probabilities are
uniform such that probability of observing y as a label is 7™ and probability of
observing any different class is 7~ = 1 — 7F. Then the data distribution can be
decomposed as p(z') = 7Tpf (2') + 77 p, (/).

Deep metric learning uses a neural network f : X — R? to learn a d-
dimensional nonlinear embedding f(x) for each example x based on objectives
such as tuplet loss [20] or triplet loss [19]. [20] proposed a (N + 1)-tuplet loss,
where for a tuplet (x, 2", {z; f\;l) we optimize to identify a single positive
example from multiple negative examples as:

LEFL () =log (1+ SN eap{f(2)T f(z7) — f()T f(zH)}) (1)

This softmax function based objective is hardness known where the hard
negative samples receive larger gradients [8].
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N+1

tuplet 1S mathematically equal to the ideal unbi-

Contrastive Learning. In fact, L

ased contrastive loss E{‘{;,}ased( f) proposed in [5], where they introduced:

e . cop{f(@)T Fz )}
LUnbiased(f) - 1Og ezp{f(at)‘rf(er)}vL(N*l)wa_Np; exp{f(z)" f(z7)} (2)

In contrastive learning, the positive sample (and negative samples) are ob-
tained through perturbation and mainly used in the unsupervised setting (where
class label is not available). Thus, p, is usually not accessible and negative sam-
ples z; are generated from the (unlabeled) p(z) [5]. Thus, the typical contrastive
loss [4] now becomes:

~ Tt
Lotrast (f) = ~108 oot e ey )

Since z; is drawn from p(x), it also has a probability of 7 of being a
positive sample. Thus, the contrastive learning is closely related to, and can
even be considered a variant of, deep metric learning, where the positive/negative
samples are generated through different perturbation mechanisms. To facilitate
our discussion, we use the notations N Ht and LY +! 4 interchangeably in the

tuple Unbiase
rest of the paper. More related works are reviewed in appendix.

3 Methodology

3.1 Problem Statement _

We are given an attributed graph G = (V, €&, X), where V = {v1,v9, - ,on}
and & represent node set and edge set, respectively, and X denotes the node
attributes (i.e., each node is associated with a feature vector). Each vertex v;
belongs to a single class (or a cluster) and we apply all notations defined in
deep metric learning to graph representations. The input _data for deep metric
learning X is calculated by a graph filter H: X = H(X, A), where A is the
adjacency matrix. Our objective is to learn an encoder f : X — R? to obtain a
d-dimensional embedding f(X).

To develop deep metric learning (or contrastive learning) on graphs, we need
to consider and address the following problems: (1) How to establish a unified
approach to cover both semi-supervised and unsupervised settings for graphs?
(2) How to scale the learning process for large-scale graphs by taking advantage
of mini-batch training?

To elaborate on the second point, the existing contrastive learning for graph
representation, particularly GCA [32], is built upon a GCN architecture and uses
a typical contrastive loss [4]. It perturbs the graph topology and node attributes
separately, which are fed to GCN to generate augmented views for contrasting.
The transformation by GCN limits both accuracy (due to over-smoothing [12])
and scalability.

3.2 DMT Algorithm

We first propose the learning framework, Deep Metric Learning with Multi-
class Tuplet (DMT), for semi-supervised node classification task. By applying a
multiclass tuplet loss [20, 10] which can recognize multiple positive samples from
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the tuplet, DMT addresses the aforementioned batch and scalability problem
with the following distinguishing advantages: 1) high scalability and efficiency
is achieved by using each shuffled node batch as a natural tuplet — this choice
also alleviates the need for explicit (and expensive) sampling; 2) enhanced and
faster representations construction through graph filtering, which we show later
increases negative sample hardness.

Specifically, DMT employs a GPR-based graph smoothing filter # — as de-
scribed earlier, the goal is to smooth node attributes X by graph structure via
X = H(X, A) such that each € X’ contains information from its neighborhood
as well. The details of this filtering, and how it can be done on large graphs, is
presented in the appendix. This approach can also help increase negative sample
hardness, a property that has been shown to accelerate training and enhance
the discriminative power [19,7,15] - details again are captured in the appendix.

DMT employs an extended version of the multi-class tuplet loss from the
deep metric learning [20]. Training is conducted in mini-batches and we con-
sider each train batch Xp of size B as a B-tuplet (z, {z; }7, {z; }{_,) with m
positive samples 7 and ¢ negative samples 2~ of = respectively (m and ¢ are
batch dependent). Furthermore, we define h(z,z’; f) = exp{w}, where
we apply the cosine similarity as a metric distance such that each feature vec-
tor f(x) is normalized before performing the Cartesian product. Temperature ¢
is the radius of hypersphere where the representations lie [25] and can control
penalty degree on hard negative samples as inspired by [24].

