Lowering the Pre-training Tax for Gradient-based Subset Training:
A Lightweight Distributed Pre-Training Toolkit

Yeonju Ro' Zhangyang Wang' Vijay Chidambaram '? Aditya Akella '

Abstract

Training data and model sizes are increasing ex-
ponentially. One way to reduce training time and
resources is to train with a carefully selected sub-
set of the full dataset. Prior work uses the gra-
dient signals obtained during a warm-up or “pre-
training” phase over the full dataset, for deter-
mining the core subset; if the pre-training phase
is too small, the gradients obtained are chaotic
and unreliable. As a result, the pre-training phase
itself incurs significant time/resource overhead,
and prior work has not gone beyond hyperparam-
eter search to reduce pre-training time. Our work
explicitly aims to reduce this pre-training tax
in gradient-based subset training. We develop a
principled, scalable approach for pre-training in a
distributed setup. Our approach is lightweight and
minimizes communication between distributed
worker nodes. It is the first to utilize the con-
cept of model-soup based distributed training at
initialization. The key idea is to minimally train
an ensemble of models on small, disjointed sub-
sets of the data; we further employ data-driven
sparsity and data augmentation for local worker
training to boost ensemble diversity. The central-
ized model, obtained at the end of pre-training
by merging the per-worker models, is found to
offer stabilized gradient signals to select subsets,
on which the main model is further trained. We
have validated the effectiveness of our method
through extensive experiments on CIFAR-10/100,
and ImageNet, using ResNet and WideResNet
models. For example, our approach is shown
to achieve 15.4x pre-training speedup and 2.8 x
end-to-end speedup on CIFAR10 and ResNet18
without loss of accuracy. The code is at https:
//github.com/moonbucks/LiPT.git.

!"The University of Texas at Austin >°VMware Research. Corre-
spondence to: Yeonju Ro <yro@cs.utexas.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction

In the era of deep learning, neural networks are progres-
sively becoming larger, and so are the dataset sizes (Gao
etal., 2021; Sun et al., 2020). Training with gigantic datasets
demands significant computation resources such as CPUs
and GPUs, and high-capacity memories are required to load
and process samples. When it comes to distributed train-
ing, large datasets also induce significant communication
between storage and compute nodes as well as between
worker nodes (e.g., to aggregate gradients).

Subset (or coreset) training has been explored as a poten-
tial workaround to the explosion of large datasets (Agar-
wal et al., 2005; Maalouf et al., 2019; Yu et al., 2023; Liu
et al., 2023). The key idea is to train on a small, but im-
portant, subset instead of the full dataset; this reduces both
training time and resource use. Researchers have proposed
a variety of algorithms to select the most valuable data
(e.g., based on Shapley value (Tripathi et al., 2020), geo-
metric distance (Sener & Savarese, 2017), and submodu-
lar functions (Wei et al., 2014a; 2015; 2014b; Iyer et al.,
2021)). Among these, the recently proposed gradient-based
methods (Toneva et al., 2018; Paul et al., 2021; Killamsetty
et al., 2021a; Mirzasoleiman et al., 2020; Killamsetty et al.,
2021b) have demonstrated state-of-the-art accuracy. These
approaches generally use gradient signals for data valuation.
Score-based methods (Toneva et al., 2018; Paul et al., 2021)
give an importance value to each data item based on its
gradients and select items with high values for subset train-
ing. Gradient-matching-based methods (Killamsetty et al.,
2021a; Mirzasoleiman et al., 2020) pick the data subset
whose weighted gradients can best match the full training
(or validation) set’s gradients.

Gradient-based subset training methods run into a well-
known issue: since early-stage gradients obtained from
nearly untrained models are chaotic and unreliable, they
can deteriorate the quality of the chosen subset. Most prior
works hence introduce a default ““pre-training” or warm-
up stage and later perform subset selection using the pre-
trained model gradients. The typical pre-training approach
is to train a model using the entire data over several epochs
(Section 3.1). Despite effectively boosting the accuracy,
this conventional pre-training approach is clearly not free of

https://github.com/moonbucks/LiPT.git
https://github.com/moonbucks/LiPT.git

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

cost: it can incur significant time/resource overhead; prior
work did not seek to optimize this cost beyond doing ad-hoc
hyperparameter search to reduce the number of epochs in
pre-training (Killamsetty et al., 2021a). There is a pressing
need to work on systematically exploring how to further
lower the “pre-training tax’ in a principled, scalable, and
resource-efficient manner.

1.1. Our Contributions

We present an efficient end-fo-end training framework
for gradient-based subset training algorithms. We explic-
itly optimize the pre-training tax by developing a novel
“distribution-friendly”’ lightweight pre-training approach,
which forms the primary emphasis of our paper. Our ap-
proach spreads pre-training work across multiple workers,
with two unique targets to ensure we “lower the tax”:

* Workers do not have to synchronize nor communicate
during pre-training. Ideally, we only perform local
training at each worker and then conduct a “one-shot”
aggregation of results at a central worker (which will
continue the main training) by the end of pre-training.

* We do not ship the full data to each worker (too heavy
for both communication and per-worker local training).
Ideally, we send only a tiny random subset to each
worker, and the union across all workers is just a small
subset of the entire data (rather than full coverage).

Correspondingly, to achieve the two goals, we empower our
distributed pre-training recipe with two tailored ideas:

* We introduce a model-soup-inspired (Wortsman et al.,
2022b) efficient ensembling strategy to pre-training,
that eliminates communication between distributed
models before the pre-training completes. While recent
works (Li et al., 2022; Wortsman et al., 2022a) already
demonstrate similar ideas for data-parallel multi-node
finetuning of large pre-trained models without com-
munication, to our best knowledge, we are the first to
reveal the “model-soup” idea to effectively work for
distributed training at initialization (for our customized
purpose of subset selection).

* To strengthen local worker training effectiveness over
tiny random subsets, we leverage data-driven sparsity
as well as aggressive data augmentation as two regular-
ization ways to mitigate local overfitting, which also
boosts the ensemble diversity.

After the distributed pre-training is completed, the central-
ized worker collects and aggregates all local models into
one pre-trained model, to then generate gradients used for
selecting the subset (which can be done by any off-the-shelf
algorithm). After that, the main training continues.

