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Abstract. Tokens or patches within Vision Transformers (ViT) lack
essential semantic information, unlike their counterparts in natural lan-
guage processing (NLP). Typically, ViT tokens are associated with rect-
angular image patches that lack specific semantic context, making in-
terpretation difficult and failing to effectively encapsulate information.
We introduce a novel transformer model, Semantic Vision Transform-
ers (sViT), which leverages recent progress on segmentation models to
design novel tokenizer strategies. sViT effectively harnesses semantic in-
formation, creating an inductive bias reminiscent of convolutional neu-
ral networks while capturing global dependencies and contextual infor-
mation within images that are characteristic of transformers. Through
validation using real datasets, sViT demonstrates superiority over ViT,
requiring less training data while maintaining similar or superior perfor-
mance. Furthermore, sViT demonstrates significant superiority in out-of-
distribution generalization and robustness to natural distribution shifts,
attributed to its scale invariance semantic characteristic. Notably, the
use of semantic tokens significantly enhances the model’s interpretabil-
ity. Lastly, the proposed paradigm facilitates the introduction of new
and powerful augmentation techniques at the token (or segment) level,
increasing training data diversity and generalization capabilities. Just as
sentences are made of words, images are formed by semantic objects; our
proposed methodology leverages recent progress in object segmentation
and takes an important and natural step toward interpretable and robust
vision transformers.

Keywords: Semantic Vision Transformer · Interpretability · OOD gen-
eralization · Robustness to natural distribution shifts

1 Introduction

Transformer has achieved a significant breakthrough in Natural Language Pro-
cessing (NLP) [3,10,40], leading to its widespread adoption in Computer Vision
(CV) where it has quickly made a similar impact [1,11,28]. In contrast to the pre-
viously dominant Convolutional Neural Networks (CNN) [15,21,23], transformer-
based vision models gained popularity over standard CNN due to their ability
to capture non-local dependencies and contextual information within images.
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Fig. 1: Example of non-semantic and semantic tokenization for NLP and CV. Tokens
from non-semantic tokenization are hard to explain and understand, while it is easier
to explain and understand tokens from semantic tokenization for both NLP and CV.

Consequently, these models have attained the State-Of-The-Art (SOTA) perfor-
mance in various tasks, including classification, object detection, segmentation,
and image captioning [13,25,36,46].

Despite the analogous impact of transformers in CV and NLP, the way they
are applied differs, particularly in the aspect of tokenization. The key distinc-
tion lies in the semantic information carried by tokens. In NLP, tokens carry
high-semantic information as we understand the meaning of individual words
or tokens. In contrast, tokens in CV possess lower semantic information since
images are represented as a collection of regular patches. Following the analogy
with NLP methods, this is equivalent to implementing NLP models breaking
up sentences every fixed number of characters (instead of words), as illustrated
in Fig. 1. When examining the non-semantic tokenization, as depicted in the
second row of Fig. 1, it can be challenging to discern their meaning, even in the
context of NLP. In contrast, semantic tokenization, shown in the third row, pro-
vides a clear understanding of the meaning of each token and leads to attention
mechanisms with semantically-rich individual elements.

There are numerous advantages to utilizing semantic tokenization methods
as here proposed for CV. Firstly, this form of tokenization reduces the search
space by incorporating semantic prior knowledge into the model. For example,
it provides information about the grammatical structure for NLP models and
similar contextual information could be leveraged for CV models. In particular,
it reduces the number of tokens required as input for the model, further de-
creasing the search space, which is especially useful for small training datasets
(empirical examples and evidence are provided in Sec. 3). Secondly, this semantic
tokenization enables the vision model to be scale invariance, enhancing robust-
ness for transfer-learning on out-of-distribution datasets, particularly transfer
learning between object-centric and non-object-centric datasets. As illustrated
in Fig. 2, patches on a woman differ significantly between non-object-centric and
object-centric data when using non-semantic tokenization. However, with seman-
tic tokenization, the patches on the woman are consistent across both datasets.
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Fig. 2: The example illustrates the differences between non-semantic and semantic
tokenization on non-object-centric and object-centric images. As shown in the left
column under non-semantic tokenization, patches containing women differ between
non-object-centric and object-centric images, whereas they are similar or identical to
when semantic tokenization is applied. This consistency is achievable because semantic
tokenization segments based on object presence rather than uniform patch size.

Therefore, vision models utilizing semantic tokenization are expected to gener-
alize better, even when the scale of objects varies across different datasets.