Now, the multi-class tuplet loss function is:

ma ey h(zasf)+307% h(z.a ] f)
Lpnr(z; f) = —log W@z )+, h(@al )+, h(zz; i f) )

Here, x is counted as one positive sample of itself to avoid zero-value inside
the log function. The loss function above shares a close mathematical form of
supervised contrastive loss as proposed in [10] and enables us to create efficient
mini-batch versions, while preserving the essential ideas behind metric or con-
trastive learning. One important aspect is because the function can work with
varying m and ¢ across batches, we can simply use all the positive and negative
samples associated with any given batch.

3.3 DMAT-i Algorithm

In the unsupervised cases, {z; } and {z; } are no longer recognizable. To deal
with this problem, we adopt the idea of contrastive learning, which includes
multiple views of graph embeddings through augmentation, while assuming that
the labeling still exists initially (thus, drawing from the deep metric learning
framework). Then, we will show we can drop out the labels of the loss, which
leads to the format of the contrastive learning loss.

Specifically, for one batch of samples X5 of size B together with their aug-
mented counterparts, we have a 2B-tuplet (z,Z, {z] }7, {z; }{_,) with m pos-
itive pairs and g negative pairs — here,  denotes the augmented counterpart
(trivial positive sample) of z. Thus, we introduce an immediate DMAT tuplet
loss L)iiar(z, Z; f) following the similar form of Eq.4:
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m,q . {CET)RD HNIERT)
Lojiar (@, 73 f) = = log ro e st ke ih) (5)
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Fig. 1: Schematic of DMAT-i architecture. The graph filter generates smoothed
node attributes X by incorporating graph structural information. A pair of views
(Hy, Hy) of X are produced by augmentation and fed to the subsequent encoder
f to generate latent representations U = f(Hy) and V = f(Hz). Metric distance
measurement is performed on U |JV. For each sample z € U, its counterpart
Z € V is the only recognizable positive sample.

Next, we extend DMAT to unsupervised cases where {z} and {z; } are
no longer recognizable. Here, the resulting method, DMAT-i, involves further
simplification by extracting Z as the only positive sample of = while ignoring all
other positive ones. The loss function is (mathematically equal to Eq.3):

m,q =. h(z,z;f)
Dyt (& & F) = =108 f s e T, BT ©)

Note {z;};" i—p and {z; }Z , are explicitly denoted for ease of analysis, but
they remain unknown during the training. Eq. 6 is in fact calculated without
knowing any labels as:

Lpaiari(z,@; ) = log {Zz'EXB h(z,z'; f)/h(z, 2; f)}

' #x
Complete Algorithm: The general idea is illustrated in Figure 1. Augmented
views are generated on the fly from X by masking certain columns — the conse-
quence is that the node features and structural information (encoded inside X')
are “distorted” simultaneously. A subsequent DNN based module can abstract
information and perform metric similarity measurements (as in Eq. 6) between
each pair of views. In real implementation, we use X as the anchor view and
each augmented view as the counterpart to calculate an average of training loss.
Thus, the encoder will be optimized to learn robust characteristics of represen-
tations across different views. The overall objective to be maximized is defined
as the average agreement Lpyar.i(,Z; f) over all interchangeable view pairs as
follows:

1 m, _
=98 Z paar (@ T3 f) + Lpiar (7, 25 f)] (7)
X
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The entire training process is presented in Algorithm 1. As input, X is gener-
ated using random-walk based GnnBP (Graph neural network via Bidirectional
Propagation [3]) as graph filtering. In line 3, multiple (ny;e, ) augmented embed-
ding will be generated from one batch of filtered feature Xp by masking certain
columns in Xp. In line 5, the generated graph embedding views will be input
into the DNN based encoder f to produce the latent representations. The deep
metric learning in line 6 is performed in batches between encoded representa-
tions u of the anchor view X'z and v of each augmented view Hp. The obtained
embedding Z in line 8 will be used for the downstream learning tasks.