Our result shows that the proposed framework reduces the
variance of subset training using extremely low time and
data costs, as well as improving the final accuracy. We have
validated the effectiveness of our method through extensive
experiments on CIFAR-10/100 and ImageNet, using ResNet
and WideResNet models. For example, it reduces the pre-
training time by up to 15.4 x compared to the baseline subset
selection algorithm and 2.8 x compared to the full dataset
baseline without compromising accuracy in ResNet18 and
CIFAR10.

2. Background

2.1. Subset selection algorithms

Coreset is a promising approach that reduces computation
and memory costs during training (Mirzasoleiman et al.,
2020). One representative approach is using the Shapley
value (Tripathi et al., 2020), which represents the marginal
contribution of a sample measured by leaving the sample
out of the original set. This approach is intuitive, yet hard
to measure in large-scale data. Other approaches use the ge-
ometric distance between data items, or submodular greedy
approximation (Sener & Savarese, 2017; Sinha et al., 2020).

Recent works tend to use error or loss during training as
their metric for valuation. Forgetting events (Toneva et al.,
2018) count how many times each data item is misclassified
or forgotten during training. The authors concluded that
unforgettable examples can be removed from the training set
without hurting generalization. GraNd score measures the
expected loss of gradient norm in early epochs of training,
approximated by the error /o norm (Paul et al., 2021).

More directly, a subset can be selected to minimize the
difference between the gradients from the subset and the
gradients from the original dataset (Mirzasoleiman et al.,
2020). Gradient-matching can happen regularly during the
training as well (Killamsetty et al., 2021a) to dynamically
update the importance of samples in the subset. However, to
infer a reliable importance value of each data item, gradients
need to be stabilized before the valuation - that often cannot
be met for the early-stage gradients from severely under-
trained weights. Most prior works hence introduce a default
“pre-training” or warm-up stage on the full dataset; then
perform subset selection using pre-trained model gradients.

Despite effectively boosting the final accuracy, pre-training
incurs non-negligible, even significant time /resource over-
head. For example, pre-training in recent works can take
15~40 epochs (Guo et al., 2022; Killamsetty et al., 2021a;
Toneva et al., 2018). To our knowledge, limited works
have explicitly focused on optimizing this “pre-training tax”.
GradMatch (Killamsetty et al., 2021a) did an ad-hoc hyper-
parameter search to determine the epoch number allocation
between pre-training and main training, but their objective

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

was to boost the test accuracy instead of reducing the pre-
training or end-to-end time cost.

2.2. Model ensembling for large pre-trained models

As large-scale pre-trained models became prevalent, re-
searchers put efforts into fine-tuning the pre-trained model
with different hyper-parameters to achieve the best accuracy
for downstream tasks (Kolesnikov et al., 2020; Girshick
et al., 2014). As a common fine-tuning process, each pre-
trained model is optimized with different hyper-parameters
separately, and one model that performs the best is picked.
However, more recent work showed that instead of discard-
ing the rest, an ensemble of fine-tuned models trained with
different hyper-parameters outperforms a single model’s ac-
curacy and improves model robustness because of increased
diversity in the ensemble (Wang et al., 2020).

One issue with conventional ensembling is that it requires ad-
ditional processing during inference (Breiman, 1996; 2001).
To resolve this issue, recent work explored merging multiple
models by weight averaging. The notable idea of “Model
Soup” (Wortsman et al., 2022b) merged models fined-tuned
from the same pre-trained model for the same downstream
task, but with different hyper-parameters, without incur-
ring any additional latency or memory costs at inference.
Their obtained model provides significant improvements
over the best model in a hyperparameter sweep on Ima-
geNet. In a similar vein, model recycling (Ramé et al., 2022)
merged the weights of fine-tuned models optimized for di-
verse auxiliary tasks. This simple technique improved both
in-distribution and out-of-distribution test accuracy without
increasing inference latency. BTM and lo-fi (Li et al., 2022;
Wortsman et al., 2022a) extended the model soup idea to a
distributed fine-tuning setting, merging models fine-tuned
independently with different data distributions without any
communication during the training.

Note, though, that all “model soup”-type ideas explored so
far (Wortsman et al., 2022b; Li et al., 2022; Wortsman et al.,
2022a; Ramé et al., 2022) are focused on the fine-tuning
setting (one or multiple downstream tasks; centralized or
distributed) from a large pre-trained model. Meanwhile,
applying the same idea to training from scratch looks quite
risky, if not daunting, since there is no guarantee that mod-
els trained independently from random initialization would
organically stay in the same solution basin (Ainsworth et al.,
2022) or linearly connected mode (Frankle et al., 2020) (a
commonly believed prerequisite for model merging).

Yet, we empirically discover in this paper, that the model
soup idea works well in a constrained context for “training
from scratch”: if our goal is not to obtain a highly perfor-
mant model directly, but rather a model whose gradients
are reliable enough to indicate the importance of the data
sample. We leverage this finding to pre-train efficiently in a

distributed setup, and the weight-averaged model provides
consistent and robust gradients for data valuation. To our
best knowledge, our work is the first to effectively exploit
the “model-soup” idea in pre-training from scratch.

3. Method
3.1. Overview of the Framework

We propose a lightweight and scalable end-to-end training
framework that provides robust initialization for gradient-
based subset algorithms at a low cost. Figure 1 overviews
our subset training framework, which is divided into three
stages: pre-training, subset selection, and main training.

The objective of our framework is to reduce the end-to-end
cost. End-to-end cost consists of 1) pre-training cost, 2)
subset selection cost, and 3) main training cost. Pre-training
cost is the time taken to train an initial model to obtain
initial gradients. Subset selection cost is the time taken to
run a subset algorithm. Subset selection time is a one-time
cost and varies by algorithm. The main training time is the
time taken to train a model with the selected subset. Our
work mainly focuses on reducing pre-training costs, or the
“pre-training tax”, and the main training time, with minimal
loss of accuracy.

In our framework, the subset training pipeline starts from
scratch. For a given dataset, we could train a random initial
model with less than three epochs to get an initial model
(the “initialization” stage). In prior work, the pre-training
phase takes 15-40 epochs even for small datasets (e.g., CI-
FAR10) (Guo et al., 2022; Killamsetty et al., 2021a; Toneva
et al., 2018). However, this corresponds to 20-40% of the
entire training time considering 180-200 epochs of main
training is common in CIFAR10/CIFAR100 and 90-100
epochs is common in ImageNet-1K (He et al., 2016).

