Beyond the Quadratic Time Barrier for Network Unreliability

Ruoxu Cen* William Hef Jason Lit Debmalya Panigrahi®

Abstract

Karger (STOC 1995) gave the first FPTAS for the network (un)reliability problem, setting in motion
research over the next three decades that obtained increasingly faster running times, eventually leading to

a O(n?)-time algorithm (Karger, STOC 2020). This represented a natural culmination of this line of work

because the algorithmic techniques used can enumerate @(nz) (near)-minimum cuts. In this paper, we go
beyond this quadratic barrier and obtain a faster FPTAS for the network unreliability problem. Our algorithm
runs in m* M 4 O(n'°) time.

Our main contribution is a new estimator for network unreliability in very reliable graphs. These graphs
are usually the bottleneck for network unreliability since the disconnection event is elusive. Our estimator
is obtained by defining an appropriate importance sampling subroutine on a dual spanning tree packing of
the graph. To complement this estimator for very reliable graphs, we use recursive contraction for moderately
reliable graphs. We show that an interleaving of sparsification and contraction can be used to obtain a better
parametrization of the recursive contraction algorithm that yields a faster running time matching the one
obtained for the very reliable case.

1 Introduction

In the network unreliability problem, we are given an undirected, unweighted graph G = (V, E) and a failure
probability 0 < p < 1. The goal is to find the probability that the graph disconnects when every edge is deleted
independently with probability p. The probability of disconnection is called the unreliability of the graph and
denoted ug(p). Reliability problems naturally arise from the need to keep real-world networks connected under
edge failures, and entire books have been devoted to the topic [4, 3]. In particular, the problem of estimating
uc(p) has been dubbed as “...perhaps the most fundamental problem in the study of network reliability” [14].

In 1979, Valiant showed that the network unreliability problem is #P-hard [19], which implies that it is
unlikely that a polynomial-time algorithm can ezactly compute the value of ug(p). Over the next 15 years,
several algorithms were designed to approximate ug(p) for various special cases such as planar graphs (Karp and
Luby [17]), dense graphs (Alon, Frieze, and Welsh [2]), etc. Eventually, in a seminal work, Karger [10] proposed
the first fully polynomial-time randomized approximation scheme (FPRAS) for the unreliability problem. For
any constant ¢ € (0,1), this algorithm outputs a (1 # ¢)-approximation for ug(p) with high probability (whp)?! in
O(mn*) time, where 7 is the number of vertices in the graph and m is the number of edges. This work established
a bifurcation of instances of the problem into two cases depending on the value of ug(p). If ug(p) is large (the
unreliable case), then Monte Carlo sampling suffices. On the other hand, if ug(p) is small (the reliable case),
then Karger showed that whenever the graph disconnects, it’s almost always the case that a near-minimum cut
fails. In this case, the algorithm uses DNF counting [17] on the (polynomial) set of near-minimum cuts to obtain
an estimate of ug(p). Using the same template, Harris and Srinivasan [8] improved the running time of the
algorithm to n3T°(M) . They did so by establishing a tighter bound on the number of cuts that contribute to ug(p)
and showing that the instances of DNF counting generated by the unreliability problem are nongeneric and admit
faster algorithms than the generic case.

In the last decade, Karger [12, 13, 14] has further improved the running time of the problem to the current
best bound of O(n?). As in prior works, the unreliable case is handled by Monte Carlo sampling. But, for the

" *Department of Computer Science, Duke University. Email: ruoxu.cen@duke.edu
fComputer Science Department, Carnegie Mellon University. Email: wrhe@andrew.cmu.edu. This work was done while the author
was an undergraduate student at Duke University.
¥Simons Institute for the Theory of Computing, UC Berkeley. Email: jmli@alumni.cmu.edu
$Department of Computer Science, Duke University. Email: debmalya@cs.duke.edu
Hn this paper, as in the network unreliability literature, a result is said to hold with high probability if it holds with probability
1

~ poly(n)”

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

reliable case, instead of DNF counting, every edge is failed with some probability ¢ > p and all edges that survive
are contracted to yield a smaller graph H. On this smaller graph H, the algorithm computes ugy(p/q), which
is an unbiased estimator of ug(p). Now, if the relative variance of ugy(p/q) is bounded by 7, then a standard
technique of repeating 0(775’2) times and taking the median-of-averages yields a (1 £ €)-approximation to ug(p)
whp.

