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Abstract

The task of transfer learning is to improve estimation/inference of a target model by mi-
grating data from closely related source populations. In this article, we propose transfer
learning algorithms for high-dimensional Quantile Regression (QR) models with the tech-
nique of convolution-type smoothing. Given the transferable source populations, we derive
`1/`2-estimation error bounds for the estimators of the target regression coefficients under
mild conditions. Theoretical analysis shows that the upper bounds are improved over those
of the classical penalized QR estimator with only the target data, as long as the target and
the sources are sufficiently similar to each other. When the set of informative sources is un-
known, a transferable source detection algorithm is proposed to detect informative sources
from all available sources. Thorough simulation studies justify our theoretical analysis.

1 Introduction

Transfer learning (Torrey & Shavlik, 2010) has been growing popular and drawing increasing attention in
machine learning, which achieves great success in a wide range of real applications with limited available
training data. Transfer learning aims to transfer knowledge from related source tasks/domains to enhance
the learning or performance of the target task/domain, which typically involves two main subproblems.
First, some criteria should be come up with to quantify the relatedness/similarity among target and source
tasks. Intuitively, a high similarity would enhance the performance, while a low similarity would be harmful
for the target task, which is known as “negative transfer” in the literature (Torrey & Shavlik, 2010). Second,
a transfer procedure should be carefully designed to transfer the “critical” knowledge from source domains,
just like the human intelligence of leveraging prior experiences to tackle novel problems. A well designed
transfer algorithm should not only identify the positive transfer sources thereby enlarging their impact, but
also avoid the negative transfer in any case. All in all, transfer learning has become an active and promising
research area, and substantial contributions has also been made recently to the theoretical guarantee for
transfer learning in both supervised, semi-supervised, and unsupervised settings, see for example the context
of classification by Cai & Wei (2021); Reeve et al. (2021), high-dimensional (generalized) linear regression by
Li et al. (2022); Tian & Feng (2023); Lin & Li (2022), graphical model by Li et al. (2023); He et al. (2022).
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As far as we know, there exist no work on transfer learning for quantile regression and we aim to fill this
gap in this paper.

Comparison with the existing work and our contribution

A few works explore transfer learning under the high-dimensional setting. Bastani (2021) studied the transfer
learning problem under a high-dimensional generalized linear models (GLM) with one single known trans-
ferable source data and the dimensionality p is assume to be larger than the sample size of the target dataset
ntarget while smaller than that of the source dataset nsource. A two-step transfer learning algorithm was
developed and the `1-estimation error bound was derived when the difference between the target and source
coefficient is `0-sparse. More specifically, their estimator requires ntarget = O(s2 log2(p/ξ)/ξ2) as long as
nsource & O(s2p2 log2(p/ξ)/ξ2), where ξ denotes a parameter which is less than the `1-norm of the difference
vector between the coefficients of the target and source, p is the number of features, and s is the sparsity
of the difference in coefficients between the target and source. Li et al. (2022) studied the high-dimensional
linear regression problem under some weaker assumptions, where both target and source samples are high-
dimensional. Multiple source datasets are available and the transferable set may even be unknown in their
paper. With `q-sparse difference vector between the coefficients of the target and source for q ∈ [0, 1) and
`0-sparse target parameter, the `2-estimation error bound was derived and proved to be minimax optimal
under some conditions. In the setting where the transferable set is unknown, a source detection algorithm
was proposed to consistently select the informative sources. Tian & Feng (2023) further investigated multi-
source transfer learning on high-dimensional generalized linear models (GLM). They assumed both target
and source data to be high-dimensional and the disparity in coefficients between the target and source to
be `1-sparse. Given the informative sources to transfer, the `1/`2-estimation error was derived and proved
to be minimax optimal under mild conditions. Tian & Feng (2023) also established a transferable source
detection algorithm to identify the informative sources. In addition, they constructed the corresponding
confidence interval for individual regression parameter. Li et al. (2021) proposed a federated transfer learn-
ing approach to consolidate data from different populations and from multiple medical associations. The
target and source data are both high-dimensional in their discussion and they characterized the vector of
disparities between the target and source parameters to be `0-sparse. Compared with Tian & Feng (2023),
their approach achieves a faster convergence rate under some conditions and has weaker requirements on the
level of heterogeneity for data from diverse populations.

Inspired by the two-step algorithm in Bastani (2021), Li et al. (2022) and Tian & Feng (2023), we propose
a multi-source transfer learning method under high-dimensional quantile regression. To overcome the non-
smoothness and non-convexity of the quantile loss, motivated by He et al. (2021) and Tan et al. (2022),
we employ the convolution-type smoothed quantile regression. With the help convolution smoothing, Tan
et al. (2022) proposed a gradient-based algorithm that is more scalable to large-scale problems with either
large sample size or high dimensionality compared with other methods for fitting high-dimensional quantile
regression. Assuming the difference vector between the target and each source coefficients to be `1-sparse,
we establish the `1/`2-estimation error bounds that are proved to be sharper than the bounds of the classical
`1-penalized quantile regression (Belloni & Chernozhukov, 2011) under some conditions.

In this paper, we propose transfer learning algorithms for quantile regression with high-dimensional data and
we assume the difference between target and source coefficients to be `0-sparse or `1-sparse. In the setting
where the sources are sufficiently close to the target, our theoretical analysis and simulation results show
that the estimation error bound of the target coefficients is improved compared to the classical `1-penalized
quantile regression model (Belloni & Chernozhukov, 2011) using only the target data under mild conditions.
To overcome the lack of smoothness and convexity of the check loss, we employed the convolution-type
smoothed quantile regression and analyzed the (local) restricted strong convexity of the empirical smoothed
quantile loss functions in the transferring and debiasing steps. We also extended the source detection
algorithm in Tian & Feng (2023) to the quantile regression setting. Simulation results show that the algorithm
works well in discovering useful sources. In contrast to the case with `1-sparse difference vector between the
target and source coefficients, the algorithm with `0-sparse one learns the source coefficients independently,
which greatly reduces the communications cost across different sources. Furthermore, the algorithm with
`0-sparse difference vector has fewer assumptions on the level of heterogeneity for data from different sources.
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The most related work is a concurrent paper by Zhang & Zhu (2022), which also considered the smoothed
quantile regression models under transfer learning framework. They proposed a smoothed two-step transfer
learning algorithm as well as a new source detection method based on the K-means clustering algorithm,
which does not need the input of a threshold in contrast to the source detection algorithm in Tian & Feng
(2023). In addition, they further extended their work to the distributed quantile regression and model
averaging setup. However, compared with Zhang & Zhu (2022), our work doesn’t require the restrictive
conditions on the kernels that sup|h|≤1 K(u/h)/h < Mk almost everywhere in u. In addition, given that the
disparity vector is characterized in `0-norm instead of `1-norm, we introduce an algorithm which is motivated
from Li et al. (2022) and Li et al. (2021). The `1/`2-estimation error bounds are also established and proved
to be sharper than the bounds of the classical `1-penalized quantile regression (Belloni & Chernozhukov,
2011) under some mild conditions.

Before ending this section, we introduce the notations used throughout the paper. For every integer k ≥ 1,
we use R

k to denote the k-dimensional Euclidean space, and write [k] = {1, . . . , k}. For k ≥ 2, Sk−1 = {u ∈
R

k : ||u||2 = 1} denotes the unit sphere in R
k. For any symmetric, positive semidefinite matrix A ∈ R

k×k,
if its vector of eigenvalues is denoted by γ(A) and ordered as γ1(A) ≥, . . . ,≥ γp(A) ≥ 0, the operator norm
of A is ||A||2 = γ1(A). Moreover, the vector norm induced by A is ||u||A = ||A1/2u||2 for any u ∈ R

k. For
any real numbers s and t, s∨ t denotes max(s, t) and s∧ t denotes min(s, t). For two sequences {an}n≥1 and
{bn}n≥1, which consist of non-negative numbers, an . bn means that there exists a constant C > 0 such
that an ≤ Cbn. an � bn is equivalent to an . bn and bn . an. For r, l > 0, define the `2-ball and `1-cone as

BA(r) = {δ ∈ R
p : ||δ||A ≤ r} and CA(l) = {δ ∈ R

p : ||δ||1 ≤ l||δ||A}.

2 Methodology

2.1 Problem setup

Given the predictors x ∈ R
p and a scalar response variable y ∈ R, the τ -th conditional quantile functions of

y given x is written as
F−1

y|x(τ) = inf{y : Fy|x(y) ≥ τ},
where Fy|x(·) is the conditional distribution function of y given x. Consider the following linear quantile
regression model at a given τ ∈ (0, 1):

F−1
y|x(τ) = xTβ∗(τ),

where β∗(τ) = (β∗
1(τ), . . . , β∗

p(τ))T ∈ R
p is the true quantile regression coefficient.

Let {(yi,xi)}n
i=1 be a random sample from (y,x). The preceding model assumption is equivalent to the

following model
yi = xT

i β∗ + εi and P(εi ≤ 0|xi) = τ.

The `1-penalized quantile regression estimator (Belloni & Chernozhukov, 2011) is generally defined as one
of the solution to the optimization problem

minimize
β=(β1,...,βp)T∈Rp

{
1

n

n∑

i=1

ρτ (yi − xT

i β)

︸ ︷︷ ︸
=:Q̂(β)

+λ||β||1
}
, (1)

where ρτ (u) is defined as ρτ (u) = u{τ − 1(u < 0)}, also referred to as the τ -quantile check loss function.
Let F̂ (·; β) be the empirical cumulative distribution function of the residuals {ri(β) := yi − xTβ}n

i=1, i.e.,

F̂ (u; β) = (1/n)
∑n

i=1 1{ri(β) ≤ u} for any u ∈ R. Then the empirical quantile loss Q̂(β) in (1) can be
written as

Q̂(β) =

∫ ∞

−∞

ρτ (u)dF̂ (u; β). (2)

As the empirical cumulative distribution function F̂ (·; β) is discontinuous, the empirical quantile loss is non-
differentiable, which brings great challenges to both computation and statistical theory establishment. The
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kernel smoothing method (Horowitz, 1998) is commonly utilized to tackle this issue. However, the smoothed
loss is still non-convex, thereby we further consider the convolution-type smoothed quantile loss function,
which is not only convex but also differentiable and brings great convenience in terms of both computation
and theoretical analysis. In the following, we briefly introduce the convolution-type smoothed quantile loss
function, which was firstly introduced by Tan et al. (2022).

Let K(·) be a non-negative kernel function that is symmetric around 0 and integrates to 1, and h > 0 be a
bandwidth. That is

Kh(u) = (1/h)K(u/h), K̄(u) =

∫ u

−∞

K(v)dv and K̄h(u) = K̄(u/h), u ∈ R.

The empirical smoothed loss function can be defined as

Q̂h(β) =
1

n

n∑

i=1

lh(yi − xT

i β) with lh(u) = (ρτ ∗Kh)(u) =

∫ ∞

−∞

ρτ (v)Kh(v − u)dv,

where ∗ denotes the convolution operator. Therefore, the `1-penalized convolution smoothed estimator is
given by

β̂ ∈ arg min
β∈Rp

{
Q̂h(β) + λ||β||1

}
,

where the smoothing bandwidth h adapts to the sample size n and the dimension p while β̂ depends on the
quantile index τ , bandwidth h, and penalty level λ.

Remark 2.1. To better understand this smoothing mechanism, we compute the smoothed loss lh(u) ex-
plicitly for several widely used kernel functions. Recall that ρτ (u) = |u|/2 + (τ − 1/2)u.

(i) (Gaussian kernel) The Gaussian kernel K(u) = φ(u), where φ(·) is the density function of a standard
normal distribution. The resulting smoothed loss is lh(u) = (h/2)G(u/h) + (τ − 1/2)u, where G(u) =

(2/π)1/2e−u2/2 + u{1− 2Φ(−u)}.

(ii) (Uniform kernel) The uniform kernel is K(u) = (1/2)1(|u| ≤ 1), which is the density function of the
uniform distribution on [−1, 1]. the resulting smoothed loss is lh(u) = (h/2)U(u/h)+(τ −1/2)u, where
U(u) = (u2/2 + 1/2)1(|u| ≤ 1) + |u|1(|u| > 1) is a Huber-type loss. Convolution plays a role of random
smoothing in the sense that lh(u) = (1/2)E(|Zu|) + (τ − 1/2)u, where for every u ∈ R, Zu denotes a
random variable uniformly distributed between u− h and u+ h.

(iii) (Laplacian kernel) The Laplacian kernel is K(u) = e−|u|/2. We have lh(u) = ρτ (u) + he−|u|/h/2.

(iv) (Logistic kernel) The logistic kernel is K(u) = e−u/(1 + e−u)2. The resulting smoothed loss is lh(u) =
τu+ h log(1 + e−u/h).

(v) (Triangular kernel) The triangular kernel is K(u) = (1− |u|)1(|u| ≤ 1). The resulting smoothed loss is
lh(u) = (h/2)ltr(u/h) + (τ − 1/2)u, where ltr(u) := (u2 − |u|3/3 + 1/3)1(|u| ≤ 1) + |u|1(|u| > 1).

(vi) (Epanechnikov kernel) The Epanechnikov kernel is K(u) = (3/4)(1 − u2)1(|u| ≤ 1). The resulting
smoothed loss is lh(u) = (h/2)E(u/h) + (τ − 1/2)u, where E(u) := (3u2/4 − u4/8 + 3/8)1(|u| ≤
1) + |u|1(|u| > 1).

One can easily check that all the empirical smoothed loss functions above are convex. See Figure 1 for a
visualization of Horowitz’s and convolution smoothing methods.

In the following, we consider the multi-source transfer learning scenario, where we have a target data set
(X(0),y(0)) and K source data sets with the k-th source denoted as (X(k),y(k)), where X(k) ∈ R

nk×p,

y(k) ∈ R
nk for k = 0, . . . ,K. The i-th row of X(k) and the i-th element of y(k) are denoted as x

(k)
i and y

(k)
i ,

respectively. The goal is to transfer useful information from the source datasets to improve the estimation
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Figure 1: Plots of a standard quantile loss, Horowitz’s smoothed quantile loss (Horowitz, 1998) and some
proposed convolution-type smoothed quantile loss with different widely used kernel functions.

accuracy of the target parameters. Denote the true target parameter as β∗ = ω(0). We assume the responses
in the target and source data all follow the linear quantile regression model, that is,

y
(k)
i = (x

(k)
i )Tω(k) + ε

(k)
i and P(εi ≤ 0|x(k)

i ) = τ, k = 0, . . . ,K.

