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Abstract

A scientist tests a continuous stream of hy-
potheses over time in the course of her in-
vestigation — she does not test a predeter-
mined, fixed number of hypotheses. The sci-
entist wishes to make as many discoveries as
possible while ensuring the number of false
discoveries is controlled — a well recognized
way for accomplishing this is to control the
false discovery rate (FDR). Prior methods
for FDR control in the online setting have fo-
cused on formulating algorithms when specific
dependency structures are assumed to exist
between the test statistics of each hypothe-
sis. However, in practice, these dependencies
often cannot be known beforehand or tested
after the fact. Our algorithm, e-LOND, pro-
vides FDR control under arbitrary, possibly
unknown, dependence. We show that our
method is more powerful than existing ap-
proaches to this problem through simulations.
We also formulate extensions of this algorithm
to utilize randomization for increased power
and for constructing confidence intervals in
online selective inference.

1 Introduction

Science advances one hypothesis at a time. Moreover,
the rate at which new hypotheses are tested has dras-
tically increased in recent decades to the point where
a single scientist can quickly test hundreds to thou-
sands of hypotheses with the aid of computation. For
example, a geneticist can now sequence thousands of
genes from trial subjects and individually determine
whether each of these genes has an effect on phenotypes
of interest (e.g., disease, physical characteristics, etc.).
A team of data scientists can test many variations of
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a website or app in A/B experiments to determine
which version maximizes desirable user metrics. The
key feature of all these examples is that the hypotheses
are being formulated and tested in an online fashion
— the total number of hypotheses that are tested is
unknown beforehand and possibly infinite. Thus, we
can formulate the online multiple testing problem, as
receiving a stream of hypotheses, H1, H2, . . . — typi-
cally, these are the null hypotheses we wish to reject
(e.g., this gene has no effect on this disease, there is no
association between socioeconomic status and future
earning potential, this recommendation algorithm does
not increase average user view count, etc.). A subset,
H0 ⊆ N, of these null hypotheses is truly null, where N
denotes the natural numbers. We wish to discover all
the hypotheses that are not null, that is, to discover the
non-null hypotheses H1 := N\H0. For each hypothesis,
we observe some data and must immediately decide
whether it is a discovery or not before observing future
hypotheses. Thus, we denote the set of discoveries so
far as R1 ⊆ R2 ⊆ · · · ⊆ N. The false discovery pro-
portion (FDP) refers to the proportion of discoveries
in a discovery set R that are truly null. We want to
control the false discovery rate (FDR), which is the
expectation of the FDP. Define these as follows.

FDP(R) :=
|R ∩ H0|

|R| ∨ 1
, FDR(R) := E[FDP(R)].

(Xt)t∈I denotes a sequence of objects indexed by a set I
— we drop the index set and write (Xt) it is clear from
context (often N). Our goal is to produce discovery
sets (Rt) that satisfy the following guarantee:

FDR(Rt) ≤ α for all t ∈ N, (1)

while maximizing the number of discoveries. FDR is
reasonable metric to control in applications where one
wishes to filter candidates that are promising before
doing more extensive follow-up studies, e.g., clinical
trials for drugs, genome-wide association studies for
genetic factors, features for pushing to production, etc.
We elaborate on the motivations for considering the
FDR error metric in Appendix E.1. Robertson et al.
(2023b) comprehensively surveys the existing litera-
ture of online multiple testing. In particular, multiple
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previous works have devoted significant effort to formu-
lating different types of dependency that can arise in
natural situations and deriving algorithms that provide
online FDR control under these dependence structures
(Zrnic et al., 2021, 2020; Fisher, 2022, 2024). These
works have considered dependencies that are natural
to the online setting (i.e., local dependence and depen-
dence between asynchronously initiated experiments)
as well as the popular PRDS condition (Benjamini and
Yekutieli, 2001). However, under unknown or arbitrary
dependence in the data, the assumptions for these al-
gorithms are violated and they do not provably control
the FDR.

There are many circumstances where one wishes to be
robust to arbitrary dependence — we list some below:

• Data reuse. Unknown dependencies might arise
when one uses the same dataset to evaluate a large
number of hypotheses. Although reusing data for dif-
ferent hypothesis tests is not generally a statistically
valid practice, this practice inevitably occurs, as data
collection may be difficult or prohibitively expensive.
In many applied areas of machine learning,the same
data set can be used to evaluate many different meth-
ods, e.g., Kaggle competitions (Bojer and Meldgaard,
2021), the UCI data repository (Asuncion and New-
man, 2007). Similarly, open data repositories in sci-
ence are also reused in many studies (1000 Genomes
Project Consortium, 2015; Wellcome Trust Case Con-
trol Consortium, 2007; Koscielny et al., 2014). Data
reuse naturally comes up in offline policy evaluation
in reinforcement learning, since often deploying a
new policy has costs (e.g., expenses incurred by new
actions, loss of revenue if a policy underperforms,
etc.), and one would wish to backtest many policies
on previously collected data. In all these cases, the
statistics calculated for each test are highly depen-
dent, since they use the same data.

• Temporal overlap. This type of dependency is
considered primarily in works involving local depen-
dencies (Zrnic et al., 2021), as it occurs when data
collected for different hypotheses overlap or are sub-
ject to temporal noise. For example, in A/B testing,
users are incrementally added to each experiment
over time. However, since there is no partitioning of
users across experiments, experiments may overlap in
users. This induces a dependence among the result-
ing test statistics. Temporal events (e.g., holidays
or weekends) can also induce time-dependent noise.
We elaborate on the “doubly sequential framework”
relevant to this setting in Section 2.

• Inherent dependence. The dependency between
statistics might simply arise due to the data gener-
ating process. One common type is dependence that

arises from sampling without replacement (WoR)
from a finite population. Sampling WoR naturally
arises when we wish to test the average treatment
effect of a treatment on the finite population (Splawa-
Neyman et al., 1990) — the statistics calculated for
different treatments allocated to different samples
are dependent — we simulate our methods in this
setting in Section 61. Similarly, dependence also
arises when performing coarser cluster-based ran-
domization (rather than individual-based random-
ization) (Campbell et al., 2007). Dependence can
also come from a data-dependent sampling mecha-
nism, which we can observe in multi-armed bandits
or adaptive sampling settings.

In many experiments, one may not know ahead of
time which combination of the aforementioned types
of dependencies may occur, nor the specific structure
they may take. This is particularly relevant in online
multiple testing, since the nature of the hypotheses
being tested and which types of data are being used
to conduct the tests are not known a priori. Hence,
simultaneously being powerful and robust to arbitrary
dependence is a highly practical desiderata.

The primary contribution of this paper is a new al-
gorithm, e-LOND, which provably controls FDR, i.e.,
satisfies (1), under unknown and arbitrary dependence,
while being more powerful (i.e., making more discov-
eries) than previous state-of-the-art algorithms. Our
method accomplishes this using e-values, a class of
statistics that has garnered significant recent attention
in hypothesis testing. E-values are central in sequential
testing (Ramdas et al., 2022, 2021) as every admissi-
ble sequential test uses an e-value. We characterize
a “doubly sequential framework” of scientific experi-
mentation that combines sequential tests with online
multiple testing in Section 2, and illustrate how retain-
ing validity under arbitrary dependence is particularly
useful in this framework. A notable example of an
e-value is the universal inference statistic (Wasserman
et al., 2020), which allows the testing of composite nulls
without regularity conditions. This, in turn, enables
the construction of tests for novel problems where no
valid test had existed before, for example, the problem
of testing whether a distribution is log-concave (Dunn
et al., 2022; Gangrade et al., 2023). The kinds of hy-
potheses for which e-values are applicable are quite
comprehensive. We refer the reader to Ramdas et al.
(2023) for a detailed collection of examples for which
e-values are applicable.

P-values vs. e-values. Since the formulation of on-
line multiple testing by Foster and Stine (2008), solu-

1Experimentation and simulation code repository:
github.com/neilzxu/evalue-omt
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tions have only assumed a p-value, Pt, is associated
with hypothesis Ht and satisfies the following,

P (Pt ≤ s) ≤ s for all s ∈ [0, 1] if t ∈ H, (2)

for all t ∈ N. We consider the novel setting where,
instead, an e-value, Et, accompanies each hypothesis
Ht and satisfies the following property for all t ∈ N:

E[Et] ≤ 1 if t ∈ H0. (3)

An online multiple testing algorithm is a sequence of
(possibly random) test levels (αt), where αt ∈ [0, 1] for
all t ∈ N, and the algorithm produces discovery set Rt

at the tth step in the following fashion:

Rt =

{
{i ∈ [t] : Pi ≤ αi} if using p-values,

{i ∈ [t] : Ei ≥ 1/αi} if using e-values
.

The definition of Rt in the e-value case is equivalent
to the p-value case if we assumed our p-values were
formulated as Pt = 1/Et — one can see that this is
a bona fide p-value by applying Markov’s inequality
to the e-value definition in (3). Thus, we can consider
e-value algorithms as operating on a special type of
p-values. We leverage the specific properties of e-values
to derive more powerful algorithms that remain valid
even under arbitrary dependence.

