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Abstract

Variational auto-encoders (VAEs) are widely used in gen-
erative modeling and representation learning, with applica-
tions ranging from image generation to data compression.
However, conventional VAEs face challenges in balancing
the tradeoff between compactness and informativeness of
the learned latent codes. In this work, we propose Progres-
sive Quantization VAE (PQ-VAE), which aims to learn a
progressive sequential structure for data representation that
maximizes the mutual information between the latent rep-
resentations and the original data in a limited description
length. The resulting representations provide a global, com-
pact, and hierarchical understanding of the data semantics,
making it suitable for high-level tasks while achieving high
compression rates. The proposed model offers an effective
solution for generative modeling and data compression while
enabling improved performance in high-level tasks such as
image understanding and generation.

1. Introduction

Variational auto-encoders (VAEs) [11] are powerful tools
for generative modeling and learning data efficient repre-
sentations, with applications in diverse fields such as image
generation, anomaly detection, and data compression. VAEs
optimize the Evidence Lower Bound (ELBO) objective func-
tion that includes two terms, a reconstruction loss and a
regularization term (KL divergence), encouraging the latent
variables to follow a prior distribution. These two terms
balance the complexity of the model and the amount of in-
formation needed to describe the input data, following the
Minimum Description Length (MDL) principle [19]. The
reconstruction loss and the regularization term can be seen
as measures of the information in the latent code and the
information required to recover the input.

We want the latent codes to be compact, meaningful, and
represented by as few bits as possible. On the other hand, it
is also desirable that the latent codes provide as rich infor-
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mation as possible, which requires the model to be confident
about the latent codes given the input. These two goals are
conflicting in the ELBO. In conventional VAE objectives,
a tradeoff between these two goals can be adjusted by the
choice of a hyperparameter known as the beta coefficient.
However, the effectiveness of this approach can depend on
the particular application and choice of beta value. Further-
more, earlier works [1] have shown that a tighter ELBO
does not necessarily lead to better latent representations.
To address these limitations, several extensions to the VAE
framework have been proposed, such as the beta-VAE [9]
and total correlation (TC)-VAE [4], which aim to better bal-
ance the tradeoff between description length and information
content in the latent code. However, the use of continuous
latent codes in these works does not effectively reflect the
description length of the codes. For example, to use them
for image compression, additional steps such as scalar quan-
tization and entropy coding are necessary, and this is not
modeled as part of the original formulation.

Vector Quantized VAE (VQ-VAE) [23] is a successful dis-
crete VAE model that uses vector quantization to discretize
the continuous latent variables and achieve high compres-
sion rates, generating compact and meaningful codebooks.
Its variants, such as VQ-VAE2 [18], VQ-GAN [7], and Vit-
VQGAN [27], use hierarchical structures, GAN training, or
transformer structures [25] to further improve reconstruc-
tion quality. However, when considering images as the data,
VQ-VAE only learns small 2D tokens associated with local
regions of the original image. Modeling the 2D structure
can be challenging, even on a smaller scale, which requires
training a heavy-weighted prior model like PixelCNN or
transformers to generate images. Furthermore, since high-
level tasks such as image understanding require a global
understanding of the image’s semantics, VQ-VAE learns
local and low-level representations that may not be suitable
for such tasks.

In this work, we propose to learn a progressive sequential
structure of data representations, aiming to maximize the
information content in a limited (code) length. Our approach
results in global, compact, and hierarchical representations,

7550



with information organized based on its relevance to the

given data. The advantages of this proposed progressive

structure are manifold: 1) considerable compression rate
can be achieved by encouraging the representations to be

compact; 2) the representations are easier to understand, e.g.,

for image classification, and the most important information

can be easily extracted by taking the beginning part of the
learned latent codes; 3) they are easier to model, for gen-
eration tasks where auto-regressive methods are prevalent,

e.g., image generation, the progressive structure is more nat-

ural than raster scan because the order of the latent codes

inherently reflects the level of information.
Our contributions can be summarized as:

1. We propose to learn a hierarchical sequence of discrete
representations.

2. We propose progressive quantization and leverage infor-
mation maximization to obtain such hierarchical sequen-
tial representations.

3. Extensive experiments on image reconstruction, image
generation demonstrate the superiority to other VQ-based
methods.

4. Qualitative analysis shows that the learned latent codes
exhibit a hierarchical structure.

2. Related Work
2.1. Representation Learning

Representation learning focuses on learning representations
of data that are useful for downstream tasks. These represen-
tations are typically learned through unsupervised learning
methods, which do not require explicit supervision or labels.