The algorithms in [12, 13, 14] differ in the choice of g, the structure of the computation tree, and the bound
on relative variance.? In [12], ¢ is chosen so that H is expected to be of constant size, and the resulting estimator
has a relative variance of O(n?) and can be computed in O(n) time. This yields a running time of O(n?). In [13],
q is chosen differently, so as to ensure that the expected size of H is a constant fraction of G. The algorithm then
proceeds to recursively estimate up(p/q), closely resembling the recursive contraction framework of Karger and
Stein [16] originally proposed for the minimum cut problem. The bound on the running time of this algorithm
was initially established as O(n®7!) [13], but a more refined analysis of the relative variance later improved this
to O(n?) [14]. This remained the fastest algorithm for the network unreliability problem prior to our work.

1.1 Our Contribution In this paper, we give a fully polynomial-time randomized approximation scheme
(FPRAS) for the network unreliability problem that has a running time of m!'T°™1) 4 O(n'%). We show the
following theorem:

THEOREM 1.1. For any ¢ € (0,1), there is a randomized Monte Carlo algorithm for the network unreliability
problem, that runs in m*t°Me=2 4 O(n*%e~3) time and outputs a (1 %)-approzimation to ug(p) whp.

We remark that the dependence on m, which is not explicit in prior bounds because the bounds are Q(n?)
and therefore (m), is necessary because the number of edges may exceed n'-® in general.

The running time bound of O(n?) obtained by [14] was a natural culmination of prior research on the
unreliability problem because all prior algorithms involve explicit or implicit enumeration of a set of potentially
Q(n?) (near-)minimum cuts of the graph. To see this, consider the cycle graph on n vertices. This is a sparse
graph of n edges, and one would ideally like a subquadratic running time for the unreliability problem. However,
the cycle has (5) = ©(n?) minimum cuts, which means that any subquadratic algorithm must refrain from
enumerating the minimum cuts of the graph. The prior techniques for the unreliability problem are unsuitable
for this purpose. The DNF counting-based algorithms [9, 8] perform explicit enumeration of near-minimum cuts
and the DNF formula is already of Q(n?) size. The later algorithms based on recursive contraction [12, 13, 14] do
not perform explicit enumeration, but the framework can be used to generate all the (possibly ©(n?)) minimum
cuts of a graph. Our main conceptual contribution in this work is to overcome this bottleneck of (n?) in the
running time of unreliability algorithms. We outline the main techniques that we employ for this purpose next.

1.2 Our Techniques As in prior work, in the unreliable case, i.e., when ug(p) is above some threshold n—o),
we apply naive Monte Carlo sampling. The algorithm removes each edge independently with probability p and
checks whether the remaining graph is connected. Each sample takes O(m) time and the estimator has relative

variance = ﬁ(m. Thus, O (#@) = n°1) samples are sufficient and the running time of the algorithm is m!'*+°(1),

When ug(p) is too small for Monte Carlo sampling, Karger [14] proved that the partition function zg(p),
defined as the expected number of failed cuts, approximates ug(p) up to a factor of 1+ o(1). So, it suffices to
estimate zg(p) in this case instead of ug(p).

Let us first review the recursive contraction algorithm in [14] for estimating zg(p). The algorithm contracts
each edge independently with probability 1 —q for some parameter ¢ > p to form a smaller graph H, and estimates
ug(p/q) in this graph recursively. The parameter ¢ is chosen so that ¢~ = 2 (or any constant), where X is the
value of the minimum cut in the graph. This ensures that one step of contraction reduces the number of vertices
by a constant fraction in expectation. The relative variance is q_’\(l +0(1)). By repeating g~ times, the relative
variance is kept at 1 + o(1). This yields the recurrence: T'(n) = ¢~ - T(¢*/? - n). Solving this recurrence gives
T(n) = O(n?).