We build our quantile regression transfer learning procedure in the high-dimensional regime with a sparsity
assumption. In other words, we assume the dimension p is much larger than the sample size nk for all k
while the target model is s-sparse, which satisfies ||β∗||0 = s. Define the k-th contrast as δ(k) = β∗ − ω(k)

and ||δ(k)||q is referred to as the transferring level of source k in the literature, where q ∈ {0, 1}. Define the
level-m transferring set Am = {k : ||δ(k)||q ≤ m} as the set of sources which has transferring level lower than
m. Denote nAm =

∑
k∈Am

nk, αk = nk/(nAm + n0) for k ∈ {0} ∪ Am and KAm = |Am|.
As stated in the introduction, we will consider two types of transferring level, corresponding to q ∈ {0, 1}
respectively. In the case of q = 0, the transferring set corresponds to the source data whose contrast vectors
have at most m nonzero elements. In the case of q = 1, all the coefficients of the contrast vectors can be
nonzero, but their absolute magnitude decays at a relatively rapid rate. It will be seen later that as long
as m is relatively small, the source data in Am can be useful in improving the estimation accuracy of β∗.
In addition, the logic of the algorithm with `1-normed Am and the algorithm with `2-normed Am are quite
different and we will elaborate on these two different algorithms in the following sections.

2.2 The proposed algorithm with an `1-norm constrained transferring set

In this section, we propose the transfer learning algorithm with `1-norm constrained transferring set, which
is motivated by Tian & Feng (2023). This algorithm involves two steps. The first step of our algorithm is
to transfer the information from useful sources by pooling all the data in transferable set Am and target set
A0 to obtain a primal estimator. We also call it the transferring step. To be more precise, we define a total
smoothed loss function for the target and source datasets in the transferable set Am, i.e.,

Q̂h(ω) =
1

nAm + n0

∑

k∈Am

nk∑

i=1

lh
(
y

(k)
i − (x

(k)
i )Tω

)
,
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where

lh(u) = (ρτ ∗Kh)(u) =

∫ ∞

−∞

ρτ (v)Kh(v − u)dv.

Then for the transferring step, we aim to find the minimizer to the following optimization problem with
respect to w ∈ R

p:
minimize

ω

{
Q̂h(ω) + λω||ω||1

}
.

We denote the minimizer as ω̂Am , i.e., ω̂Am = arg minω

{
Q̂h(ω) + λω||ω||1

}
. By selecting an appropriate

bandwidth h, the iteratively reweighted `1-penalized SQR estimator proposed by Tan et al. (2022) shares
the same upper bounds for both `1 and `2 errors as the `1-QR estimator, as indicated by Belloni & Cher-
nozhukov (2011). Furthermore, they introduced coordinate descent and ADMM-based algorithms for solving
`1-penalized quantile regression, which are computationally efficient especially for large-scale problems.

Denote the true parameter in the first step as ωAm , and ωAm has the following explicit form:

ωAm = β + δAm ,

where δAm =
∑

k∈Am
αkδ(k) and αk = nk/(nAm

+ n0). For the second step (the debiasing step), we correct

the bias, δAm , based on the estimator ω̂Am acquired in the transferring step. The smoothed loss function
for the target data with respect to δ is defined as

Q̂(0)
g (ω̂Am + δ) =

1

n0

n0∑

i=1

lg
(
y

(0)
i − (x

(0)
i )T(ω̂Am + δ)

)
.

The error of the debiasing step is under control for a relatively small m, since δAm is a `1-sparse high-
dimensional vector.

We call this algorithm Oracle `1-Trans-SQR as we first assume that all useful sources are known as a priori.
Algorithm 1 formally presents the Oracle `1-Trans-SQR algorithm.

Algorithm 1: Oracle `1-Trans-SQR

Input: Target data (X(0),y(0)), source data {(X(k),y(k))}K
k=1, penalty parameters λω and λδ,

transferring set Am.
Output: The estimator β̂.

1 Transferring step:

ω̂Am ← arg min
ω

{
Q̂h(ω) + λω||ω||1

}
.

2 Debiasing step:

δ̂Am ← arg min
δ

{
Q̂(0)

g (ω̂Am + δ) + λδ||δ||1
}
.

3 return β̂ = ω̂Am + δ̂Am .

If Am is unknown, then we need a detection algorithm to find useful transferable sets in practice. We propose
a transferrable source detection algorithm which is inspired from the Algorithm 2 in Tian & Feng (2023).
Firstly, partition the target data into q subsets. Secondly, fit the penalized smoothed quantile regression
on each combination of (q − 1) target subsets and calculate the loss on the remaining target subset. In the

following, consider the average cross-validation loss L̂
(0)
0 . Run the transferring step on each combination of

(q − 1) target subsets and each source data, and evaluate the loss function on the remaining target subset.

Similarly compute the average cross-validation loss L̂
(k)
0 for each source. Thirdly, calculate the difference

between L̂
(0)
0 and L̂

(k)
0 for each k and compare it with a predefined threshold. Finally select the sources
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Algorithm 2: Transferable Source Detection

Input: Target data (X(0),y(0)), all source data {(X(k),y(k))}K
k=1, a threshold C0, penalty

parameters {{λ(k)[a]}K
k=0}q

a=1, where q is the number of folds chosen.

Output: The set of transferable sources Â.
1 Randomly divide (X(0),y(0)) into q equal-sized sets {(X(0)[i],y(0)[i])}q

i=1.
2 for a = 1 to q do

3 β̂(0)[a] ← fit the penalized quantile regression on {(X(0)[i],y(0)[i])}q
i=1 \ (X(0)[a],y(0)[a]) with

penalty parameter λ(0)[a].
4 β̂(k)[a] ← run the transferring step in Algorithm 1 with

{(X(0)[i],y(0)[i])}q
i=1 \ (X(0)[a],y(0)[a]) ∪ (X(k),y(k)) and penalty parameter λ(k)[a] for all k 6= 0.

5 Calculate the loss function L̂
[a]
0 (β̂(k)[a]) on (X(0)[a],y(0)[a]) for k = 1, . . . ,K.

6 L̂
(k)
0 ←∑q

a=1 L̂
[a]
0 (β̂(k)[a])/q, L̂

(0)
0 ←∑q

a=1 L̂
[a]
0 (β̂(0)[a])/q,

σ̂ =

√∑q
a=1(L̂

[a]
0 (β̂(k)[a])− L̂(0)

0 )2/(q − 1).

7 Â ← {k 6= 0 : L̂
(k)
0 − L̂(0)

0 ≤ C0(σ̂ ∨ 0.01)}.
8 return Â.

whose difference is less than the threshold and include them in the set Â. The detailed transferable source
detection procedure is summarized in Algorithm 2.

With the transferrable source detection algorithm, we propose a feasible Algorithm 3 in practice, in
which we first detect useful source datasets Â by Algorithm 2 and then run Algorithm 1 using datasets
{(X(k),y(k))}k∈{0}∪Â.

Algorithm 3: Trans-SQR

Input: Target data (X(0),y(0)), all source data {(X(k),y(k))}K
k=1, a threshold C0 and penalty

parameters {{λ(k)[a]}K
k=0}q

a=1.

Output: The estimator β̂.
1 Run Algorithm 2 (Transferable Source Detection Algorithm) and output Â.

2 Run Algorithm 1 (Oracle Trans-SQR) using data {(X(k),y(k))}k∈{0}∪Â.

3 return β̂.

2.3 The proposed algorithm with an `0-norm constrained transferring set

In this section we consider a more strict transferable set A′
m = {k : ||δ(k)||0 ≤ m}, where the `1-norm

discussed in Section 2.2 is replaced by `0-norm. Compared with the `1-norm, the theoretical analysis of the
transfer learning procedure under `0-norm is free of the restrictive Assumption 3.4 below, which requires
“sufficient” similarity between the target covariance matrix and transferable source covariance matrices.
However, as `0-norm is not additive, it is not easy to combine target and source data to estimate a primary
estimator for the true target parameter. Instead, we correct each source data independently and incorporate
the corrected source and target data to make predictions. Certain adjustments need to be made on the
proposed transfer learning procedure in Algorithm 1.

This `0-norm constrained transfer algorithm is inspired by the idea in Li et al. (2021). Unlike the transferring
step in Algorithm 1, the first step of the algorithm in this section is to train each source separately to get
primal estimators of ω(k), k ∈ {1, . . . ,K}, where the smoothed loss function for each source k is

Q̂
(k)
h (ω) =

1

nk

nk∑

i=1

lh
(
y

(k)
i − (x

(k)
i )Tω

)
.

7



Published in Transactions on Machine Learning Research (01/2024)

In the second step, as the debiasing step in Algorithm 1, we adjust for the differences δ̂(k) for all k using the
target data, which is obtained via

δ̂(k) = arg min
δ

{
Q̂(0)

g (ω̂(k) + δ) + λδ||δ||1
}
,

where the smoothed loss function with respect to δ is defined as

Q̂(0)
g (ω̂(k) + δ) =

1

n0

n0∑

i=1

lg
(
y

(0)
i − (x

(0)
i )T(ω̂(k) + δ)

)
.

Then a threshold for each δ̂(k) is computed by only keeping the largest
√
n0/ log p elements of δ̂(k) and

letting all the other elements be zero. In the third step, with the estimated “bias” from the second step, the
corrected source data has the following form:

{(
X(k),y(k) + X(k)δ̃(k)

)}K

k=1
.

Then, we combine all the corrected sources and target data to estimate the parameter β which is of our
interest. The above algorithm estimate the source parameters and the contrast vectors individually, while in
the Oracle `1-Trans-SQR proposed in Section 2.2, a pooled analysis is conducted with data from target and
sources, which relies on the homogeneous designs of the covariance matrices among target and source data.

Algorithm 4: Oracle Trans-SQR with `0-norm constrained transferring set

Input: Target data (X(0),y(0)), source data {(X(k),y(k))}K
k=1, penalty parameters λω, λδ and λβ ,

transferring set A′
m. Let n = n0 + nA′

m
.

Output: The estimator β̂.
1 For each k ∈ A′

m,

ω̂(k) ← arg min
ω

{
Q̂h(ω) + λ(k)

ω ||ω||1
}
.

2 For each k ∈ A′
m,

δ̂(k) ← arg min
δ

{
Q̂(0)

g (ω̂(k) + δ) + λδ||δ||1
}
.

3 Threshold δ̂(k) via δ̃(k) = H√
n0/ log p

(δ̂(k)), where Hk(b) is formed by setting all but the largest k

elements of b to zero.
4 Joint estimation using source and target data:

β̂ ← arg min
β

{
1

n

n0∑

i=1

lw
(
y

(0)
i − (x

(0)
i )Tβ

)

+
1

n

∑

k∈A′

m

nk∑

i=1

lw
(
y

(k)
i − (x

(k)
i )T(β − δ̃(k))

)
+ λβ ||β||1

}
.

5 return β̂.

3 Statistical theory

In this section, we establish theoretical guarantees on the algorithms in the above section.
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Assumption 3.1. There exists f̄ ≥ f > 0 such that the conditional density of ε(k) given x(k) satisfies
f ≤ fε(k)|x(k)(0) ≤ f̄ almost surely (over x(k)) for all k = 0, . . . ,K. Moreover, there exists l0 > 0 such that

|fε(k)|x(k)(u) − fε(k)|x(k)(v)| ≤ l0|u − v| for all u, v ∈ R almost surely (over x(k)), and z(k) = (Σ(k))−1/2x(k)

for k = 0, . . . ,K, where Σ(k) denote the covariance matrix of x(k), and

inf
t∈[0,1],v∈Sp−1

E

[
fε(k)|x(k)

(
t(z(k))Tv

)(
(z(k))Tv

)2
]
≥ f.

Assumption 3.2. The kernel function K : R → [0,∞) is symmetric,that is, K(u) = K(−u), and satisfies
that

∫∞

−∞
K(u)du = 1 and

∫∞

−∞
u2K(u)du < ∞. For a = 1, 2, . . ., let κa =

∫∞

−∞
|u|aK(u)du be the a-th

absolute moment of K(·). Assume supu∈RK(u) ≤ κ̄ for some κ̄ ∈ (0, 1].

Assumption 3.3. For k = 0, . . . ,K, Σ(k) = E[x(k)(x(k))T] is positive definite and z(k) = (Σ(k))−1/2x(k) ∈
R

p is sub-exponential: there exist constants v0, c0 ≥ 1 such that P(|(z(k))Tu| ≥ v0||u||2 · t) ≤ c0e
−t for all

u ∈ R
p and t ≥ 0. For convenience, we assume c0 = 1, and write σ2

x = max1≤j≤p E(x2
j ).

Under Assumption 3.3, the a-th (a ≥ 3) absolute moments of all the one-dimensional marginals of z are

uniformly bounded: µa := supu∈Sp−1 E|(z(k))Tu|a ≤ a!va
0 . In particular, µ1 ≤ µ1/2

2 = 1.

Meanwhile, for every δ ∈ (0, 1], define

ηδ = inf
{
η > 0 : E

[(
(z(k))Tv

)2
1
(
|(z(k))Tv| > η

)]
≤ δ for all v ∈ S

p−1
}
. (3)

Since E[(z(k))Tv]2 = 1 for any v ∈ S
p−1, ηδ is well-defined for each δ, and depends implicitly on the

distribution of z(k).

Assumption 3.4. Denote

Σ̃ =

K∑

k=0

αk

∫ 1

0

∇2Q(k)((1− t)β∗ + tω∗)dt

Σ̃(k) =

∫ 1

0

∇2Q(k)((1− t)β∗ + tω(k))dt,

where ∇2Q(k)((1− t)β∗ + tω) = E{fε|x(tω − tβ∗) · x(k)(x(k))T}. Define

C1 = sup
0≤k≤K

||Σ̃−1Σ̃(k)||1.

Let C1 be bounded, that is C1 <∞.

Assumption 3.1 imposes the Lipschitz continuity on the conditional density fε|x(·). Assumption 3.2 holds
for most commonly used kernel functions, for instance, uniform kernel, Gaussian kernel, etc.

Assumption 3.3 assumes a sub-exponential condition on the random covariates characterized by a well-
behaved covariance structure. In particular, µ4 can be regarded as the uniform kurtosis parameter.

Assumption 3.4 restricts the difference between the target covariance matrix and transferable source co-
variance matrix in some sense, which guarantees the estimator at the transferring step is close to the true
parameter β∗. This assumption is commonly used in other transfer learning works, Tian & Feng (2023); Li
et al. (2022); Zhang & Zhu (2022); Huang et al. (2022).

Formally, we consider the parameter space

Θ(s,m) =
{

β∗, {ω(k)}k∈Am
: ||β∗||0 ≤ s, sup

k∈Am

||ω(k) − β∗||1 ≤ m
}
.

3.1 Estimation with an `1-norm constrained transferring set

Proposition 3.1. (Local Restricted Strong Convexity) Assume Assumptions 3.1 - 3.3 hold. Let ∆ = ω−ω∗,
n = nAm

+ n0 and κ = min|u|≤1 K(u) > 0. If (r, h, n, d) satisfies

max{4η1/4r, 32v0γ
1/2
1 dµ

1/2
4 } ≤ h ≤ f/l0 and nh & f̄f−2η2

1/4µ4σ
2
x log p,

9
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for any ω ∈ ω∗ + BΣ(r) and ω∗ ∈ ω(k) + B1(d),

Q̂h(ω)− Q̂h(ω∗)−
(
∇Q̂h(ω∗)

)T
(ω − ω∗) ≥ φ1||∆||2Σ − φ2

√
log p+ logn

nh
||∆||1||∆||Σ, (4)

with probability at least 1− (pn)−1, where φ1 = κ · f/10 and φ2 > 0 is a constant depending only on (κ, f).