Our contributions. We make the three following
contributions in the main paper.

1. Powerful online FDR control under arbitrary de-
pendence with e-values. The current method for
online FDR control under arbitrary dependence,
the r-LOND algorithm (Javanmard and Montanari,
2018; Zrnic et al., 2021), is unnecessarily conserva-
tive when applied to e-values. The r-LOND algo-
rithm corrects each of its test levels by an additional
factor that is logarithmic in the number of hypothe-
ses tested so far, compared to its counterpart, the
LONDalgorithm, which ensures FDR control un-
der a much more stringent assumption of positive
dependence. This is similar to the penalty paid
by the Benjamini-Yekutieli procedure (Benjamini
and Yekutieli, 2001) in the offline setting. Our al-
gorithm, e-LOND, operates on e-values, but does
not require the additional correction. Thus, it can
maintain FDR control regardless of the dependence
structure and dominates the standard r-LOND algo-
rithm. Another previous approach to FDR control
under dependence is the LORD∗ algorithm, which
requires a priori knowledge of which hypotheses have
dependent statistics. Our numerical simulations in
Section 6 show that e-LOND is more powerful than
r-LOND and becomes more powerful than LORD∗

when more hypotheses are mutually dependent.

2. Additional power through randomization. If one is
interested in maximizing the power of their online
multiple testing procedure, then randomization can
be incorporated in the manner of Xu and Ramdas
(2023), who use randomization to improve offline
multiple testing procedures. We develop variants of
e-LOND and r-LOND (Ue-LOND and Ur-LOND, re-
spectively), which use the randomization of a single
uniform random variable to increase their power over
their deterministic counterparts. These randomized
methods dominate (i.e., never make fewer and often
make more discoveries) their deterministic versions
and hence should be employed if one is interested
in making as many discoveries as possible.

3. Online FCR control with no restrictions on selection
rules or dependence on e-CIs. In addition to online
FDR control, we also provide novel results for the
online selective confidence interval (CI) problem
introduced by Weinstein and Ramdas (2020). In this
problem, one wishes to output, in an online fashion,
CIs for a stream of parameters such that the overall
false coverage rate (FCR) of all the CIs is controlled.
This problem adds in the additional complexity of
having a selection rule — while a discovery is made
at the tth hypothesis solely based on its test level αt,
one decides whether a parameter should be selected
for CI construction based on a selection rule St

(which uses the observed data for the current and
past parameters) that is separate from the coverage
level of the CI, 1 − αt. The extension of e-LOND
to the online selective CI problem can control FCR
under any sequence of selection rules and arbitrary
dependence. The sole caveat of this algorithm is
that it operates on a subset of CIs based on e-values,
called e-CIs (Vovk and Wang, 2023; Xu et al., 2022),
which have been used for offline FCR control.

Our developments of e-LOND and Ue-LOND allow one
to significantly improve power when e-values are avail-
able — hence, our e-value methods are complementary
to existing p-value based methods, i.e., r-LOND, for
FDR control under arbitrary dependence. Our random-
ization techniques do benefit both e-value and p-value
methods. Therefore, a practitioner should use r-LOND
or Ur-LOND when only p-values are available, and e-
LOND or Ue-LOND when e-values are available. When
there is a mix of p-values and e-values, one should fol-
low the guidance in Corollary 1 of calibrating p-values
to e-values.

Outline. In Section 2, we discuss the “doubly se-
quential” framework that abstracts scientific experi-
mentation. We recap existing online multiple testing
algorithms and introduce the e-LOND algorithm in Sec-
tion 3. In Section 4 we devise methods for the online
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3 e-LOND: FDR control via e-values

To prepare for e-LOND, we first recap what the current
state-of-the-art algorithms are. Let a discount sequence
(γt) be a fixed sequence of nonnegative reals that satisfy∑∞

t=1 γt ≤ 1, and α ∈ [0, 1] be our desired level of FDR
control. For all sequences of discovery sets (Rt), we
let R0 = ∅. An algorithm that produces a sequence
of discovery sets (R1

t ) strictly dominates an algorithm
that produces (R2

t ) iff (1) R1
t ⊇ R2

t on all sequences of
p-values (Pt) (or e-values (Et)) and all t ∈ N, and (2)
there is a sequence p-values (Pt) (or e-values (Et)) s.t.
there exists t ∈ N whereR1

t ⊃ R2
t . Further, (R

1
t ) is said

to strictly dominate (R2
t ) in expectation if condition (1)

holds and (3) if there also exists a sequence of p-values
(Pt) (or e-values (Et)) and t ∈ N such that E[|R1

t | |
(Ei)i∈[t]] > E[|R2

t | | (Ei)i∈[t]], i.e., the expected number
of discoveries is strictly larger when taken only over
the randomness in the algorithm. We first recall
the LOND algorithm. For each t ∈ N define:

αLOND
t := αγt · (|R

LOND
t−1 |+ 1),

where (RLOND
t ) are the corresponding discovery sets.

The LOND algorithm requires p-values to be indepen-
dent or positively dependent for FDR control.

Fact 1 (Theorem 4 (Zrnic et al., 2021)). For p-values
(Pt) that satisfy (2) and are independent or PRDS
(Zrnic et al., 2021, Definition 1), FDR(RLOND

t ) ≤ α
for each t ∈ N.

To achieve FDR control under arbitrary dependence,
the r-LOND algorithm outputs more conservative test
levels. For each t ∈ N, define

αr-LOND
t := αγt · βt(|R

r-LOND
t−1 |+ 1). (5)

Here, (βt) is a sequence of reshaping functions (Blan-
chard and Roquain, 2008). A reshaping function
β : [0,∞) 7→ [0,∞) is a nondecreasing function that
can be written in the form β(r) =

∫ r

0
xdν(x) where ν is

any probability measure on [0,∞). Let (Rr-LOND
t ) de-

note the sequence of discovery sets output by r-LOND.

Fact 2 (Theorem 2.7 (Javanmard and Montanari,
2015), Theorem 4 (Zrnic et al., 2021) 2 ). Un-
der arbitrary dependence in (Pt), i.e., under (2),
FDR(Rr-LOND

t ) ≤ α for each t ∈ N.

A typical choice of reshaping function is

βBY
t (r) = (brc ∧ t)/`t,

2Strictly speaking, r-LOND in Zrnic et al. (2021) is
formulated as αr-LOND

t = αγt · βt(|Rt−1| ∨ 1) which is less
powerful than (5), the latter being the original r-LOND
(Javanmard and Montanari, 2015). However, the proofs
of Zrnic et al. (2021) carry through to the original r-LOND.

where `t :=
∑t

i=1 1/i — this is the choice used by
the Benjamini-Yekutieli (BY) procedure (Benjamini
and Yekutieli, 2001) for offline FDR control. Hence,
one can consider LOND and r-LOND as the online
analogs of the Benjamini-Hochberg (BH) procedure
(Benjamini and Hochberg, 1995) for independent or
PRDS p-values and the BY procedure for arbitrarily
dependent p-values, respectively. Our e-LOND
algorithm achieves the best of both worlds in the sense
that it has the same powerful test levels as LOND, but
it is also valid under arbitrary dependence like r-LOND.
For each t ∈ N, define

αe-LOND
t := αγt · (|R

e-LOND
t−1 |+ 1).

(Re-LOND
t ) denotes the resulting discovery sets. The

following is our main result.

Theorem 1. Under arbitrary dependence on e-values
(3), FDR(Re-LOND

t ) ≤ α for each t ∈ N. In addition,
e-LOND strictly dominates r-LOND applied to (1/Et)
for any sequence of reshaping functions (βt).

The proof relies on a simple observation about any
e-value E and test level α ∈ [0, 1] that allows us to di-
rectly upper bound the indicator of whether a discovery
is made or not by the e-value itself:

1
{
E ≥ α−1

}
= 1 {αE ≥ 1} ≤ αE. (6)

We defer the full proof to Appendix D.1. Further, we
show in Appendix G that this level of FDR control is
sharp, i.e., one can design instances of e-values where
the true FDR of e-LOND is arbitrarily close to the
upper bound of α.

The e-LOND algorithm has the same test levels (αt)
as LOND, but we use a different notation to emphasize
that e-LOND operates on e-values without restrictions
on dependence and LOND operates on p-values that
are independent or satisfy PRDS. This is similar to the
relationship between the e-BH procedure (Wang and
Ramdas, 2022) and BH for offline FDR control.

In addition, we can show r-LOND is actually a special
case of e-LOND. To clarify how r-LOND is subsumed
by e-LOND under arbitrary dependence, we introduce
the notion of calibration. Any p-value P can be cali-
brated to an e-value E = f(P ) using a calibrator (Vovk
and Wang, 2021). A calibrator f : [0, 1] 7→ [0,∞) is an
nonincreasing, upper semicontinuous function that sat-

isfies
∫ 1

0
f(x)dx ≤ 1. We can define a specific sequence

of calibrators (ft) that transform p-values into e-values
such that r-LOND is a special case of e-LOND.