Algorithm 1 DMAT-i Training

Input data: GnnBP filtered attributes X, Graph G, number of views:

Nuview

1: for epoch =1,2,--- do

2 for Xr in X do

3 Generate nyie augmented views of Xg: {Hp}
4: fori=1,2,--- do

5. w e [(Xs); v f(H)

6 Compute multi-class tuplet loss J (Eq.7)
7 end for

8 SGD update on f to minimize J

9: end for

10: end for

11: Z «+ f(X)

4 Theoretical Analysis

DM(A)T and Contrastive Learning ngr;}ased (f) (Eq. 2) contrasts one positive
sample against multiple negative samples and has been recognized as the ideal
loss to optimize [5]. Lgf\(/}( ayr(f) improves LN+ (f) by recognizing multiple
positive samples at the same time. It turns out that it can be shown as a lower
bound of L{}ﬁ)}ased( f), specifically:

Lemma 1 For any embedding f, given the same size of tuplets sharing one posi-

tive sample x{ , i.e. (v, 2, {z] fi_ll) for L{}C;Eased and (z,xd, {zF {7 )
> . B TN+1

for Lgl\(/}(A)T’ we have: Lqu(A)T(f) < Linbiased (f)

Now, as we know, both LY+ (f) and Liaicayr(f) require p and pg,
which can only be accessed from training data (i.e., during supervised learn-
ing). For unsupervised conditions, our L5 ; considers Z as the only available
positive sample. Next, we will show how L{i,r; contributes to a downstream
learning task.
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DMAT-i Generalization Bound on Node Classification We relate L)l to a
supervised loss and present how Lpiiap.; leads to a generalization bound for
a supervised node classification task. Consider a supervised node classification
task with K classes, we fix the embedding f(X) from DMAT-i representation
learning and train a linear classifier ¢(X) = f(X)W T with the standard multi-
class softmax cross entropy 10ss Lgoftmax(%). We define the supervised loss for
the representation f(X) as: Lsup(f) = infyycrrxa Lsoftmax(fW )

[5] has proved Z{}/J)}ased(f) as an upper bound of Lg,p(f). What we con-
tribute here is to bound the difference between Z{}frﬁased (f) and L At

Theorem 1 For any embedding f and same size of tuplets,
TN m, 2(e3—e)(19)%m 2(ed—e)(77 )3~
LUrjlr)%ascd (f) - LDI\%AT—i(f)‘ < \/ = 6727,( : + \/ t 631( :

. +(\;zgzlh(a¢,xj)—[ﬁwprh(x,x)|>

V=7
|% E:n:] h(zal‘j)—EIJer'Jr h(z,x+)|

(®)

where 37" | h(x, x]) represents the positive samples unrecognized by L1 ar.s,

i.e., false negative samples. Hence 70 covers the side effects from these false nega-
tives and an empirical evaluation in appendix has shown reasonable small values
of 70 for most samples across our experimental datasets.

In practice, we use an empirical estimate Lpjiap.(f) over N data samples z €
X, each sample with a tuplet (z, z, {z; }™,, {z; }{_,). The optimization process
learns an empirical risk minimizer f € argmin ¢ Liiiar;(f) from a function
class F. The generalization depends on the empirical Rademacher complexity
Rs(F) of F with respect to our data sample S = {x;, Z;, {m;’:j}?il, {m;j}le}éyzl.
Let fis = (fi(z;), fu(2), {fk(mjj) =1 {fk(x;,j)}gzl)jG[N],kE[d] € R(mtat2)dN
be the restriction of f onto S, using [N] = {1,..., N} and [d] = {1,...,d}. Then
Rs(F) is defined as: Rs(F) := E,sup;cp(o, fis) where o ~ {£1}(mtatDdN
are Rademacher random wvariables. We provide a data dependent bound from
Lsiar.;(f) on the downstream supervised generalization error as follows.

Theorem 2 With probability at least 1 — 8, for all f € F and ¢ > K — 1,
. oz L
Lsup(f) < Lifara(£) + O (ﬂ/,}l VAR U%)

where \ = % and I =log(m + q).