In this recurrence, the size bound and relative variance can both be simultaneously tight. To see this, consider
a cycle graph with % + 1 parallel edges where one vertex on the cycle is connected to a leaf vertex with A parallel

2The relative variance of a random variable is the ratio of its variance to the square of its expectation.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

edges. Suppose p is small enough that the minimum cut dominates unreliability, i.e., zg(p) ~ p*. The estimator

2X
(approximately) returns (p/q)* with probability ¢*; hence, the relative variance is = (1p)2 g (g) ~ q~*. The

expected size of the contracted graph is ~ ¢*/?*!.n. This example shows that we cannot hope to unconditionally
improve the previous analysis to obtain a sub-quadratic bound.

But, under what conditions can the pathological example above be realized? To answer this question, we
partition the reliable case into two subcases depending on whether ug(p) exceeds O(n=3). We call these the
moderately reliable and very reliable cases respectively. Clearly, the example above can be realized in the very
reliable case; hence, we need a new algorithm for this case. This algorithm is our main contribution, and we will
describe it below. But, before doing so, let us consider the moderately reliable setting. In this case, our main
observation is that the two bounds on graph size and relative variance in the recurrence relation for recursive
contraction cannot be tight simultaneously. Consider the following two typical cases. In a cycle with % parallel
edges, the size bound ¢*/2-n is tight, but the true relative variance is close to 1, which is much smaller than the g~
bound. In contrast, in a graph with a single minimum cut where all other cuts are large (e.g., a dumbbell graph),
the relative variance is close to ¢~* but the size decreases much faster than ¢*/2 - n. In general, we interpolate
between these two extreme cases. We choose a parameter v € [%)\,)\] , and prove sharper bounds of ¢~7 on relative

. 2y . . _ 2y
variance and ¢ -n on the size of the recursive instance. Then the recurrence becomes T'(n) = ¢~ 7 - T (q 3 - n),

which yields a running time of O(n!®) as desired.

Finally, we consider the very reliable case, i.e., when ug(p) is smaller than O(n~2). In this case, we design
a new algorithm for estimating zg(p). When p is small, the contribution of large cuts to the value of zg(p)
decreases. In particular, for ug(p) = O(n=3), we can discard all cuts of value > 3.5\. Our goal, then, is to obtain
an estimator that performs importance sampling on cuts of value < 3.5\ (i.e., reweights them appropriately) to
yield zg(p). But, how do we sample such cuts? We use a semi-duality between (near-)minimum cuts and maximum
spanning tree packings for this purpose. Namely, one can construct A spanning trees with edge congestion 2, which
implies that in a randomly chosen tree, a cut of value < aX only has < 2« edges, i.e., 2a-respects the tree, in
expectation. (See Gabow [5] and Karger [11] for prior uses of such duality in minimum cut algorithms.) This
allows us to sample 7-respecting cuts 2 from a spanning tree instead of cuts of value < 3.5\, and redefine the
support of the estimator to 7-respecting cuts. There are two main challenges: first, we need to implement the
importance sampling subroutine very efficiently, namely calculate each sample and its corresponding weight in
O(1) time, and second, we must control the relative variance to O(n'%) since we can only draw O(n'®) samples
(note that the support of the distribution is ~ n7). We design a data structure based on orthogonal range queries
in R? to implement importance sampling efficiently. To control the relative variance, we contract well-connected
components of the graph (using a Gomory-Hu tree [6]) and apply the sampling subroutine on this contracted
graph to boost the sampling probability of the small cuts.

1.3 Overall Algorithm and Paper Organization We now give an overview of the algorithm. We describe
when the algorithm invokes its different components, and give a pointer to the section where each component is
described and analyzed.