Classic works in representation learning include Principal
Component Analysis (PCA), which finds a linear subspace
that captures the most variance in the data; Independent Com-
ponent Analysis (ICA), which seeks to uncover independent
sources that can account for the observed data; K-means,
which automatically groups data into different clusters; au-
toencoders, which convert data into lower-dimensional rep-
resentations.

Other notable works in representation learning include
Contrastive Predictive Coding (CPC) [24], which learns rep-
resentations by predicting latent tokens in an auto-regressive
manner; and the InfoNCE [24] objective, which learns repre-
sentations by maximizing the mutual information between
the input and the latent context.

Recent advances in unsupervised representation learn-
ing have focused on learning representations that capture
more complex and abstract features of the data. Contrastive
learning has emerged as a powerful approach for this task,
where the model learns to discriminate between similar and
dissimilar pairs of data points in the latent space. This ap-
proach has been used in recent works such as InfoMin [21]
and SimCLR [5] to learn highly informative and transfer-

able representations that outperform previous state-of-the-art
methods on various downstream tasks. Another line of recent
state-of-the-art methods are masked modeling. BERT [6],
GPT [15], and their variants [2, 13, 16] are successful pre-
training methods in NLP. They mask out some portion of the
input text and use the rest to reconstruct the missing words.
MAE [8] extended this method to image data and showed
success in image pre-training.

2.2. Variational Autoencoders

Variational autoencoders (VAEs) have become a popular
approach for unsupervised representation learning. Various
methods have been proposed to improve the original VAEs,
including Importance Weighted Autoencoder (IWAE) [3]
which uses importance sampling to improve the tightness
of the lower bound, and VAE with Inverse Autoregressive
Flow (VAE-IAF) [12] which replaces the simple Gaussian
posterior approximation with a more flexible model.

Another line of research focuses on improving the dis-
entanglement ability of VAEs. Beta-VAE [9] proposed a
modification to the VAE objective function by adding a hy-
perparameter beta, which controls the trade-off between
the reconstruction loss and the KL divergence term in the
Evidence Lower Bound (ELBO) objective function. Factor-
VAE [10] and beta-TC VAE [4] introduce additional terms in
the loss function to encourage independence between differ-
ent latent dimensions. Wasserstein Autoencoder (WAE) [22]
uses a Wasserstein distance instead of KL divergence as the
regularization term. InfoVAE employs information-theoretic
principles to guide the learning of a more disentangled rep-
resentation.

Finally, there is a growing interest in using VAEs for dis-
crete data. Vector Quantized VAE (VQ-VAE) [23] employs
discrete latent variables and a codebook to compress the in-
put data, while VQGAN [7] applies additional GAN training
to make the reconstrucion more realistic to achieve higher
compression rates. These methods have shown promising
results in image compression and generative modeling.

The proposed method is related to recent advances in
using VAEs for unsupervised representation learning. How-
ever, it differs by introducing a progressive structure of latent
representations. This unique approach allows us to simulta-
neously minimize of description length and maximize the
information content within the latent codes of VAEs. As a
result, our method generates representations that are not only
compact but also meaningful.

3. Background
3.1. VAE

Variational Autoencoders (VAEs) are a type of neural net-
work used for generative modeling. The VAE consists of two
main parts, an encoder and a decoder. The encoder maps
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Figure 1. Overview of the progressive vector quantization. The feature map F; at step [ is converted to a feature vector e; using a step-specific
transformation 7;. Then e; is quantized using a shared vector quantizer, and converted back to the reconstructed feature map F; with Tfl,

the (pseudo) inverse of 7;. The subsequent feature map F;4; is obtained by subtracting F} from Fy, with each quantization step progressively

refining the representation.

the input data, such as an image, to a latent space, while
the decoder maps the latent vectors back to the original data
space. The encoder can be represented as a function g4 (2|x)
modeled by parameters ¢ that maps the input data = to a
distribution over the latent space z. The decoder can be rep-
resented as a function py(x|z) modeled by parameters 6 that
maps the latent vectors z to a distribution over the original
data space x.

To train the VAE, we aim to maximize the likelihood of
the observed data given the latent variable z using a varia-
tional approximation ¢(z|x), which is typically chosen to be
a simpler distribution such as a multivariate Gaussian. The
objective function for the VAE can be written as,
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where [E denotes the expectation over the latent variable z,
and D is the Kullback-Leibler divergence between the
variational approximation and the prior distribution p(z).
The first term in the objective function encourages the re-
constructed data to be similar to the original input, while the

second term regularizes the latent distribution to be close to
the prior distribution.