Thirdly, semantic tokenization enhances the interpretability of the model.
Most current interpretation methods assume that the model and humans per-
ceive semantics in the same way. However, as noted by Hoffmann et al. [18], this
assumption does not hold, as some highlighted parts for interpretation lack any
semantic meaning. Our new method, trained to separate images into humanly
interpretable semantic tokens, overcomes such limitations (see experimental ex-
amples in Sec. 3). Fourthly, this form of tokenization expands the possibilities
for augmentation. Traditionally, most augmentations have been applied to entire
images. However, when applied to individual semantic tokens as in this work, it
significantly increases diversity. Lastly, the semantic tokenizer here introduced
captures multi-scale information by construction, and provides information on
positional embedding. Presently, all transformer-based vision models take the
patch order as the input for positional embedding. However, by utilizing seman-
tic tokenization, we use the position and pixel size of the extracted segment in
an image as input for positional embedding. This provides rich multi-scale and
spatial information and provides the opportunity for extremely efficient and rich
positional data augmentation as we describe and discuss in Sec. 2.

Despite its clear advantages, semantic tokenization is not widely used in
computer vision due to its greater complexity compared to NLP. Unlike NLP,
where spaces separate words, CV lacks a universal separator, leading to varied
and domain-specific segmentation methods. These complexities have made se-
mantic tokenization a distinct task in CV. In this paper, we address this and
introduce Semantic Vision Transformer (sViT), leveraging recent advancements
in segmentation models. To the best of our knowledge, this is the first approach
that utilizes semantic image tokenization in the context of transformer-based
vision models.
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Our main contributions are: i) We identify limitations of transformers in CV
compared to NLP, as CV utilizes non-semantic patches as tokens instead of se-
mantic ones as NLP does, and we provide a practical alternative solution; (ii)
We demonstrate our proposed method is more expressive compared to the stan-
dard (non-semantic) approach, especially in out-of-distribution generalization
and robustness to natural distribution shifts; (iii) We propose a new paradigm
for data augmentation, applying augmentation on each semantic segment instead
of on the entire image, thereby increasing diversity. We also increase the model’s
robustness with respect to changes in the positions and sizes of the semantic el-
ements; and (iv) While patches in standard vision transformers and highlighted
regions from interpretation methods on vision model are not necessarily explain-
able, our new semantic tokenization method is improving interpretability for
learned vision model. We describe the proposed methods in Sec. 2. We present
empirical evidence and interpretability results in Sec. 3. We discuss related work
in Sec. 4. Finally, we provide conclusions in Sec. 6.

2 Methods

2.1 sViT

For constructing a semantic tokenization, we exploit the Segment Anything
Model (SAM) [19], which has been trained on 11 million images for segmen-
tation tasks. Each segment is resized to 16× 16 or 32× 32 pixels, and we utilize
convolutional layers of matching sizes to flatten them into vector embeddings,
following an approach similar to the original Vision Transformer (ViT). Instead
of using the position or order of patches for positional encoding, we employ the
horizontal and vertical (x, y) image coordinates of the bounding box and the
pixel size of each segmentation as provided by SAM.

The coordinates of the bounding box provide relative positional and contex-
tual information about objects in the image, which is crucial for comprehending
the image content. For instance, an image with a person on top of a horse con-
veys a different meaning than an image with a person beside a horse, indicating
the potential actions of riding or tending to the horse, respectively. The segment
size information is also valuable, serving as a signal for the model to identify
which objects may be essential for understanding the image. This information
is added to the tokens, and a detailed explanation of the process is summarized
in the supplementary material.

We utilized the basic architecture of the original ViT model, designed to
process 196 tokens as input. In contrast to the original ViT, our model accom-
modates varying token lengths as input, given that SAM produces a different
number of segments depending on the input image. To handle this variability,
we introduce a token referred to as the ‘background token,’ which represents the
remaining pixels after segmenting all objects in the image. To designate this as a
background token, we assign −1 values to the x and y coordinates of the bound-
ing box, similar to the concept of special tokens in language models. For images
with more than 195 segments, we utilize the first 195 segments as tokens and
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Fig. 3: Architectures of ViT and sViT. ViT first resizes an image to a fixed size and
divides it into equal-sized patches, whereas sViT divides an image at the semantic
segments level and resizes the segments into equal-sized patches. ViT incorporates po-
sitional embedding mapped from the order of patches, while sViT includes positional
embedding mapped from the coordinates of the semantic bounding box and the sizes
of the segments. Outside of these two fundamental differences, the transformers archi-
tecture remains the same.

assign the remaining segments to the background token. This approach ensures
that no elements of the original image are discarded. This model is illustrated
and compared to the original ViT in Fig. 3.