Proposition 3.2. Assume Assumptions 3.1 - 3.3 hold. Let v = β1−β2, φ
′
1 = κ ·f/25 and φ′

2 = C2
κ,f/(2φ

′
1).

If max{4η1/4r, 8v0rµ
1/2
4 } ≤ g ≤ f̄/l0 with η1/4 defined in (3) and n0g & f̄f−2η2

1/4µ4s, then for any v ∈ BΣ(r),

Q̂(0)
g (β1)− Q̂(0)

g (β2)−
(
∇Q̂(0)

g (β2)
)T

(β1 − β2) ≥ α1||v||2Σ − Cκ,f

√
log p+ logn0

n0g
||v||1||v||Σ,

with probability at least 1− (pn0)−1, where Cκ,f > 0 is a constant depending only on (κ, f).
By the arithmetic mean-geometric mean inequality

Cκ,f

√
log p+ logn0

n0g
||v||1||v||Σ ≤

φ′
1

2
||v||2Σ +

C2
κ,f

2φ′
1

log p+ logn0

n0g
||v||21,

we have

Q̂(0)
g (β1)− Q̂(0)

g (β2)−
(
∇Q̂(0)

g (β2)
)T

(β1 − β2) ≥ φ′
1

2
||v||2Σ − φ′

2

log p+ logn0

n0g
||v||21,

with probability at least 1− (pn0)−1.

In the debiasing step, we need another restricted strong convexity condition with both || · ||21 and || · ||2Σ in
the lower bound. Proposition 3.2 provides that kind condition.

Finally, with the above establishments of restricted strong convexity, we are able to obtain the main result
for the two-step transfer learning algorithm on quantile regression.

Theorem 3.1. Assume Assumptions 3.1 - 3.4 hold. Suppose m ≤ s
√

log(p)/n0, n0 ≥ Cs2 log p and
nAm

& n0 , where C > 0 is a constant. Also let

log(p)/(nAm
+ n0) . h ≤ min{f/(2l0κ1), (s1/2λω)1/2}

s log(p)/n0 . g ≤
(

log(p)/n0

)1/4
.

We take λω = Cω

√
log(p)/(nAm + n0), λδ = Cδ

√
log(p)/n0, where Cω and Cδ are sufficiently large con-

stants, then

||β̂ − β∗||Σ .
√
m

(
log p

n0

)1/4

+
√
s

(
log p

n0

)1/4(
log p

nAm
+ n0

)1/4

, (5)

||β̂ − β∗||1 . s

√
log p

nAm + n0
+

(
log p

nAm + n0

) 1
4√

sm+m, (6)

with probability at least 1− p−1.

Remark 3.1. In the trivial case where Am is an empty set, the upper bound in (5) is OP (
√
s log(p)/n0).

When Am is non-empty, the upper bound in (5) is sharper than
√
s log(p)/n0 and the upper bound in (6)

is sharper than s
√

log(p)/n0, if nAm & n0 and m < s(log(p)/n0)1/2.

The above theorem gives the convergence rate of the Trans-SQR estimator under `1/`2-errors. As the above
remarks stated, if the total sample size of the transferable sources is significantly larger than the target sample
size, the Trans-SQR estimator could even achieve a sharper convergence rate with some proper choices of
the transferable level of the contrasts and the smoothing bandwidth in the debiasing step. As some previous
works show, our theorem shares similar estimation error bounds as the results in Tian & Feng (2023) and
Li et al. (2022).
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3.2 Estimation with an `0-norm constrained transferring set

Assumption 3.5. For k = 0, . . . ,K, the covariate vector x(k) is compactly supported with

ζ(k)
p := sup

x(k)∈Rp

∥∥(Σ(k))−1/2x(k)
∥∥

2
<∞,

and ||x(k)||∞ ≤ B almost surely for some B ≥ 1, where Σ(k) is positive definite. Without loss of generality,
assume B = 1. In addition, µa = supu∈Sp−1 E|(z(k))Tu|a <∞ for a = 1, . . . , 4.

Remark 3.2. Assumption 3.5 is a stronger version of Assumption 3.3. Note that quantile regression has
Hessian matrix ∇2Q̂h(β) = (1/n)

∑n
i=1 Kh(xT

i β− yi)xix
T
i , where Q̂h(β) is the smoothed empirical quantile

loss and Kh(u) = (1/h)K(u/h). Unlike the generalized linear regression, there is a smoothing bandwidth h in
the denominator. We import Assumption 3.5 to provide convenience for bounding the difference ∇Q̂h(β)−
∇Q̂h(β∗).

Proposition 3.3. (RSC in Step 2) Assume Assumptions 3.1, 3.2, 3.5 hold. Let v = β1 − β2. If

max{4rη1/4, 32v0rµ
1/2
4 } ≤ g ≤ f̄/l0 and n0g & f̄f−2η2

1/4µ4s, then for any v ∈ BΣ(r),

Q̂(0)
g (β1)− Q̂(0)

g (β2)−
(
∇Q̂(0)

g (β2)
)T

(β1 − β2) ≥ 0.1κ · f ||v||2Σ,

with probability at least 1− (pn0)−1.

Theorem 3.2. Assume Assumptions 3.1, 3.2, 3.5 hold. Let

log(p)/n0 . h ≤ min{f/(2l0κ1), (s1/2λω)1/2}
(s+m) log(p)/n0 . g ≤

(
(s+m) log(p)/n0

)1/4

m log(p)/n . w ≤
(
m log(p)/n

)1/4
,

where n = n0 + nA′

m
. Meanwhile, suppose m ≤ s, nk ≥ n0 and n0 ≥ Cs2 log p, where C > 0 is a constant.

We take λ
(k)
ω = Cω

√
log(p)/nk, λδ = Cδ

√
log(p)/n0 and λβ = Cβ

√
log(p)/n, where Cω, Cδ and Cβ are

sufficiently large constants, then

||β̂ − β∗||Σ .

√
s log p

n
+

√
sm log p

n0
, (7)

||β̂ − β∗||1 . s

√
log p

n
+ s

√
m log p

n0
, (8)

with probability at least 1− p−1.

The above theorem gives the convergence rate of the Trans-SQR estimator under `1/`2-errors, where the
contrast vectors are characterized in terms of the `0-norm. If the sample size of the target data is large enough
and the total sample size of the transferable sources is significantly larger than the target sample size, the
Trans-SQR estimator could achieve a sharp convergence rate with some proper choices of the transferable
level of the contrasts.

Remark 3.3. As mentioned above, Assumption 3.4 is to make sure that the estimation error in the trans-
ferring step is small enough. However, Theorem 3.2 does not require Assumption 3.4 because Algorithm 4
learns the parameter w(k) independently in Step 1 and reduces the bias in Step 2. For Step 1, the upper
bound of the difference between the estimator ŵ(k) and true parameter w(k) can be controlled by the sample
size of the each source data and the `0 transferable level m. For Step 2, the estimated δ̂ could also be closed
enough to the true difference between the target and source parameter by having an appropriate target
sample size. Therefore, if both the target and source sample sizes are large enough, the error of Algorithm
4 would be well controlled without Assumption 3.4.
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4 Numerical studies

In this section, we evaluate the performance of our proposed algorithms via numerical experiments. The
methods in the following section include Smoothed Quantile Regression (SQR) on target data, the Oracle-
Trans-SQR, Am-Trans-SQR and the Naive-Trans-SQR, which naïvely assumes Am = 1, . . . ,K in the Oracle
Trans-SQR. The purpose of including the Naive-Trans-Lasso is to understand the overall informative level
of the auxiliary samples.

4.1 Transfer learning on an `1-normed Am

We consider p = 500, n0 = 200, and n1, . . . , n10 = 150. The covariates from target x
(0)
i are i.i.d. Gaussian

with mean zero and covariance matrix Σ with Σjj′ = 0.5|j−j′| for all i = 1, . . . , n0 and ε
(0)
i are i.i.d. Gaussian

with mean zero and variance one for all i. For k ∈ Am, x
(k)
i ∼ N (0p,Σ + εεT), where ε ∼ N (0p, 0.3

2Ip).
For the target, the true parameter β∗, we set s = 5, βj = 0.5 for j ∈ {1, . . . , s}, and βj = 0 otherwise.

Denote R
(k)
p as p independent Rademacher variables. R

(k)
p is independent with R

(k′)
p for any k 6= k′. For

any source data k in Am, we let the true parameter ω(k) = β∗ + (m/p)R(k)
p , where m ∈ {5, 10}. For any

source data k′ not in Am, the true parameter ω(k′) = β∗ + (2m/p)R(k′)
p . We train the four methods with

100 reproductions and record their average `2-estimation errors under different settings of τ . Figure 2 shows
the changes of the estimation errors along with the amount of the transferable sources.

We observe from Figure 2 that the Oracle-Trans-SQR has the best performance among all the methods and
Am-Trans-SQR has almost the same performance as the Oracle-Trans-SQR, which indicates that the trans-
ferable source detection algorithm still works under the smoothed quantile regression models. Meanwhile,
compared with SQR on target, the estimation errors of the Oracle-Trans-SQR and Am-Trans-SQR are always
smaller, which means that the source data which share some similarities in `1-norm with the target data
could improve the estimation. Another observation is that the performance of Am-Trans-SQR consistently
improves as more and more source data are transferable. This matches the theoretical `2-estimation error
bounds which become sharper as nAm

grows.

4.2 Transfer learning on an `0-normed Am

We consider p = 500, n0 = 200, and assume that there are 2, 4, 6, 8, 10 transferable sources with the sample

sizes 400. The covariates from target x
(0)
i are i.i.d. Gaussian with mean zero and covariance matrix Σ

with Σjj′ = 0.5|j−j′|. The covariates from source x
(k)
i are also i.i.d. Gaussian with mean zero, but with

covariance matrix Σ + εεT, where ε ∼ N (0p, 0.3
2Ip). For the target, the true parameter β∗, we set s = 5,

βj = 1 for j ∈ {1, . . . , s}, and βj = 0 otherwise. For the source, their true parameter w(k) is generated from

w
(k)
j = β∗

j + ∆1(j ∈M), where M is a random subset of [p] with |M | = m. We take m ∈ {2, 4}, and ∆ = 2.
Figure 4 and 5 show the `2-estimation errors in different settings of m.

From the results, Trans-SQR with `0-norm constrained transferring set has better performances than SQR
only on target and SQR on all sources and target. Meanwhile, when the target data sample size n0 becomes
larger, the performance of Trans-SQR increases quickly, which accords with our results that the estimation
error is depend on the target sample size. There are considerable decreases in estimation errors of Trans-
SQR when the transferable level increases or ∆ increases, which corresponds to the difference on components
between target and source populations.

5 Conclusion

This paper studies transfer learning for high-dimensional quantile regression models, employing convolution-
type smoothing techniques. The proposed algorithms focus on leveraging `1/`0-normed transferable source
populations to improve estimation accuracy of the target regression coefficients. We derive error bounds
for the estimators in terms of `1/`2-norms for the algorithms. Theoretical analysis reveals that these error
bounds surpass those of the classical penalized quantile regression estimator, which only utilizes the target

12
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Figure 2: `2 estimation errors of several methods under quantile levels τ = 0.25, 0.5, 0.75, over 100 repetitions,
where Oracle-Trans-SQR is Algorithm 1.

data, provided that the target and source populations exhibit sufficient similarity. Furthermore, we propose
a transferable source detection algorithm to identify informative sources from the available sources when the
set of informative sources is unknown. Numerical experiments validate our theoretical results.
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Figure 3: `2 estimation errors of several methods for Gaussian and t2 errors, over 100 repetitions.
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Figure 4: `2 estimation errors of several methods with `0 constraints for t2 errors, over 100 repetitions.
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Figure 5: `2 estimation errors of several methods with `0 constraints for Gaussian errors, over 100 repetitions.
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A Appendix: Proofs of the main results

A.1 Technical Lemmas

For ω ∈ R
p, suppose ∆ = ω − ω∗. Define

R̂h(∆) = Q̂h(ω)− Q̂h(ω∗)−
(
∇Q̂h(ω∗)

)T
(ω − ω∗),

D̂h(∆) = Q̂h(ω)− Q̂h(ω∗),

and their population counterparts Rh(∆) = E{R̂h(∆)} and Dh(∆) = E{D̂h(∆)}, where ω∗ is the true
parameter of the transferring step in the algorithm.

Lemma A.1. Let β∗ be the true target parameter, then ||ω∗−β∗||1 ≤ C1m, where C1 = supk ||Σ̃−1Σ̃(k)||1
and Σ̃−1, Σ̃(k) are given in Assumption 3.4.

Note that w∗ has the explicit form, w∗ = β∗ +δ∗. Lemma A.1 gives an upper bound of the distance between
the true β∗ and the true estimate in transferring step. In other words, the `1-norm of δ∗ is controlled by m.

Lemma A.2. Define π∗
h = πh(β∗) ∈ R

p, where πh(β) = ∇Q̂h(β)−∇Qh(β). Assumptions 3.1 - 3.3 ensure
that for any t > 0,

||π∗
h||∞ ≤ σ

√
{τ(1− τ) + Ch2} 2t

nAm + n0
+ max(1− τ, τ)

t

nAm + n0
,

with probability at least 1− 2pe−t, where C = (τ + 1)l0κ2 and σ = max1≤j≤p σjj .

In both transferring and debiased steps, we need to restrict the regularization parameters λω (or λδ) to be
no smaller than 2||π∗

h||∞ (or 2||π∗
g ||∞). This Lemma helps to specify the choice of the parameters.

Lemma A.3. Define b∗
h = ||Σ−1/2∇Qh(ω∗)||2, which quantifies the smoothing bias, then for some κ2 > 0

b∗
h ≤ l0κ2

h2

2
,

where l0 is the Lipschitz constant of the density fε|x(·).
Lemma A.4. For r, l > 0, define

ψ(r, l) = sup
β∈β∗+BΣ(r)∩B1(l)

∥∥∥∥
1

n

n∑

i=1

{
K̄h(xT

i β − yi)− K̄h(xT

i β∗ − yi)
}

xi

∥∥∥∥
∞

.

For any t > 0, with probability at least 1− e−t,

ψ(r, l) .
l

h

√
log p

n
+ f̄1/2r

√
t+ log p

nh
+
t+ log p

n
.

A.2 Proof of Proposition 3.1

Define the Taylor error

T (ω,ω∗) = Q̂h(ω)− Q̂h(ω∗)−
(
∇Q̂h(ω∗)

)T
(ω − ω∗).