A negative consequence of naively reducing pre-training
epochs is the deteriorated quality of gradients for subset
selection. We hence turn to distributed training for ac-
celerating and scaling up pre-training for subset selection,
which has not been explored by prior art yet: n different
workers train in parallel from the same initial model 6, and
then ensemble their trained models, which is expected to
provide a more stable pre-trained model compared to a sin-
gle worker using the same amount of clock time. However,
distributed training inherently has challenges of increased
latency due to communication and asynchronicity. In the
following sections, we will discuss the detailed challenges
and mitigations to resolve these issues. Each distributed
worker performs local training with a random subset (Sec-
tion 3.3) for K steps, regularized by data-driven sparsity as
well as random augmentations. Then, locally trained models
(6p~0,,_1) are aggregated with model-soup based ensem-
bling (Section 3.2) to obtain a pre-trained model §,,. The

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

Fi Pre-training J‘ Subset selection —+— Main Training ———ﬁ
%’i > % ‘\;7 X7 —
4RO *V e full dataset
/ % 2 4 y© \ D
P AN 6.0 6o N
Vo RN Py ! —
T ANV @? % 0 ,\/ \ N7 ANV ected subset
(\,J} &/X‘*? { \)Qy\ —» \) % (\,v &/X‘*? > V’D selected subse
o é\y\ — ik A y\\ é\Y\ f(v.D) <
\ ‘ 0. o AN 1 <IN
| iy
N % 0 P v Y4
B ¢ 3&/ &% P SGD(8,,S) }—» BCA
AR e N
n— O
nt ! merging 9f
initialization distributed minibatch training weak jigsaw learners

Figure 1. Our Proposed Subset Training Framework Overview. Pre-training starts from the initial model 6., which is distributed to
different workers (6«0 ~ 6. r—1) as the common initialization. Each worker weakly trains it with a different small subset from the full
dataset, and leverages model sparsification as well as data augmentation to increase model diversity while reducing overfitting. The
trained local models (6o ~ 60, 1), termed jigsaw weak learners, will be merged into a dense model in the end, by averaging their weights.
With the merged pre-trained model 6, to supply gradients, the subset selection algorithm can run and return a selected subset S from the
full dataset D. Using the subset S and the pre-trained model 6,,, we continue the main training stage to obtain the final model 0.

framework then can run any subset selection algorithm
using the gradients from the pre-trained model 8,,.

Regarding subset re-selection in main training: Many
gradient-based algorithms (Mirzasoleiman et al., 2020; Kil-
lamsetty et al., 2021b;a) perform re-selection during the
main training stage to further improve the accuracy even
with a lower fraction of data. With re-selection, the most re-
cently updated gradient during the main training can be used
for periodically updating the subset. In our experiments in
Section 4.1, we report our algorithm and its baselines, all
with re-selection, in order to compare their best achievable
accuracies. Yet for Section 4.2 and onward, we report all al-
gorithms, including our own, without re-selection, because
we wish to disentanglement the performance gains from
pre-training and main-training stages, in order to focus on
showing that our method improves “initial gradients”.

3.2. Model-Soup Inspired Efficient Ensembling

One of the main challenges of distributed training is the
high communication cost of exchanging large datasets
among workers. This adds significant latency to the training
pipeline and becomes a major bottleneck. Communication
of parameters between workers may also cause synchroniza-
tion problems.

To tackle these challenges and make the initial training scal-
able, we set two regimes. First, we do not synchronize nor
communicate between workers but only allow local training
on workers. Second, we do not ship the entire dataset to
workers; we select a small, random subset, break it into
disjoint parts, and send one part to each worker. We kill
those two birds with the same stone: an efficient ensem-

ble initialization inspired by recent work (Wortsman et al.,
2022b;a; Ramé et al., 2022).

Following (Wortsman et al., 2022b), we propose to create
n instances of the same 6., at the central worker, and send
each to n distributed workers, which train them indepen-
dently in isolation. Different from the original model soup
(Wortsman et al., 2022b), we do not vary the hyperparam-
eter configuration across workers, but instead leverage the
natural randomness perturbations by data dispatching.

Specifically, we send only a small random subset to each
worker instead of sending the full dataset: i.e., during the
local training, each local model (6, 0~6. ,,_1) is trained
with its own possessed M (hyperparameter of choice) mini-
batches of data; each worker iterates over its minibatches
for K steps (another hyperparameter of choice). We main-
tain the assigned minibatches to not overlap across different
models, and the amount of the entire data sent out across
all constitutes only 2~25% of the full dataset. That serves
dual purposes: (i) create more diverse local models that will
robustify the model soup averaging, and (ii) avoid the high
communication costs and latency incurred by moving larger
subsets or the full dataset.

The local training will be performed without any commu-
nication between workers, similarly to (Wortsman et al.,
2022a). Its main challenges lie in how to effectively train
from scratch with very limited few-shot data per worker -
which we will address in the next section. Once all local
models are trained and sent back to the central worker, the
aggregation follows the greedy interpolation soup procedure
as described in (Wortsman et al., 2022b). Namely, we se-
quentially add each local model as a potential “ingredient in
the soup”, and only keep the model in the soup if it leads to

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

improving performance on the validation set. For merging
two ingredients, we perform a search for an optimal interpo-
lation ratio v € [0, 1] that helps in performance gain, or else
the ingredient is discarded. Eventually, the outcome of the
pre-training stage is a model to supply stabilized gradients.

3.3. Local Training with More Robustness and Diversity

Sending only a small subset of data to each worker causes
a data-scarce environment that is prone to causing model
overfitting. As such, we apply two additional techniques
during local training: data-driven sparsification as a model
regularization, and more aggressive random data augmenta-
tions. These techniques not only combat overfitting at local
training, but also increase diversity across local models.

Data-driven model sparsity. We first apply data-driven
sparsity as a regularizer to reduce overfitting in local
worker’s low-data regimes, while increasing model hetero-
geneity. In this work, we adopt the One-shot magnitude
pruning (OMP) after each worker completes local training,
due to its simplicity and low overhead. We remove the
smallest-magnitude weights to reach a pre-set target spar-
sity ratio. Instead of one uniform ratio for all workers, we
further set a random sparsity ratio per worker to add another
level of local diversity. In our experiments, we keep target
sparsity mild for all workers, since OMP is often susceptible
to high sparsity. We have drawn the sparse ratio from a uni-
form distribution between [0.85, 0.95] (i.e., the percentage
of remaining non-zero weights). We empirically find heav-
ier sparsity to start incurring too noisy gradients, especially
after strong data augmentations.