2.2 Data Augmentation

Data augmentation techniques have shown to lead to strong generalization per-
formance. Most of these augmentations are applied to entire images, limiting
their capability to encourage relative (semantic) component diversity for a given
scene. For example, when we apply a horizontal flip to an entire image, all objects
within the image are flipped and maintain their relative relations. To achieve a
wider range of data augmentations from a single image, it is essential to apply
augmentations at the segment level. Applying augmentations at the segment
level also enhances crop and resize techniques. When we apply crop and resize
techniques to an entire image, there is a risk of losing objects due to such crop-
ping. For instance, in Fig. 4, focusing on cropping the female in the image might
result in some objects being cropped out. However, when we apply cropping and
resizing techniques at the segment level, we can retain all objects and create a
greater variety of data augmentations.

By performing augmentation at the token level, we further avoid the complex
task of re-rendering a complete scene. Moreover, our new tokenizer introduces
additional inputs for positional embedding, which are the positions and sizes of
image segments. These inputs enable us to implement an innovative augmenta-
tion method, namely introducing noise into the positional and size inputs for
each semantic token. Consider an image of a group of horses running on a plain.
Minor variations in the relative positions of the horses or changes in their sizes
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Fig. 4: Example of augmented images at the semantic segment level and the entire im-
age level. Top-row images are data autmentation results using horizontal flip, cropping,
and resizing techniques on the entire image. Bottom-row images are data autmentation
results using the same techniques but now at the semantic segment level.

might result from shifts in camera angle or distance. Introducing noise to the
positional and size data for each semantic token helps the vision model generalize
to such variations, a feature not addressed by current global data augmentation
methods.

To integrate these concepts, the augmentation function for sViT accepts the
following inputs: a list of segments, positional and size data for segments, the
maximum percentage for augmentation sampling, and functions for augmenta-
tions, as detailed in Algorithm 1. Rather than applying augmentations to the
same number of segments in each epoch, we introduce variability by sampling a
percentage for augmentation. This approach enhances diversity by exposing the
image to varying levels of augmentation intensity during training.

2.3 Enhancing Model Interpretability

Similar to other gradient-based methods, we utilize gradient propagation to iden-
tify the critical semantic segments in an image for predicting specific classes. In
contrast with existing methods, instead of relying solely on gradient information
from the last layer of the vision model, we use gradient information on the se-
mantic (and interpretable) tokens. The sViT tokenizer, a segmentation model,
is trained in a supervised manner to learn how humans separate an image into
distinct and understandable parts.



Vision Transformers with Natural Language Semantics 7

Algorithm 1 Augmentation by Segment Level
Output: List of segments: list_seg, List of bounding box and size: list_bb_size
Input: List of segments: list_seg, List of bounding box and size: list_bb_size,
Maximum percent to sample: max_perc, Horizontal flip: hf , Crop and resize: cr,
Gaussian noise: gn, n unique sampler from list l: rc(n, l), Uniform distribution: U

perc_samp ∼ U(0,max_perc)
num_samp = len(list_seg) · perc_samp
list_index = rand(num_samp, list_seg)
for i = 1 to list_index do

list_seg[i] = hf(list_seg[i])
list_seg[i] = cr(list_seg[i])
list_bb_size[i] = gn(list_bb_size[i])

end for
Return list_seg, list_bb_size

To determine the gradient-based importance level (Ici ) for each token i when
predicting class c, the initial step involves computing the gradient of the pre-
dicting class c (yc), with respect to the embedding of the semantic token i (Ti),
∂yc

∂Ti
. The subsequent process includes element-wise multiplication of the gradient

with the token embedding, followed by computing the average of the multiplied
tensor. Similar to other gradient-based methods, we applied the ReLU function
to the computed average to convert all negative values to zero. The complete

equation becomes Ici = ReLU

(
1

N

∑
j

(
∂yc

∂Ti,j
· Ti,j

))
.

3 Experiments

We now assess how the proposed sViT combines the dual advantages of pos-
sessing an inductive bias and capturing global dependencies and contextual in-
formation among segments of an image, and compare its performance in both
small and large datasets to that of ViT. Additionally, demonstrates how the
proposed sViT’s inductive bias contributes to transfer learning, particularly in
small datasets. Our evaluation also demonstrates the effectiveness of the pro-
posed semantic data augmentation and the natural explainability of sViT.

3.1 Setup

Datasets We use three scene recognition datasets: Places365 (Places) [47], MIT
Indoor Scenes (MIT 67) [35], and SUN397 (SUN) [42]. We specifically selected
these datasets due to their complexity and non-object-centric nature. For out-of-
distribution generalization, we use eight object-centric datasets: FGCV Aircraft
(Aircraft) [31], Stanford Cars (Cars) [20], Caltech 101 (Caltech) [14], ImageNet
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(INet) [9], Describable Textures Dataset (DTD) [6], Flower Dataset (Flower) [33],
Food 101 (Food) [2], and Pet Dataset (Pet) [34].

For evaluating robustness to natural distribution shift on INet, we used four
evaluation datasets: ImageNet V2 (INet-V2) [37], ImageNet-A (INet-A) [17],
ImageNet-Renditions (INet-R) [16], and ImageNet-Sketch (INet-S) [41]. More
details on training and evaluating datasets are in the supplementary material.