In the following proofs, we consider the subset of ω, ω ∈ ω∗ + BΣ(r) ∩ CΣ(l), and ω∗ ∈ ω(k) + B1(d).
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It follows from a second-order Taylor expansion that

T (ω,ω∗)

=
1

2
(ω − ω∗)T∇2Q̂h

(
tω + (1− t)ω∗

)
(ω − ω∗)

=
1

2(nAm + n0)

∑

k∈Am∪{0}

nk∑

i=1

Kh

{
y

(k)
i − (x

(k)
i )T(t

(k)
i ω + (1− t(k)

i )ω∗)
}(

(x
(k)
i )T(ω − ω∗)

)2

=
1

2(nAm
+ n0)

∑

k∈Am∪{0}

nk∑

i=1

Kh

{
εi − t(k)

i (x
(k)
i )T(ω − ω∗)− (x

(k)
i )T(ω∗ − ω(k))

}

·
(
(x

(k)
i )T(ω − ω∗)

)2
,

for some t
(k)
i ∈ [0, 1]. For each i and k, define the event Fi,k,

Fi,k =
{
|εi| ≤ h/4

}
∩
{
|(x(k)

i )T(ω − ω∗)| ≤ ||ω − ω∗||Σ · h/(2r)
}
∩
{
|(x(k)

i )T(ω∗ − ω(k))| ≤ h/4
}
,

for all ω − ω∗ ∈ BΣ(r). Thus

T (ω,ω∗) ≥ κ

2(nAm
+ n0)h

∑

k∈Am∪{0}

nk∑

i=1

(
(x

(k)
i )T(ω − ω∗)

)2
1Fi,k

, (9)

where κ = min|u|≤1 K(u). For a truncation level R > 0, define functions

ϕR(u) =





u2 |u| ≤ R
2 ,

(R− |u|)2 R
2 < |u| ≤ R,

0 |u| > R.

By this construction, ϕR(u) ≤ u2 · 1{|u| ≤ R}, ϕcR(cu) = c2ϕR(u) and ϕR is R-Lipschitz.
In addition, we define the trapezoidal function

ψR(u) =





1 |u| ≤ R
2 ,

2− 2
R |u| R

2 < |u| ≤ R,
0 |u| > R,

and note that ψR is (2/R)-Lipschitz and ψR(u) ≤ 1{|u| ≤ R}.
With the two new-defined function and the notation ∆ = ω − ω∗, n = nAm

+ n0, we have established the
lower bound of (9)

T (ω,ω∗)

≥ κ

2nh
||∆||2Σ

∑

k∈Am∪{0}

nk∑

i=1

1{|εi| ≤ h/4}ϕ||∆||Σ·h/(2r)

(
(x

(k)
i )T∆

)
ψh/4

(
(x

(k)
i )T(ω∗ − ω(k))

)

≥ κ

2
||∆||2Σ ·

1

nh

∑

k,i

1{|εi| ≤ h/4}ϕh/(2r)

(
(x

(k)
i )T∆/||∆||Σ

)
ψh/4

(
(x

(k)
i )T(ω∗ − ω(k))

)

︸ ︷︷ ︸
D0(ω,ω∗)

(10)

In the following proofs, we bound ED0(ω,ω∗) and D0(ω,ω∗) − ED0(ω,ω∗), respectively. First, we show
that

ED0(ω,ω∗) ≥ 0.21f. (11)
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Note that

∣∣∣h
2
fε|x(0)

∣∣∣−
∣∣∣E
[
1{|εi| ≤ h/4}|x(k)

i

]∣∣∣ ≤
∣∣∣E
[
1{|εi| ≤ h/4}|x(k)

i

]
− h

2
fε|x(0)

∣∣∣

≤
∫ h/4

−h/4

|fε|x(t)− fε|x(0)|dt

≤ l0h
2

16
.

Hence we obtain ∣∣∣E[1{|εi| ≤ h/4}|x(k)
i ]
∣∣∣ ≥ h

2
f − l0h

2

16
.

Provided h ≤ f/l0 ≤ f̄/l0, we have

∣∣∣E[1{|εi| ≤ h/4}|x(k)
i ]
∣∣∣ ≥ 7fh

16
.

Meanwhile ∣∣∣E[1{|εi| ≤ h/4}|x(k)
i ]
∣∣∣−
∣∣∣h
2
fε|x(0)

∣∣∣ ≤
∫ h/4

−h/4

|fε|x(t)− fε|x(0)|dt

implies
∣∣∣E[1{|εi| ≤ h/4}|x(k)

i ]
∣∣∣ ≤ 9f̄h

16
.

Then

ED0(ω,ω∗)

=
1

nh

∑

k,i

E

[
E
[
1{|εi| ≤ h/4}

∣∣x(k)
i

]
ϕh/(2r)

(
(x

(k)
i )T∆/||∆||Σ

)
ψh/4

(
(x

(k)
i )T(ω∗ − ω(k))

)]

≥ 7f

16
E

[
ϕh/(2r)

(
xT∆/||∆||Σ

)
ψh/4

(
xT(ω∗ − ω(k))

)]

≥ 7f

16
E

[(
xT∆/||∆||Σ

)2
1
{
|xT∆/||∆||Σ| ≤ h/(4r)

}
· ψh/4

(
xT(ω∗ − ω(k))

)]

≥ 7f

16

{
1− E

[(
xT∆/||∆||Σ

)2
1
{
|xT∆/||∆||Σ| > h/(4r)

}]

− E

[(
xT∆/||∆||Σ

)2
1
{
|xT(ω∗ − ω(k))| > h/8

}]}

≥ 7f

16

{
1− E

[(
xT∆/||∆||Σ

)2
1
{
|xT∆/||∆||Σ| > h/(4r)

}]
− µ1/2

4 P
(
|xT(ω∗ − ω(k))| > h/8

)1/2
}
.

By the definition of ηδ, as long as 0 < r ≤ h/(4η1/4),

sup
∆∈BΣ(r)

E

[(
xT∆/||∆||Σ

)2
1
{∣∣xT∆/||∆||Σ

∣∣ > h/(4r)
}]
≤ 1

4
.

Moreover, ω∗ ∈ ω(k) + B1(d). Hence

∥∥Σ1/2(ω∗ − ω(k))
∥∥

2
≤
∥∥Σ1/2

∥∥
2

∥∥ω∗ − ω(k)
∥∥

2
≤ γ1/2

1 d.

Under Assumption 3.3 with v0 ≥ 1, the tail bounds of sub-exponential z = Σ−1/2x implys that

P
(
|xT(ω∗ − ω(k))| > h/8

)
≤ 2 exp

{
− h

8v0γ
1/2
1 d

}
.
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Let h ≥ 32v0γ
1/2
1 dµ

1/2
4 . It then follows from a numerical calculation that

{
1− E

[(
xT∆/||∆||Σ

)2
1
{
|xT∆/||∆||Σ| > h/(4r)

}]
− µ1/2

4 P
(
|xT(ω∗ − ω(k))| > h/8

)1/2
}
≥ 0.49

holds uniformly over ∆ ∈ BΣ(r) ∩ CΣ(l). Putting together the pieces yields

ED0(ω,ω∗) > 0.21f.

Next we find a lower bound of D0(ω,ω∗)−ED0(ω,ω∗) over ω ∈ ω∗ + BΣ(r) ∩ CΣ(l). Define

Ω(r, l) = sup
ω∈ω∗+BΣ(r)∩CΣ(l)

{−D0(ω,ω∗) + ED0(ω,ω∗)}.

Write D0(ω,ω∗) = n−1
∑

k∈Am∪{0}

∑nk

i=1 wi,k(ω,ω∗), where

wi,k(ω,ω∗) = h−1
1{|εi| ≤ h/4}ϕh/(2r)

(
(x

(k)
i )T∆/||∆||Σ

)
ψh/4

(
(x

(k)
i )T(ω∗ − ω(k))

)

satisfies 0 ≤ wi,k(ω,ω∗) ≤ h/(4r)2, since ϕR(u) ≤ (R/2)2 and ψR(u) ∈ [0, 1]. Moreover,

Ew2
i,k(ω,ω∗) = E

[
h−2

1{|εi| ≤ h/4}ϕ2
h/(2r)

(
(x

(k)
i )T∆/||∆||Σ

)
ψ2

h/4

(
(x

(k)
i )T(ω∗ − ω(k))

)]

≤ 9f̄

16h
· Eϕ2

h/(2r)

(
(x

(k)
i )T∆/||∆||Σ

)

≤ 9f̄

16h
· E
(
(x

(k)
i )T∆/||∆||Σ

)4
=

9f̄µ4

16h
.

Using Bousquet’s version of Talagrand’s inequality yields that, for any z > 0,

Ω(r, l) ≤ EΩ(r, l) + {EΩ(r, l)}1/2 1

2r

√
hz

n
+

3
√

2µ
1/2
4

4

√
f̄ z

nh
+

h

(4r)2

z

3n

≤ EΩ(r, l) +
1

4
EΩ(r, l) +

1

4r2

hz

n
+

3
√

2µ
1/2
4

4

√
f̄ z

nh
+

h

(4r)2

z

3n

≤ 5

4
EΩ(r, l) +

3
√

2µ
1/2
4

4

√
f̄ z

nh
+

13

3

hz

(4r)2n
(12)

holds with probability at least 1−e−z. To bound the expectation EΩ(r, l), using Rademacher symmetrization
and the connection between Gaussian and Rademacher complexities, Lemma 5.5 in Ledoux & Talagrand
(1991), we have

EΩ(r, l) ≤ 2

√
π

2
E

[
sup

(ω,ω∗)∈Λ(r,l)

Gω,ω∗

]
, (13)

where

Gω,ω∗

:=
1

nh

∑

k∈Am∪{0}

nk∑

i=1

ei1{|εi| ≤ h/4}ϕh/(2r)

(
(x

(k)
i )T∆/||∆||Σ

)
ψh/4

(
(x

(k)
i )T(ω∗ − ω(k))

)
,

and ei are independent standard normal variables. Note that Gω,ω∗ is a Gaussian process conditioned on

{(y(k)
i ,x

(k)
i )}nk

i=1 for k ∈ Am ∪ {0}. For (ω,ω∗) and (ω′,ω′∗), write ∆ = ω − ω∗, ∆′ = ω′ − ω′∗ and
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χi = 1{|εi| ≤ h/4}, then

Gω,ω∗ −Gω′,ω′∗

= Gω,ω∗ −Gω′,ω′+∆ + Gω′,ω′+∆ −Gω′,ω′∗

=
1

nh

∑

k,i

eiχiϕh/(2r)

(
(x

(k)
i )T∆/||∆||Σ

){
ψh/4

(
(x

(k)
i )T(ω∗ − ω(k))

)

− ψh/4

(
(x

(k)
i )T(ω′∗ − ω(k))

)}

+
1

nh

∑

k,i

eiχiψh/4

(
(x

(k)
i )T(ω′∗ − ω(k))

){
ϕh/(2r)

(
(x

(k)
i )T∆/||∆||Σ

)

− ϕh/(2r)

(
(x

(k)
i )T∆′/||∆′||Σ

)}
.

Note that ϕR and ψR are Lipschitz continuous, and ϕR(u) ≤ (R/2)2. Let E
∗ be the conditional expectation

given {(y(k)
i ,x

(k)
i )}nk

i=1. Consequently,

E
∗
(
Gω,ω∗ −Gω′,ω′+∆

)2 ≤ 1

(nh)2

(
8

h

)2(
h

4r

)4 ∑

k∈Am∪{0}

nk∑

i=1

χi

(
(x

(k)
i )T(ω − ω′)

)2

=
1

4r4n2

∑

k∈Am∪{0}

nk∑

i=1

χi

(
(x

(k)
i )T(ω − ω′)

)2
(14)

and

E
∗
(
Gω′,ω′+∆ −Gω′,ω′∗

)2
(15)

≤ 1

(nh)2

(
h

2r

)2 ∑

k∈Am∪{0}

nk∑

i=1

χi

{
(x

(k)
i )T∆/||∆||Σ − (x

(k)
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}2

=
1

4r2n2

∑

k∈Am∪{0}

nk∑

i=1

χi

{
(x

(k)
i )T(∆/||∆||Σ −∆′/||∆′||Σ)

}2
. (16)

Motivated by the last two inequalities, we have

E
∗
(
Gω,ω∗ −Gω′,ω′∗

)2 ≤ 1

2r4n2

∑

k∈Am∪{0}

nk∑

i=1

χi

(
(x

(k)
i )T(ω − ω′)

)2

+
1

2r2n2

∑

k∈Am∪{0}

nk∑

i=1

χi

{
(x

(k)
i )T(∆/||∆||Σ −∆′/||∆′||Σ)

}2
.

Define another Gaussian process Zω,ω∗ as

Zω,ω∗ =
1

21/2r2n

∑

k∈Am∪{0}

nk∑

i=1

e′
iχi(x

(k)
i )T(ω∗ − ω(k))

+
1

21/2rn

∑

k∈Am∪{0}

nk∑

i=1

e′′
i χi(x

(k)
i )T∆/||∆||Σ

such that E
∗(Gω,ω∗ − Gω′,ω′∗)2 ≤ E

∗(Zω,ω∗ − Zω′,ω′∗)2, where {e′
i} and {e′′

i } are two dependent copies of
{ei}. Applying Theorem 7.2.11 in Vershynin (2018), we obtain

E
∗
(

sup
ω,ω∗

Gω,ω∗

)
≤ E

∗
(

sup
ω,ω∗

Zω,ω∗

)
. (17)
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To bound the supremum of Zω,ω∗ , using the cone constraint and ||ω∗ − ω(k)||1 ≤ d, we have

E
∗
(

sup
ω,ω∗

Zω,ω∗

)
≤
√

2d

2r2
E

∥∥∥∥
1

n

∑
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nk∑
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iχix

(k)
i

∥∥∥∥
∞

+

√
2l

2r
E
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1

n

∑
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nk∑

i=1

e′′
i χix

(k)
i
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∞

. (18)

Thus, by (13) (17) and (18), we have

EΩ(r, l) ≤ √π
{
d

r2
E

∥∥∥∥
1

n

∑

k∈Am∪{0}

nk∑
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i χix
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i
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∞

}
. (19)

It remains to find the bound of the two `∞-norm terms on the right-hand side of (19). Note that the variable

|n−1
∑

k∈Am∪{0}

∑nk

i=1 e
′
iχix

(k)
ij | is zero-mean for j = 1, . . . , p.
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1
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}
.
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2
i (x

(k)
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Applying Lemma 15 in Loh & Wainwright (2015), we have
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1
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i=1

χ2
i (x

(k)
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implying that
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2
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(k)
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n

]
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√
log p

n
·

√
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16
(20)

Similarly,

E

∥∥∥∥
1

n

∑

k

nk∑

i=1

e′′
i χix

(k)
i
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∞

≤ cσx

√
log p

n
·

√
9f̄h

16
. (21)

Finally, if we take r = h/(4η1/4), d = h(γ1µ4)−1/2/(32v0) and z = t+ log p, combining (19), (20), (21) with
Bousquet’s version inequality (12), we conclude that

Ω(r, l) ≤ 0.01f + c′l
√(

t+ log p
)
/(nh)
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with probability at least 1− p−1e−t for any t > 0, as long as

nh & f̄f−2η2
1/4µ4σ

2
x log(p).

This, together with (9), (10) and (11), we have

T (ω,ω∗) ≥ κ

2
||∆||2Σ

[
0.21f −

(
0.01f + c′l

√
t+ log p

nh

)]

≥ κ

2
||∆||2Σ

(
0.2f − c′l

√
t+ log p

nh

)
(22)

with probability at least 1− p−1e−t.