Corollary 1. If p-values (Pt) satisfy (2), we can
construct an e-value Et = ft(Pt) for each t ∈ N

from a sequence of calibrators (ft). We achieve
FDR(Re-LOND

t ) ≤ α for each t ∈ N by Theorem 1.
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If we define ft as follows:

ft(p) = (αγt · d(p`t/(αγt)) ∨ 1e)−1

we recover r-LOND for FDR control under arbitrary
dependence described in Fact 2. This allows us to reap
the benefits of e-LOND when only some hypotheses
may have e-values, and the rest have p-values — we
can calibrate just the p-values before running e-LOND.

More power through randomization Building
on recent advances by Xu and Ramdas (2023) for of-
fline multiple testing, we can strictly improve both
e-LOND and r-LOND by incorporating independent
randomization. Let E be an e-value and α̂ ∈ [0, 1] be
a possibly random threshold that may depend on E.
Let U be a uniform random variable on [0, 1] that is
independent of both E and α̂. Define the following
randomized e-value:

Sα̂(E) := (E · 1
{
E ≥ α̂−1

}
) ∨ (1 {U ≤ Eα̂} α̂−1),

Fact 3 (Proposition 2 (Xu and Ramdas, 2023)). Sα̂(E)
is also an e-value. Further, note that

1
{
Sα̂(E) ≥ α̂−1

}
= 1

{
E ≥ α̂−1 · U

}

We now define Ue-LOND, a randomized version of
e-LOND. Let (Ut) be a sequence of uniform random
variables on [0, 1] that are independent of (Et).

αUe-LOND
t := αe-LOND

t · U−1
t . (7)

Let (RUe-LOND
t ) be the sequence of discovery sets out-

put by Ue-LOND. The following is our second main
result.

Theorem 2. Under arbitrary dependence on e-values
(3), FDR(RUe-LOND

t ) ≤ α for each t ∈ N. Further,
Ue-LOND strictly dominates e-LONDin expectation.

Proof. Ue-LOND in (7) is equivalent to applying Ue-
LOND to (Sαe-LOND

t

(Et)). Hence, FDR control holds

by Theorem 1. The domination is because U−1
t >

1 + ε with nonzero probability for all ε > 0, and is
independent from (Et).

Note that (Ut) can all be equal, i.e., U1 = · · · = Ut, or
they can be drawn independently for each hypothesis.
To improve r-LOND, we use the following result.

Fact 4 (Lemma 1 (Xu and Ramdas, 2023)). Let P be
a superuniform random variable that can be arbitrarily
dependent on a positive random variable R. Let U be
a superuniform random variable that is independent of
both P and R. Let c be a nonnegative constant and β
be a reshaping function. Then, the following holds:

E

[
1 {P ≤ cβ(R/U)}

R

]
≤ c.

We can define the Ur-LOND procedure as follows:

αUr-LOND
t := αγtβt((|Rt−1|+ 1)/Ut),

with (RUr-LOND
t ) being the resulting discovery sets. We

now present our third main result.

Theorem 3. Under arbitrary dependence on p-values
(2), FDR(RUr-LOND

t ) ≤ α for each t ∈ N. Further,
Ur-LOND strictly dominates r-LOND in expectation
for reshaping functions (βBY

t ).

We defer the proof to Appendix D.2.

Corollary 2. If we use reshaping function βBY
t , Ur-

LOND produces the following test levels:

αUr-LOND
t = αγt(b(|R

Ur-LOND
t−1 |+ 1)/Uc ∧ t)/`t.

Thus, by utilizing randomization, we are able to derive
FDR controlling procedures that are never worse than
their deterministic counterparts.

4 Online FCR control with e-CIs

Often, a scientist wishes not only to test the significance
of an effect but also to measure the strength of the effect.
Instead of receiving hypotheses in a stream, a scientist
can consider a stream of parameters θ1 ∈ Θ1, θ2 ∈
Θ2, . . . , but wishes to estimate only some of them, e.g.,
only ones that show signficiant positive effect. Here,
we desire our selected CIs to be accurate in aggregate,
i.e., we want to control the false coverage rate (FCR) —
this problem was introduced by Weinstein and Ramdas
(2020) as the the online selective-CI problem. For the
tth parameter, the scientist receives some data (e.g.,
the results of an experiment) Xt ∈ Xt and designs a
selection rule St : Xt 7→ {0, 1} to decide whether CI
should be constructed for θt. If a parameter is selected,
one must choose an error level αt ∈ (0, 1) and construct
a (1− αt)-CI for θt. Let St = St(Xt) be an indicator
variable that is 1 iff θt is selected for CI construction.
We assume that one has access to a CI constructor
Ct : Xt × [0, 1] 7→ 2Θt for each t ∈ N where Ct(X,α)
satisfies the following property:

P (θt 6∈ Ct(Xt, α)) ≤ α for every α ∈ [0, 1]. (8)

Formally, the false coverage proportion (FCP), and the
false coverage rate (FCR) are defined as follows:

FCP(St) :=
∑

i∈St

1 {θi 6∈ Ci(αi)}

|St| ∨ 1
,

FCR(St) := E [FCP(St)] .

The methods of Weinstein and Ramdas (2020) relied
on two key assumptions. The first is an explicit as-
sumption on the dependence between hypotheses, i.e.,
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Xt were independent or that Ct(Xt, αt) is still a valid
(1−αt)-CI conditional on past selection decisions. The
second is a restrictive monotonicity assumption on
the selection rules St. In Algorithm 1, we devise ver-
sions of e-LOND and Ue-LOND for the online selective
inference problem, e-LOND-CI and Ue-LOND-CI, re-
spectively, that is free of both restrictons.

Algorithm 1: The e-LOND-CI and Ue-LOND-CI
algorithms ensure FCR ≤ α with no restrictions on
the dependence between data (Xt) or the selection
rules (St). Let (Ut) uniform random variables on
[0, 1] and independent of (Xt).

Input: E-CI constructors (Ct), discount sequence
(γt), and FCR control level α.
for each t ∈ N do

if running e-LOND-CI then
αt := αγt(|St−1|+ 1).

else if running Ue-LOND-CI then
αt := αγt(|St−1|+ 1) · U−1

t .
end if

Receive data Xt.
Make a selection decision St := St(Xt).
if St = 1 then

St := St−1 ∪ {t}.
Construct Ct(Xt, αt) for θt.

else

St := St−1

end if

end for

To ensure FCR control, both algorithms require each
Ct to a special type of CI: an e-CI (Vovk and Wang,
2023; Xu et al., 2022) — similar to how e-LOND applies
to e-values. C(X,α) is an e-CI over the universe of
parameters Θ if it can be written as follows:

C(X,α) = {θ ∈ Θ : Eθ < α−1}, (9)

where Eθ is an e-value when the true parameter is θ.
Note that the e-CI in (9) does satisfy the CI definition
in (8) by Markov’s inequality applied to Eθ∗ , where θ∗

is the true parameter. Let (Se-LOND
t ) and (SUe-LOND)

denote the resulting selection sets of e-LOND-CI and
Ue-LOND-CI, respectively. We now present our fourth
main result, whose proof is in Appendix D.3.

Theorem 4. For any dependence structure among
the data, (Xt), and sequence of selection rules (St),
FCR(Se-LOND

t ),FCR(SUe-LOND
t ) ≤ α for all t ∈ N.

Remark 1. Unlike discovery sets (Rt) in the online
FDR control problem, selection sets (St) do not de-
pend on (αt) — (St) can be arbitrarily chosen based on
observed data. Thus, algorithms with online FDR con-
trol do not necessarily provide FCR control. However,
the reverse is true: FCR control implies FDR control
(Weinstein and Ramdas, 2020, Section 5.2).

As discussed by Xu et al. (2022), many existing canon-
ical CIs are e-CIs, in the same way that many p-values
are implicitly inverted e-values. This gives e-LOND-CI
and Ue-LOND-CI a broad applicability and utility as a
default online selective inference method that is robust
to the unknown dependence and the arbitrary user
choice of the selection rule.

5 Asynchronous online multiple

testing

In the asynchronous setting considered by Zrnic et al.
(2021) and described in our doubly sequential frame-
work in Section 2, we may want to assign an alpha level
to a hypothesis test when we first launch it. This is
separate from the concern of dependence between ex-
periment data; rather, we may not know the rejection
decisions we have made for experiments that have not
been completed yet, and we would normally use that
information in our calculation of αt. Many statistics
used for individual hypothesis tests are computed with
the target level of rejection in mind and optimized to
maximize the probability of rejection at that particu-
lar level. In these cases, we must assign αt before we
launch the tth experiment.

Zrnic et al. (2021) model this asynchronous testing
framework using a concept of conflict sets, that is,
the tth conflict set, Xt, contains the set of hypotheses
that have had their experiments conclude (and with a
rejection decision made) before the experiment for Ht is
launched. Let Dt ∈ N be a fixed quantity that denotes
the last time (i.e., the start time of the last experiment)
the experiment for Ht overlaps with and will conclude
after. We define our conflict set as Xt := {i ∈ [t− 1] :
Di ≥ t}, i.e., the set of experiments that have concluded
before the tth experiment is launched. In this setting,
we can define a “pessimistic” version of e-LOND that
uses only the rejection decisions of the experiments
that have concluded (i.e., for the hypotheses in [t− 1] \
Xt) to calculate αt, and assumes that all incomplete
experiments are not rejected. Denote the discovery
set of completed experiments at time t by R−X

t :=
Rt \ Xt+1. This rule is formally defined as follows:

αasync-e-LOND
t := αγt ·

(
|R−X

t−1|+ 1
)
, (10)

where Ri ∈ {0, 1} is an indicator variable that is 1 iff
the ith hypothesis is rejected.