Note that the main purpose of sparsity is not model compres-
sion or acceleration here, although we slightly benefit from
that as a side effect by lowering the communication load
when we transmit the trained local model back to the central
worker. The main role that sparsity plays here is to reduce
overfitting (Liu & Wang, 2023), as recent works (Varma T
et al., 2022; Chen et al., 2021; Gui et al., 2016) demonstrate
it to be a powerful regularizer in few-shot learning or gen-
eration. Another bonus here of using data-driven sparsity
is that local models will form different sparse masks due to
training over different, non-overlapping data subsets, further
increasing the diversity of sparse models in the ensemble.
‘We name each local model a weak jigsaw learner since we
are merging models of different sparse architectures, which
are trained weakly on small and non-overlapping subsets, to
obtain a single dense pre-trained model.

It is also possible to use other pruning methods such as ran-
dom pruning (Evci et al., 2020; Liu et al., 2022), SNIP (Lee
et al., 2018), hessian-based (Yu et al., 2021), iterative (Han
et al., 2015; Frankle & Carbin, 2018) or progressive (Liu
et al., 2021). They each have pros and cons, though; and we
leave their comprehensive comparison for future work.

Stronger random data augmentation. Data augmenta-
tion is another common and effective technique to com-
bat overfitting. Different from hand-crafted augmentations,
RandAugment (Cubuk et al., 2020) effectively searches for
an optimal augmentation tailored for different models and
datasets. We adopt RandAugment (e.g., its searched aug-
mentation policy on CIFAR-10/100, ImageNet, etc.) to our
local worker training and observe it to bring ever larger
gains when the local subset becomes smaller (down to only
1~10 mini-batches). It effectively enriches the local dataset
without communicating more real data, and also adds to
worker randomness and diversity.

Two key hyperparameters matter for RandAugment: the
number of augmentation types used, and how strong a mag-
nitude each augmentation takes. Through experiments, we
find that stronger data augmentations would benefit this
situation more: our final RandAugment picked random aug-
mentation from 14 different policies of strength 9: those are
clearly heavier than the default augmentations (such as ran-
dom crop or random horizontal flip) that we replace. Note
that we apply stronger random augmentation only for the
pre-training stage. For the main training stage, we use the
default, usually milder augmentation same as our baselines.

4. Experiment Results

In this section, we evaluate the effectiveness of our subset
training framework. We aim to answer four questions:

1. Does the framework help reduce the end-to-end train-
ing time required for training?

2. How does our framework compare to prior work when
training with small fractions of the dataset?

3. How does each technique used in the framework con-
tribute to the total performance?

4. How do the hyper-parameters affect the results?

We employ three widely-used models, ResNet-18 (He
et al., 2016), Wide-ResNet-28-10, and Wide-ResNet-50-
2 (Zagoruyko & Komodakis, 2016), and three datasets, CI-
FAR10/100 (Krizhevsky et al., 2009), and ImageNet (Rus-
sakovsky et al., 2015) in our evaluation. Further details
about the setup can be found in Appendix A.

4.1. End-to-end training time

Table 4.1 compares three representative approaches to train-
ing ResNet18 on the CIFAR10 dataset to state-of-the-art
accuracy (i.e., full accuracy) and shows the wall-clock time
measurement of the end-to-end training pipeline.

The first is the full-set training baseline without any sub-
set selection. The second is using the GraNd (Paul et al.,

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

.. Main
Approach Pre-training (s) raining (s) Total (s)
Full set 0 2,476 2,476
GraNd 346 523 869
This work 22 284 306

Table 1. End-to-end training times (wall-clock time) for different
training approaches. Our framework reduces total time for training
by 87% compared to training on the full dataset, and by 65%
compared to prior work on subset training.

2021) subset selection algorithm with re-selection, and the
training uses 20% of the dataset to reach target accuracy.
Finally, our framework (also with re-selection, to ensure fair
comparison) also runs the GraNd algorithm but uses only
10% of the dataset to train to reach the target accuracy.

Our method is able to use less data to reach the target accu-
racy because the methods leveraged in the pre-training stage
lead us to better initial gradients. Despite using the same
subset algorithm, our framework results in 2.8 x speedup in
end-to-end training time, with 15X reduction in pre-training
time. Compared to training on the full dataset, our frame-
work reduces end-to-end training time by 87 %, while reach-
ing the same accuracy. These results demonstrate the effi-
cacy of the techniques used in our framework.

4.2. Accuracy with small data fractions

Next, we examine how our framework performs when train-
ing with small fractions of data. For this part, we compare
different subset-based approaches when they train on the
same amount of data, and evaluate the Top-1 accuracy (%).
Note that from this point, we do not apply re-selection
of the dataset during the main training; instead, we stick
to the same subset selected after pre-training for a zoom-in
analysis, on the quality and robustness of the initial subset.

Data Fraction Glister This work Improvement
1% 27.04£13 47.50£1.7 +20.45%

5% 51.64£2.77 59.30£1.9 +7.66%

10% 62.75+2.6 67.74+1.8 +4.99%

20% 64.58+4.6 75.65£1.9 +11.07%

Table 2. Accuracy obtained when training with small fraction of
the dataset. Our framework consistently obtains higher accuracy.

Table 4.2 shows the result of this experiment. We vary the
fraction of the dataset used in training from 1% to 20%.
We compare our framework with the Glister subset training
algorithm (Killamsetty et al., 2021b). We choose Glister
because we observed that it used the least amount of data
compared to other subset algorithms.

We observe that our framework always achieves higher ac-
curacy than Glister, even when training on small fractions
of the subset. This is due to the use of data augmentation
and model merging in our pre-training stage, which yield
robust gradients for subset selection.

Reduction in the variance of accuracy. We also observed
that Glister results in higher variance among top1-accuracy
results than our framework. The variance in Glister’s results
changes with the subset size while remaining constant for
our framework. We can attribute this to the robust gradients
that result from our framework’s pre-training stage. The im-
provement from our framework is consistent across different
models and subset combinations.