It remains to extend this bound to one that is uniform in the ratio ||∆||1/||∆||Σ, which we do via a peeling
argument. Consider the inequality

1

||∆||2Σ
T (ω,ω∗) ≥ κ · f

10
− 2c′′||∆||1
||∆||Σ

√
t+ log p

nh
. (23)

Since

γ
−1/2
1 ≤ ||∆||1||∆||Σ

≤ κ · f
20c′′

√
nh

t+ log p
:= ζ,

we define the set
Θk =

{
∆ ∈ R

p : γ
−1/2
1 2k−1 ≤ ||∆||1/||∆||Σ ≤ γ−1/2

1 2k
}
,

for each k = 1, . . . , N := dlog2(c
√
nh/ log p)e to let

{
∆ ∈ R

p : γ
−1/2
1 ≤ ||∆||1||∆||Σ

≤ ζ
}
⊆ ∪N

k=1Θk.

By the union bound, we then have

P
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{
∆ ∈ R

p : γ
−1/2
1 ≤ ||∆||1/||∆||Σ ≤ ζ

}
s.t.

κ · f
10
− 1

||∆||2Σ
T (ω,ω∗) >

2c′′||∆||1
||∆||Σ

√
t+ log p

nh

}

≤
N∑

k=1

P

{
∃∆ ∈ Θk s.t.

κ · f
10
− 1

||∆||2Σ
T (ω,ω∗) > c′′γ

−1/2
1 2k

√
t+ log p

nh

}

≤
N∑

k=1

P

{
sup

||∆||1/||∆||Σ≤γ
−1/2
1 2k

κ · f
10
− 1

||∆||2Σ
T (ω,ω∗) > c′′γ

−1/2
1 2k

√
t+ log p

nh

}

≤
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Taking t = log{log2(c
√
nh/ log p)}+ u yields that with probability at least 1− p−1e−u,

κ · f
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− 1

||∆||2Σ
T (ω,ω∗) ≤ 2c′′||∆||1

||∆||Σ

√
log p+ log{log2(c

√
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.

Multiplying by ||∆||2Σ on both sides yields

T (ω,ω∗) ≥ κ · f
10
||∆||2Σ − 2c′′||∆||1||∆||Σ

√
log p+ log{log2(c

√
nh/ log p)}+ u

nh
,

where c′′ > 0 is a constant depending only on (κ, f).
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A.3 Proof of Proposition 3.2

The Taylor error around β2 in the direction β1 − β2 is given by

T (β1,β2) = Q̂(0)
g (β1)− Q̂(0)

g (β2)−
(
∇Q̂(0)

g (β2)
)T

(β1 − β2).

For a given kernel function K(·) and bandwidth g > 0, the smoothed quantile loss Q̂
(0)
g can be written as

(n0g)−1
∑n0
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∫∞

−∞
ρτ (u)K{(u+ (x

(0)
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i )/g}du. Therefore
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2n0
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(0)
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1
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(0)
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,

for some t ∈ [0, 1], For each i, define the event Ei,
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}
,

for all β1 − β2 ∈ BΣ(r). Thus

T (β1,β2) ≥ κ

2n0g
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{
(x

(0)
i )Tδ

}2
1Ei , (24)

where δ = β1 − β2. For a truncation level R > 0, define functions

ϕR(u) =





u2 |u| ≤ R
2 ,

(R− |u|)2 R
2 < |u| ≤ R,

0 |u| > R.

By this construction, ϕR(u) ≤ u2 · 1{|u| ≤ R}, ϕcR(cu) = c2ϕR(u) and ϕR is R-Lipschitz.
In addition, we define the trapezoidal function

ψR(u) =
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1 |u| ≤ R
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2− 2
R |u| R

2 < |u| ≤ R,
0 |u| > R,

and note that ψR is (2/R)-Lipschitz and ψR(u) ≤ 1{|u| ≤ R}.
From these two new-defined function, (24) implies
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1{|εi| ≤ g/4}ϕg||δ||Σ/(2r)

(
(x

(0)
i )Tδ

)
ψg/4

(
(x

(0)
i )T(β1 − β∗)

)

≥ κ

2
||δ||2Σ ·

1

n0g

n0∑

i=1

1{|εi| ≤ g/4}ϕg/(2r)

(
(x

(0)
i )Tδ/||δ||Σ

)
ψg/4

(
(x

(0)
i )T(β1 − β∗)

)

︸ ︷︷ ︸
D0(β1,β2)

(25)

In the following proofs, we bound ED0(β1,β2) and D0(β1,β2)− ED0(β1,β2), respectively. Note that

∣∣∣g
2
fε|x(0)

∣∣∣−
∣∣∣E[1{|εi| ≤ g/4}|x(0)

i ]
∣∣∣ ≤

∣∣∣E[1{|εi| ≤ g/4}|x(0)
i ]− g

2
fε|x(0)

∣∣∣

≤
∫ g/4

−g/4

|fε|x(t)− fε|x(0)|dt.
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Then,

∣∣∣g
2
fε|x(0)

∣∣∣−
∣∣∣E[1{|εi| ≤ g/4}|x(0)

i ]
∣∣∣ ≤ l0g

2

16∣∣∣E[1{|εi| ≤ g/4}|x(0)
i ]
∣∣∣ ≥ g

2
f − l0g

2

16
.

Provided g ≤ f/l0 ≤ f̄/l0, we have

∣∣∣E[1{|εi| ≤ g/4}|x(0)
i ]
∣∣∣ ≥ 7fg

16
.

Meanwhile ∣∣∣E[1{|εi| ≤ g/4}|x(0)
i ]
∣∣∣−
∣∣∣g
2
fε|x(0)

∣∣∣ ≤
∫ g/4

−g/4

|fε|x(t)− fε|x(0)|dt

implies ∣∣∣E[1{|εi| ≤ g/4}|x(0)
i ]
∣∣∣ ≤ 9f̄g

16
.

Then

ED0(β1,β2)

=
1

n0g

n0∑

i=1

E

[
E[1{|εi| ≤ g/4}|x(0)

i ]ϕg/(2r)

(
(x

(0)
i )Tδ/||δ||Σ

)
ψg/4

(
(x

(0)
i )T(β1 − β∗)

)]

≥ 7f

16
E

[
ϕg/(2r)(x

Tδ/||δ||Σ)ψg/4

(
xT(β1 − β∗)

)]

≥ 7f

16

{
1− E

[
(xTδ/||δ||Σ)2

1
{
|xTδ/||δ||Σ| > g/(4r)

}]

− E

[
(xTδ/||δ||Σ)2

1
{
|xT(β1 − β∗)| > g/8

}]}
.

≥ 7f

16

{
1− E

[(
xTδ/||δ||Σ

)2
1
{
|xTδ/||δ||Σ| > g/(4r)

}]
− µ1/2

4 P
(
|xT(β1 − β∗)| > g/8

)1/2
}
.

By the definition of ηδ, as long as 0 < r ≤ g/(4η1/4),

sup
δ∈BΣ(r)

E

[
(xTδ/||δ||Σ)2

1
{
|xTδ/||δ||Σ| > g/(4r)

}]
≤ 1

4
.

Moreover, β1 ∈ β∗ + BΣ(r/2). Under Assumption 3.3 with v0 ≥ 1, the tail bounds of sub-exponential
z = Σ−1/2x implys that

P
(
|xT(β1 − β∗)| > g/8

)
≤ 2 exp

{
− g

4v0r

}
.

Let g ≥ 8v0rµ
1/2
4 and then it follows from a numerical calculation that

{
1− E

[(
xTδ/||δ||Σ

)2
1
{
|xTδ/||δ||Σ| > g/(4r)

}]
− µ1/2

4 P
(
|xT(β1 − β∗)| > g/8

)1/2
}
≥ 0.23

holds uniformly over ∆ ∈ BΣ(r) ∩ CΣ(l). Putting together the pieces yields

ED0(β1,β2) > 0.1f. (26)

Next we find a lower bound of D0(β1,β2)−ED0(β1,β2) over Λ(r, l) := {(β1,β2) : β1 ∈ β∗ +BΣ(r/2),β2 ∈
β1 + BΣ(r) ∩ CΣ(l), supp(β1) ⊆ S}. Define

Ω(r, l) = sup
(β1,β2)∈Λ(r,l)

{−D0(β1,β2) + ED0(β1,β2)}.
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Write D0(β1,β2) = (1/n0)
∑n0

i=1 wi(β1,β2), where

wi(β1,β2) = g−1
1{|εi| ≤ g/4}ϕg/(2r)

(
(x

(0)
i )Tδ/||δ||Σ

)
ψg/4

(
(x

(0)
i )T(β1 − β∗)

)

satisfies 0 ≤ wi(β1,β2) ≤ g/(4r)2, since ϕR(u) ≤ (R/2)2 and ψR(u) ∈ [0, 1]. Moreover,

Ew2
i (β1,β2) = E

[
g−2

1{|εi| ≤ g/4}ϕ2
g/(2r)

(
(x

(0)
i )Tδ/||δ||Σ

)
ψ2

g/4

(
(x

(0)
i )T(β1 − β∗)

)]

≤ 9f̄

16g
· Eϕ2

g/(2r)

(
(x

(0)
i )Tδ/||δ||Σ

)

≤ 9f̄

16g
· E
(
(x

(0)
i )Tδ/||δ||Σ

)4
=

9f̄µ4

16g
.

Using Bousquet’s version of Talagrand’s inequality yields that, for any z > 0,

Ω(r, l) ≤ EΩ(r, l) + {EΩ(r, l)}1/2 1

2r

√
gz

n0
+

3
√

2µ
1/2
4

4

√
f̄ z

n0g
+

g

(4r)2

z

3n0

≤ EΩ(r, l) +
1

4
EΩ(r, l) +

1

4r2

gz

n0
+

3
√

2µ
1/2
4

4

√
f̄ z

n0g
+

g

(4r)2

z

3n0

≤ 5

4
EΩ(r, l) +

3
√

2µ
1/2
4

4

√
f̄ z

n0g
+

13

3

gz

(4r)2n0
(27)

holds with probability at least 1−e−z. To bound the expectation EΩ(r, l), using Rademacher symmetrization
and the connection between Gaussian and Rademacher complexities, Lemma 5.5 in Ledoux & Talagrand
(1991), we have

EΩ(r, l) ≤ 2

√
π

2
E

[
sup

(β1,β2)∈Λ(r,l)

Gβ1,β2

]
, (28)

where Gβ1,β2
:= (n0g)−1

∑n0

i=1 ei1{|εi| ≤ g/4}ϕg/(2r)((x
(0)
i )Tδ/||δ||Σ)ψg/4((x

(0)
i )T(β1−β∗)) and ei are inde-

pendent standard normal variables. Note that Gβ1,β2
is a Gaussian process conditioned on {(y(0)

i ,x
(0)
i )}n0

i=1

and Gβ∗,β∗ = 0. For (β1,β2) and (β′
1,β

′
2), write δ = β1 − β2, δ′ = β′

1 − β′
2 and χi = 1{|εi| ≤ g/4}, then

Gβ1,β2
−Gβ′

1,β′

2

= Gβ1,β2
−Gβ′

1,β′

1+δ + Gβ′

1,β′

1+δ −Gβ′

1,β′

2

=
1

n0g

n0∑

i=1

eiχiϕg/(2r)

(
(x

(0)
i )Tδ/||δ||Σ

){
ψg/4

(
(x

(0)
i )T(β1 − β∗)

)
− ψg/4

(
(x

(0)
i )T(β′

1 − β∗)
)}

+
1

n0g

n0∑

i=1

eiχiψg/4

(
(x

(0)
i )T(β′

1 − β∗)
){
ϕg/(2r)

(
(x

(0)
i )Tδ/||δ||Σ

)
− ϕg/(2r)

(
(x

(0)
i )Tδ′/||δ′||Σ

)}
.

Note that ϕR and ψR are Lipschitz continuous, and ϕR(u) ≤ (R/2)2. Let E
∗ be the conditional expectation

given {(y(0)
i ,x

(0)
i )}n0

i=1. Consequently,

E
∗
(
Gβ1,β2

−Gβ′

1,β′

1+δ

)2 ≤ 1

(n0g)2

(
8

g

)2(
g

4r

)4 n0∑

i=1

χi

(
(x

(0)
i )T(β1 − β′

1)
)2

=
1

4r4n2
0

n0∑

i=1

χi

(
(x

(0)
i )T(β1 − β′

1)
)2

(29)

and

E
∗
(
Gβ′

1,β′

1+δ −Gβ′

1,β′

2

)2 ≤ 1

(n0g)2

(
g

2r

)2 n0∑

i=1

χi

(
(x

(0)
i )Tδ/||δ||Σ − (x

(0)
i )Tδ′/||δ′||Σ

)2

=
1

4r2n2
0

n0∑

i=1

χi

(
(x

(0)
i )T(δ/||δ||Σ − δ′/||δ′||Σ)

)2
. (30)
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Motivated by the last two inequalities, we have

E
∗
(
Gβ1,β2

−Gβ′

1,β′

2

)2

≤ 1

2r4n2
0

n0∑

i=1

χi

(
(x

(0)
i )T(β1 − β′

1)
)2

+
1

2r2n2
0

n0∑

i=1

χi

(
(x

(0)
i )T(δ/||δ||Σ − δ′/||δ′||Σ)

)2
.

Define another Gaussian process Zβ1,β2
as

Zβ1,β2 =
1√

2r2n0

n0∑

i=1

e′
iχi(x

(0)
i )T(β1 − β∗) +

1√
2rn0

n0∑

i=1

e′′
i χi(x

(0)
i )T(β2 − β1)/||δ||Σ

=
1√

2r2n0

n0∑

i=1

e′
iχi(x

(0)
i,S)T(β1 − β∗)S +

1√
2rn0

n0∑

i=1

e′′
i χi(x

(0)
i )T(β2 − β1)/||δ||Σ

such that E
∗(Gβ1,β2 − Gβ′

1,β′

2
)2 ≤ E

∗(Zβ1,β2 − Zβ′

1,β′

2
)2, where {e′

i} and {e′′
i } are two dependent copies

of {ei}. The second equlity holds since supp(β1), supp(β∗) ⊆ S. Applying Theorem 7.2.11 in Vershynin
(2018), we obtain

E
∗
(

sup
β1,β2

Gβ1,β2

)
≤ E

∗
(

sup
β1,β2

Zβ1,β2

)
. (31)

To bound the supremum of Zβ1,β2
, using the cone constraint and β1 ∈ β∗ + BΣ(r/2), we have

E
∗
(

sup
β1,β2

Zβ1,β2

)
≤
√

2

4r
E

∥∥∥∥
1

n0

n0∑

i=1

e′
iχiS

−1/2x
(0)
i,S

∥∥∥∥
2

+

√
2l
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E
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1

n0

n0∑

i=1

e′′
i χix

(0)
i
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∞
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√

2

4r

√
9f̄g
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s

n0
+

√
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E
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1

n0

n0∑

i=1

e′′
i χix

(0)
i
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∞

, (32)

where S = ΣSS = E(xSxT

S). Thus, by (28) (31) and (32), we have

EΩ(r, l) ≤ √π
{

3

8r

√
f̄gs

n0
+
l

r
E
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1

n0

n0∑

i=1

e′′
i χix

(0)
i
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∞

}
. (33)

It remains to find the bound of the second term on the right-hand side of (33). Note that the variable

|n−1
0

∑n0

i=1 e
′′
i χix

(0)
ij | is zero-mean for j = 1, . . . , p.