Our overall algorithm builds a recursive computation tree. There are several base cases of this recursion that
we describe first.

e The first base case is determined simply by the number of vertices in the graph. If n < 0(5_2), then we
run Karger’s algorithm [14] that gives an unbiased estimator for ug(p). The following theorem states the
properties of this estimator:

THEOREM 1.2. ([14]) Given a graph G with vertex size n, an unbiased estimator of ug(p) with O(1) relative
variance can be computed in O(n?) time. As a consequence, a (14¢)-approximation to ug(p) can be computed
in time O(n?c=2).

e The second base case is to run Monte Carlo sampling. Intuitively, this is done when the probability of the
graph being disconnected is large. There are two subcases for Monte Carlo sampling;:

3We say a cut k-respects a tree if at most k tree edges cross the cut.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

— The first subcase is when p > 6 for some threshold 6 whose value will be given by Lemma 2.1. In
this case, we run a naive Monte Carlo algorithm to obtain an estimator for ug(p) (Section 6.1). The
properties of the estimator are summarized below:

LEMMA 1.1. For any p > 6, an unbiased estimator of ug(p) with relative variance O(1) can be
computed in time m'T°M) . As a consequence, a (1 £ €)-approzimation to ug(p) can be computed
in m*t°Me=2 time under the condition that p > 6.

— The second subcase is when p < 6 but p* > n =%, In this case, we run a two-step Monte Carlo algorithm
to obtain an estimator for ug(p) (Section 6.2). The properties of the estimator are summarized below:

LEMMA 1.2. For p such that p < 6 and p* > n~Y2, an unbiased estimator of ug(p) with relative
variance O(1) can be computed in O(m + n'®) time. As a consequence, a (1 + €)-approzimation to
ug(p) can be computed in O((m +n'®)e~2) time under the condition that p < 0 and p* > n~1/2.

e The final base case is the most interesting new contribution of this paper. This is invoked in the highly
reliable setting, when p* < 4n~3. In this case, we run an importance sampling algorithm on a spanning tree
packing of the graph (Section 3). We prove the following lemma (an estimator X for ug(p) with relative
bias ¢ satisfies E[X] € (1 £)ug(p)):

LEMMA 1.3. For any p such that p* < O(n™2), an estimator for ug(p) with relative bias O (k\)/g;) and

relative variance O(1) can be computed in m1+0(1) +O0(n'?) time. As a consequence, a (1=¢)-approzimation
to ug(p) can be computed in (m*+°M) + O(n'?))e=2 time under the condition that p*» < O(n™3).

We have described the base cases, all of which are non-recursive algorithms. The remaining case is when
4n=3 < p* <n7%% and p < 0. In this case, we run a step of recursive contraction (Section 4). In earlier works
using recursive contraction, the number of edges is trivially bounded by O(n?) in recursive calls. Since we would
like to impose the stricter bound of O(nl's) on the running time, we need the number of edges to also satisfy this
bound. But, this may not hold in general in recursive steps. To restore this property, we occasionally interleave
calls to a standard sparsification algorithm with the recursive contraction steps. This increases variance — we
bound it in Section 5 and use this bound in the analysis of recursive contraction in Section 4. We obtain the
following lemma (the relative second moment of a random variable X is defined as E[X?]/(E[X])?):

LEMMA 1.4. Suppose 4n=3 < p* < n= %% and p < 0. An estimator X for ug(p) with relative bias < 0.1 and
relative second moment < logo(l) n can be computed in m') 4 O(n*Pe~1) time.

We now show that Theorem 1.1 follows from this lemma:

Proof. [Proof of Theorem 1.1] The base cases are immediate from Theorem 1.2 and Lemmas 1.1 to 1.3. In the
first base case, the running time is O(n?c2) = O(n'5c=3) by the assumption n < O(¢~2); the running times
in other base cases are all bounded by m!+t°Me=2 4+ O(n!5¢3). So, we focus on the recursive contraction case.
Let X be the estimator output by the recursive contraction algorithm. From Lemma 1.4, we have its relative
variance 7[X] < O(1). By standard techniques (see Lemma 2.6), we can run the algorithm O(e~2) times to
get a (14 §)-approximation of E[X] whp. Because E[X] is a (1 & 0.1¢)-approximation of ug(p), the aggregated
estimator is a (1 4 ¢)-approximation of ug(p). Each run takes m!T°() 4+ O(n'5¢~1) time, so the overall running
time is m!+toMe=2 4 O(n'%e~3). O