In our preprocessing phase, we employed SAM to isolate segments from each
image. These segments are then resized to either 16× 16 or 32× 32 pixel dimen-
sions and organized into a blank 224×224 or 448×448 pixel image, respectively.
Additionally, for numerical stability, we normalized the x and y coordinates of
the bounding box, as well as the size of segments for each image. For data-loading
and augmentation, we used the FFCV library [22] and adapted its functionalities
to segment-level data augmentation.

Training and Finetuning We trained the ViT model, and the proposed sViT
with resolutions of 16× 16 and 32× 32 for each semantic token, which we refer
to as sViT16 and sViT32, respectively. All models share the same architecture,
comprising of 12 heads and 12 layers of transformers. For the ViT model, we
applied augmentation using the cropping and resizing technique with horizontal
flip. For sViT, we employed a maximum percentage of 25% for sampling to aug-
ment, and cropping and resizing techniques with horizontal flip. For fine-tuning,
we employed a linear evaluation protocol, in which only the linear classifier is
updated while all other weights in the transformer are frozen. More details on
parameters for training and fine-tuning are in the supplementary material.

3.2 Results

Tab. 1 summarizes the performance comparison for ViT and sViT with and with-
out data augmentation on non-object-centric datasets. Our proposed method
sViT outperforms ViT for all the tested datasets. For example, our method out-
performs ViT by at least two percent in accuracy when evaluated on a subset of
Places dataset. This is a significant achievement, especially considering that sViT
takes an average of 99 tokens, while ViT takes 196 tokens for each input image.
This difference could be attributed to sViT having an inductive bias and prior
knowledge implicitly extracted from SAM. Semantically meaningful tokenization
(as in NLP) provides additional knowledge that reduces the search space, hence
requiring less training data to achieve a certain performance level. For smaller
datasets, the advantages of semantically rich tokens are even more evident, and
our models significantly outperform ViT in MIT67 and SUN datasets.

As discussed for example in [24], ViT is expected to learn from big data
without any inductive bias. However, our sViT with a token size of 32, continues
to outperform ViT with or without augmentation. This could be attributed to
sViT’s ability to capture global dependencies and long-range interactions among
semantic segments. Augmentation by semantic segments has proven effective in
improving the performance, especially in smaller datasets as shown in Tab. 1 for
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Table 1: Evaluation of ViT, sViT16, and sViT32 models on object-centric and non-
object-centric datasets, with and without data augmentation (aug). In all datasets,
sViT outperforms ViT. We highlighted best and second-best performances for each
dataset.

non-object-centric dataset object-centric dataset

Method Places Places MIT67 SUN INet Aircraft Cars Caltech DTD Flower Food Pet
(25%)

ViT 32.19 46.93 61.72 48.84 56.44 51.94 40.20 68.78 50.95 50.46 63.36 35.07
ViT aug 33.20 47.64 64.78 50.59 54.78 48.75 54.81 63.86 53.77 47.69 71.31 34.20

sViT16 35.39 46.26 68.96 50.77 54.48 76.99 72.90 76.03 48.40 46.06 57.51 28.00
sViT16 aug 37.42 46.72 70.75 51.03 54.68 77.01 72.46 76.36 48.88 37.78 58.14 26.44
sViT32 37.47 47.02 70.59 51.06 56.35 79.97 71.85 76.85 48.08 75.45 59.18 51.50
sViT32 aug 37.71 48.34 72.01 51.53 56.81 79.23 73.60 77.07 44.78 75.72 59.45 50.65

MIT67, SUN, and a subset of Places. Moreover, the token size also plays a crucial
role, with larger token sizes in sViT outperforming smaller token sizes. This could
be due to losing less information when resizing a large segment into smaller, fixed
sizes. Employing both techniques together has shown optimal performance across
datasets. See figures 2&3 in the supplementary material for additional examples.

Tab. 1 also summarizes the performance comparison of ViT and the purposed
sViT, both with and without data augmentation, across various object-centric
datasets. Among eight datasets, sViT demonstrates a significant increase in ac-
curacy, ranging from 10% to 29%. This improvement is largely attributed to the
model’s scale invariance, as described in Sec. 1. The superior performance of
sViT on the Aircraft, Cars, Flower, and Pet datasets can be further attributed
to the prevalence of planes, cars, flowers, and pets in the Places dataset. Due
to its exposure to a wide variety of those objects, combined with its scale in-
variance attribute, sViT effectively transfers its semantic knowledge to different
datasets. Yet, sViT demonstrates inferior performance in the DTD and Food
dataset. This may stem from its limited exposure to images of food and textures
during pretraining, as the primary dataset used (Places) mainly contains scenery
images, which likely include fewer instances of food or specific textures. This also
aligns with marginal (less than one percent) improvement of sViT over ViT in
INet, as out of 1000 labels, some of labels would not have exposure during train-
ing. Enhancing a model’s generalization capabilities across different data types
requiress pretraining on a broad and varied dataset.