Theorem 5. Let (Rt) be the discovery sets from run-
ning the async-e-LOND procedure in (10). Under ar-
bitrary dependence among the e-values (3), we have
FDR(Rt) ≤ α and FDR(R−X

t ) ≤ α for each t ∈ N.

We defer the proof to Appendix D.5. We can think of
Rt as the discovery set for all hypotheses started by
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Figure 2: The power of different methods with provable FDR control against the lag parameter L in a simulation
with local dependence between statistics. Empirically, the FDR of all methods is well below the desired level
of α = 0.3. As L increases (i.e., more hypotheses are dependent), we can see the power of LORD∗ decrease,
since it essentially ignores hypotheses with statistics that are dependent with the current hypothesis being tested.
e-LOND has consistently higher power than the p-value procedures, r-LOND and Ur-LOND, and has higher
power than LORD∗ as L increases. We omit Ue-LOND since its power increase over e-LOND is very small. All
Monte Carlo errors from simulations are negligible (smaller than the line width in the plot).

time t (i.e., the first hypotheses), and we can think of
R−X

t as the discovery set for all experiments that finish
by time t (or before time t+ 1). The async-e-LOND
procedures guarantee FDR control for both types of
discovery sets.

6 Numerical simulations

To highlight the practical behavior of our methods,
we conduct two simulations, with different dependence
structures, where we test the null hypothesisH0 : µ ≤ 0,
where µ is the mean of a distribution with support
bounded in [−4, 4]. The first simulation is with local
dependence between hypotheses and the second with
sampling without replacement (WoR) dependence be-
tween hypotheses. In both instances, we sample data
sequentially, and hence our experiments exemplify the
practicality of our new e-value based methods for the
doubly sequential framework described in Section 2. In
addition to simulations, we also describe an application
of our methods to online model-free selective inference
under covariate shift in Appendix C, and compare the
performance of our methods on real data from a protein
prediction task from Jin and Candès (2023).

Local dependence. We perform numerical sim-
ulations comparing e-LOND to other methods in a
version of the local dependence setting from Zrnic et al.
(2021). Here, we draw data in a sequential setting with
bounded random variables, since powerful sequential
p-values for testing the mean of bounded random vari-

ables are naturally derived from e-values. We let L be
our local dependence lag parameter, i.e., the data for
the tth hypothesis are independent of the data from
hypotheses that are more than L indices away. We let
the total number of hypotheses be T = 103. For the
tth hypothesis, we consider a setup where we receive
a stream of N = 200 samples (Xi

t)i∈[N ], where X
i
t for

each i ∈ [N ] are sampled i.i.d. from a Beta distribution
(shifted and scaled to be on [±4]) with mean µ0 = 0
under the null, and µ1 ∈ {2.5, 3} otherwise. For each
i ∈ [N ], t ∈ [T ], Xi

t has Gaussian copula dependence
with (Xi

t−L, . . . , X
i
t+L), i.e, the ith sample of data for

hypotheses that are within L steps. Explicitly, the
covariance matrix of the Gaussian distribution, Σ, is
set to Σi,j = 0.5|i−j| when |i − j| ≤ L and 0 else-
where. We construct p-values and e-values that are
valid for this setting based on Hoeffding’s inequality
(see Appendix F.2 for details).

Our results are averaged over 500 trials and shown in
Figure 2. In addition to comparing with r-LONDand
Ur-LOND, we compare with LORD∗, which is the on-
line FDR control algorithm from Zrnic et al. (2021)
requires knowing the lag parameter L beforehand, so it
can only use test statistics from hypotheses that are in-
dependent of the current hypothesis (see Appendix F.1
for details). The power of LORD∗ degrades as the lag
parameter increases, which is expected, as it has access
to a decreasing number of discoveries. e-LOND is more
powerful than both r-LOND and Ur-LOND across the
board, and LORD∗ once L ≥ 250 (µ1 = 3) or L ≥ 150
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Figure 3: The power of different methods with provable FDR control against proportion of non-nulls π1 in a
simulation with sampling without replacement (WoR) dependence between statistics. Empirically, the FDR of all
methods are below α = 0.05. e-LOND has consistently higher power than both p-value procedures, r-LOND and
Ur-LOND, and Ue-LOND is consistently more powerful than e-LOND. This makes two e-value procedures the
most powerful methods. All Monte Carlo errors in the simulations are negligible (smaller than the line width in
the plot).

(µ1 = 2). Ue-LOND only offers a small increase in
power over e-LONDhere, so it is omitted.

Sampling WoR. We construct a population such
that the mean is µ0 = 0 for the data we sample WoR
for the null hypotheses, positive µ1 for the non-null
hypotheses. We will construct this population by dis-
cretizing a scaled and shifted Beta distribution. Let
V (0), V (1) ∈ [±4]N×T be the populations created from
P (µ0), P (µ1). Let Vi,t be the tth value in V (i). We
set s = 0.01, µ0 = 0, µ1 ∈ {1.5, 2} in our simulations.
For each simulation trial, we choose a non-null pro-
portion π1 ∈ [0.1, 0.9], and uniformly randomly choose
B ∈ {0, 1}T with exactly dπ1T e ones. Let σ be a ran-
dom permutation over [N × T ]. Our data for the tth
hypothesis is Xt = (VBt,σ((t−1)·N+i))i∈[N ]. Xt is a sam-
ple WoR of size N from V (0) if Bt = 0 and V (1) if
Bt = 1. Our e-values and p-values using an e-process
for sampling WoR from Waudby-Smith and Ramdas
(2020) — see Appendix F.3 for details.

Our results, averaged over 500 trials, are in Section 6.
Here, both e-LOND and Ue-LOND dominate in power
across the board, while all methods have FDR below
α = 0.05. Clearly, the theoretical improvements of our
novel e-value methods translate into empirical gains.

7 Conclusion

E-LOND and Ue-LOND are two novel procedures that
use e-values to provide state-of-the-art performance,
both practically and theoretically, in power while ensur-

ing provable FDR control under arbitrary dependence.
We also built on recent results in using randomiza-
tion for multiple testing to develop the more powerful
randomized online multiple testing procedures of Ue-
LOND and Ur-LOND. We did not explicitly include
e-value online multiple testing methods under weaker
assumptions (e.g., independence in Zrnic et al., 2020) or
other popular error metrics (e.g., family-wise error rate
in Tian and Ramdas, 2021; Fischer et al., 2024) since
they naturally follow from applying the typical p-value
based online multiple testing methods to 1/E. How-
ever, this does prompt one natural direction of future
research: how can we extend our results to the LORD
family of algorithms? LORD algorithms are more pow-
erful, but assign test levels based on the number of
hypotheses between the current hypothesis and each
of the previous rejections — more careful analysis is
required to ensure FDR control under arbitrary depen-
dence. Note that the sharpness result in Appendix G
does not preclude this possibility because it only shows
that the FDR e-LOND is tight in one specific instance,
but e-LOND could be improved in other instances (for
example, having larger test levels when at least one
discovery is made). Current LORD algorithms rely on
independence and PRDS assumptions to have FDR
control while retaining power. Another direction is
to explore how e-values can be incorporated with the
adaptive online FDR controlling procedures of SAF-
FRON (Ramdas et al., 2018) and ADDIS (Tian and
Ramdas, 2019), which estimate the proportion of nulls
in the manner of Storey-BH (Storey, 2002).