The bound states that if the function class [ is sufficiently rich to contain em-
beddings for which LT s ; is small, then the representation encoder f, learned
from a large enough dataset, will perform well on the downstream classification
task. The bound highlights the effects caused by the false negative pairs with
the first term and also highlights the role of the inherent positive and negative
sample sizes m and ¢ per mini-batch in the objective function. The last term
in the bound grows slowly with m + ¢ = 2B — 2, but the effect of this on the
generalization error is small if the dataset size N is much larger than the batch
size B, as is common.
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5 Experimental Results

Baselines: For the node clustering task, we compared the proposed DMAT-i
model with multiple frameworks: 1) KMeans [9] (when applied to attributed
graphs uses node attributes only); 2) DeepWalk [18], which uses topological in-
formation only, and seven recent frameworks that leverage both node attributes
and graph structure: 3) AGC (2019)[29] that uses high-order graph convolu-
tion; 4) DGI (2019) [23] maximizes mutual information between patch rep-
resentations and high-level summaries of graph; 5) SDCN (2020) [1] unifies
an autoencoder module with a GCN module; 6) AGE (2020) [6] applies a
customized Laplacian smoothing filter; 7) SSGC (2021) [31] is a variant of
GCN that exploits a modified Markov Diffusion Kernel. 8) GCA (2021) [32]
leverages a node-level contrastive loss between two augmented graph views to
learn a graph representation; 9) ProGCL (2022) [26], on top of GCA, further
proposed a more suitable measure for negatives hardness and similarity. To com-
pare performance on node classification and link prediction, we select the most
competitive graph embedding based frameworks correspondingly.

Scalability of Representation Construction As in Figure 2, all baselines hit spe-
cific ceilings as limited by the GPU memory capacity while DMAT-i can con-
tinuously scale with application of mini-batch training and use of random-walk
to obtain approximate pagerank scores. Particularly, DMAT-i could handle 107
nodes, and no other frameworks could handle more than 10 nodes. The details
of experimental settings are in appendix.

Train time for graphs of different sizes

P —#— DGI
ProGCL
—»- SDCN
—-#- AGC
—A— SSGC
-- AGE
GCA
—8— DMAT-i

Train Time (s)

Node Number

Fig. 2: Scalability of Different Frameworks: Training Time vs. No. of Nodes in
Graph

5.1 Results on Downstream Tasks
DM(A)T is evaluated on performance of semi-supervised node classification

while DMAT-i is evaluated for multiple tasks: node clustering, node classifi-
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Table 1: Clustering performance on eight datasets (meantstd) where each ex-
periment is performed for 10 runs. We employ six popular metrics: accuracy,
Normalized Mutual Information (NMI), Average Rand Index (ARI), and macro
Fl-score are four metrics for ground-truth label analysis, whereas modularity
[14] and conductance [27] are graph-level metrics. All metrics except conduc-
tance will indicate a better clustering output with a larger value. DMAT-i results
highlighted in bold if they have the top 2 clustering performance. The asterisk
indicates a convergence issue. Certain data points are missing when execution
ran out of GPU memory. DGI can only handle five smaller datasets due to high
GPU memory cost, and GCA also could not handle largest of these 8 datasets.

Dataset Metric KMeans DeepWalk SDCN AGC SSGC AGE DGI GCA  ProGCL  DMAT-i
ACM Accuracy 1 66.62 £ 0.55 50.59 £ 4. 89.63 £ 0.31 78.21 4+ 0.00 84.43 £0.29 90.18 4 0.13 90.17 £ 0.28 89.91 £ 0.46 89.18 + 1.70 91.60 + 0.70
NMI + 32.41+£0.34 16.12 4+ 4.96  66.74 £ 0.75 46.31 4 0.01 56.15 £ 0.51 66.92 4 0.30 67.84 £ 0.72 66.58 £ 0.91 64.64 + 70.95 +1.44
ARI 1 30.22 £ 0.41 18.56 &£ 5.80 72.00 £ 0.75 48.02 4 0.00 60.17 £ 0.60 73.12 4 0.31 73.28 £ 0.66 72.49 £ 1.08 70.72 + 3.88 76.72 £ 1.75
macro F1 1 66.83 £ 0.57 46.56 + 4.43  89.60 £ 0.32 78.26 4 0.00 84.44 +0.29 90.18 & 0.13 90.12 + 0.27 89.89 £ 0.46 89.16 + 1.71 91.59 £+ 0.70
Modularity 1 31.20 & 0.50 38.57 £ 9.51 60.86 = 0.16 59.44 £ 0.02 60.19 £ 0.05 60.93 £ 0.08 59.79 £ 0.19 60.05 + 0.12 60.14 £ 0.43 57.92 +0.20
Conductance | 30.96 £0.23 1.79+0.59 3.07+0.17 2.51+£0.01 2.54+0.11 3.64+0.19 3.87+£0.14 3.85+0.18 4.06+0.15 6.68 +0.27