There is increasing interest in vision and language models, which enables
training on larger and diverse datasets [36]. In this context, sViT’s out-of-
distribution generalization becomes invaluable, as its semantic tokenization ap-
proach appears promising in narrowing the performance gap between models
pretrained on object-centric and non-object-centric datasets, as shown in these
result. This approach not only offers the benefits of cost and size but also en-
courages the model to learn the contextual relationships among objects within
an image and allows the model to encounter a more diverse array of objects.
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3.3 Interpretability

We examined and compared our approach with Grad-CAM, Grad-CAM++, and
HiRes-CAM [4, 12, 38]. Grad-CAM utilizes the gradient of the last layer of the
model to highlight the important image regions for predictions, assuming that
the last layer contains some semantic information. In contrast, Grad-CAM++
uses the second gradient, and HiRes-CAM computes element-wise multiplication
between the gradient and feature map instead of multiplying the average of the
gradient with the feature map. As shown in Fig. 5, our proposed method is
more interpretable. The primary reason for this lies in our model’s use of SAM
to segment an image into explainable tokens. Consequently, each highlighted
segment is automatically interpretable. For instance, the arch is highlighted for
the rock arch; multiple players and a basketball backboard are highlighted for the
basketball court; and swimming lanes are highlighted in the swimming pool. In
contrast, for other methods, it is challenging to semantically explain which part is
being highlighted. Even when we examine the most interpretable example, such
as Grad-CAM applied to the Aircraft dataset, it is difficult to discern whether
the highlights indicate the aircraft or its background, as both are highlighted.
Human have the tendency to use their bias to assume that the highlighted part
represents some part of the aircraft as it is more intuitive to them. However, this
will be an inaccurate interpretation as it discards the other highlighted parts.
This challenge becomes even more noticeable in other examples, such as the face
or swimming pool, where it is hard to describe the specific region the model is
highlighting, obscuring the model’s interpretation.

These limitations should be expected, as discussed by Locatello et al. [29],
disentangling representations into a few explanatory variables using unsuper-
vised learning is challenging without a strong inductive bias. Grad-CAM and
its variants lack disentanglement or inductive bias in the last layer to provide
explanatory variables from the model. Therefore, the highlighted regions may ap-
pear random to human observers. This is evident in Fig. 5 (see figures 2&3 in the
supplementary material for additional examples), as there is no exact algorithm
that consistently outperforms the others among Grad-CAM-style methods. In
comparison, sViT disentangles images into explainable semantic segments us-
ing supervised learning. Consequently, sViT is consistently more interpretable
compared to Grad-CAM and its variants.

3.4 Robustness on natural distribution shift

sViT32 has shown superior robustness to natural distribution shifts when com-
pared with ViT, achieving over two percent higher accuracy across all datasets.
Notably, even sViT16, which generally underperforms relative to ViT on INet,
outperforms ViT in three out of four evaluation datasets. This performance is
especially significant in the INet-A, INet-S, and INet-R datasets, characterized
by more pronounced distribution shifts—as evidenced by the more substantial
performance decreases relative to INet-V2, on average. This resilience might be
attributed to sViT’s incorporation of semantic prior knowledge and the resizing
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Fig. 5: The first column shows the images used to evaluate the interpretability of ViT
and sViT. Columns two to four represent the interpretable outcomes from applying
Grad-CAM, Grad-CAM++, and HiRes-CAM on ViT, respectively. The fifth column
shows the interpretable outcome for our method. The first three rows are from object-
centric datasets and the last three rows are from non-object-centric datasets. The
color coding indicates the level of importance. The importance escalates progressively
through blue, green, yellow, and orange before reaching the peak at red. Only our
proposed method consistently provides humanly interpretable and semantic results.

of semantic segments. In Fig. 6, ViT appears to focus more on the background
rather than the object of interest during prediction, especially when the object is
small. This tendency in ViT, treating each pixel equally at the token level, con-
trasts with sViT, which considers semantic segments as input and assigns equal
weights to segments rather than pixels at the token level. This approach, similar
to how language models weigh words over characters, seems to direct the model’s
focus more towards objects of interest rather than the background with giving
equal weights. This characteristic could explain why sViT exhibits increased ro-
bustness to natural distribution shifts. By prioritizing objects of interest, sViT
maintains its robustness against background changes or minor perturbations to
the object of interest.
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Table 2: Evaluation of robustness of models on natural distribution shift for ImageNet.
We highlighted best and second-best performances for each dataset.