E

[
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λ
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0
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}
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0
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}
.

Thus, |n−1
0

∑n0

i=1 e
′′
i χix

(0)
ij | is sub-Gaussian with parameter n−1

0

√∑n0

i=1 χ
2
i (x

(0)
ij )2. Applying Lemma 15 in

Loh & Wainwright (2015), for some universal constant c1 > 0, we have

E
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1

n0

n0∑

i=1

e′′
i χix
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i
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∞
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implying that

E

∥∥∥∥
1

n0

n0∑

i=1

e′′
i χix

(0)
i
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∞
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E

[∑n0
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(0)
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n0

]

≤ c1σx
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log p
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·
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Therefore,

E
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1

n0

n0∑

i=1

e′′
i χix

(0)
i
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∞

≤ 3c1σx

4

√
f̄g log p

n0
. (34)

Plug this bound to (33), we obtain

EΩ(r, l) ≤ √π
{

3

8r

√
f̄gs

n0
+

3c1σxl

4r

√
f̄g log p

n0

}
. (35)

Finally, if we take r = min{g/(4η1/4), g/(8v0µ
1/2
4 )} and z = t+log p, combining (35) with Bousquet’s version

inequality (27), we conclude that

Ω(r, l) ≤ √π
{
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32r
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n0
+

15c1σxl
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3
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(4r)2n0

≤ 0.02f + c′l
√

(t+ log p)/(n0g)

with probability at least 1 − p−1e−t as long as n0g & f̄f−2η2
1/4µ4σ

2
xs. This, together with (24), (25) and

(26), we have

T (β1,β2) ≥ κ

2
||δ||2Σ

[
0.1f −

(
0.02f + c′l

√
t+ log p

n0g

)]

≥ κ

2
||δ||2Σ

(
0.08f − c′l

√
t+ log p

n0g

)
(36)

with probability at least 1− p−1e−t.

It remains to extend this bound to one that is uniform in the ratio ||δ||1/||δ||Σ, which we do via a peeling
argument. Consider the inequality

T (β1,β2) ≥ κ · f
25
||δ||2Σ − 2c′′||δ||1||δ||Σ

√
t+ log p

n0g

)

1

||δ||2Σ
T (β1,β2) ≥ κ · f

25
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√
t+ log p

n0g

κ · f
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− 1

||δ||2Σ
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√
t+ log p

n0g
.

For positive integers k = 1, . . . , N := dlog2(c
√
n0g/ log p)e, define the set Θk = {δ ∈ R

p : γ
−1/2
1 2k−1 ≤

||δ||1/||δ||Σ ≤ γ−1/2
1 2k}, so that

{
δ ∈ R

p : γ
−1/2
1 ≤ ||δ||1||δ||Σ

≤ κ · f
50c′′

√
n0g

t+ log p
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}
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Then
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∃δ ∈
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Taking t = log{log2(c
√
n0g/ log p)}+ u yields that with probability at least 1− p−1e−u,

κ · f
25
− 1

||δ||2Σ
T (β1,β2) ≤ 2c′′||δ||1

||δ||Σ

√
log p+ log{log2(c

√
n0g/ log p)}+ u

n0g
.

Multiplying by ||δ||2Σ on both sides yields

T (β1,β2) ≥ κ · f
25
||δ||2Σ − 2c′′||δ||1||δ||Σ

√
log p+ log{log2(c

√
n0g/ log p)}+ u

n0g
,

where c′′ > 0 is a constant depending only on (κ, f).

A.4 Proof of Theorem 3.1

Transferring step: Let ω∗ be the true parameter of the transferring step and S be the active set of β∗

with cardinality s. The symmetric Bregman divergence between ω̂Am and ω∗ is defined as

(
∇Q̂h(ω̂Am)−∇Q̂h(ω∗)

)T

(ω̂Am − ω∗) ≥ 0. (37)

Let ∆̂ = ω̂Am − ω∗. By optimality, there exists a subgradient ν̂ ∈ ∂∑n
i=1 qλω (|ωi|), such that

∇Q̂h(ω̂Am) + λων̂ = 0.

Then (37) is equivalent to

−
(
∇Q̂h(ω∗)

)T
∆̂− λων̂T∆̂ ≥ 0. (38)

Note that

ν̂T(ω∗ − ω̂Am) ≤ ||ω∗||1 − ||ω̂Am ||1 = ||ω∗
S ||1 + ||ω∗

Sc ||1 − ||∆̂ + ω∗||1
= ||ω∗

S ||1 + ||ω∗
Sc ||1 − ||∆̂S + ω∗

S ||1 − ||∆̂Sc + ω∗
Sc ||1

≤ ||∆̂S ||1 − ||∆̂Sc ||1 + 2||ω∗
Sc ||1.
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Then,

(
∇Q̂h(ω̂Am)−∇Q̂h(ω∗)

)T
∆̂

= λων̂T(ω∗ − ω̂Am) +
(
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||∆̂||1

+ ||Σ−1/2∇Qh(ω∗)||2︸ ︷︷ ︸
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h

||∆̂||Σ. (39)

Conditioned on the event {λω ≥ 2||π∗
h||∞}, (39) becomes

(
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(
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Sc ||1
)

+
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2
||∆̂||1 + b∗
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Lemma A.1 implies ||ω∗
Sc ||1 ≤ C1m, so we have
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1
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Since (∇Q̂h(ω̂Am)−∇Q̂h(ω∗))T∆̂ ≥ 0, ∆̂ satisfies the constraint ||∆̂Sc ||1 ≤ 3||∆̂S ||1 +4C1m+2λ−1
ω b∗

h||∆̂||Σ,
from which it follows that

||∆̂||1 ≤ 4s1/2||∆̂||2 + 4C1m+ 2λ−1
ω b∗

h||∆̂||Σ. (40)

Now we claim that when λω ≥ 2||π∗
h||∞, with probability at least 1− p−1, it holds that

||∆̂||Σ ≤
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√
log p+ log(nAm

+ n0)

nAm
+ n0

+
3λωγ

1/2
1 s1/2 + 2b∗

h

φ1
+ 2

√
C1λωm

φ1
. (41)

If the claim does not hold , consider C = {∆ : 1.5λω||∆S ||1 − 0.5λω||∆Sc ||1 + 2λωC1m+ b∗
h||∆||Σ ≥ 0}. For

any t ∈ (0, 1),

1

2
λω||t∆̂Sc ||1 = t · 1

2
λω||∆̂Sc ||1 ≤ t ·

(
3

2
λω||∆̂S ||1 + 2λωC1m+ b∗

h||∆̂||Σ
)

≤ 3

2
λω||t∆̂S ||1 + 2λωC1m+ b∗

h||t∆̂||Σ,

which implies that t∆̂ ∈ C. We could find some t satisfying that ||t∆̂||Σ ≤ 1 and

||t∆̂||Σ >
8φ2C1m

φ1

√
log p+ log(nAm

+ n0)

nAm
+ n0

+
3λωγ

1/2
1 s1/2 + 2b∗

h

φ1
+ 2

√
C1λωm

φ1
.

Denote ∆̃ = t∆̂ and F (∆) = Q̂h(ω∗ +∆)−Q̂h(ω∗)+λω(||ω∗ +∆||1−||ω∗||1). Since F (0) = 0 and F (∆̂) ≤ 0,
by convexity,

F (∆̃) = F (t∆̂ + (1− t)0) ≤ tF (∆̂) ≤ 0.

However,

F (∆̃) = D̂h(∆̃)− λω||ω∗||1 + λω||ω∗ + ∆̃||1
= R̂h(∆̃) +

(
∇Q̂h(ω∗)

)T
∆̃− λω||ω∗||1 + λω||ω∗ + ∆̃||1

= R̂h(∆̃)−
(
λω||ω∗||1 − λω||ω∗ + ∆̃||1 −

(
∇Q̂h(ω∗)−∇Qh(ω∗)

)T
∆̃

−
(
∇Qh(ω∗)

)T
∆̃
)
.
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Then by Proposition 3.1 and (39),

F (∆̃) ≥ φ1||∆̃||2Σ − φ2

√
log p+ logn

nh
||∆̃||1||∆̃||Σ −

3

2
λω||∆̃S ||1 +

1

2
λω||∆̃Sc ||1

− 2λωC1m− b∗
h||∆̃||Σ

≥ φ1||∆̃||2Σ − φ2

√
log p+ logn

nh
||∆̃||1||∆̃||Σ −

3

2
λω||∆̃S ||1 − 2λωC1m− b∗

h||∆̃||Σ.

Note that ||∆̃S ||1 ≤ s1/2||∆̃||2 ≤ γ1/2
1 s1/2||∆̃||Σ and (40). Therefore, when

(nAm
+ n0)h > 16φ−2

1 φ2
2(log p+ logn) max{16sγ1, 4λ

−2
ω (b∗

h)2},

we have φ2

√
(log p+ logn)/(nh)(4

√
sγ

1/2
1 + 2λ−1

ω b∗
h) ≤ φ1/2. Then it follows that,

F (∆̃) ≥ 1

2
φ1||∆̃||2Σ −

(
4φ2

√
log p+ logn

nh
C1m+

3

2
λωγ

1/2
1 s1/2 + b∗

h

)
||∆̃||Σ − 2λωC1m

> 0,

which contradicts with F (∆̃) ≤ 0. Therefore the claim holds.

It remains to control the probability of the event {λω ≥ ||π∗
h||∞} and the probability of the local RSC

condition. By Lemma A.2, we pick

λω = 2

[
σ

√
{τ(1− τ) + Ch2} 4 log(2p)

nAm
+ n0

+ max(1− τ, τ)
2 log(2p)

nAm
+ n0

]
,

so that {λω ≥ 2||π∗
h||∞}. From Lemma A.3, we have b∗

h ≤ Ch2. Now with probability at least 1− (pn)−1,

||∆̂||Σ . m

√
log p+ log(nAm

+ n0)

nAm + n0
+

√
s log p

nAm + n0
+ h2 +

(
log p

nAm + n0

) 1
4√

m.

We then let h2 ≤ s1/2λω, so that

||∆̂||Σ . m

√
log p+ log(nAm

+ n0)

nAm + n0
+

√
s log p

nAm + n0
+

(
log p

nAm + n0

) 1
4√

m, (42)

with probability at least 1− (pn)−1.

Note that

||∆̂||1 ≤ 4||∆̂S ||1 + 4C1m+ 2λ−1
ω b∗

h||∆̂||Σ
≤ 4
√
s||∆̂||2 + 4C1m+ 2λ−1

ω b∗
h||∆̂||Σ

≤ (4
√
sγ

1/2
1 + l0κ2λ

−1
ω h2)||∆̂||Σ + 4C1m,

which encloses

||∆̂||1 . m

√
s log(p) + s log(nAm + n0)

nAm
+ n0

+ s

√
log p

nAm
+ n0

+

(
log p

nAm
+ n0

) 1
4√

sm+m,

with probability at least 1− (pn)−1.

Debiasing step: Denote δ∗ = β∗ − ω∗, δ̂Am = β̂ − ω̂Am and v̂Am = δ̂Am − δ∗.
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Similar to (39), we have

(
∇Q̂(0)

g (ω̂Am + δ̂Am)−∇Q̂(0)
g (β∗)

)T
(β̂ − β∗)

≤ λδ

(
||β∗ − ω̂Am ||1 − ||β̂ − ω̂Am ||1

)
+
∥∥∇Q̂(0)

g (β∗)−∇Q(0)
g (β∗)

∥∥
∞︸ ︷︷ ︸

||π∗

g ||∞

∥∥β̂ − β∗
∥∥

1

+
∥∥Σ−1/2∇Q(0)

g (β∗)
∥∥

2︸ ︷︷ ︸
b∗

g

∥∥β̂ − β∗
∥∥

Σ

≤ 3

2
λδ||β∗ − ω̂Am ||1 −

1

2
λδ||β̂ − ω̂Am ||1 + b∗

g

∥∥β̂ − β∗
∥∥

Σ

≤ 3

2
λδ||β∗ − ω∗||1 +

3

2
λδ||∆̂||1 −

1

2
λδ||β̂ − ω̂Am ||1 + b∗

g

∥∥β̂ − β∗
∥∥

Σ

≤ 3

2
λδCm+

3

2
λδ||∆̂||1 −

1

2
λδ||β̂ − ω̂Am ||1 + b∗

g

∥∥β̂ − β∗
∥∥

Σ
. (43)

On the other hand,

(
∇Q̂(0)

g (ω̂Am + δ̂Am)−∇Q̂(0)
g (β∗)

)T
(β̂ − β∗)

≤ λδ

(
||β∗ − ω̂Am ||1 − ||β̂ − ω̂Am ||1

)
+
λδ

2

∥∥β̂ − β∗
∥∥

1
+ b∗

g

∥∥β̂ − β∗
∥∥

Σ

≤ λδ||β∗
S − ω̂Am

S ||1 + λδ||β∗
Sc − ω̂Am

Sc ||1 − λδ||β̂S − ω̂Am

S ||1 − λδ||β̂Sc − ω̂Am

Sc ||1

+
λδ

2

∥∥β̂ − β∗
∥∥

1
+ b∗

g

∥∥β̂ − β∗
∥∥

Σ

≤ λδ

(
||β∗

S − ω̂Am

S ||1 − ||β̂S − ω̂Am

S ||1
)
− λδ

(
||β∗

Sc − ω̂Am

Sc ||1 + ||β̂Sc − ω̂Am

Sc ||1
)

+ 2λδ||β∗
Sc − ω̂Am

Sc ||1 +
λδ

2
||β̂ − β∗||1 + b∗

g

∥∥β̂ − β∗
∥∥

Σ

≤ λδ||β∗
S − β̂S ||1 − λδ||β∗

Sc − β̂Sc ||1 + 2λδ||β∗
Sc − ω∗

Sc ||1 + 2λδ||∆̂Sc ||1

+
λδ

2
||β̂ − β∗||1 + b∗

g

∥∥β̂ − β∗
∥∥

Σ

≤ 3

2
λδ||β∗

S − β̂S ||1 −
1

2
λδ||β∗

Sc − β̂Sc ||1 + 2λδC1m+ 2λδ||∆̂Sc ||1 + b∗
g

∥∥β̂ − β∗
∥∥

Σ

≤ 3

2
λδ||β∗

S − β̂S ||1 −
1

2
λδ||β∗

Sc − β̂Sc ||1 + 2λδC1m+ b∗
g

∥∥β̂ − β∗
∥∥

Σ

+ 2λδ

(
m

√
s log(p) + s log(nAm

+ n0)

nAm
+ n0

+ s

√
log p

nAm
+ n0

+

(
log p

nAm
+ n0

) 1
4√

sm+m

)
. (44)

Thus

||β∗ − β̂||1 ≤ 4γ
1/2
1

√
s||β∗ − β̂||Σ + 2b∗

gλ
−1
δ ||β∗ − β̂||Σ

+ 4

(
m

√
s log(p) + s log(nAm + n0)

nAm
+ n0

+ s

√
log p

nAm
+ n0

+

(
log p

nAm
+ n0

) 1
4√

sm+m

)
(45)

Set r = g/(48c) for some c > 0 and R = (4γ
1/2
1

√
s + 2b∗

gλ
−1
δ )r + 4C

√
s, if m ≤ C

√
s for some positive

constant C and nAm
+ n0 ≥ s log p. Denote Θ(r,R) = BΣ(r) ∩ CΣ(R) and β̃ = (1 − η)β∗ + ηβ̂, where

η = sup{u ∈ [0, 1] : β∗ + u(β̂ − β∗) ∈ β∗ + Θ(r,R)}. If β̂ /∈ Θ(r,R), then η ∈ (0, 1) and β̃ falls onto the

boundary of Θ(r,R); otherwise β̃ = β̂.