Online multiple testing with e-values

References

1000 Genomes Project Consortium. A global reference
for human genetic variation. Nature, 526(7571):68–
74, 2015. 2

Ehud Aharoni and Saharon Rosset. Generalized α-
investing: definitions, optimality results and appli-
cation to public databases. Journal of the Royal
Statistical Society: Series B (Statistical Methodol-
ogy), pages 771–794, 2014. 15

Taejoo Ahn, Licong Lin, and Song Mei. Near-optimal
multiple testing in Bayesian linear models with finite-
sample FDR control. arXiv:2211.02778, 2022. 15

A. Asuncion and D.H. Newman. UCI machine learning
repository. 2007. URL http://archive.ics.uci.

edu/ml. 2

Yoav Benjamini and Yosef Hochberg. Controlling the
False Discovery Rate: A Practical and Powerful Ap-
proach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Methodological), 57(1):
289–300, 1995. 5

Yoav Benjamini and Daniel Yekutieli. The control of
the false discovery rate in multiple testing under
dependency. The Annals of Statistics, 29(4):1165–
1188, 2001. 2, 3, 5

Gilles Blanchard and Etienne Roquain. Two simple
sufficient conditions for FDR control. Electronic
Journal of Statistics, 2:963–992, 2008. 5

Casper Solheim Bojer and Jens Peder Meldgaard. Kag-
gle forecasting competitions: An overlooked learning
opportunity. International Journal of Forecasting,
37(2):587–603, 2021. 2

M. J. Campbell, A. Donner, and N. Klar. Develop-
ments in cluster randomized trials and Statistics in
Medicine. Statistics in Medicine, 26(1):2–19, 2007. 2
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Online multiple testing with e-values:
Supplementary Materials

A A brief overview of e-processes

E-processes are ubiquitous in many statistics problems, and, indeed, many existing classes of statistics that are
widely used are already inherently e-processes (or e-values). One primary class is likelihood ratios (which are a
central object for testing and estimation in statistics). To test the simple null of whether the data is drawn from
a null distribution P0 with likelihood function L0 (i.e., H0 : X ∼ P0), the likelihood ratio:

Et =

t∏

i=1

L1(Xi)

L0(Xi)
,

where L1 is a likelihood function for any alternative distribution, is an e-process by virtue of being a nonnegative
martingale. Bayes factors, which are Bayesian generalizations of likelihood ratios that take prior mixtures over
likelihoods, are also nonnegative martingales for simple null testing problems (Grünwald et al., 2024). Universal
inference (Wasserman et al., 2020) generalizes the construction of likelihood ratios to nonparametric settings and
composite null and alternative hypotheses, yielding e-processes to be constructed when likelihoods are known for
distributions in the null hypothesis.

Moving beyond likelihood-based e-processes, another large class of e-processes can be derived through the
examination of “Chernoff bounds”. A Chernoff bound generally requires that X is drawn from a distribution
with a known upper bound on the m.g.f., i.e., exp(λ(X − E[X])) ≤ exp(ψ(λ)) for all λ in the domain of ψ. Then,
the following is a nonnegative supermartingale (and consequently, an e-process) to test the null hypothesis of
H0 : E[X] = µ0:

Et =

t∏

i=1

exp(λi(Xi − µ0))− ψ(λi)),

where λt is measurable w.r.t. (that is, can be determined by) {Xi}i<t — Howard et al. (2021) provides a
unification of previous work on Chernoff based tests by showing that they can all be derived through nonnegative
supermartingales. This immediately allows us to build e-processes under a large number of nonparametric
assumptions (e.g., bounded random variables, symmetric random variables, sub-Gaussian random variables, etc.).
The e-processes that we use in our simulations (described in Appendix F) are derived through this framework.
Of course, we may also produce e-values from p-values through calibration, as we discuss in Corollary 1 and
Section 3. There also exist other frameworks for deriving e-processes such as testing by betting — see Ramdas
et al. (2023) for a survey of e-processes.

B Related work

This work lies at the intersection of e-values and online multiple testing. We outline the most relevant research in
each of these areas.
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Online multiple testing Online multiple testing was first proposed by Foster and Stine (2008) when they
studied computationally cheap methods for streaming variable selection in high-dimensional things and proved
mFDR control for alpha-investing. Subsequently, the methods were improved in several follow-up works to be
more powerful and also guarantee FDR control Aharoni and Rosset (2014); Javanmard and Montanari (2018);
Ramdas et al. (2017). Ramdas et al. (2018) and Tian and Ramdas (2019) developed adaptive online multiple
testing procedures based on Storey’s method (Storey, 2002) for offline FDR control. With the exception of
Javanmard and Montanari (2018), all these works focus on online FDR or mFDR control under the assumption
that p-values are independent or are p-values when conditioned on the information observed so far (e.g., previous
p-values, rejection decisions, etc.), i.e., conditional superuniformity. As mentioned above, the more recent work
of Zrnic et al. (2021) considers explicitly modeling dependence relationships through conflict sets to derive
algorithms that still control mFDR and FDR even when independence or conditional superuniformity is not
satisfied. Another line of work considers the situation where the rejection decision of a hypothesis does not have
to be made immediately, but rather at a later time, such as at the end of a batch of hypotheses being jointly
experimented with (Zrnic et al., 2020) or at individual future deadlines (Fisher, 2022). This is the first work to
directly target the arbitrary dependence case. We can also view our methods as extending a line of work for
improving the efficacy of online multiple testing methods for specific classes of statistics. Döhler et al. (2024)
improve the power of LORD and SAFFRON when the p-values provided are superuniform (e.g., are computed
from discrete test statistics). Zehetmayer et al. (2022) develops variants of LOND for testing hypotheses in
group-sequential platform trials. We can view our work as strengthening online multiple testing methods when
e-values are available.

Robertson et al. (2022) provide a R package implementing many of the aforementioned methods for online control
of the FDR, in addition to other online multiple testing methods. Online multiple testing methods (including
LOND) have already been applied in a variety of medicinal and biological applications (Robertson and Wason,
2018; Robertson et al., 2023a; Liou et al., 2023).

E-values E-values have been applied in many offline multiple testing settings such as FDR control (Wang
and Ramdas, 2022; Ignatiadis et al., 2023) and closed testing (Vovk and Wang, 2023). In particular, the e-BH
procedure introduced by Wang and Ramdas (2022) has been used as a subroutine in other multiple testing
procedures with FDR control such as in the bandit setting (Xu et al., 2021), to derandomize knockoffs (Ren and
Barber, 2023), or to achieve optimality under a Bayesian linear model alternative (Ahn et al., 2022). Xu et al.
(2022) present selective inference procedure with FCR control for e-CIs. Further, Jin and Candès (2023) showed
that the weighted conformal selection procedure in their paper can also be viewed as an application of e-BH
to e-values. This work is novel in bringing all these insights concerning e-values that have been used in offline
multiple testing to the online setting.

C Application: online model-free selective inference under covariate shift

As an application of our framework, we can address an online version of model-free selective inference under
covariate shift problem introduced by Jin and Candès (2023). To do so, we use e-LOND to directly derive an
online version of the weighted conformal selection (WCS) procedure. In this context, we consider labeled pairs
(Xi, Yi) ∈ X × Y. We are given an i.i.d. calibration dataset of labeled pairs {(Xi, Yi)}i∈[n] where (Xi, Yi) ∼ P.
Our goal is to perform inference on a stream of i.i.d. test data points (Xn+1, Yn+1), (Xn+2, Yn+2), . . . . For each
t ∈ N, we only observe the covariates of the test points, Xn+t, and a potentially random threshold, cn+t. Our
goal is to test the following hypothesis about Yn+t:

Ht
0 : Yn+t ≤ cn+t.

One notable difference between the setup here and the standard online multiple testing setup is that the null
hypotheses themselves are random, as Yn+t and cn+t are both random. However, our goal remains the same:
ensure FDR(Rt) ≤ α for each t ∈ N where the expectation is now also taken over the randomness of whether a
hypothesis is null or not. As argued in Jin and Candès (2023), this type of selection occurs widely in practice, e.g.,
screening for high performing job candidates based on interview performance, picking patients with attributes
that respond to treatment, detecting outliers, etc. In this setting with randomized null hypotheses, we require
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our p-values and e-values to satisfy the following conditions instead for each t ∈ N:

P (Pt ≤ α, Yn+t ≤ cn+t) ≤ α for all α ∈ [0, 1], (11)

E[Et · 1 {Yn+t ≤ cn+t}] ≤ 1. (12)

In addition, Q results from a covariate shift on P. This means that P(Y | X = x) = Q(Y | X = x) for
all x ∈ X . Further, the Radon-Nikodym derivative (w.r.t. to an arbitrary common base measure) satisfies
(dQ/dP)(x, y) = w(x) for all x ∈ X , where w is a likelihood ratio dependent only on x ∈ X . We assume we have
access to w (e.g., we can estimate it from other data accurately). In addition, define a monotone score function
V : X × Y 7→ R as a function that satisfies V (x, y) ≤ V (x, y′) for all x ∈ X and y, y′ ∈ Y where y ≤ y′.

C.1 FDR control through online multiple testing

Jin and Candès (2023) construct the following p-value using any monotone score function V :

Vi := V (Xi, Yi), V̂n+t := V (Xn+t, cn+t),

Pt :=

∑n

i=1 w(Xi)1{Vi < V̂n+t}+ w(Xn+t)∑n

i=1 w(Xi) + w(Xn+t)
, (13)

For simplicity, we assume that neither (Vi)i∈[n] nor (V̂n+t)t∈N have point masses in their distributions in this
paper, and this assumption can be relaxed through simple modifications to the p-value formulations (Jin and
Candès, 2023, eqs. 3 & 6).

Fact 5 (Lemma 2.2 (Jin and Candès, 2023)). For each t ∈ N, Pt defined in (13) is a p-value (11).

The dependence structure among (Pt) is quite complicated, and does not satisfy usual independence or positive
dependence notions that are amenable to multiple testing without correction (Jin and Candès, 2023, Proposition
2.4). Thus, we must apply r-LOND (or Ur-LOND) to derive FDR control.

Proposition 1. Let (Rr-LOND
t ) and (RUr-LOND

t ) be the sequences of rejection sets that arise from applying r-
LOND or Ur-LOND, respectively, to (Pt) as defined in (13). Then, FDR(Rr-LOND

t ) ≤ α and FDR(RUr-LOND
t ) ≤ α

for each t ∈ N.