DBLP Accuracy T 38.65 £ 0.58 38.99 +0.02 69.08 = 1.95 69.06 £ 0.06 68.66 + 1.95 ¥62.49 & 0.76 59.72 + 4.68 77.69 = 0.39 73.79 = 1.70 80.30 £ 0.60
NMI 11.56 + 0.53 5.91£0.02 34.64 £ 1.94 37.00 & 0.07 33.89 = 2.08 *37.32 £ 0.50 26.90 & 4.43 46.24 + 0.57 41.54 & 1.27 51.00 & 0.81
ARI 1 6.95+0.39 5.83£0.02 36.31 £ 2.86 33.69 & 0.13 37.30 = 3.13 *34.60 £ 0.71 25.12 & 4.76 50.46 + 0.81 43.30 & 2.99 55.42 4 1.08

macro F1 1 31.81£0.53 36.87 +0.02 67.81 % 3.46 68.59 £ 0.05 65.91 + 2.19 59.16 & 0.83 59.31 + 4.69 77.29 & 0.37 72.96 + 2.03 79.94 + 0.59
Modularity 1 83 4 0.47 64.05 £ 0.03 63.38 + 1.87 68.77 £ 0.01 62.02 & 1.64 *48.62 £ 0.87 50.16 & 3.77 63.01 + 0.28 64.62 £ 1.02 55.67 £0.71
Conductance | 36.20 +0.51 4.034+0.02  7.56 £0.54 529 +0.01 3.24+£0.52 *11.154£0.15 13.84 £ 1.12 9.51 +£0.16 9.53 £0.29 16.52 + 0.53
Cora Accuracy 1 35.37 £3.72 63.87 £ 2.14  64.27 £ 4.87 65.23 £ 0.93 68.50 £ 1.98 74.34 4 0.42 68.47 £ 1.43 69.24 £ 2.92 68.17 + 4.67 70.57 + 1.28
NMI + 16.64 +4.21 44.11 £1.33  47.39 £ 3.49 50.05 £ 0.49 52.80 & 1.03 58.11 £ 0.58 52.60 & 0.88 54.48 = 1.94 37 +£2.71 53.59+1.22
ARI 1 9.3142.14 39.64 £ 1.68 39.72 +5.53 40.23 £0.95 45.70 £ 1.28 50.87 £ 0.96 45.63 £ 1.44 46.63 & 3.25 45.37 £ 5.04 47.34 + 2.41
macro F1 1 31.49 £4.58 57.98 £2.43 57.88 £6.99 58.93 & 1.68 64.38 £ 2.71 70.37 £+ 0.29 65.79 + 1.53 68.10 + 2.68 67.12 £ 4.85 69.33 & 1.00
Modularity 1 20.77 £ 3.37 72.98 £ 0.79  62.59 = 5.18 69.98 £ 0.46 73.71 + 0.45 71.89 & 0.14 69.86 £ 0.29 74.18 = 0.51 74.36 + 0.38 74.19 £ 0.39
Conductance | 59.77 £5.31 7.88+0.35 18.32+2.26 11.08 £1.61 9.41+0.55 8.23%0.11 13.64 £0.69 10.27 £ 0.31 9.47 £0.54 10.04 £0.52

Citeseer Accuracy T 46.70 +4.33 43.56 £ 1.03  63.42 £ 3.31 67.18 £ 0.52 67.86 & 0.26 66.06 £ 0.78 68.68 = 0.76 66.23 £ 1.00 66.43 = 1.16 67.46 = 0.41
NMI 18.42 4 3.26 16.02 £ 0.56 37.28 £ 2.19 41.37 4 0.70 41.86 £ 0.22  40.56 = 0.88 43.22 £ 0.91 40.81 + 1.15 41.41 £ 1.03  41.75 & 0.62
ARI 1 74 0.66 10 4 0.87 42.95 £ 0.30 39.84 +0.75 44.53 £ 1.02 41.24 + 1.45 41.73 £ 1.52  42.48 £ 0.60

AT +£4.44 40.37 £ 0.97 .68 £ 0.48 63.61 023 60.80 £ 0.75 64.41 + 0.70
.57 +2.67 76.44 £0.20 70.83 £2.77 77.57 £ 0.21 78.03 £ 0.12 71.88 4 0.45 72.42 + 0.38
7.19£0.55 6.96+0.58 5.57+0.23 3.024+0.22

.16 +£0.95 62.53 £ 1.11  62.83 £0.38
44+0.36 74.54 £0.44 75.78 £0.23

macro F1 1
Modularity 1

Conductance 214+2.19 2.984+0.12 8+1.99 1.72+£0.04 1.754£0.03 4.84+£0.