Method INet INet-V2 INet-A INet-R INet-S

ViT 56.44 44.29 1.51 12.79 10.27
ViT aug 54.78 42.85 1.29 10.53 8.05
sViT16 54.48 43.21 4.15 15.11 14.15
sViT16 aug 54.68 43.90 4.03 15.05 13.81
sViT32 56.35 45.75 4.72 15.80 14.60
sViT32 aug 56.81 46.27 4.79 16.44 15.59

4 Related Works

Convolutional Neural Networks (CNN) have been the dominant image model for
various tasks [15,21, 23]. With the emergence of transformers, they have gained
significant attention, especially due to their state-of-the-art performance in var-
ious image tasks [13,25,36,46]. CNN possesses the inductive bias of locality and
weight sharing, making them equivariant to translation and known to require
less data for training. In contrast, ViT has the advantage of capturing global
dependencies and long-range interactions among images patches. The here pro-
posed sViT combines both advantages; it has an inductive bias using a semantic
segmentation model, making the model equivariant to translation and requiring
less data for training, capturing semantically rich interactions, and enhancing
data-augmentation and interpretability capabilities of existing ViT approaches.

Various research efforts have sought to enhance tokenizers for ViTs. To intro-
duce an inductive bias into ViTs, several methods have been explored, including
the use of overlapping patches, diversifying tokens through image augmenta-
tion, and employing a vector quantized encoder that outputs discrete embed-
dings [32, 43, 45]. Additionally, many studies have aimed to reduce the number
of tokens to enhance model efficiency during inference, e.g., [27, 44]. Despite
these efforts, little attention has been directed toward making tokens more se-
mantically meaningful. By enhancing the semantic aspect of tokens, we have
successfully added an inductive bias, introduced greater diversity in augmenta-
tions, and improved the interpretability of vision models. This resulted in overall
improved performance.

Vision-language models such as VisualBERT, ViLBERT, and LXMERT [26,
30, 39] take object proposals from different vision models as input tokens. This
is similar to sViT, where we use a segmentation model for tokenization. The
difference lies in the fact that vision-language models input cropped bounding
boxes of objects from the image, meaning they do not semantically segment
background pixels from objects. Consequently, tokens for these models usually
consist of two or more semantic segments as input, increasing the space to ex-
plore during training. Furthermore, when using gradient flow to interpret which
token is important, it becomes challenging to distinguish whether the object or
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Fig. 6: The first column shows the images used to evaluate the interpretability of
ViT and sViT. Column two represent the interpretable outcomes from applying Grad-
CAM on ViT. The third column shows the interpretable outcome for our method. The
color coding indicates the level of importance. The importance escalates progressively
through blue, green, yellow, and orange before reaching the peak at red.

the background are important. Another significant difference is that these mod-
els discard all the pixels that have not been included in the object proposals.
However, including these background pixels can be essential for understanding
images. For example, background pixels could help the model grasp the context
of what is happening with objects. sViT segments objects from the background
and does not discard any pixels from an image; instead, it includes those pixels
in background tokens.

Data augmentation has garnered significant attention for improving general-
ization in image models. To increase the diversity of augmented images from a
single image, various techniques, such as RandAugment and AutoAugment [7,8],
were proposed. These methods focus on applying different global augmentation
techniques at each training iteration. As mentioned in Sec. 2.2, the advantage
of our new method of semantic augmentation is that it allows the application
of any augmentation technique, and it increases diversity for most techniques
compared to when applied to the entire image, so RandAugment and AutoAug-
ment would also benefit from our new method by applying augmentation at the
semantic segment level instead of just to the entire image.

Grad-CAM has found extensive use in interpreting vision models. However,
the portion of the images highlighted by Grad-CAM can be hard to interpret
due to their lack of localization and semantic meaning. To address some of these
issues, ProtoPNet was introduced [5]. This model learns patches representing
prototypical parts of classes and employs these learned prototypical parts for
prediction and interpretation. Yet, as noted by Hoffmann et al. [18], the fact
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that two patches appear similar to the ProtoPNet model does not necessarily
mean they will appear similar to human eyes. ProtoPNet then shares a similar
limitation with Grad-CAM.

5 Limitation

Our method has computational limitations compared to ViT. Compared to ViT,
sViT requires additional computation for a one-time preprocessing segmentation
of the dataset, equivalent to an extra training epoch if segmentation model and
training model are similarly sized. However, during inference, sViT doubles the
computational cost compared to ViT because it performs segmentation in addi-
tion to inference. This highlights a clear trade-off: while ViT is more efficient,
sViT boasts greater robustness to out-of-distribution scenarios and distribution
shifts, as well as enhanced interpretability. Advancing efficiency in segmenta-
tion models could potentially bridge this gap, which is a promising direction for
future research.