We defer the proof of this result to Appendix D.4. Jin and Candès (2023) show that the more powerful way to
utilize Pt is to view them as e-values, and we show that a similar phenomenon is also possible for online WCS.

First, define the following leave-one-out conformal p-values P
(t),−
j , P

(t),+
j for each t ∈ N and j ∈ [t− 1]:

P
(t),−
j :=

∑n

i=1 w(Xi)1{Vi < V̂n+j}∑n

i=1 w(Xi) + w(Xn+t)
,

P
(t),+
j :=

∑n

i=1 w(Xi)1{Vi < V̂n+j}+ w(Xn+t)∑n

i=1 w(Xi) + w(Xn+t)
.

Let R̂
LOND(t),−
t−1 and R̂

LOND(t),+
t−1 be the discovery set obtained from applying LOND to (P

(t),−
j )j∈[t−1] and

(P
(t),+
j )j∈[t−1], respectively. Define the test levels for the next hypothesis as

α̂LOND,−
t := αγt · (|R̂

(t),−
t−1 |+ 1), α̂LOND,+

t := αγt · (|R̂
(t),+
t−1 |+ 1).

We can now define the following e-value:

ELOND
t := 1{Pt ≤ α̂LOND,+

t }/α̂t
LOND,−.

Proposition 2. For each t ∈ N, ELOND
t is an e-value (12).

We defer the proof of this result to Appendix D.6. We can derive the FDR control of e-LOND or Ue-LOND
applied to (ELOND

t ).

Theorem 6. Using e-values (Et) satisfying (12), FDR(Re-LOND
t ) ≤ α and FDR(RUe-LOND

t ) ≤ α for each t ∈ N.

We defer the proof of this result to Appendix D.7. Now, we apply our online WCS techniques to some real data
settings in Jin and Candès (2023), and use their code to calculate the weighted p-values in (13) for each setup.
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D.1 Proof of Theorem 1

For brevity, we will write αe-LOND
t as αt in the proofs in this section.

FDR(Rt) = E


 ∑

i∈H0∩[t]

1
{
Ei ≥ α−1

i

}

|Rt| ∨ 1


 =

∑

i∈H0∩[t]

E

[
1
{
Ei ≥ α−1

i

}

|Rt| ∨ 1
× 1

{
Ei ≥ α−1

i

}
]

(i)

≤
∑

i∈H0∩[t]

E

[
αiEi

|Rt| ∨ 1
× 1 {|Rt| ≥ |Ri−1|+ 1}

]

(ii)

≤
∑

i∈H0∩[t]

E

[
αγi(|Ri−1|+ 1)Ei

|Ri−1|+ 1
× 1 {|Rt| ≥ |Ri−1|+ 1}

]

(iii)

≤
∑

i∈H0∩[t]

E

[
αγi(|Ri−1|+ 1)Ei

|Ri−1|+ 1

]
= α

∑

i∈H0∩[t]

γiE [Ei] ≤ α.

Inequality (i) is a result of (6) and |Rt| ≥ |Ri−1|+ 1
{
Ei ≥ α−1

i

}
by construction of Rt. Inequality (i) is a result

of the indicator in the expectation (i.e., making discovery at Hi will make Rt larger than Ri−1). Inequality (iii)
comes from dropping the indicator term. The last inequality is due to E[Et] ≤ 1 for all t ∈ H0 by definition of
e-values (3), and because (γt) sum up to 1. Thus, we achieve an upper bound of α on the final line and have
shown our desired result on FDR.

To show e-LOND strictly dominates r-LOND, it is sufficient show that αe-LOND
t ≥ αr-LOND

t for all t ∈ N, and
there exists a sequence of e-values (Et) such that there exists t ∈ N such that αe-LOND

t > αr-LOND
t . For any t ∈ N,

βt(|Rt−1|+ 1) =

|Rt−1|+1∫

0

x dν(x) ≤ |Rt−1|+ 1,

where the first equality is by definition of reshaping function, and the inequality is because x ≤ |Rt−1|+ 1 in the
integrand, and ν is a probability measure that is nonnegative and integrates to 1. Thus, αe-LOND

t ≥ αr-LOND
t for

all t ∈ N.

Next, note for β2, either it satisfes (1) β2(2) = 2 and β2(1) = 0 or (2) β2(2) < 2 — this follows from the definition
of reshaping function, and case (1) correpsonds to putting all probability mass in ν on 2.

If β2 satisfies case (1), then we set E1 = 1/(αγ1)+1. This results in αe-LOND
2 = αγ2 > 0 = αr-LOND

2 . Otherwise, we
set E1 = 1/(αγ1), which leads to a rejection by e-LOND, and note that αr-LOND

2 ≤ αγ2β2(2) < 2αγ2 = αe-LOND
2 .

Thus, we have shown that e-LOND strictly dominates r-LOND applied to (1/Et) and conclude our proof.

D.2 Proof of Theorem 3

For simplicity, denote αUr-LOND
t ,RUr-LOND

t as αt,Rt. Similar to the proof of FDR control for r-LOND in Zrnic
et al. (2021), we first show the following inequality for any i ∈ [t]:

E

[
1
{
Pi ≤ αUr-LOND

i

}

|Rt| ∨ 1

]
(i)

= E

[
1
{
Pi ≤ αUr-LOND

i

}

|Rt| ∨ 1
1 {|Rt−1| ≥ |Ri−1|+ 1}

]

(ii)

= E

[
1 {Pi ≤ αγiβi((|Ri−1|+ 1)/Ui)}

|Rt| ∨ 1
1 {|Rt| ∨ 1 ≥ |Ri−1|+ 1}

]

(iii)

≤ E

[
1 {Pi ≤ αγiβi((|Ri−1|+ 1)/Ui)}

|Ri−1|+ 1
1 {|Rt| ∨ 1 ≥ |Ri−1|+ 1}

]

(iv)

≤ E

[
1 {Pi ≤ αγiβi((|Ri−1|+ 1)/Ui)}

|Ri−1|+ 1

]
(v)

≤ αγt. (14)
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Equality (i) is because {Pi ≤ αUr-LOND
i } ⇒ {|Ri−1| + 1 ≤ |Rt| ∨ 1} as a result of a discovery being made at

the ith hypothesis. Equality (ii) is by expanding the definition of αUr-LOND
i . Inequality (iii) is the indicator

1 {|Rt| ∨ 1 ≥ |Ri−1|+ 1} being 1 iff the event it is indicating is true. Inequality (iv) is simply by droppign the
indicator. Inequality (v) is by Fact 4. Thus, we can derive the following bound on the FDR by (14):

FDR(Rt) =
∑

i∈H0∩[t]

E

[
1
{
Pi ≤ αUr-LOND

i

}

|Rt| ∨ 1

]

≤ α
∑

[t]

γt ≤ α,

which achieves our desired FDR control.

The strict dominance in expectation follows from the fact that αUr-LOND
t > αr-LOND

t with nonzero probability
whenever |Rt−1| < t− 1 because U−1

t is a positive number that is at least 1, and (|Rt−1|+ 1)U−1
t ≥ |Rt−1|+ 2

(which implies βBY
t ((|Rt−1|+ 1)U−1

t ) > βBY
t (|Rt−1|+ 1)) with nonzero probability. Thus, we have shown strict

dominance in expectation and all results in the theorem.

D.3 Proof of Theorem 4

Denote αe-LOND
t as αt in this section. We make the following derivation for the FCR:

FCR(St) = E

[
∑

i∈St

1 {θi 6∈ Ci(Xi, αi)}

|St| ∨ 1

]
(i)

= E

[
∑

i∈St

1
{
Eθi ≥ α−1

i

}

|St| ∨ 1

]

(ii)

≤ E

[
∑

i∈St

αγi(|Si−1|+ 1)Ei

|St| ∨ 1

]
(iii)

=
∑

i∈[t]

E

[
αγi(|Si−1|+ 1)Ei1 {i ∈ St}

|St| ∨ 1

]

(iv)

≤
∑

i∈[t]

E

[
αγi(|Si−1|+ 1)Eθi1 {|St| ≥ |Si−1|+ 1}

|St| ∨ 1

]

(v)

≤
∑

i∈[t]

E

[
αγi(|Si−1|+ 1)Eθi1 {|St| ∨ 1 ≥ |Si−1|+ 1}

|Si−1|+ 1

]

(vi)

≤
∑

i∈[t]

E

[
αγi(|Si−1|+ 1)Eθi

|Si−1|+ 1

]
= α

∑

i∈[t]

γiE [Eθi ] ≤ α.

Equality (i) is by the definition of an e-CI in (9). Inequality (ii) is by the definition of an e-LOND. Equality (iii)
is simply arithmetic with the indicator of whether i is in St. Inequality (iv) is because i ∈ St implies that St

gained a selected parameter, namely the ith parameter, over Si−1. Inequality (v) is because i ∈ St implies that
St gained a selected parameter, namely the ith parameter, over Si−1. Inequality (vi) follows from dropping the
indicator, and the last inequality is again due to E[Eθi ] ≤ 1 for each i ∈ N by definition of e-values (3), and
because (γt) sum up to 1. Thus, we achieve our desired result of FCR control of α.