Pubmed Accuracy 1 59.50 £0.02 69.98 £ 0.04 59.95 £ 1.00 61.54 4 0.00 70.71 £ 0.00 69.66 & 0.09 -64.10£2.11 -70.90+0.20
NMI + 31.21£0.10 29.09 £0.11 17.78 £ 0.91 29.11 4+ 0.00 32.12 4+ 0.00 29.06 + 0.16 - 28.50 £ 2.41 -32.49+0.28
ARI 1 28.08 £0.08 31.81 £0.13 16.39 £ 1.16 26.16 & 0.00 33.26 + 0.00 31.26 +0.12 -26.15 £+ 2.46 -33.52+0.36
macro F1 1 58.15£0.02 68.51 £ 0.06 60.29 = 1.02 60.28 £ 0.00 69.91 & 0.00 68.68 & 0.08 - 63.69 +£2.34 -70.10 + 0.20
Modularity 1 34.92 £ 0.06 57.25 +0.26 55.53 & 0.86 50.40 £ 0.00 57.73 & 1.35 57.48 £ 0.10 -53.90 £ 1.76 - 57.56 +0.44
Conductance | 17.27 £0.04 4.67+0.03 7.50+0.58 8.65+£0.00 3.9340.00 4.75+0.16 - 9.51+0.80 - 41040.20

Amazon Photo Accuracy T 27.86 & 0.81 77.27 £ 2.48 60.42 & 3.36 55.93 £ 0.09 56.16 = 1.05 66.96 & 3.00 61.05 £ 2.48 77.21 = 0.72 78.27 £ 0.97 76.53 £ 1.32
NMI 13.78 £ 1.19 68.97 £ 1.96  50.08 £ 3.28 53.35 4+ 0.05 51.74 £ 1.66  56.73 + 2.62 52.93 £ 2.11 66.48 + 1.23 70.11 + 1.32  66.94 & 1.37

ARI 1 5.62 4 0.42 58.64 £ 2.81 40.08 + 3.95 25.31 £ 0.10 33.86 & 1.36  46.48 + 3.37 39.59 £ 2.74 56.09 + 0.92 61.30 £ 1.71 58.84 £ 1.07
macro F1 1 23.78 £0.48 71.59 £+ 2.47 53.13 £5.99 51.56 4 0.06 52.00 + 0.67 62.13 4 3 9.60 +2.94 76.23 £ 0.71 72.35 £ 1.49  70.05 £ 0.77
Modularity 1 8.38 £ 0.51 73.18 £ 0.12 59.25 & 4.04 57.69 £ 0.04 62.07 £ 1.88 64.07 £ 1.45 61.12 £ 1.39 67.76 = 0.83 70.81 £ 0.47 70.72 £ 0.19

Conductance | 76.38 £ 0.58 8.47 £0.23 20.17 +£3.88 4.42+0.00 8.37+£2.15 15.81 £1.49 22.14 £ 1.65 15.27 = 1.11 10.46 £ 0.72 10.98 £ 0.67

Coauthor CS Accuracy 1 27.96 £ 1.09 67.10 £2.98 56.86 £ 3.40 62.24 +1.81 66.19 £ 1.19 76.35 + 3.14 - 72.02 £2.54 -76.92+1.26
NMI + 15.42 4 2.25 66.67 + 0.86 54.79 + 2.44 65.22 £ 0.44 70.06 £ 0.67 76.75 £ 1.66 - 73.95+1.02 - 72.55+0.41
ARI 1 1.02 £0.74 53.66 +2.91 40.41 £ 4.52 46.96 & 3.54 58.50 £ 0.17 71.27 & 5.46 -63.92+3.21 - 66.91+1.38
macro F1 1 11.68 £ 1.56 63.36 = 2.84 29.36 +3.22 51.42 £ 1.27 60.17 + 1.94 71.10 £ 1.96 - 63.63 +£3.28 -70.48 +3.13
Modularity T 9.61 £ 1.88 72.88 & 0.41 53.05 & 2.02 69.58 £ 0.14 71.82 4+ 0.14 70.45 £ 1.71 - 69.91 +0.58 - 69.79 & 0.40
Conductance | 37.12 £ 4.10 17.09 £ 0.66 *23.09 & 1.89 19.80 £ 0.24 19.76 + 0.22 14.41 £ 0.32 - 21.96 + 0.60 - 21134 0.66
Coauthor PHY Accuracy T 56.19 £ 0.75 87.97 £ 0.01 64.65 = 6.92 77.41 £ 0.00 55.70 £ 2.26  92.04 £ 0.06 - - - 89.30 £ 0.70
NMI + 11.72 4 1.92 69.13 £ 0.02  50.60 + 3.71 11£0.0257.71 £ 1.31 75.84 £0.13 - - -72.54+0.80
ARI 1 8.2541.26 79.15 4+ 0.03 48.76 + 9.58 72.43 £+ 0.02 44.91 £ 1.58 84.44 £+ 0.16 - - -77.68+1.61
macro F1 1 24.74 £2.11 83.32 £ 0.02 48.51 £+ 4.68 62.09 & 0.00 55.26 + 2.30 88.90 +0.08 - - - 86.65+0.91
Modularity 1 5.74 4 0.83 47.96 + 0.00 44.97 & 3.16 45.31 + 0.00 60.70 £ 0.39 47.69 + 0.07 - - - 50.56 +£0.27