Summary. Our framework achieves SOTA accuracy with
significantly lower end-to-end training time. Compared
to prior work on subset selection, our framework reduces
the pre-training time significantly. When training on small
amounts of data, our framework results in better accuracy.
Our framework also provides more stable results.

4.3. Overall Accuracy-1/0 Cost

Figure 2 shows Top-1 accuracy (%) measured with/without
our framework in different model and dataset combinations
over the amount of data used. We used Glister (Killamsetty
et al., 2021b) for our baseline subset selection algorithm.
Note that the x-axis is a proxy for end-to-end training cost
that includes pre-training and main-training. By increas-
ing subset data fraction, the cost of end-to-end training
increases. The result shows that our framework effectively
boosts subset training for the same cost.

Saving cost under the same data fraction brings another
advantage: with the saved time (mostly in pre-training), we
can train more epochs during the main training to further
improve the accuracy for a given system cost.

Our experiment in Section 4.2 showed that we can dramat-
ically improve the accuracy and reduce the variance for
small fractions (<20%) of data. Figure 2 shows that the
result is consistent over different models, subset fractions,
and dataset combinations. In particular, the variance in the
lower subset fraction cases is greatly reduced (as depicted
by the shaded region) — the more robust initial gradients
from our approach appear to have a greater impact in this
regime. In Appendix B, we show additional experimental
results with different algorithms (e.g., GraNd (Paul et al.,
2021), Gradmatch (Killamsetty et al., 2021a)), where we
observed similar improvements too.

4.4. Ablation Study

We now study the extent to which the different techniques
we proposed — model merging, model pruning, and data aug-
mentation — contribute to overall accuracy. We study three

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

CIFAR10-ResNet18 CIFAR100-ResNet18

3 8 8

Top 1 Accuracy (%)

& &5 g8 g

0 10 20 0 10 20
Amount of Training Data Used [GB]

CIFAR100-WideResnet28-10 ImageNet-WideResnet50-2

—=- FullAcc
—— Proposed
—— Baseline

0 10 20 0 5000 10000

Figure 2. Top 1 Accuracy (%) improvement vs. increasing amount of data used for the training with the proposed framework applied to
different models and datasets. From left to right, each point corresponds to training with 1%, 5%, 10%, 20%, 30%, ..., 90% subset of data,
and corresponding data usage is converted to GB. CIFAR10/CIFAR100 dataset size is 135.82MB, and the Imagenet dataset size is 138GB.
We used Glister (Killamsetty et al., 2021b) for our baseline subset selection.

Table 3. Ablation Study (Top-1 Accuracy (%))

LOW FRACTION (10%) HIGH FRACTION (70%)

METHOD RESNETI8 RESNETI8 WRN28-10 WRNS50-2 | RESNET18 RESNETI8 WRN28-10 WRNS50-2

CIFAR10 IMAGENET CIFAR100 IMAGENET | CIFAR10 IMAGENET CIFAR100 IMAGENET
FULL AcC 95.4 67.7 80.4 76.5 95.4 67.7 80.4 76.5
(1] 60.7+£5.1 45.0£0.2 38.6+1.0 47.5+0.7 90.5£0.5 63.9+0.2 73.3£0.6 72.0£0.1
0+0 62.2+3.6 45.2+0.2 38.7+£0.9 48.240.5 90.7+£0.5 64.1+0.1 73.9+0.3 72.4+0.1
0+0 66.3+2.1 46.2+0.1 43.9+0.4 48.940.1 92.6+0.4 64.6+0.0 75.2+0.1 73.1£0.0
0+0+0O© | 68.5+1.1 46.4+0.2 45.1£0.3 49.4+0.2 93.6+0.3 64.7+0.1 76.4+0.5 73.3£0.0

@ MODEL MERGING ® MODEL PRUNING © DATA AUGMENTATION

combinations and compare them with our overall approach:
O refers to just model merging, where, after initialization
(Figure 1) each distributed worker trains the same initialized
model using random mini-batches and without using data
augmentation. In @ + @, each worker prunes the model
(so there is model diversity across the workers), but no data
augmentation is used. In @ + @, each worker trains on the
same model obtained from initialization, but mini-batches
at a worker are combined with data augmentation.

Table 3 shows the Top-1 Accuracy (%) and standard devia-
tion of the final model trained with the different combina-
tions above as well as our final technique (@ + @ + ©). We
use Glister (Killamsetty et al., 2021b) as our main subset
selection algorithm and study the results for two different
subset fractions (10% and 70% of the dataset).

For model merging (@), we leverage the same greedy merg-
ing as described in (Wortsman et al., 2022b), which merges
only the models that improve the validation accuracy (Ap-
pendix C). On top of model merging, we apply data aug-
mentation (@) and model pruning (®) to local models. The
result shows that accuracy improvements from data augmen-
tation and model pruning are consistent in both low and high
subset fractions. The result variance can also be reduced
with model pruning (@ +).

Moreover, data augmentation (@ + ©) dramatically am-

plifies the accuracy and stabilizes the variance. This is
mainly because we only assign a small number of mini-
batches for each worker to control I/O cost — 1 batch for
CIFARI10, 5 batches for CIFAR100, and 10 batches for Im-
ageNet (detailed configuration for the experiment is given
in the appendix) — and this has a significant impact without
data augmentation. To elaborate, when 10 jigsaw models
obtain 1/5/10 batches without replacement, the overall data
usage corresponds to 5% / 25% / 2% of the full dataset
for CIFAR10 / CIFAR100 / ImageNet, respectively. Using
such small amount of data is efficient and can be distributed-
friendly, but it can result in an extremely data-scarce envi-
ronment for each jigsaw learner. The result shows that the
impact of the lack of data can be mitigated with data aug-
mentation without additional resource costs (no additional
real data is needed, so there is no extra I/O cost).

In our empirical study, we observed that the intermediate
accuracy right after the pruning at each weak jigsaw learner
is quite low at each worker. However, because the weak
learners help improve diversity and robustness, when multi-
ple of them are merged, the accuracy recovers significantly
(to near the levels shown in the table), the variance is also
lowered, and the final accuracy (after the main training) is
also good as a result.