Ue-LOND-CI can be shown to have FCR control by following the above argument, except we can replace Eθi

with Sαe-LOND
t

(Eθi). Thus, we have shown our desired levels of FCR control.

D.4 Proof of Proposition 1

Let P̃t := Pt ∨ 1 {Yt > ct}. Note that for each t ∈ N, P̃t satisfies the following two properties.

{P̃t ≤ s} ⇔ {Pt ≤ s, Yt ≤ ct} and P

(
P̃t ≤ s

)
= P (Pt ≤ s, Yt ≤ ct) ≤ s for all s ∈ [0, 1). (15)

This is by definition of P̃t and by the superuniform constraint on Pt in (11). Further, we can see that

{Pt ≤ s, Yt ≤ ct} ⇒ {P̃t ≤ s} when s = 1, (16)
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by definition of P̃t as well.

We also observe the following implication holds:

{P̃i ≤ αi} ⇒ {Rt ⊃ Ri−1} ⇒ {|Rt| ∨ 1 ≥ Ri−1 + 1}, (17)

for all t ≥ i simply because a discovery set grows when a a new discovery is made.

Let (αt), (Rt) be either (αr-LOND
t ), (Rr-LOND

t ) or (αUr-LOND
t ), (RUr-LOND

t ). We can make the following derivation
of the FDR:

FDR(Rt) =
∑

i∈[t]

E

[
1 {Pi ≤ αt, i ∈ H0}

|Rt| ∨ 1

]
=

∑

i∈[t]

E

[
1 {Pi ≤ αt, Yi ≤ ci}

|Rt| ∨ 1

]
(i)

≤
∑

i∈[t]

E



1
{
P̃i ≤ αi

}

|Rt| ∨ 1




(ii)

=
∑

i∈[t]

E



1
{
P̃i ≤ αi

}

|Ri−1|+ 1




(iii)

≤
∑

i∈[t]

E



1
{
P̃i ≤ αγi · βi((|Ri−1|+ 1)/Ui)

}

|Ri−1|+ 1




(iv)

≤
∑

i∈[t]

αγi ≤ α.

Inequality (i) is by a combination of (15) and (16). Inequality (ii) is because of (17). Inequality (iii) is by the
definition of either choice of (αt) (Ui = 1 if r-LOND, and Ui is an independent uniform random variable over
[0, 1] if Ur-LOND) and the fact that |Rt| ∨ 1 ≤ |Rt−1|+ 1 by definition of discovery sets. Inequality (iv) is by

Fact 4, since Ui is superuniform and independent of all P̃i. The last inequality is due to
∑

i∈[t] γi ≤ 1. Thus, we
have shown our desired FDR control.

D.5 Proof of Theorem 5

Let αasync-e-LOND
t be αt. We can simply follow the same proof as in Appendix D.1, but notice that (iii) remains

true because R−X
t−1 ⊆ Rt−1 so |RX

t−1| ≤ |Rt−1| for each t ∈ N.

Similarly, we can note the proof in Appendix D.1 also carries through simply by replacing Rt with R−X
t . Thus,

we have shown both of our desired results.

D.6 Proof of Proposition 2

We follow a similar proof structure to the proof of Theorem 3.1 in Jin and Candès (2023).

First, we define the following oracle p-values (that cannot be computed from the observable data) to assist with
our proof:

P̄t :=

∑n

i=1 w(Xi)1{Vi < Vn+t}+ w(Xn+t)∑n

i=1 w(Xi) + w(Xn+t)
.

P̄
(t)
j :=

∑n

i=1 w(Xi)1{Vi < V̂n+j}+ w(Xn+t)1{Vn+t < V̂n+j}∑n

i=1 w(Xi) + w(Xn+t)
.

These essentially replace V̂n+t with Vn+t when compared to their empirical counterparts Pt and P
(t)
j , respectively.

The first thing we note is the following relationship between the oracle nonconformity score and the empirical
nonconformity score at n+ t:

t ∈ H0 ⇔ Yn+t ≤ cn+t ⇒ Vn+t ≤ V̂n+t ⇒ P̄t ≤ P̂t,

since V is a monotone score function. Further, the oracle p-values (P̄
(t)
j )j∈[t−1] are bounded by their empirical

counterparts, i.e.,

P̂
(t),−
j ≤ P̄

(t)
j ≤ P̂

(t),+
j for all t ∈ N and j ∈ [t− 1]. (18)

Define R̄t−1 to be the discovery set that results from applying LOND to (P̄
(t)
1 , . . . , P̄

(t)
t−1), and define

ᾱLOND
t := αγt · (|R̄t−1|+ 1), ĒLOND

t := 1
{
P̄t ≤ ᾱLOND

t

}
/ᾱLOND

t
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to be the test level for the next hypothesis and an all-or-nothing e-value testing at that level, respectively. By
(18), we can derive that

|R̂+
t−1| ≤ |R̄t−1| ≤ |R̂−

t−1|, and α̂
LOND,+
t ≤ ᾱLOND

t ≤ α̂LOND,−
t .

This gives us the following inequality:

1 {t ∈ H0} · E
LOND
t =

1 {t ∈ H0} · 1
{
P̂t ≤ α̂LOND,+

t

}

α̂LOND,−
t

≤
1 {t ∈ H0} · 1

{
P̄t ≤ ᾱLOND

t

}

ᾱLOND
t

≤ ĒLOND
t . (19)

Now we need to show that ĒLOND
t is an e-value as defined in (12). Define Zi := (Xi, Yi) for each i ∈ N.

Let Z := [Z1, . . . , Zn, Zn+t] denote the unordered set of {Z1, . . . , Zn, Zn+t}, and z = [z1, . . . , zn, zn+t] be the
unordered set of their realized values. Define ξz,t as the event such that Z = z. Let It ∈ [n] ∪ {n + t} be the
index such that Zn+t = zIt . Now, we note the following important facts

P̄t is measurable w.r.t. Z and It.

(P̄
(t)
j )j∈[t−1], R̄t−1, ᾱ

LOND
t are measurable w.r.t. Z and {Zn+i}i 6=t.

In addition, we have that

{Zn+i}i 6=t ⊥⊥ It | ξt,z.

This is a result of {Zn+i}i 6=t ⊥⊥ {Zi}i∈[n]∪{n+t} since each data point is assumed to be independent. As a result,
we can conclude that

P̄t ⊥⊥ ᾱLOND
t | ξz,t. (20)

Let Fz,t := P
(
P̄t ≤ ᾱLOND

t | ξz,t
)
be the conditional c.d.f. of P̄t.

Now, we define a randomized oracle conformal p-value:

P ∗
t :=

∑n

i=1 w(Xi)1{Vi < Vn+t}+ U∗
t (w(Xn+t) + 1 {Vi = Vn+t})∑n

i=1 w(Xi) + w(Xn+t)
.

where U∗
t is an independent uniform random variable on [0, 1].

We know cite the following fact from Hu and Lei (2023) that arises due to weighted exchangeability of
(Z1, . . . , Zn, Zn+t):

Fact 6 (Lemmas 2 and 3 of Hu and Lei (2023)). P ∗
t | ξt,j is uniformly distributed over [0, 1].

Since P ∗
t ≤ P̄t determinstically, we have that

Fz,t(s) ≤ P (P ∗
t ≤ s | ξz,t) ≤ s for all s ∈ [0, 1]. (21)

Relating this back to our e-value, we, get that

E[ĒLOND
t | ξz,t] = Fz,t(ᾱ

LOND
t )/ᾱLOND

t ≤ 1 (22)

by (21) and (20). E[ĒLOND
t ] ≤ 1 follows by the tower property of conditional expectation applied to (22). Hence,

our desired result that ELOND
t is an e-value follows from (19).

D.7 Proof of Theorem 6

Let αt,Rt be short for αe-LOND
t ,Re-LOND

t . We can make the following derivation:
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FDR(Rt) =
∑

i∈[t]

E

[
1 {Ei ≥ αi, i ∈ H0}

|Rt| ∨ 1

]
=

∑

i∈[t]

E

[
1 {Ei ≥ αi} · 1 {i ∈ H0}

|Rt| ∨ 1

]

(i)

=
∑

i∈[t]

E

[
1 {Ei ≥ αi} · 1 {i ∈ H0}

|Rt| ∨ 1
· 1 {|Rt| ≥ |Ri−1|+ 1}

]

(ii)

≤
∑

i∈[t]

E

[
αiEi · 1 {i ∈ H0}

|Rt| ∨ 1
· 1 {|Rt| ∨ 1 ≥ |Ri−1|+ 1}

]

(iii)

≤
∑

i∈[t]

E

[
αiEi · 1 {i ∈ H0}

|Ri−1|+ 1

]
(iv)

=
∑

i∈[t]

E

[
αγi(|Ri−1|+ 1)Ei · 1 {i ∈ H0}

|Ri−1|+ 1

]

=
∑

i∈[t]

αγiE [Ei · 1 {i ∈ H0}] ≤
∑

i∈[t]

αγi ≤ α.