6 Conclusion

We introduce the segmented Vision Transformer (sViT), a vision transformer
that employs a semantic segmentation model as a tokenizer. Unlike the origi-
nal tokenizer, which divides an image into patches without considering semantic
information, our model utilizes a segmentation model to separate images into
distinct semantic segments or objects, thereby offering higher semantic content.
Additionally, we have defined positional and scale embeddings to enhance the
model’s comprehension of the relative positions of relevant segments and to fa-
cilitate rich and efficient data augmentation. Our study demonstrates that the
proposed sViT outperforms the original models on non-object-centric datasets,
particularly for small datasets. Additionally, it shows a significant accuracy im-
provement on object-centric datasets, indicating strong generalization in out-
of-distribution datasets. We also introduce a new data augmentation paradigm
that applies augmentations at the semantic segment level rather than to the
entire image. Furthermore, we propose a novel augmentation method to help
the model generalize to changes in the relative positions and sizes of the seman-
tic segments. We have shown that this augmentation further improves accuracy
across all datasets. Finally, we address the limitations of Grad-CAM and its
variants, noting that some highlighted parts are not readily explainable, which
impacts interpretability. We discuss how our method overcomes these limitations
and provides interpretability in a natural fashion. We believe this work is the
first one to explore the use of a semantic segmentation model as a tokenizer, and
we hope it will pave the way for further research.
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1 Datasets Descriptions

Places365 (Places) contains 365 classes and 1.8 million images; MIT Indoor
Scenes (MIT 67) contains 67 classes and 6700 images; SUN397 (SUN) consists of
ten training and testing partitions, each partition having 397 classes and 39700
images; FGCV Aircraft (Aircraft) contains 102 classes and 10000 images; Stan-
ford Cars (Cars) contains 196 classes and 16186 images; Caltech 101 (Caltech)
contains 101 classes and 9145 images; ImageNet (INet) contains 1000 classes and
1.2 million images; Describable Textures Dataset (DTD) contains 67 classes 5640
images; Flower Dataset (Flower) contains 102 classes and 7169 images; Food 101
(Food) contains 101 classes and 101000 images; and Pet Dataset (Pet) contains
37 classes and 7349 images.

ImageNet V2 (INet-V2) contains 1000 classes and 10000 images; ImageNet-A
(INet-A) contains 200 classes and 7500 images; ImageNet-Renditions (INet-R)
contains 200 classes and 7500 images; and ImageNet-Sketch (INet-S) contains
1000 classes and 50889 images. INet-V2 is a collection of images that were gath-
ered following similar protocols as the original ImageNet but during a different
time period. INet-A consists of images specifically selected for their adversarial
qualities against a vision model trained on the original INet. INet-R includes
artistic renditions of various classes from ImageNet. INet-S is a compilation of
sketches representing classes from ImageNet.

2 Boxplot on Number of Tokens for Each Datasets

Fig. 1 in this supplement illustrates the distribution of the number of tokens for
each dataset, using SAM as the tokenizer. As we can observe, non-object-centric
datasets have a greater number of tokens compared to object-centric datasets.
With a higher token count, non-object-centric datasets may provide more signals
for learning the contextual information among the semantic segments of images.

3 Experiment Details

For the ViT model, we applied augmentation using the cropping and resizing
technique with scale parameters ranging from 0.08 to 1 and ratio parameters

ar
X

iv
:2

40
2.

17
86

3v
1 

 [c
s.C

V
]  

27
 F

eb
 2

02
4



2 Y. Kim et al.

Fig. 1: Boxplot of the number of tokens for each dataset. The first three rows represent
non-object-centric datasets, while the last three rows are from object-centric datasets.

ranging from 0.75 to 1.33. Additionally, a horizontal flip with a probability of
0.5 was used. Regarding augmentation for sViT, we employed a maximum per-
centage of 25% for sampling to augment, and cropping and resizing techniques
with scale parameters ranging from 0.9 to 1 and ratio parameters ranging from
0.75 to 1.33. A horizontal flip with a probability of 0.5 was applied, along with
the addition of Gaussian noise to the position and size input, using a parameter
with zero mean and a variance of 0.001. Across all models, we used the Adam
optimizer [?], with β1 = 0.90 and β2 = 0.99, a weight decay of 0.0001, a batch
size of 2048, and training over 20 epochs on the Places dataset and its subset. For
fine-tuning, we employed a linear evaluation protocol, in which only the linear
classifier is updated while all other weights in the transformer are frozen. During
fine-tuning on the MIT67 and SUN datasets, we preserved the same parameters
as in pretraining, trained for an additional 20 epochs, and adjusted the batch
size to 512. During fine-tuning on object-centric datasets, except for INet, we
trained the sViT for an additional 40 epochs, and the ViT for 60 epochs. For fine-
tuning INet, we trained the sViT and ViT for 10 epochs. The experiments were
conducted on four A100 GPUs for pretraining, and four A5000 GPUs for fine-
tuning. Pretraining on the full Places dataset was completed in approximately
8 hours.