Implications. Our work has important implications for

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

Top 1 Accuracy (%)
B &5 & 8 8 ¥

10 15 20
number of models

25 30 10 20

30

number of batches

50
48
46
44
42
40
—— Without augmentation/pruning
33 With augmentation/pruning
40 50 60 0 5 10 15 20 25 30 35

number of steps

Figure 3. ResNet-18 trained with different hyperparameters with a 10% subset of CIFAR100. With increasing batches and steps, top-1
accuracy (%) increases so does the cost. For completeness, we also show trends without our techniques.

training models on large data sets. Viewing training from
a systems perspective, two typical bottlenecks are storage
(loading and processing data) and network communication
(communication between workers). Our work shows that
you can use extra computation (typically cheaper and more
plentiful than storage or network bandwidth) to reduce or
eliminate these bottlenecks; our framework uses data aug-
mentation and model pruning (both computational tasks) to
avoid processing the full subset of data, and uses ensembles
and model merging to avoid network communication. Over
the past five years, growth in total computational power (us-
ing GPUs) has been over 30x, while storage and network
bandwidth have grown by less than one order of magnitude.
Converting storage and network bottlenecks into computa-
tional tasks will prove useful in such a landscape.

4.5. Hyperparameter Sensitivity

As explained in Section 3, we have three important hyper-
parameters: the number of weak jigsaw models (), the
number of minibatches used for pretraining for each jigsaw
model (M), and the number of steps each jigsaw model
trains (K). We study sensitivity to these hyperparameters
by measuring the Top 1 accuracy (%) of ResNet18 trained
with a 10% subset of CIFAR100 using our framework. Fig-
ure 3 shows the sensitivity to different hyperparameters. In
general, the cost of pretraining increases monotonically with
each hyperparameter; a system would pick choices for these
hyperparameters based on the overall I/O cost budget. Our
results in this section show how such choices can be made
and their influence on accuracy.

The leftmost figure shows the accuracy versus the number of
jigsaw models. Interestingly, we observe a non-monotonic
relationship between the number of models used to average
the pre-trained model, and the final accuracy achieved af-
ter the main training. If we view the latter as a surrogate
of the subset quality (and therefore, the quality of the pre-
trained model’s gradients), that tells us “the more the better”
is not necessarily a true quote for our customized “model

soup” ensembling for the pre-training purpose. A similar
“non-monotonic” trend was previously observed in classical
ensemble methods too (Zhou, 2012). Specifically, in our
case, we conjecture the following factors to be accountable:
Our “model soup”-inspired averaging is a special ensem-
bling for neural networks that aggregate weights, not predic-
tions as commonly done. Meanwhile, convolutional neural
networks are known to have a highly skewed/nearly sparse
distribution of their parameter magnitudes, which are con-
sidered as necessary to encode the hidden low-dimensional
structures of image features (Papyan et al., 2017) - that is fur-
ther reinforced in our pre-training stage when each worker
explicitly and independently enforces a sparse mask. There-
fore, when we directly average too many neural networks
(each trained from scratch, unlike (Wortsman et al., 2022b)
which relies on a pre-trained model as a common “anchor”)
in their weight spaces, their vastly different sparse patterns
in parameters will inevitably conflict with and compromise
each other, leading to “over-smoothed” averaged weights
that no longer preserve a meaningful sparse parameter or
feature structure. Besides, prior works have also found
that just increasing ensemble diversity, without maintaining
the prediction accuracy of individual members, can quickly
harm the ensemble performance (Nam et al., 2021). That
explains why we cannot afford too high sparsity ratios nor
more aggressive data augmentation in local training.

Next, we study the effect of the number of minibatches
each weak jigsaw model trains on; the result is shown in the
middle figure. In this experiment, we used 256 as the batch
size and the CIFAR100 dataset. The full dataset contains
195 such batches. As expected, the more the minibatches,
the greater the final accuracy — due to less likely overfitting
as more data is used to train. Finally, the rightmost figure
shows the effect of the number of steps (K) for each jigsaw
model. We find that the accuracy plateaus after 10 steps, as
each jigsaw model is trained with a limited dataset (of M
minibatches for a small M). Because there is a possibility
of overfitting from using a large number of steps, we limit

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

the maximum number of steps to 10 in all experiments.

Implications. Increasing the values of any hyperparame-
ters mentioned above leads to an increase in latency, mem-
ory usage, and I/O cost. Unlike other hyperparameters in
other training systems that require tuning via hyperparame-
ter search, the hyperparameters in our framework are easily
determined based on the overall system I/O cost budget.
For our experiments, we set the number of models to be
10 and constrain the number of minibatches to be less than
10, as well as the number of steps to be less than 10, for all
datasets. Even with these conservative settings that yield
low resource and I/O footprints, our accuracies could out-
perform the baselines.

5. Conclusion

We presented a lightweight, distribution-friendly pre-
training framework for gradient-based subset training. Al-
though training with a carefully selected subset showed
promise to reduce training time and resources, prior work
mainly focused on reducing the “main cost”, while overlook-
ing the “tax” at the essential pre-training stage. To reduce
the pre-training tax and make the subset training more scal-
able, our novel distributed pre-training aprpoach leveraged
model-soup-based ensembling to fully eliminate the commu-
nication between workers during pre-training. The ensem-
bling approach is also accompanied by data-driven pruning
and random augmentation to effectively boost the diversity
of the ensemble while reducing local overfitting, thereby
providing robust gradients for subsequent subset selection
algorithms. Our future work will target co-designing a more
cost-effective pipeline for joint pre- and main-training.

Acknowledgements

Z. Wang is in part supported by an NSF III grant (Award
Number: 2212176), and the NSF Al Institute for Founda-
tions of Machine Learning IFML). Y. Ro is also supported
in part by the the NSF Al Institute for Foundations of Ma-
chine Learning (IFML). This work was also partially sup-
ported by donations from Meta, Toyota and VMware and
by NSF Grant CNS-2207317.

References

Agarwal, P., Har-Peled, S., and Varadarajan, K. Geometric
approximation via coresets. combinatorial and computa-
tional geometry (je goodman, j. pach, and e. welzl, eds.).
Math. Sci. Research Inst. Pub., Cambridge, 6:42, 2005.

Ainsworth, S. K., Hayase, J., and Srinivasa, S. Git re-basin:
Merging models modulo permutation symmetries. arXiv
preprint arXiv:2209.04836, 2022.