Finally, we describe how the algorithm decides which case it is in at any node of the computation tree. The
first base case can be identified based on the size of the graph. If not in the first base case, we calculate the
value of the minimum cut A in O(m) time [11]. If p* < 4n~3, we are in the third base case. We are left to
identify the two Monte Carlo base cases. We need the value of 6 for this determination. Unfortunately, we do
not know of a way to efficiently calculate 6. Therefore, we distinguish these cases indirectly. We first run the
naive Monte Carlo algorithm and calculate the estimator of ug(p) given by this algorithm (which is the empirical
probability of disconnection). If the value of this estimator is at least n~°(1), then we can conclude that the
estimator (14 ¢)-approximates ug(p) whp. If the estimator returns a smaller value, then we are in the case p < 6.
In this case, we calculate the value of p* and depending on whether it exceeds n=°°, we either run the two-step
Monte Carlo algorithm or a step of recursive contraction.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2 Preliminaries

We give some known observations in this section that we use throughout the paper.

Phase Transition. An important observation due to Karger [14] is the so called phase transition property
of network unreliability. Roughly speaking, this property says that there is a threshold 8 on the value of p such
that (a) above this threshold, a naive Monte Carlo algorithm is efficient, and (b) below this threshold, conditioned
on the graph getting disconnected, the probability that a single cut fails is close to 1. We state this property
precisely below (Lemma 2.1).

Let C(G) be the family of cuts in G, where a cut is represented by the set of cut edges. Let zg(p) be the
number of failed cuts, and z¢(p) be the number of failed cut pairs. By linearity of expectation,

zc(p) = Z p\Ci\ and zg(p) = Z p\ciuCﬂ.
Ciec(@ C1,C5E€C(G),Ci#£C;

When context is clear, we write z = zg(p) and we omit the index range C(G) from the sums.
We state the following phase transition lemma:

LEMMA 2.1. There exists a threshold 0 such that

1. UG(G) — n—O(l/ Ioglogn)'

2. When p < 6, we have 22((5; < loén" therefore, (1 - lo;n) 2a(p) < uc(p) < za(p).t

In the very reliable case, i.e, p* < O(n™3), we can show a tighter bound for approximating u with z:

LEMMA 2.2. When p* < O(n™3), we have Zgg;; <0 (1%); therefore,

(1 e (1%)) 26(p) < ua(p) < 26(p).

The bounds in above two lemmas easily follow from previously known bounds in [14]. We give proof of the lemmas
for completeness in Appendix A.

Random Contraction, Sparsification, and Near-Minimum Cuts. Next, we give some standard results
in graph connectivity related to random contractions, counting near-minimum cuts, and graph sparsification. First
is a standard bound on the number of near-minimum cuts. Let A be the value of a minimum cut. Let the value
of a cut C; be denoted ¢;. We call a cut C; d-strong if ¢; > d and d-weak if ¢; < d.

LEMMA 2.3. (LEMMA 3.2 OF [11]) The number of aX-weak cuts in a graph with minimum cut value X is at most
nl2 for any a > 1.

We also use the following standard sparsification result:

LEMMA 2.4. (COROLLARY 2.4 OF [9]) Given an unweighted undirected graph G with min-cut value X\ and any

logn

parameter § € (0,1), there exists « = O (52)\) such that if a subgraph H is formed by picking each edge

independently with probability o in G, then the following holds whp: for every cut S, its value in H (denoted
dy(S)) and its value in G (denoted dg(S)) are related by dg(S) € [(1 —9) - a-dg(S),(1+6) - a-dg(S)]. Note
that this implies that the min-cut value in H is Ay = O(logn/§?).

The running time of the sparsification algorithm is O(m).

Finally, we state a bound on the expected number of uncontracted edges after random edge contractions.
This was previously used (and proved) in the celebrated linear-time randomized MST algorithm of Karger, Klein,
and Tarjan.