3.2. VQ-VAE

Let = be the input data, z the continuous latent variable,
and e(x) the encoder function that maps z to z. The vector
quantization module maps the continuous latent variable z
to a discrete code g(z) from the codebook C'. The decoder
function d(z) maps the latent variable z to the output space,
such that d(g(z)) approximates x. The loss function for VQ-
VAE is a combination of a reconstruction loss, a codebook
loss, and a commitment loss, given as,
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where x, is the reconstruction of z using the code ¢(z.) and
[ and -y are hyperparameters that control the weighting of
the codebook loss and the commitment loss, respectively,
and sg(-) denotes the “stop gradient” operation.

The codebook loss term encourages the discrete codes to
represent the input data well, and the commitment loss term
encourages the encoder to commit to a code in the codebook
for each input. The use of discrete codes enables VQ-VAE
to learn compact and meaningful representations of the input
data.

Algorithm 1 Progressive Quantization

Input:

F': Feature map.

Output:

F Quantized feature map.

z1.1, : Indexes of selected codes from the codebook.
Parameters: Vector quantizer (VQ); step-specfic trans-
formations 77.r,.

Initialization: Set initial feature map F; = F.

8: procedure PROGRESSIVE QUANTIZER

9: for | <+ 1to L do

AN e

~

10: er =T (F)

11: e,z = VQ(el)
12: Fl = Tlil(él)
13: Fiy1=F - F
14: end for

15 F=YF. R

16: return F' and 21:L

17: end procedure

4. Proposed Approach

‘We use the standard VAE encoder and decoder, but we obtain
from the latent codes to be a sequential structure ordered



by their relevance to the data. Our goal is to maximize the
informativeness of limited latent codes. On the one hand,
the reconstruction loss in the ELBO objective reflects the
information attained from the input; on the other hand, we
can also measure the mutual information between the data
and the latent codes, which is

Iy(2,2) = H(q(2)) = Exnpypra @ H (a(2]2),  3)

i.e., the entropy of the latent code distribution minus the con-
ditional entropy given the input data. Next we will present
in detail in Section 4.1 our formulation of a new training
loss that maximizes information in limited discrete codes.
In Section 4.2, we will further show that, guided by the pro-
posed training objective, a meticulously designed progres-
sive vector quantization procedure introduces a hierarchical
sequential structure into representations.

4.1. Maximum Information in limited discrete codes

We assume the unobserved random variable z for generating
data point z is a sequence of L discrete tokens, meaning
z € {(z1,22,...,20) | z21,22,...,21 € {1,2,...,K}},
where K denotes the size of the vocabulary. The sequence
{21, z1.2, - . ., 21.1. } inherently exhibits a hierarchical struc-
ture, as each subsequent term must incorporate its preceding
term at the forefront of its representation. In addition, we
assume the tokens are drawn independently from a uniform
distribution, P(21, 2, ..., 21) = [I,,—y. ; P(2n) = %z
Thus,

L
KL (¢(z | 2)|lp(2)) = Llog K =Y H(q(z | ,2<1)).

=1

“4)
The KL divergence between the posterior and the prior distri-
bution, which reflects the rate needed to describe the latent
code, is negatively related to the entropy of the posterior
distribution. It is typically included in the conventional con-
tinuous VAE training objective so that the required number
of bits is not infinity because the KL. divergence between
two continuous distributions is not upper-bounded. However,
in the discrete settings, the KL is upper bounded. The upper
bound is achieved when the conditional entropy of z; is zero
at all positions, meaning the model is absolutely confident
about the choice of the latent code given the input. This is de-
sired for meaningful representations. When the conditional
entropy becomes all zero, then the KL divergence achieves
its upper bound and is constant. Therefore, we remove it
from the training objective.