4 Segmentation and Tokenization

Algorithm 1 summarizes the segmentation and tokenization processes for sViT.

5 Additional Example for Interpretable results

Fig. 2 compares the interpretability of Grad-CAM, Grad-CAM++, HiRes-CAM,
and our new methods across the remaining datasets.
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Algorithm 1 Segmentation and tokenization
Output: List of token embeddings: list_emb
Input: Image: X, Convolutional layer: conv, Neural network: nn, Resize function:
resize, Segmentation model: seg

list_emb = {}
list_segments, list_boundbox, list_size = seg(X)
n_seg = len(list_segments)
for i = 1 to n_seg do

resized_seg = resize(list_segments[i])
seg_emb = conv(resized_seg)
pos_emb = nn(list_boundbox[i], list_size[i])
emb = seg_emb+ pos_emb
list_emb.append(emb)

end for
Return list_emb

6 Ablations studies on segment-level augmentation

In our ablation studies, we experimented with applying various segment-level
augmentations to assess their impact on performance. These augmentations in-
cluded horizontal flip (flip), crop and resize (crop), and the addition of Gaussian
noise into the positional embedding (pos). We also explored combinations of
these augmentations to examine their cumulative effects on performance, as pre-
sented in Tab. 1.

Table 1: Evaluation of different segment-level augmentation on sViT16, and sViT32
models.

Method Aircraft Cars Caltech MIT67 SUN

sViT16 76.99 72.9 76.03 68.95 50.77
sViT16 flip 78.4 73.12 77.13 69.62 50.88
sViT16 crop 77.41 72.51 77.47 69.32 50.65
sViT16 pos 74.47 72.13 76.54 70.07 50.97
sViT16 flip+crop 77.71 72.76 77.69 69.25 50.68
sViT16 combined 77.01 72.46 76.36 70.75 51.03

sViT32 79.97 71.85 76.85 70.59 51.06
sViT32 flip 80.59 73.92 76.87 70.45 51.47
sViT32 crop 78.7 72.62 76.22 70.67 51.38
sViT32 pos 78.64 72.78 75.23 71.34 51.05
sViT32 flip+crop 78.67 73.59 76.84 71.37 51.26
sViT32 combined 79.23 73.6 77.07 72.01 51.53
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Fig. 2: The first column shows the images used to evaluate the interpretability of ViT
and sViT. Columns two to four represent the interpretable outcomes from applying
Grad-CAM, Grad-CAM++, and HiRes-CAM on ViT, respectively. The fifth column
shows the interpretable outcome for our method. The color coding indicates the level
of importance. The importance escalates progressively through blue, green, yellow,
and orange before reaching the peak at red. Only our proposed method consistently
provides humanly interpretable and semantic results.

Interestingly, adding Gaussian noise to the positional embedding did not en-
hance performance in most object-centric and fine-grained datasets. However,
we observed a noticeable improvement in scenery datasets. This disparity sug-
gests that the relative positions of segments are particularly crucial in scenery
images, where the spatial arrangement plays a pivotal role in defining the scene’s
context. Conversely, for object-centric and fine-grained datasets, where the focus
is more on individual elements rather than their spatial relationships, this type
of augmentation appears less effective.

7 Interpretable ‘mistakes’

The effectiveness of our method is further illustrated in Fig. 3 of this supplement,
particularly in our ability to comprehend why the model sometimes generates
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Fig. 3: sViT provides interpretable ‘mistakes’ The first column shows the input image
for sViT. Column two represents the interpretable outcome from the actual label.
Column three represents the interpretable outcome from the model’s prediction. The
color coding indicates the level of importance. The importance escalates progressively
through blue, green, yellow, and orange before reaching the peak at red. sViT clearly
shows the reasonable mistake of the system, which upon examination of the model’s
interpretability, are not necessarily mistakes.

inaccurate predictions. Even when the sViT model makes errors in its predic-
tions, our approach allows us to discern the reasons behind such mistakes. For
instance, consider the scenario where sViT predicts ‘tundra’ for an input image
labeled as ‘mountain.’ Upon observing the highlighted region, it becomes appar-
ent why the model made this prediction, as it emphasizes a snowy mountain, a
characteristic often found in tundra landscapes. Similar insights are evident in
other examples (Fig. 3). In specific instances, the model inaccurately predicts a
‘kindergarten’ image as a ‘classroom’ or a ‘canyon’ image as a ‘cliff,’ which, upon
examination of the highlighted semantic segments, appears reasonable since such
objects are commonly found in classroom or cliff images.