Conductance | 10.56 £+ 1.47 5.99 +£0.00 19.86 +7.16 5.80 + 0.00 13.47 £0.07  5.73 + 0.03 - - - 731%£031

Table 2: Accuracy for semi-supervised node classification task with different data
usage for embedding generation: 1) using 10% of data with labels; 2) using all
data without labels.

Data Usage Method Cora Citeseer Pubmed ACM DBLP Amazon Photo Coauthor CS Coauthor PHY
train data (labeled) DMT 84.30 £ 0.25 70.42 £ 0.33 86.46 £ 0.16 91.42 + 0.36 77.59 £ 0.30  92.60 £ 0.42 93.30 £ 0.12 95.44 +0.03
DMAT 83.92 £ 0.45 71.39 £ 0.38 86.19 & 0.10 92.04 £ 0.16 79.80 £ 0.60 ~ 93.42+0.11 93.444+0.15  95.20 & 0.04
DMAT-i 81.99 =+ 0.54 70.91 £ 0.27 83.52 & 0.21 91.32 £ 0.38 78.39 £ 0.67  93.19+0.19 92.90+0.12  94.86 & 0.07
all data (unlabeled) DMAT-i 83.65 & 0.71 72.40 & 0.43 83.91 & 0.25 92.55 + 0.40 80.92 £ 0.50  92.97 £ 0.16 91.28 £0.17  94.66 + 0.08
SSGC  83.48 £0.06 68.15 £ 0.02 84.59 & 0.01 89.71 £ 0.25 77.14 £ 0.12  89.80 £ 0.14 91.374+0.03  94.88 £+ 0.02
GCA 83.89 £ 0.56 73.36 £ 0.34 83.38 £ 0.17 90.01 £ 0.27 79.73 £ 0.50  90.30 £ 0.47 90.91 £0.11 -
ProGCL 85.04 £ 0.42 71.42 £ 0.39 -88.98+£0.48 79.55 +£0.41  92.13 +0.82 - -
AGE 83.78 +£0.22 72.13 £ 0.92 80.18 £ 0.24 92.10 + 0.18 80.02 + 0.40  73.16 £2.53 91.40 £0.13  94.21 £+ 0.08
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cation, and link prediction. Our framework is compared with existing state-of-
the-art appraoches on 8 real-world datasets (with details in appendix).

Node Clustering We set the number of clusters to the number of ground-truth
classes and perform K-Means algorithm [9] on resulting embedding Z from
DMAT-i following previous efforts [17, 1, 31, 6]. Table 1 summarizes clustering re-
sults. DMAT-i maintains either the state-of-the-art clustering results or is fairly
close to the best. In particular, DMAT-i further reduced state-of-the-art accu-
racy gap between unsupervised learning and transductive supervised learning as
presented later in Table 2 across datasets such as DBLP and Coauthor PHY.
Not surprisingly, deep clustering methods that use both node attributes and
graph structure appear to be more robust and stronger than those using either
of them (KMeans and DeepWalk), although the latter shows good performance
for certain datasets. Compared with GCN based methods like SDCN, DMAT-i
shows significant performance gain due to solving over-smoothing issues through
graph filtering. For clustering methods like AGC, SSGC or AGE with carefully
designed Laplacian-smoothing filters, DMAT-i can still outperform them in most
cases. The most competitive clustering performance comes from AGE on several
datasets — however, it does not even converge for DBLP. DM AT-i achieves robust
convergence across all real-word datasets — a detailed summary of convergence
time across different datasets is presented in the appendix.

Table 3: Link prediction performance.