Breiman, L. Bagging predictors. Machine learning, 24(2):
123-140, 1996.

Breiman, L. Random forests. Machine learning, 45(1):
5-32,2001.

Chen, T., Cheng, Y., Gan, Z., Liu, J., and Wang, Z. Data-
efficient gan training beyond (just) augmentations: A
lottery ticket perspective. Advances in Neural Information
Processing Systems, 34:20941-20955, 2021.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
daugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition
workshops, pp. 702-703, 2020.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning, pp. 2943—
2952. PMLR, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear
mode connectivity and the lottery ticket hypothesis. In
International Conference on Machine Learning, pp. 3259—
3269. PMLR, 2020.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima,
N., Presser, S., and Leahy, C. The pile: An 800gb
dataset of diverse text for language modeling. CoRR,
abs/2101.00027, 2021. URL https://arxiv.org/
abs/2101.00027.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 580-587,
2014.

Gui, J., Sun, Z., Ji, S., Tao, D., and Tan, T. Feature selec-
tion based on structured sparsity: A comprehensive study.
IEEE transactions on neural networks and learning sys-
tems, 28(7):1490-1507, 2016.

Guo, C., Zhao, B., and Bai, Y. Deepcore: A comprehen-
sive library for coreset selection in deep learning. arXiv
preprint arXiv:2204.08499, 2022.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28,
2015.

https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Iyer, R., Khargoankar, N., Bilmes, J., and Asanani, H. Sub-
modular combinatorial information measures with appli-
cations in machine learning. In Algorithmic Learning
Theory, pp. 722-754. PMLR, 2021.

Killamsetty, K., Durga, S., Ramakrishnan, G., De, A., and
Iyer, R. Grad-match: Gradient matching based data sub-
set selection for efficient deep model training. In Interna-
tional Conference on Machine Learning, pp. 5464-5474.
PMLR, 2021a.

Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G.,
and Iyer, R. Glister: Generalization based data subset
selection for efficient and robust learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 8110-8118, 2021b.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung,
J., Gelly, S., and Houlsby, N. Big transfer (bit): General
visual representation learning. In European conference
on computer vision, pp. 491-507. Springer, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

Li, M., Gururangan, S., Dettmers, T., Lewis, M., Althoff, T.,
Smith, N. A., and Zettlemoyer, L. Branch-train-merge:
Embarrassingly parallel training of expert language mod-
els. ArXiv, abs/2208.03306, 2022.

Liu, S. and Wang, Z. Ten lessons we have learned in the
new” sparseland”: A short handbook for sparse neural
network researchers. arXiv preprint arXiv:2302.02596,
2023.

Liu, S., Chen, T., Chen, X., Atashgahi, Z., Yin, L., Kou,
H., Shen, L., Pechenizkiy, M., Wang, Z., and Mocanu,
D. C. Sparse training via boosting pruning plasticity

with neuroregeneration. Advances in Neural Information
Processing Systems, 34:9908-9922, 2021.

Liu, S., Chen, T., Chen, X., Shen, L., Mocanu, D. C., Wang,
Z., and Pechenizkiy, M. The unreasonable effectiveness
of random pruning: Return of the most naive baseline for
sparse training. arXiv preprint arXiv:2202.02643, 2022.

Liu, S., Ye, J,, Yu, R, and Wang, X. Slimmable dataset
condensation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
3759-3768, 2023.

10

Maalouf, A., Jubran, I., and Feldman, D. Fast and accurate
least-mean-squares solvers. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Mirzasoleiman, B., Bilmes, J., and Leskovec, J. Coresets
for data-efficient training of machine learning models.
In International Conference on Machine Learning, pp.
6950-6960. PMLR, 2020.

Nam, G., Yoon, J., Lee, Y., and Lee, J. Diversity matters
when learning from ensembles. Advances in neural infor-
mation processing systems, 34:8367-8377, 2021.

Papyan, V., Romano, Y., and Elad, M. Convolutional neural
networks analyzed via convolutional sparse coding. The
Journal of Machine Learning Research, 18(1):2887-2938,
2017.

Paul, M., Ganguli, S., and Dziugaite, G. K. Deep learning
on a data diet: Finding important examples early in train-
ing. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P, and Vaughan, J. W. (eds.), Advances in Neural Infor-
mation Processing Systems, volume 34, pp. 20596-20607.
Curran Associates, Inc., 2021.

Ramé, A., Ahuja, K., Zhang, J., Cord, M., Bottou,
L., and Lopez-Paz, D. Recycling diverse models
for out-of-distribution generalization. arXiv preprint
arXiv:2212.10445, 2022.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211-252, 2015. doi:
10.1007/s11263-015-0816-y.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. arXiv preprint
arXiv:1708.00489, 2017.

Sinha, S., Zhang, H., Goyal, A., Bengio, Y., Larochelle,
H., and Odena, A. Small-gan: Speeding up gan training
using core-sets. In International Conference on Machine
Learning, pp. 9005-9015. PMLR, 2020.

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Pat-
naik, V., Tsui, P, Guo, J., Zhou, Y., Chai, Y., Caine, B.,
Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeev,
A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang,
Y., Shlens, J., Chen, Z., and Anguelov, D. Scalability in
perception for autonomous driving: Waymo open dataset.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020.

Toneva, M., Sordoni, A., Combes, R. T. d., Trischler, A.,
Bengio, Y., and Gordon, G. J. An empirical study of
example forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159, 2018.

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

Tripathi, S., Hemachandra, N., and Trivedi, P. Inter-
pretable feature subset selection: A shapley value based
approach, 2020. URL https://arxiv.org/abs/
2001.03956.

Varma T, M., Chen, X., Zhang, Z., Chen, T., Venugopalan,
S., and Wang, Z. Sparse winning tickets are data-efficient
image recognizers. Advances in Neural Information Pro-
cessing Systems, 35:4652-4666, 2022.

Wang, X., Kondratyuk, D., Christiansen, E., Kitani, K. M.,
Alon, Y., and Eban, E. Wisdom of committees: An
overlooked approach to faster and more accurate models.
arXiv preprint arXiv:2012.01988, 2020.

Wei, K., Iyer, R., and Bilmes, J. Fast multi-stage submodular
maximization. In International conference on machine
learning, pp. 1494—-1502. PMLR, 2014a.