Inequality (i) is because Ei ≥ αi implies a discovery is made at the ith hypothesis. Inequality (ii) is because
Ei, αi are nonnegative. Inequality (iii) is a result of dropping the indicator for |Rt| ∨ 1 ≥ |Ri−1|+ 1 and lower
bounding the denominator. Equality (iv) is by exanding the definition of αt and the final two inequalities are by
the definition of an e-value from (12) and

∑
i γi ≤ 1. FDR control of Ue-LOND can be proven in a similar fashion

by replacing Ei with Sαe-LOND

i

(Ei), since E[Sαe-LOND

i

(Ei) | Ei] = Ei. Thus, we know that Sαe-LOND

i

(Ei) is also an

e-value as defined in (12) by the tower property of conditional expectation, and the rest of the proof follows.

E Comments on the online multiple testing problem

We provide additional comments on the motivation behind the formlation of the online multiple testing problem
in this section by discussing why FDR is our target error metric and the relationship between online multiple
testing and adaptive data analysis.

E.1 Additional remarks on online FDR control

One might wonder why we wish to simply ensure FDR control, and not prove guarantees about the power of
our algorithms as well, e.g., the expected proportion of non-null hypotheses that we actually discover with our
algorithm. This is because in scientific discovery, we cannot know the exact distribution of the statistic under the
true distribution when the null hypothesis is false—that would defeat the purpose of testing if the null hypothesis
is true in the first place. Prior knowledge or assumptions about the distribution of the true distribution when the
null hypothesis is false are often already incorporated by the scientist when designing the individual statistics that
are passed to the online multiple testing algorithm. Therefore, our framework for online FDR control allows the
user to flexibly change αt to be large or small depending on what they expect the signal of the hypothesis to be.

E.2 Relating online multiple testing and adaptive data analysis

There is a rich literature on adaptive data analysis (Dwork et al., 2015) that explicitly tackles the data reuse
problem, but it is orthogonal to our setup, as it is focused on the problem of estimation, makes assumptions about
the statistic (e.g., bounded) being tested, and focuses on the relation between the number of adaptively chosen
parameters that can be accurately estimated and the number of i.i.d. samples that have been gathered. On the
other hand, online multiple testing is agnostic to the exact data generating mechanism (e.g., single dataset, data
gathered in a correlated fashion, datasets being merged together, etc.), assumes access to the data only through a
statistic (i.e., p-value, e-value, or CI), and maintains error control for a potentially infinite stream of hypotheses,
which are not assumed to be adaptively or adversarially chosen. Hence, these two approaches are complementary
to each other: adaptive data analysis focuses on what the maximum number of parameters one can estimate for a
fixed set of data, while online multiple testing aims to ensure Type I error control regardless of the underlying
data sampling method used to test each hypothesis.
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F Simulation details

We provide the details of our simulations (in Section 6) in this section. In this section, any references to the discount
sequence (γt) refer to the same choice of (γt) used in the corresponding algorithm (i.e., e-LOND, Ue-LOND,
r-LOND, or Ur-LOND) that acts on the e-values or p-values. In all our simulations, we let γt = 1/(t(t+ 1)). We
ran the simulations on a 12 core, 60GB RAM cloud server.

F.1 Definition of LORD∗

We recall the LORD∗ algorithm of Zrnic et al. (2021) as follows:

αLORD∗

t := α


w0γt + 1 {|Rt−1| ≥ 1, 1 6∈ Ct} (α− w0)γt−r1 +

∑

i∈Rt−1\[1],i 6∈Ct

γt−i


 .

Here w0 ∈ [0, α] is an algorithm parameter — we set w0 = 0.9 in all our simulations. r1 is the index of the first
discovery made by LORD∗. (Ct) are a sequence of “conflict sets” that dictate hypothesis indices with which the
current hypothesis has a dependence or “conflict”. In our local dependence setting, Ct = {t− L, . . . , t− 1}.

F.2 Local dependence simulation details

Each Xi
t is a sample from the Beta(a, b) distribution, where we let a+ b = 10−2, which is shifted and rescaled to

be supported on [−4, 4]. The following Hoeffding-based process (M i
t )i was shown by Waudby-Smith and Ramdas

(2023) to be an e-process for random variables bounded in [`, u] if E[Xi
t ] = 0 for i ∈ [N ].

M i
t = exp




i∑

j=1

λjtX
j
t −

(λjt (u− `))2

8


 ,

for any sequence of (λjt )j∈[N ] that is predictable, i.e., λjt can be determined by X1
t , . . . , X

j−1
t . We let λjt =√

8 log(1/(αγt))/((u− `)2N) as per Waudby-Smith and Ramdas (2023, eq. 3.6).

Our e-values, and p-values are defined as follows:

Et =Mτt
t and Pt =

1

maxi≤N M i
t

,

The stopping time τEt defined the in the following recursive fashion:

τt = min{i ∈ [N ] :M i
t ≥ 1/α̂e-LOND

t (i)} ∪ {N},

where we define α̂e-LOND
t (i) to be the test level output by e-LOND after being applied to (Mτ1∧i

1 , . . . ,M
τt−1∧i
t−1 ),

where ∧ denotes minimum. Note that (Mτ1∧i
1 , . . . ,M

τt−1∧i

t−1 ) can be computed using only the first i samples of

the data for the first t− 1 hypotheses, i.e., {Xj
k}j∈[i],k∈[t−1]. Hence, these are valid stopping times.

F.3 Sampling WoR simulation details

Let [`, u] be the support of the population, and in our case, we set ` = −4, u = 4. Let P (µ) be the distribution
X = (u − `)Y + u , where Y ∼ Beta((µ − `) · s/(u − `), (u − µ) · s/(u − `)), i.e., P (µ) is the Beta distribution
scaled to be supported on [`, u] with mean µ, and variance scaling factor s (where a smaller s results in population
values concentrating at the support limits). Next, take a discrete grid of size N × T that is uniformly spread over
[0, 1], and compute the quantiles of the grid values of P (µ). We then shift all quantile values below (or above) µ
by the same amount, so the mean of the grid quantiles is equal to µ.

The e-values and p-values we use in this setup are derived from the following e-process from Waudby-Smith and
Ramdas (2020) for sampling WoR:

M i
t = exp




i∑

j=1

λjtX
j
t + µj−1

t (0)−
(λjt (u− `))2

8


 ,



Online multiple testing with e-values

for any predictable sequence (λit)i∈[N ] where µ
i
t(0) =

1
N−i+1

∑i

j=1X
j
t is an adjustment term for sampling WoR.

We also set λjt =
√
8 log(1/(αγt))/((u− `)2N) here. We define our e-values and p-values likewise:

Et =Mτt
t and Pt =

1

maxi≤N M i
t

,

where τt = min{i ∈ [N ] :M i
t ≥ 1/(αγt)} ∪ {N} is the first time the (M i

t )i∈[N ] crosses the threshold 1/(αγt) or
reaches the maximum sample size N .

G FDR control of e-LOND is sharp

Here we show that there exists a sequence of e-values (E1, . . . , Et) such that the FDR control of e-LOND is sharp.

Theorem 7. If the discount sequence (γt) satisfies
∑

t∈N
γt = 1, there exists a joint distribution over a sequence

of e-values (Et)t∈N such that for every ε > 0, there exists t′ ∈ N such that FDR(Re-LOND
t ) > α− ε for all t ≥ t′.

Proof. We write Rt as shorthand for Re-LOND
t . We let null be true at every hypothesis, i.e., H0 = N, and

construct the joint distribution over e-values is characterized as follows:

ξt := {Et = (αγt)
−1 and Ei = 0 for all i 6= t}, ξ0 := {Et = 0 for all t ∈ N}

P (ξt) = αγt for each t ∈ N, P (ξ0) = 1− α.

Note that ξt are disjoint events for t ∈ N ∪ {0}, and P (ξ0) +
∑

t∈N
P (ξt) = 1 − αα

∑
t∈N

γt. — hence this
characterizes a complete distribution over (Et)t∈N. Further, E[Et] = (αγt)

−1 · P (ξt) = 1, for each t ∈ N, so
(Et)t∈N is provably a sequence of e-values.

We note that FDP(Rt) = maxt1∈[t] 1 {ξt1}, i.e., the FDP is 1 iff ξt1 for some t1 ∈ [t] occurs. Hence,

FDR(Rt) = E

[
max
t1∈[t]

1 {ξt1}

]
= P


 ⋃

t1∈[t]

ξt1


 =

∑

t1∈[t]

P (ξt1) = α
∑

t1∈[t]

γt1 . (23)

Hence, for a fixed ε > 0, if we define t′(ε) to be the smallest t ∈ N such that
∑

t1∈[t] γt1 > 1− (ε/α) — note such

a t always exists because (γt) is nonnegative and
∑

t∈N
γt = 1. We can see as a result of (23), FDR(Rt) > α− ε

for all t ≥ t′(ε). Thus, we have shown our desired result.

A similar argument can be made to argue that Ue-LOND is sharp as well, as well as FCR control of e-LOND-CI
and Ue-LOND-CI.
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