LEMMA 2.5. (LEMMA 2.1 OF [15]) Given an undirected multigraph, if we contract each edge independently with
probability w, then the expected number of uncontracted edges is at most n/m.
IIn this paper, all logarithms are with base 2 unless otherwise mentioned.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Gomory-Hu Tree. Next, we recall the definition of a Gomory-Hu tree [6], which is used in various parts of
the paper:

DEFINITION 2.1. The Gomory-Hu tree [6] of an undirected graph G = (V, E) is a (weighted) tree Y on the same
set of vertices V' such that for every pair of vertices s,t € V', the minimum (s,t)-cut in' Y (which is simply the
minimum weight edge on the unique s —t path in'Y) is also a minimum (s,t)-cut in G, and has the same value.

Relative Variance and Relative Bias. The relative variance of our estimators will play an important role
in our analysis. We define this below and state some standard properties.

DEFINITION 2.2. The relative variance of a random wvariable X, denoted n[X], is defined as the ratio of its
V[X] _ E[X?]

variance and its squared expectation, i.c., N[X] = & X = 5% 1. We also define relative second moment of X
E[Xx?
as —EQ[X} =n[X]+1.

Similar to variance, relative variance can be decreased by taking multiple independent samples.

) , . X
FacT 2.1. (LEMMA 1.4 OF [13]) The average of N independent samples of X has relative variance %

This leads to the following property:

LEMMA 2.6. (LEMMA 1.2 OF [13]) Fiz any €, € (0,1). For a random variable X with relative variance n[X],

the median of O (log %) averages of O <M> independent samples of X is a (1 &+ €)-approzimate estimation of

g2
E[X] with probability 1 — 4.

The next lemma is an important property of relative variance that allows us to compose estimators in a
recursive algorithm.

LEMMA 2.7. (LEMMA I1.3 OF [13]) Suppose Y is an unbiased estimator of x with relative second moment V1,
and conditioned on a fited Y, Z is an unbiased estimator of Y with relative second moment Vo. Then Z is an
unbiased estimator for x with relative second moment V1 Vs.

We also define the relative bias of an estimator:

[E[X]—a|

DEFINITION 2.3. The relative bias of an estimator X for a value x is defined as -

3 Importance Sampling on a Spanning Tree Packing
As stated earlier, our main new algorithmic contribution is an estimator for ug(p) in the very reliable case, i.e.,
p» < O(n~3). Our goal in this section is to prove Lemma 1.3, which we restate below:

LEMMA 1.3. For any p such that p* < O(n™3), an estimator for ug(p) with relative bias O (l?ﬁ;ﬁn) and relative

variance O(1) can be computed in m!teM) £ O(n'd) time. As a consequence, a (1 =+ €)-approzimation to uc(p)
can be computed in (m'T°M) 4 O(n'5))e=2 time under the condition that p* < O(n=?).

We design an importance sampling algorithm that gives an estimator X of ug(p) with a relative bias of
O(logn//n) in m' M) 4 O(n'%) time. Since n > Q(e~2) (otherwise we are in the first base case), the relative
bias is at most /3. It follows by Lemma 2.6 that O(¢~2) runs of the algorithm gives a (1 & ¢/3)-approximation
of E[X], which in turn is a (1 +¢/3)? € (1 + ¢)-approximation of ug(p).

3.1 Dependence of zg(p) on Near-Minimum Cuts By Lemma 2.2, since p* < O(n™3), we have
1
(1-0 (1)) 2eo) < uclo) < 2clo)

This allows us to focus on approximating z¢(p) instead of ug(p).
Intuitively, when p* is small, the value of zg(p) only depends on the near-minimum cuts because larger cuts
scarcely fail. We make this intuition formal below. Let M} be the number of cuts of value k. Then, zg(p) is

defined as
za(p) =Y My p*.
k> A\

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

By cut counting (Lemma 2.3), we know that M, < n?#/*. The assumption p* < O(n~?) implies p* < O(n=3%/*)
for all £ > \. So, p* decreases much faster than the increase in Mj, as k increases; as a consequence, the product
M;, - p* decays rapidly. The next lemma shows that we can truncate the sum Yoo My - p* at k = 3.5\ without
significantly distorting its value. To state the lemma, let us define the partial sums:

22% = Z p& and 250 = Z p.