Wei, K., Liu, Y., Kirchhoff, K., and Bilmes, J. Unsu-
pervised submodular subset selection for speech data.
In 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4107-4111.
IEEE, 2014b.

Wei, K., Iyer, R, and Bilmes, J. Submodularity in data
subset selection and active learning. In International
conference on machine learning, pp. 1954-1963. PMLR,
2015.

Wortsman, M., Gururangan, S., Li, S., Farhadi, A., Schmidt,
L., Rabbat, M., and Morcos, A. S. lo-fi: distributed
fine-tuning without communication. arXiv preprint
arXiv:2210.11948, 2022a.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned mod-
els improves accuracy without increasing inference time.
In International Conference on Machine Learning, pp.
23965-23998. PMLR, 2022b.

Yu, R., Liu, S., and Wang, X. Dataset distillation: A compre-
hensive review. arXiv preprint arXiv:2301.07014, 2023.

Yu, S., Yao, Z., Gholami, A., Dong, Z., Kim, S., Mahoney,
M. W., and Keutzer, K. Hessian-aware pruning and opti-
mal neural implant, 2021.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
CoRR, abs/1605.07146, 2016. URL http://arxiv.
org/abs/1605.07146.

Zhou, Z.-H. Ensemble methods: foundations and algo-
rithms. CRC press, 2012.

11

https://arxiv.org/abs/2001.03956
https://arxiv.org/abs/2001.03956
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

A. Experiment Setup Details

In our experiment, we used ResNet-18 (He et al., 2016), Wide-ResNet-28-10, and Wide-ResNet-50-2 (Zagoruyko &
Komodakis, 2016), and three datasets, CIFAR10/100 (Krizhevsky et al., 2009), and ImageNet (Russakovsky et al., 2015) in
our evaluation.

For pre-training, we followed the original paper’s configuration to make a fair comparison. For the GraNd experiment,
we used 1 epoch of training and averaged the results of 10 executions as did in the original paper. For GradMatch, we
followed the parameters that were reported as the best parameters in the original paper. We set £=0.5 as it is known to be the
best-performing parameter.

For main training, all of the experiments train for 200 epochs. Note that we did not reuse the pre-trained weight but started
from the initialization for main training. We use SGD as the optimizer, and the batch size is 256. We use a cosine decay
learning rate scheduler with an initial learning rate set to 0.1, a momentum of 0.9, and a weight decay of 5 x 10~%. We
applied the same augmentation for all regimes: random crop with 4-pixel padding and random flipping on 32x32 images.

For experiments with re-selection, we re-selected the subset every 20 epochs and used the gradient at the moment to update
the subset.

B. Overall Accuracy-1/0 Cost Supplementary Results

In this section, we provide supplementary experimental results compared with different subset selection algorithms: e.g.,
GraNd (Paul et al., 2021), Gradmatch (Killamsetty et al., 2021a). For comparison, we use ResNet18 trained on CIFAR10
dataset. Our method is compatible with any subset selection algorithm that requires pre-training. Environmental setup is the
same as described in Appendix A.

B.1. Comparison with GraNd

Data Fraction 5% 10% 20% 30% 40% 50%
GraNd 48.13% 58.24% 69.09% 75.80% 80.68% 84.41%
Proposed 61.58% 71.29% 79.22% 85.09% 88.40% 90.87%
Accuracy Improvement 13.45% 13.05% 10.13% 9.29% 7.71% 647%
I/0 Bandwidth Saved 44% 29% 17% 12% 10% 8%

GraNd uses a full dataset for pre-training and selects data samples using a metric defined by the expected loss gradient norm.
In their paper, they vary the pre-training epoch from 1 to 20. They run 10 independent runs and average the scores to select
the subset. This repetition cost is a major overhead and explains the I/O bandwidth savings.

B.2. Comparison with GradMatch

Data Fraction 5% 10% 20% 30% 40% 50%
GradMatch 5524% 78.57% 80.52% 86.72% 88.53% 90.95%
Proposed 55.69% 78.74% 85.68% 90.48% 92.30% 93.44%
Accuracy Improvement 045% 0.17% 5.16% 3.76% 3.77% 249%
I/O Bandwidth Save 25% 29% 31% 32% 32% 32%

GradMatch is a gradient-matching algorithm that uses an orthogonal matching pursuit algorithm. To boost the subset
selection, they introduced *warm-starting” stage. Warm-start uses the full dataset for the first 7'y epochs, which is determined
by Ty = TTX’“ where « is a hyperparameter, T is number of epochs for subset training, & is the subset size, and n is the
number of data points. However, & is not optimized for reducing training time, so it is sub-optimal for data usage which
explains the I/O bandwidth savings.

12

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit

C. Model Merging Method Comparison

In this section, we compare the performance of two different model merging methods: merging all models in the pool,
and greedy merging, which merges the models that improve the validation accuracy. The experiment is done on ResNet18
with the CIFAR10 dataset. In general, greedy method results in better performance. This trend is also observed in other
works (Wortsman et al., 2022b; Ramé et al., 2022).

DATA FRACTION 10% 20% 30% 40% 50%

PROPOSED MERGING, ALL 68.05% 78.53% 85.76% 87.74% 89.92%
PROPOSED MERGING, GREEDY 69.50% 79.39% 88.70% 89.25% 91.18%

D. Model Pruning Method Comparison

In our experiment, we used one-shot magnitude pruning (OMP) as described in Section 3. However, there are alternative
methods such as random (Liu et al., 2022), SNIP (Lee et al., 2018), hessian-based (Yu et al., 2021), and iterative (Han et al.,
2015; Frankle & Carbin, 2018). In this section, we compare the alternatives and explain why we chose magnitude-based
pruning. We exclude iterative pruning methods, however, to avoid the high computation costs they impose.

When we set the density to 80% (zero out 20% of parameters), the result is as follows. We observed that magnitude-based
pruning performs better than SNIP or Random pruning, because it can see the data and make decisions in a data-driven way.

DATA FRACTION 10% 20% 30% 40% 50%

SNIP [4] 63.76% 69.48% 78.25% 83.02% 86.76%
RANDOM PRUNING [5] 62.51% 72.81% 78.62% 83.13% 87.13%
MAGNITUDE-BASED 66.01% 77.62% 84.21% 86.59% 88.65%

13