Combining (43) and Proposition 3.2, we have

α1

2
||β̃ − β∗||2Σ − α2 ·

log p+ logn0

n0g
||β̃ − β∗||21 ≤

3

2
λδCm+

3

2
λδ||∆̃||1 + b∗

g

∥∥β̃ − β∗
∥∥

Σ
. (46)
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Besides, (43) implies

||β̃ − ω̂Am ||1 ≤ 3Cm+ 3||∆̂||1 +
2b∗

g

λδ

∥∥β̃ − β∗
∥∥

Σ
.

As a result,

||β̃ − β∗||1 ≤ ||β̂ − ω̂Am ||1 + ||ω̂Am − β∗||1

≤ 4Cm+ 4||∆̂||1 +
2b∗

g

λδ

∥∥β̃ − β∗
∥∥

Σ
.

Let α = α1 − 4b∗2
g λ

−2
δ , then (46) becomes

α1||β̃ − β∗||2Σ ≤ 2α2 ·
log p+ logn0

n0g
(16Cm2 + 16||∆̂||21 + 4b∗2

g λ
−2
δ

∥∥β̃ − β∗
∥∥2

Σ
)

+ 3λδCm+ 3λδ||∆̂||1 + 2b∗
g

∥∥β̃ − β∗
∥∥

Σ

α||β̃ − β∗||2Σ − 2b∗
g

∥∥β̃ − β∗
∥∥

Σ
+
b∗2

g

α
.

log p

n0g
(m2 + ||∆̂||21) + λδm+ λδ||∆̂||1

α

(
||β̃ − β∗||Σ −

b∗
g

α

)2

.
log p

n0g

(
m2 + ||∆̂||21

)
+ λδm+ λδ||∆̂||1.

Thus,

||β̃ − β∗||Σ .

√
log p

n0g
(m+ ||∆̂||1) +

√
λδm+

√
λδ||∆̂||1 + b∗

g.

Let λδ = C
√

log(p)/n0 and g � (log(p)/n0)1/4, then

||β̃ − β∗||Σ .

(
log p

n0

)3/8

||∆̂||1 +
√
m

(
log p

n0

)1/4

+

(
log p

n0

)1/4√
||∆̂||1 +

(
log p

n0

)1/2

. m

(
log p

n0

)3/8

+ s

(
log p

n0

)3/8
√

log p

nAm
+ n0

+
√
sm

(
log p

n0

)3/8(
log p

nAm + n0

)1/4

+
√
m

(
log p

n0

)1/4

+
√
s

(
log p

n0

)1/4(
log p

nAm
+ n0

)1/4

+ (sm)1/4

(
log p

n0

)1/4(
log p

nAm
+ n0

)1/8

.

If n0 > s2 log p, β̂ falls in the interior of Θ(r,R), so we must have β̂ ∈ Θ(r,R). Consequently, β̂ = β̃ satisfies
the claimed bound,

||β̂ − β∗||Σ .
√
m

(
log p

n0

)1/4

+
√
s

(
log p

n0

)1/4(
log p

nAm + n0

)1/4

. (47)

In addition, if m ≤ s
√

log(p)/n0, the above upper bound is sharper than
√
s log(p)/n0. Then by (45), we

have

||β̂ − β∗||1 . s

√
log p

nAm
+ n0

+

(
log p

nAm
+ n0

) 1
4√

sm+m.

A.5 Proof of Proposition 3.3

The method is similar to the proof of Proposition 3.2. At first, the divergence is given by

D(β1,β2) =
(
∇Q̂(0)

g (β1)−∇Q̂(0)
g (β2)

)T
(β1 − β2).

34



Published in Transactions on Machine Learning Research (01/2024)

For a given kernel function K(·) and bandwidth g > 0, the smoothed quantile loss Q̂
(0)
g can be written as

(n0g)−1
∑n0

i=1

∫∞

−∞
ρτ (u)K{(u+ (x

(0)
i )Tβ − y(0)

i )/g}du. Therefore

D(β1,β2) ≥ κ

n0g

n0∑

i=1

(
(x

(0)
i )T(β1 − β2)

)2
1Ei

,

where the event Ei is defined by,

Ei = {|εi| ≤ g/4} ∩
{∣∣(x(0)

i )T(β1 − β2)
∣∣ ≤ g||β1 − β2||Σ/(2r)

}
∩
{∣∣(x(0)

i )T(β1 − β∗)
∣∣ ≤ g/4

}
.

for all β1 − β2 ∈ BΣ(r). For a truncation level R > 0, define functions ϕR(u) and ψR(u) as previous proof.
By this construction, ϕR(u) ≤ u2 ·1{|u| ≤ R}, ϕcR(cu) = c2ϕR(u), ϕR is R-Lipschitz, ψR is (2/R)-Lipschitz
and ψR(u) ≤ 1{|u| ≤ R}.
From these two new-defined function, we have

D(β1,β2) ≥ κ

n0g
||δ||2Σ

n0∑

i=1

1{|εi| ≤ g/4}ϕg||δ||Σ/(2r)

(
(x

(0)
i )Tδ

)
ψg/4

(
(x

(0)
i )T(β1 − β∗)

)

≥ κ||δ||2Σ ·
1

n0g

n0∑

i=1

1{|εi| ≤ g/4}ϕg/(2r)

(
(x

(0)
i )Tδ/||δ||Σ

)
ψg/4

(
(x

(0)
i )T(β1 − β∗)

)

︸ ︷︷ ︸
D0(β1,β2)

, (48)

where δ = β1−β2. Finally, with a similar proof as Proposition 3.2, if r = min{g/(4η1/4), g/(32v0µ
1/2
4 )} and

n0g & f̄f−2η2
1/4µ4σ

2
xs log p, then

D0(β1,β2) ≥ 0.1f,

with probability at least 1− (pn0)−1. Therefore,

D(β1,β2) ≥ 0.1κ · f ||β1 − β2||2Σ.

A.6 Proof of Theorem 3.2

For step 1, the parameter ω(k) is at most s + m sparse. Therefore, similarly as Theorem 1 in Tan et al.
(2022), we have

‖ω̂(k) − ω(k)‖2
2 .

(s+m) log p

n(k)
, ‖ω̂(k) − ω(k)‖1 . (s+m)

√
log p

n(k)
, k ∈ A′

m

with probability at least 1− p−1, provided that the bandwidth h satisfies

max

(
σx

f

√
(s+m) log p

n(k)
,
σ2

xf̄

f2

(s+m) log p

n(k)

)
. h ≤ min{f/(2l0), (s1/2λ(k)

ω )},

where σ2
x = max1≥j≥p σjj , σjj are the diagonal elements of Σ.

For step 2, denote δ(k) = β∗ − ω(k), δ̂(k) = β̂ − ω̂(k) and v̂(k) = δ̂(k) − δ(k). For each k ∈ A′
m,

(
∇Q̂(0)

g (ω̂(k) + δ̂(k))−∇Q̂(0)
g (ω̂(k) + δ(k))

)T
v̂(k)

≤ λδ

(
||δ∗||1 − ||δ̂(k)||1

)
+
(
∇Q̂(0)

g (ω̂(k) + δ∗)−∇Q̂(0)
g (β∗)

)T
(δ(k) − δ̂(k))

+
∥∥∇Q̂(0)

g (β∗)−∇Q(0)
g (β∗)

∥∥
∞︸ ︷︷ ︸

||π∗

g ||∞

∥∥v̂(k)
∥∥

1
+
∥∥Σ−1/2∇Q(0)

g (β∗)
∥∥

2︸ ︷︷ ︸
b∗

g

∥∥v̂(k)
∥∥

Σ
. (49)
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Then by Lemma A.4 with t = 2 log p and for each k ∈ A′
m, we let rk =

√
(s+m) log(p)/n(k) and lk =

(s+m)
√

log(p)/n(k). We have when λδ ≥ 2||π∗
g ||∞,

(
∇Q̂(0)

g (ω̂(k) + δ̂(k))−∇Q̂(0)
g (ω̂(k) + δ(k))

)T
v̂(k)

≤ λδ

(
||δ(k)||1 − ||δ̂(k)||1

)
+ C

(
s+m

g

√
log p

n(k)

√
log p

n0
+

log p

n0
+
√
s+m

√
log p

n(k)

)

︸ ︷︷ ︸
Cv

∥∥v̂(k)
∥∥

1

+
λδ

2

∥∥v̂(k)
∥∥

1
+ b∗

g

∥∥v̂(k)
∥∥

Σ
.

Since

∥∥δ
(k)
Sk

∥∥
1
−
∥∥δ̂

(k)
Sk

∥∥
1
≤
∥∥(δ(k) − δ̂(k)

)
Sk

∥∥
1

and
∥∥δ

(k)
Sc

k

∥∥
1
−
∥∥δ̂

(k)
Sc

k

∥∥
1

= −
∥∥(δ̂(k) − δ(k)

)
Sc

k

∥∥
1
,

when Cv < λδ/2, we obtain

(
∇Q̂(0)

g (ω̂(k) + δ̂(k))−∇Q̂(0)
g (ω̂(k) + δ(k))

)T
v̂(k) ≤

(
3

2
λδ + Cv

)∥∥(δ(k) − δ̂(k)
)

Sk

∥∥
1

+ b∗
g

∥∥v̂(k)
∥∥

Σ

≤ m1/2

(
3

2
λδ + Cv

)∥∥v̂(k)
∥∥

2
+ b∗

g

∥∥v̂(k)
∥∥

Σ
.

By Proposition 3.3, the RSC of (∇Q̂(0)
g (ω̂(k) + δ̂(k))−∇Q̂(0)

g (ω̂(k) + δ(k)))Tv̂(k), we have

0.1κ · f
∥∥v̂(k)

∥∥2

Σ
≤ m1/2

(
3

2
λδ + Cv

)∥∥v̂(k)
∥∥

2
+ b∗

g

∥∥v̂(k)
∥∥

Σ
,

with probability at least 1− (pn0)−1. Therefore, if we let g2 ≤ m1/2λδ,

∥∥v̂(k)
∥∥2

Σ
.
m log p

n0
.

By Lemma 17 in Yuan et al. (2018) and the condition m .
√
n0/ log p, we have

∥∥δ̃(k) − δ(k)
∥∥2

Σ
.
m log p

n0
and

∥∥δ̃(k) − δ(k)
∥∥

1
. m

√
log p

n0
.

For step 3, let δ̃(0) = δ(0) = 0, then the loss function in step 3 could be written as:

1

n0 + nA′

m

∑

k∈{0}∪A′

m

nk∑

i=1

lw
(
y

(k)
i − (X

(k)
i )T(β − δ̃(k))

)
=:

∑

k∈{0}∪A′

m

Q̂(k)
w (β − δ̃(k)).

The symmetric Bregman divergence is defined as

∑

k∈{0}∪A′

m

(
∇Q̂(k)

w (β̂ − δ̃(k))−∇Q̂(k)
w (β∗ − δ̃(k))

)T
(β̂ − β∗).
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To simplify the notations, define ∇R̂w(β) =
∑

k∈{0}∪A′

m
∇Q̂(k)

w (β − δ̃(k)). Similarly as above, we have an

oracle inequality for β̂,

(
∇R̂w(β̂)−∇R̂w(β∗)

)T
(β̂ − β∗)

≤ λβ

(∥∥β∗
∥∥

1
−
∥∥β̂
∥∥

1

)
+
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k∈{0}∪A′

m

(
∇Q̂(k)

w (ω(k) + δ(k) − δ̃(k))−∇Q̂(k)
w (ω(k))

)T
(β∗ − β̂)

+
∑

k∈{0}∪A′

m

(
∇Q̂(k)

w (ω(k))−∇Q(k)
w (ω(k))

)T
(β∗ − β̂) +

∑

k∈{0}∪A′

m

(
∇Q(k)

w (ω(k))
)T

(β∗ − β̂)

≤ λβ

(∥∥β∗
∥∥

1
−
∥∥β̂
∥∥

1

)
+

∑

k∈{0}∪A′

m

(
∇Q̂(k)

w (ω(k) + δ(k) − δ̃(k))−∇Q̂(k)
w (ω(k))

)T
(β∗ − β̂)

+
∑

k∈{0}∪A′

m

∥∥∇Q̂(k)
w (ω(k))−∇Q(k)

w (ω(k))
∥∥

∞︸ ︷︷ ︸
||π

(k)
w ||∞

∥∥β∗ − β̂
∥∥

1

+
∑

k∈{0}∪A′

m

∥∥Σ−1/2∇Q(k)
w (ω(k))

∥∥
2︸ ︷︷ ︸

b∗

w

∥∥β∗ − β̂
∥∥

Σ
.

For the second term above, by Lemma A.4,

(
∇Q̂(k)

w (ω(k) + δ(k) − δ̃(k))−∇Q̂(k)
w (ω(k))

)T
(β∗ − β̂)

≤C ′

(
m

w

√
log p

n0

√
log p

n0 + nA′

m

+
log p

n0 + nA′

m

+
√
m

√
log p

n0

)

︸ ︷︷ ︸
C′

v

∥∥β∗ − β̂
∥∥

1
.

If we set λβ ≥ 2||π∗
w||∞ and C ′

v ≤ λβ/2, then

(
∇R̂w(β̂)−∇R̂w(β∗)

)T
(β̂ − β∗)

≤
(

3

2
λβ + C ′

v

)∥∥(β∗ − β̂
)

S

∥∥
1

+ b∗
w

∥∥β∗ − β̂
∥∥

Σ

≤ s1/2

(
3

2
λβ + C ′

v

)∥∥β∗ − β̂
∥∥

2
+ b∗

w

∥∥β∗ − β̂
∥∥

Σ
.

Under the RSC of (∇R̂w(β̂)−∇R̂w(β∗))T(β̂ − β∗), we have

(
∇R̂w(β̂)−∇R̂w(β∗)

)T
(β̂ − β∗) ≥ c1

∥∥β∗ − β̂
∥∥2

Σ
,

with probability as least 1 − (pn)−1, where n = n0 + nA′

m
and c1 is a positive constant. The proof of the

RSC in step 3 is similar to Proposition 3.3. Thus,

∥∥β∗ − β̂
∥∥

Σ
≤ s1/2

(
3

2
λβ + C ′

v

)
γ−1/2

p + b∗
w.

Through a similar proof as Lemma A.2, we obtain λβ .
√

log(p)/n. If s log(p)/n ≤ w2 ≤ s1/2λβ , we have

∥∥β∗ − β̂
∥∥

Σ
.