Dataset Metrics DMAT-i SSGC AGE GCA ProGCL

Cora AP 92.41 £ 0.28 93.24 £ 0.00 92.26 £ 0.30 92.95 + 0.41 92.87 £ 0.28
AUC  92.62 4 0.29 92.14 £ 0.00 92.07 £ 0.21 92.95 £ 0.34 93.60 £ 0.13

Citeseer AP 95.52 & 0.26 96.14 4 0.00 92.22 + 0.48 93.38 £ 0.39 95.65 4 0.28
AUC  95.19 4 0.26 95.29 + 0.00 92.66 £ 0.44 92.57 4 0.49 95.59 + 0.24

Pubmed AP 95.42 £ 0.08 97.53 £ 0.00 84.67 £ 0.09 92.65 £ 0.44 -
AUC 9518 +0.10 97.84 £ 0.00 86.70 £ 0.12 93.81 4 0.37

ACM AP 97.55 £ 0.17 82.33 4 0.00 98.14 £ 0.10 92.61 £ 1.05 97.02 £ 0.23
AUC  97.4140.17 81.15+0.00 97.51 £ 0.18 94.19 £ 0.75 97.31 £ 0.18

DBLP AP 95.50 £ 0.37 95.88 £ 0.00 92.68 £ 0.31 93.41 £ 0.61 95.99 £ 0.24

AUC  95.50 & 0.50 95.22 + 0.00 90.96 £ 0.43 92.47 £ 0.59 95.38 + 0.23
Amazon Photo AP 92.73 £ 0.23 83.93 £ 0.00 91.65 £ 0.23 76.26 + 1.39 93.43 £ 0.65
AUC  93.89 4 0.20 89.21 +0.00 93.12 £ 0.19 81.28 4= 1.34 95.66 + 0.42
Coauthor CS AP 94.76 £ 0.14 88.96 £ 0.00 93.96 £ 0.18 82.70 £ 0.98 -
AUC  95.03 4 0.12 93.56 + 0.00 93.61 £ 0.15 83.54 = 0.74
Coauthor PHY AP 91.25 £0.20 93.92 £ 0.00 94.35 + 0.08 -
AUC  92.75 % 0.15 96.57 % 0.00 95.20 + 0.06 - -

Node Classification  For the transductive semi-supervised node classification
task, we applied train-validation-test data split with fraction as train (10%),
validation (10%), and test (80%). Following the experimental settings of SSGC
[31] and GCA [32], we evaluate the classification performance of DM(A)T and
DMAT-i by using a linear classifier to perform semi-supervised classification and
report the accuracy. As shown in Table 2, the embedding generation methods are
categorized based on the availability of labels, where DM(A)T learns from train
data (10% of all data) with labels and DMAT-i can proceed in an unsupervised
way on all data samples. For comparison, we apply DMAT-i in both settings.
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With labelled training data, DM(A)T turns out to achieve high quality of
representations and shows superior results. DMAT-i, however, fails to recognize
part of positive samples as compared with DMAT in this condition and lose some
accuracy. When labels are completely unavailable, we can see that competitive
results have been observed from DMAT-i compared to other advanced base-
lines under unsupervised setting. More importantly, DMAT-i generally achieves
better performance when generating embedding in unsupervised condition than
“partially-supervised” condition (with partial labels available). That is because
much more samples i.e. all data, are included during tuplet loss optimization.

Link Prediction To evaluate DMAT-i on this task, we remove 5% edges for val-
idation and 10% edges for test while keeping all node attributes [21,17,6]. The
reconstructed adjacency matrix A can be calculated as per the previous publica-
tion [21]: A=0(ZZT), where o denotes the sigmoid function. For comparison pur-
poses, we report area under the ROC curve (AUC) and average precision (AP)
following settings from previous works [21,17,6]. As shown in Table 3, DMAT-i
is robust, i.e, produces high-quality link prediction (above 90% for both metrics
for all datasets), whereas no other methods has a comparable consistency.

6 Conclusions

This paper has presented a scalable graph (node-level) learning framework.
Employing a mutli-class tuplet loss function, we have introduced both semi-
supervised learning and unsupervised algorithms. We have also established con-
nections between tuplet loss and contrastive loss functions and also theoretically
shown how our method leads to generalization error bound on the downstream
classification task. The learned representation is used for three downstream tasks:
node clustering, classification, and link prediction. Our extensive evaluation has
shown better scalability over any existing method, and consistently high accu-
racy (state-of-the-art or very competitive in each case).
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