We want to constrain that the entropy of the approximate
posterior is zero. Besides, we also need to constrain that
the aggregated posterior distribution matches the prior, i.e.,
KL(a(z1.0)lIp(21.0)) = H(p(2)) — H(q(2)) = 0. There-
fore, we add a regularization term, the negative mutual infor-
mation between the data and the latent codes, to the training

loss. Finally, the proposed training loss becomes,

L = (E.g(zr.p|2) log p(z|2))
z 5)

+ Y (H(g(z | @, 20) — H(g(z]2<0))) -
=1

It is non-trivial to estimate the aggregated posterior distri-
bution ¢(z) as it requires enumerating the whole dataset.
Even if the estimation is accurate enough, when H (¢(z|z))
is minimized for each « in the dataset, H(g(z)) will not
exceed log N, where N is the size of the dataset. We no-
tice that in some works H(g(z;, | «)) — H(q(z)) can be
further decomposed as a total correlation (TC) term plus
a dimension wise KL term, and emphasize the TC term.
Here we care about compactness over independence. In fact,
if H(q(z|l)) is maximized for some I, then it means that
q(z|l) = p(z|l) and both the TC term and the dimension
wise KL will be minimized. Therefore, we will optimize
the expected entropy solely. Therefore, we relax the for-
mulation of H(q(z; | z,2<;)) =~ H(q(z; | x)), which can
be estimated easily using Monte Carlo sampling within a
minibatch.

~
~

4.2. Progressive Quantization

Standard VAEs convert the encoder’s feature map of the
input image to a feature vector, whereas VQ-VAEs quantize
each feature vector. In our approach, we convert the feature
map to a feature vector and quantize it progressively, while
allowing for flexibility in the size of the latent codes. Figure 1
illustrates the proposed method.

The feature map F' is subjected to a sequence of quanti-
zation steps, each entailing a unique, step-specific transfor-
mation. These transformations are composed of two single-
layer linear networks, acting on the spatial and channel di-
mensions respectively. A transformed feature e; at step [ is
derived and flattened using the transformation 7;. Distances
between e; and the codebook entries are then computed, with
the Gumbel-Softmax technique being utilized to sample the
codebook entries. Following this, the reversed transforma-
tion of T; is applied, utilizing the pseudo-inverse of the
weight matrices, and the resultant map is subtracted from
the quantized feature map. This procedure is reiterated until
the predetermined maximum number of quantization steps
(L) is attained. Algorithm 1 shows the process.

4.3. Feature Map Partitioning

The progressive quantization process provides a structured
and precise approach to feature map quantization by utilizing
step-specific reversible transformations. These transforma-
tions enhance the fidelity of the quantized feature maps.
However, in the context of high-resolution images that ne-
cessitate a considerable number of latent codes—and conse-
quently, quantization steps—the efficiency of encoding can
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Figure 2. Example of a feature map of shape (1, 8, 8) being parti-
tioned into 2 X 2 sub-maps of shape (1,4, 4).

be adversely affected. Furthermore, high-resolution images
are associated with large feature maps, which in turn demand
an extensive number of parameters for the step-specific trans-
formations.

To address these challenges and extend the applicability
of progressive quantization to high-resolution images, we
propose partitioning the feature map into a series of smaller
sub-maps. These sub-maps can then be quantized progres-
sively and in parallel, thereby improving both efficiency and
parameter manageability.

Given an input feature map characterized by the
shape (¢, H,W), it is initially partitioned into h X w
non-overlapping patches, each delineated by the shape
(H/h,W/w) (we assume H, W can be divided even by h, w
for simplicity).

Following the partitioning, feature vectors are grouped
based on their relative positions within each respective patch,
yielding IfL iz}v small feature maps of shape (¢, h, w). This
grouping scheme ensures that each obtained code possesses
an equally nearly full-size receptive field, thereby encap-
sulating a comprehensive, global overview of the original
feature map. Figure 2 shows an example of partitioning for
a feature map of shape (1,8, 8).

5. Experiments

We perform empirical evaluations of the proposed method us-
ing the MNIST, CIFAR-10 [14], CelebA and LSUN Church
datasets. We measure the rate-distortion to assess its com-
pression ability. Qualitative experimental results are also
presented to investigate the generation process and illustrate
the model’s ability to learn a hierarchical structure of latent
representations.

5.1. Implementation details

For VQ-VAE, SQ-VAE and VQ-WAE, we follow the descrip-
tion in [20] and [26] to build models for all datasets except
LSUN Church which is not included in their paper and we
use the same model as in CelebA. The training details are
also identical as in their settings.

For PQ-VAE, we adopt the encoder and decoder struc-
tures from dVAE [17] and use 3 ResNet blocks both for the
encoder and the decoder. We transform the encoded feature
to 512-dimensional . For the progressive quantization, we
always partition the feature map into 8 x 8 patches, and
use a weight matrix of size 64 x 16 to transform the spatial
dimension and a weight matrix of size 512 x 4 to transform
the channel dimension of the feature map.