√
s log p

n
+

√
sm log p

n0
and

∥∥β∗ − β̂
∥∥

1
. s

√
log p

n
+ s

√
m log p

n0
,

with probability at least 1− p−1.
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B Proof of Lemmas

B.1 Proof of Lemma A.1

Define ω(k) for all 0 ≤ k ≤ K as the true parameters of each local source model, then note that∇Q(k)(ω(k)) =

0 and ∇Q(ω∗) =
∑K

k=0 αk∇Q(k)(ω∗) = 0. So we have

∇Q(ω∗)−∇Q(β∗) +∇Q(β∗)−
K∑

k=1

αk∇Q(k)(ω(k)) = 0

∇Q(ω∗)−∇Q(β∗) =

K∑

k=1

αk∇Q(k)(ω(k))−∇Q(β∗)

Note that ∇Q(0)(ω(0)) = Q(0)(β∗) = 0, so

K∑

k=0

αk(∇Q(k)(ω∗)−∇Q(k)(β∗)) =

K∑

k=1

αk(∇Q(k)(ω(k))−∇Q(k)(β∗))

By the second-order Taylor expansions and Assumption 3.4,

K∑

k=0

αk

∫ 1

0

∇2Q(k)((1− t)β∗ + tω∗)dt(ω∗ − β∗) =
K∑

k=1

αk

∫ 1

0

∇2Q(k)((1− t)β∗ + tω(k))dt(ω(k) − β∗)

||ω∗ − β∗||1 ≤
K∑

k=1

αk||Σ̃−1Σ̃(k)||1 · ||ω(k) − β∗||1.

By the definition of the parameter space

Θ(s,m) =
{

β∗, {ω(k)} : ||β∗||0 ≤ s, sup
k∈Am

||ω(k) − β∗||1 ≤ m
}
,

We have ||ω(k) − β∗||1 ≤ m. Let C1 = supk ||Σ̃−1Σ̃(k)||1. Then Lemma A.1 is proved.

B.2 Proof of Lemma A.2

For the transferring steps,

∇Q̂h(ω) =
1

nAm
+ n0

K∑

k=0

nk∑

i=1

{
K̄

(
(x

(k)
i )Tω − y(k)

i

h

)
− τ
}

x
(k)
i

∇2Q̂h(ω) =
1

nAm
+ n0

K∑

k=0

nk∑

i=1

K

(
(x

(k)
i )Tω − y(k)

i

h

)
x

(k)
i (x

(k)
i )T.

Let ξ
(k)
i = K̄{((x(k)

i )Tω − y(k)
i )/h} − τ , then ∇Q̂h(ω) = (nAm

+ n0)−1
∑K

k=0

∑nk

i=1 ξ
(k)
i x

(k)
i and

||π∗
h||∞ =

∥∥∥∥
1

nAm
+ n0

K∑

k=0

nk∑

i=1

{
ξ

(k)
i x

(k)
i − E(ξ

(k)
i x

(k)
i )
}∥∥∥∥

∞

.

The upper bound of ||π∗
h||∞ involves two quantities that are related to

E

[
K̄2

(
(x(k))T(ω − ω(k))− ε

h

)∣∣∣∣x
(k)

]
and E

[(
(x(k))T(ω − ω(k))− ε

h

)∣∣∣∣x
(k)

]
.

38



Published in Transactions on Machine Learning Research (01/2024)

For the first term, by a change of variable and integration by parts, we obtain

E

[
K̄2

(
(x(k))T(ω − ω(k))− ε

h

)∣∣∣∣x
(k)

]
=

∫ ∞

−∞

K̄2(−u/h)fε|x(u)du

= h

∫ ∞

−∞

K̄2(v)fε|x(−vh)dv

= 2

∫ ∞

−∞

K(v)K̄(v)Fε|x(−vh)dv. (50)

By the fact that Fε|x(0) = τ , we have

Fε|x(−vh) = Fε|x(0) +

∫ −vh

0

fε|x(t)dt

= τ − hvfε|x(0) +

∫ −vh

0

{fε|x(t)− fε|x(0)}dt. (51)

Moreover, it can be shown that

aK :=

∫ ∞

−∞

vK(v)K̄(v)dv =

∫ ∞

0

K(v){1−K(v)}dv > 0 and aK ≤ κ1, (52)

where κ1 =
∫
|u|K(u)du.

Substituting (51) into (50), and by (52), we obtain

E

[
K̄2

(
(x(k))T(ω − ω(k))− ε

h

)∣∣∣∣x
(k)

]
= 2τ

∫ ∞

−∞

K(v)K̄(v)dv − 2hfε|x(0)

∫ ∞

−∞

vK(v)K̄(v)dv

+ 2

∫ ∞

−∞

∫ −vh

0

{fε|x(t)− fε|x(0)}K(v)K̄(v)dtdv

≤ τ − 2aKhfε|x(0) + l0h
2

∫ ∞

−∞

v2K(v)K̄(v)dv

≤ τ + l0κ2h
2,

where the first inequality holds using the Lipschitz condition on fε|x in Assumption 3.1 and the last inequality
holds by Assumption 3.2. Through a similar calculation, the Lipschitz condition on fε|x ensures that

∣∣∣∣∣E
[(

(x(k))T(ω − ω(k))− ε
h

)∣∣∣∣x
(k)

]
− τ
∣∣∣∣∣ ≤

l0
2
κ2h

2.

Hence

E(ξ
(k)
i x

(k)
ij )2 = Ex

{
(x

(k)
ij )2 · E((ξ

(k)
i )2|x(k)

i )
}

E(ξ2|x) = E

[(
K̄

(
xTω − y

h

)
− τ
)2∣∣∣∣x

]

= E

[
K̄2

(
xTω − y

h

)∣∣∣∣x
]

︸ ︷︷ ︸
≤τ+l0κ2h2

−2τ E

[
K̄

(
xTω − y

h

)∣∣∣∣x
]

︸ ︷︷ ︸
≥τ−

l0
2 κ2h2

+τ2

≤ τ(1− τ) + Ch2,

where C = (τ + 1)l0κ2. Then, by Assumption 4.3, we have

E(ξ
(k)
i x

(k)
ij )2 ≤ τ(1− τ)σjj + Cσjjh

2.
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Also by Assumption 3.3 and |ξ(k)
i | ≤ max(1− τ, τ), for d = 3, 4, . . . ,

E(|ξ(k)
i x

(k)
ij |d) ≤ max(1− τ, τ)d−2

Ex{|x(k)
ij |d · E[(ξ

(k)
i )2|x(k)

i ]}
≤ max(1− τ, τ)d−2

{
τ(1− τ) + Ch2

}

≤ d!

2

{
τ(1− τ) + Ch2

}
max(1− τ, τ)d−2.

Thus it follows from Bernstein’s inequality and union bound that for every t ≥ 0,

||π∗
h||∞ ≤ σ

√
{τ(1− τ) + Ch2} 2t

nAm
+ n0

+ max(1− τ, τ)
t

nAm
+ n0

with probability at least 1− 2pe−t.

For the debiasing step, through the similar proof we could get same results with different sample size and
smoothing bandwidth.

B.3 Proof of Lemma A.3

Note that

b∗
h = ||Σ−1/2∇Qh(ω∗)||2

=

∥∥∥∥∥Σ−1/2

(
K∑

k=0

αkE

[
E

{
K̄

(
(x(k))Tω∗ − y(k)

h

)
− τ
∣∣∣∣x

(k)

}
x(k)

])∥∥∥∥∥
2

≤ sup
u∈Sp−1

K∑

k=0

E

[
K̄

(
(x(k))Tω∗ − y(k)

h

)
− τ
]
(
Σ−1/2x(k)

)T
u

≤ l0
2
κ2h

2.

B.4 Proof of Lemma A.4

For k = 1, . . . , p, define that

ψk(r, l) = sup
v∈BΣ(r)∩B1(l)

∣∣∣∣∣
1

n

n∑

i=1

(1− E)
{
K̄h(xT

i v − εi)− K̄h(−εi)
}
xik︸ ︷︷ ︸

=:gv,k(yi,xi)

∣∣∣∣∣,

where v = β − β∗. Note that ψ(r, l) ≤ max1≤k≤p{ψk(r, l) + |Egv,k(yi,xi)|}. In the following, we bound
ψk(r, l) and Egv,k(yi,xi), respectively.

Let σ be any positive constant such that σ2 ≥ supv∈BΣ(r)∩B1(l) Eg
2
v,k(yi,xi). By the bounded design, we

note that supv |gv,k(yi,xi)| ≤ |xik| ≤ 1. Applying Theorem 7.3 in Bousquet (2003), Bousquet’s version of
Talagrand’s inequality, we obtain that for any z > 0,

ψk(r, l) ≤ Eψk(r, l) +

√
{σ2 + 2Eψk(r, l)}2z

n
+

z

3n
(53)
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holds with probability at least 1 − e−z. For the second moment Eg2
v,k(yi,xi), by a change of variable and

Minkowski’s integral inequality we derive that

Eg2
v,k(yi,xi) = E

[
x2

ik

∫ ∞

−∞

{
K̄h(xT

i v − t)− K̄h(−t)
}2
fεi|xi

(t)dt

]

= E

[
x2

ik

∫ ∞

−∞

{
K̄h(u)− K̄h(u− xT

i v)
}2
fεi|xi

(xT

i v − u)du

]

= hE

[
x2

ik

∫ ∞

−∞

{
K̄(v)− K̄(v − xT

i v/h)
}2
fεi|xi

(xT

i v − vh)dv

]

≤ f̄h−1
E

[
x2

ik(xT

i v)2

∫ ∞

−∞

{∫ 1

0

K(v − wxT

i v/h)dw

}2

dv

]

≤ f̄h−1
E

(
x2

ik(xT

i v)2

[∫ 1

0

{∫ ∞

−∞

K2(v − wxT

i v/h)dv

}1/2

dw

]2)

≤ κ̄f̄h−1
E(xik · xT

i v)2 ≤ κ̄f̄h−1r2.

It remains to bound Eψk(r, l). Note that |gv,k(yi,xi) − gv′,k(yi,xi)| ≤ (κ̄/h)|xT
i v − xT

i v′|, for any v,v′.
Hence using Rademacher symmetrization and Talagrand’s contraction principle, we have

Eψk(r, l) ≤ 2E

[
sup

v∈BΣ(r)∩B1(l)

∣∣∣∣∣
1

n

n∑

i=1

eigv,k(yi,xi)

∣∣∣∣∣

]

≤ 4κ̄E

[
sup

v∈BΣ(r)∩B1(l)

∣∣∣∣∣
1

nh

n∑

i=1

eix
T

i v

∣∣∣∣∣

]
≤ 4κ̄

l

h
E

∥∥∥∥∥
1

n

n∑

i=1

eixi

∥∥∥∥∥
∞

, (54)

where e1, . . . , en are independent Rademacher variables. Applying Hoeffding’s moment inequality,

Ee

∥∥∥∥∥
1

n

n∑

i=1

eixi

∥∥∥∥∥
∞

≤ max
1≤k≤p

(
n∑

i=1

x2
ik

)1/2√
2 log(2p)

n
, (55)

where Ee denotes the expectation over {ei}n
i=1. By (54) and (55), we obtain

Eψk(r, l) ≤ 4κ̄
l

h

√
2 log(2p)

n
.

Taking z = t+ log p in (53), we have that

ψk(r, l) .
l

h

√
log p

n
+ f̄1/2r

√
t+ log p

nh
+
t+ log p

n
(56)

holds with probability at least 1− e−t.

Next we find an union upper bound of |Egv,k(yi,xi)|. Similarly as the method to bound the second moment,
we derive that

Egv,k(yi,xi) = hE

[
xik

∫ ∞

−∞

{
K̄(v)− K̄(v − xT

i v/h)
}
fεi|xi

(xT

i v − vh)dv

]

≤ f̄E
[
|xik||xT

i v|
∫ ∞

−∞

{∫ 1

0

K(v − wxT

i v/h)dw

}
dv

]

≤ f̄E
(
|xik||xT

i v|
[∫ 1

0

{∫ ∞

−∞

K(v − wxT

i v/h)dv

}
dw

])

≤ κ̄f̄E|xikxT

i v| ≤ κ̄f̄ r.
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Finally taking the union bound, we obtain that with probability at least 1− e−t,

ψ(r, l) .
l

h

√
log p

n
+ f̄1/2r

√
t+ log p

nh
+
t+ log p

n
.

C Empirical results on the similarity of target and source data

This section presents the empirical results of the relationship between target and source data with different
degrees of similarity to the target. For the similarity defined in `1-norm of the contrast of each source, we
consider p = 500 and the sample size of the target and each source is 400. For the transferable source k,
we let ω(k) = β∗ + (m/p)R(k)

p to satisfy the transferring level ||δ(k)||1 = ||ω(k) − β∗||1 ≤ m, where β∗ is

the target parameter, R
(k)
p is a vector of p independent Rademacher variables, and m = 10. For any source

data k′ that is not transferable, we let ω(k′) = β∗ + (2m/p)R(k′)
p . All the other settings are the same as the

numerical studies in section 4

Figure 6 and 7 illustrate that when the contrast is relatively small in `1-norm, there is significant overlap
between the target and source data. When the contrast is relatively large, the source data would have much
more frequency at the two tails, which may cause the negative transfer if those sources are used in transfer
learning.

(a) ||δ(k)||1 ≤ 10 (b) ||δ(k)||1 ≤ 10

(c) ||δ(k
′)||1 > 10 (d) ||δ(k

′)||1 > 10

Figure 6: The predictors are from t-distributions with 4 degrees of freedom.

For the similarity defined in `0-norm of the contrast of each source, we consider p = 500 and the sample size

of the target and each source is 400. For the transferable source k, ω(k) is generated from ω
(k)
j = β∗

j +2·1(j ∈
M), where M is a random subset of [p] with |M | = 2. For the source k′ that is not transferable, ω(k′) is

generated from ω
(k′)
j = β∗

j + 2 · 1(j ∈M ′), where M ′ is a random subset of [p] with |M ′| = 4.

Figure 8 and 9 demonstrate that with a relatively small contrast in `0-norm, most of the target and source
data also overlap. However, it is easy to observe that the source data has a distribution with a relatively long
tail. Conversely, when the contrast becomes larger, the distribution of the source data at the tail becomes
more distinct from the distribution of the target.
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(a) ||δ(k)||1 ≤ 10 (b) ||δ(k)||1 ≤ 10

(c) ||δ(k
′)||1 > 10 (d) ||δ(k

′)||1 > 10

Figure 7: The predictors are from Gaussian distributions.

(a) ||δ(k)||0 ≤ 2 (b) ||δ(k)||0 ≤ 2

(c) ||δ(k
′)||0 > 2 (d) ||δ(k

′)||0 > 2

Figure 8: The predictors are from t-distributions with 4 degrees of freedom.
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(a) ||δ(k)||0 ≤ 2 (b) ||δ(k)||0 ≤ 2

(c) ||δ(k
′)||0 > 2 (d) ||δ(k

′)||0 > 2

Figure 9: The predictors are from Gaussian distributions.
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