We use an initial learning rate of 1e — 3 which is anneal at
training step ts by e 5000 . We use batch size 128 for MNIST,
CIFAR; 512 for CelebA; and 128 for LSUN Church.

5.2. Reconstruction

We show the test images from MNIST, CelebA and LSUN
Church and the reconstructed images from our PQ-VAE
model in Table 1. For comparison, various other models
including VQ-VAE, SQ-VAE [20], VQ-WAE [26] are also
listed. For all methods, we use the same number of latent
codes and codebooks of the same size. Specifically, the
codebook size is set to 256 for MNIST and 256 for other
datasets; the number of latent codes are 64 for MNIST and
CIFAR10, 256 for CelebA, and 1024 for LSUN Church. For
VQ-VAE, SQ-VAE, VQ-WAE, MNIST images are resized
to 32x32 compressed to 8x8; CelebA images are performed
a 140x140 centercrop, resized to 64x64 and then compressed
to 16x16; LSUN Church images are resized to 128x128 and
compressed to 32x32. For PQ-VAE, we use 64, 256 and
1024 latent codes for the three datasets respectively. The
number of latent codes of PQ-VAE are not necessarily equal
to the feature map size but is selected so for fair comparisons.
For quantitative assessments, we report in Table 2 the
mean square error (MSE) and the reconstruction Fréchet
Inception Distance (rFID) between the test images and the
reconstructed images from different models. VQ-WAE is
not included for comparision on CelebA and LSUN as it
took too much time to train. As we can see, SQ-VAE and
VQ-WAE outperforms the original VQ-VAE by a large mar-
gin in terms of both MSE and rFID. These two methods
and many recent VQ-VAE based methods improve the VQ-
VAE method by addressing the codebook collapse issue,
which is when the codebook usage is low, thus making the
training sub-optimal. Our method diverges from this kind
of improvement, and improves VQ-VAE from a different
perspective through the establishment of hierarchical latent
codes with progressive quantization. Even so, our method
shows superior performances to SQ-VAE and VQ-WAE.

5.3. Generation

Like all other VQ-VAE methods, to generate images, we
need to learn an additional prior network to model the distri-
bution of the latent codes. It is noteworthy that our method
does not require much specific prior knowledge about model
architecture of the prior network. This is because PQ-VAE



Table 1. Source images from MNIST, CelebA and LSUN Church datasets and reconstructions with different models. All models use the

same number of discrete latent codes for each dataset.

Methods | MNIST CelebA

Source

VQ-VAE

SQ-VAE
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Table 2. Mean Square Error (MSE) (x10%) and reconstruction
Frechlet Inception Distance (rFID) of models on MNIST, CIFAR10,
CelebA and LSUN Church datasets.

Methods | MNIST | CIFARI0O | CelebA | LSUN Church
| MSE | rFID | MSE | tFID | MSE | fFID | MSE | rFID
VQ-VAE | 0.78 | 3.32 | 3.63 | 77.30 | 1.32 | 194 | 1.84 | 73.53
SQ-VAE | 0.42 | 273 | 327 | 5540 | 0.96 | 14.8 | 1.79 | 70.26
VQ-WAE | 051 | 1.67 | 343 | 5430 | 1.05 | 142 | - | -
PQ-VAE | 048 | 1.51 | 2.96 | 65.06 | 0.82 | 22.78 | 1.49 | 69.98

produces codes that has a hierarchy. And the latent codes
in other methods presents a 2-dimensional spatial structure.
Thus, CNN like models are needed for them such as Pixel-
CNN, PixelSNAIL. In contrast, the latent codes of PQ-VAE
is a 1-dimensional sequence and is ordered by the amount of
information they possess. We can utilize sequence models
for learning prior distributions. Specifically, we use a trans-
former to model the conditional probability of latter codes
given earlier codes. For training the transformer network,
apart from adding a position-specific embedding to the in-
put, we also apply a position-specific linear transformation,
which corresponds to the progressive quantization process.
We perform image generation of our method and the
baseline SQ-VAE method CelebA. We visulize the generated
images in Figure 3. PQ-VAE generates much shaper images
than others. Looking into the details of the generated images
of CelebA, we can find that face images generated by PQ-
VAE are more cohesive, while images generated by other
methods can have misaligned eyes, noses, mouths and etc.

5.4. Studying the learned latent codes

We conduct qualitative experiments to study the learned
structure of the latent codes and their importance in image
reconstruction and classification.

5.4.1 Representation Learning and Image Classifica-
tion

We tested the representation power of PQ-VAE by applying
its latent codes to image classification without additional
training. We counted the occurrences of latent codes for
different classes on the training set and estimated the proba-
bility of a test image belonging to a specific class using the
Bayesian rule.

The estimation of a test image’s class probability is per-
formed using two methods: “1-step conditional” and “in-
dependent” which assume that the latent codes are only
dependent on a previous code or are completely independent,
respectively. Please refer to Appendix for more information.

On the MNIST dataset, PQ-VAE achieves an accuracy
of over 93 percent. Interestingly, for the “independent” esti-
mation method, adding more latent codes does not always
improve accuracy. This can be attributed to the learned hi-
erarchical structure of the latent codes, where the semantic
information that associates with the image class lies only in
the earlier part of the latent representation, and the later part
can introduce irrelevant information. Therefore, adding more
latent codes beyond a certain point can lead to a decrease in
accuracy.

5.4.2 Measuring the amount of information in latent
codes

To measure the information in a latent code, we can cal-
culate the mutual information between the code and the
input. The mutual information is not directly accessible
but can be estimated in two ways by using its definition:
I(xz;z) = H(x) — H(z|z) = H(z) — H(z|z). Firstly,we
evaluated the importance of the latent codes at different posi-
tions by removing a latent code at a position and measuring
the reconstruction MSE. Secondly, we compute the condi-
tional entropy of a latent code given the source image and



(b) PQ-VAE

Figure 3. Generated samples of SQ-VAE and PQ-VAE on CelebA.

the previous codes. Figure 5 shows the results. It illustrates
that removing a latent code at an early position results in a
significantly larger MSE, while removing a later one does
not make a big difference. This suggests that the latent codes
are ordered by their importance for reconstructions, and a
semantic hierarchical structure of latent codes is successfully
learned. On the other hand, the conditional entropy tend to
be growing as the progressive quantization goes, which also
shows the amount of information is more at ealier positions.
This also means the model is more confident at the begin-
ning while more stochastic as it goes. The intuition is that
semantic information, which is stored at the earlier part is
more unique for a given image while the details (in the later
part) are more random.

Table 3. Progressive reconstructions of the PQ-VAE model on
MNIST and CelebA datasets. First [ latent codes are extracted
from PQ-VAE model and the rest codes are sampled from the prior
network given the first [ ones. The combined codes are decoded to
reconstruct the source images.
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5.4.3 Progressive reconstructions

To understand what information the latent codes are pos-
sessing. We show the progressive image reconstructions of
PQ-VAE in Table 3. We take the first [ latent codes accord-
ing to the posterior distribution of the latent codes given
the source images and randomly samples the rest accord-
ing to the prior distribution learned from the prior network.
As it shows, even at the beginning of the process when the
length is small, PQ-VAE can generate sharp images, and
the reconstructions are semantically similar to the original
images. At the beginning, PQ-VAE can be confused be-
tween several digit pairs. As it uses more latent codes, it
becomes more confident about the semantic information, and
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Figure 4. Empirical studies on classification accuracy as a function
of the number of latent codes we use. On both the MNIST and the
CIFAR 10 datasets, adding more latent codes will increase the ac-
curacy when using the “1-step conditional” estamating method and
then it will converge. However, for the “independent” estamating
method, the accuracy will first increase and then decrease.

the label information is stable (from /=2 for MNIST). As the
length of codes keeps increasing, fine details are added to
the reconstruction.

6. Conclusion

Redundancy is a common feature in data, leading to in-
creased processing costs and difficulties in interpretation. A
compact and semantic representation of the data is generally
considered to be more meaningful. While traditional com-
pression methods rely on prior knowledge of the data, recent
learning methods aim to model data distributions. In this
work, we propose PQ-VAE that directly maximizes infor-
mation given limited data description lengths in a semantic
hierarchical fashion. Our extensive empirical results demon-
strate that our approach achieves superior compression rates
and captures semantic information of data.
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Figure 5. Studies of the amount of information contained in latent
codes at different positions. We plot MSE as a function of removed
latent code index, and the conditional entropy of a latent code given
the input image and the previous codes. This graph illustrates
the hierarchical significance of latent codes at different positions,
indicating that earlier latent codes carry more important information
compared to the later ones.
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