Ciiciza Ci:ci<aA

LEMMA 3.1. If p* < O(n73), then 223> < O(n=%%) - 25(p), where 2232 is the expected number of failed cuts of
value at least 3.5)\.

Proof. By Lemma 2.3, there are at most nl**) a\-weak cuts. So for each integer k > 7, the expected number of

failed cuts with cut value in [g -, k%l . /\) is at most n* - p**/2. Therefore,

>3.5
z= 1 , -
<= Z k. pFN2 < T p25A an M2 =0 (07 pPPN) = O(n09)
p P =7 k>0
since p* = O(n~3). Therefore 223° = O(n=%%) - p* < O(n=%%) - 2¢(p).]

3.2 Algorithm for Estimating z5(p) for 3.5A-weak Cuts Lemma 3.1 implies that for the purpose of getting
a (1 £ e)-approximation of zg(p), it suffices to only consider cuts of value aX for 1 < a < 3.5. We first give the
high level idea for estimating the contribution of these cuts to zg(p). Suppose we choose a spanning tree of the
graph uniformly at random from a collection of % edge-disjoint spanning trees. By averaging, we expect to see at
most 7 edges from a 3.5\-weak cut in this randomly chosen tree. We don’t know how to sample a 3.5 -weak cut
directly, but we can sample a cut whose projection on the spanning tree contains at most 7 edges. Therefore, we
can write an estimator that reweights these cuts appropriately to obtain an unbiased sample of zg(p) restricted
to the 3.5\ -weak cuts. This is the importance sampling problem that we solve below.

There are two main challenges in this problem. First, even if we had access to a uniform distribution over
these O(n7) cuts, we do not have enough time to draw sufficiently many samples to pick every cut. Hence, we
need a careful sampling and reweighting algorithm that allows us to sample much fewer cuts but still keep the
variance under control. Second, we do not have access to a uniform distribution over these cuts. Instead, we can
only sample a tree, obtain a random set of 7 or fewer edges in the tree, and define the corresponding cut as our
sampled cut. This creates a biased distribution over the cuts themselves, and our reweighting must eliminate this
bias, again without increasing variance.

Formally, our algorithm for estimating zg(p) has the following three steps.

Step 1: Sparsification. First, we apply the sparsification algorithm (Lemma 2.4) with parameter § =
to get a sparsifier H.

Step 2: Tree Packing. Next, we construct a packing of Ay spanning trees in the sparsifier graph H where
each edge appears at most twice:

1
logn

LEMMA 3.2. Given an undirected graph G with min-cut value \, we can construct in O(Am) time a collection T
of \ spanning trees such that every edge appears in at most two trees.

This lemma is well-known and follows, e.g., from Gabow [5]; we give a short proof based on Gabow’s result in the
. . _ 3 . . - .
appendix for completeness. Note that since Ay = O(log” n), this algorithm runs in O(m) time.
We say that a cut k-respects a tree if there are at most k edges from the cut in the tree. The key property of
the spanning tree packing in Lemma 3.2 is that every 3.5\-weak cut will 7-respect at least one tree in the packing:

LEMMA 3.3. Fiz any k € {2,3,...,7}. Let 8 = 16. It holds whp that for every cut C; (in G) with
¢ < (k +1- 2) . %, there exists a tree T € T such that |C; NT| < k.

logn

logn logn

Proof. Let Ci, be the set of cuts C; in G satisfying ¢; < (k +1- 2) % Recall that § = —1— is the sparsification
parameter we used when applying Lemma 2.4. Thus, for every cut C; in Cg, we have ¢; < (k+ 1 — 36) - % After

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

sparsification, the value of every cut in Cy, in the sparsifier H is at most (1+6)(k+1—89) - % whp. Moreover,
Ag > (1 — §)a whp. Therefore, the value of every cut in Cy in the sparsifier H is at most:

A < (1+0)(kE+1-359) ' An
2~ 1-9 2

Since k < 7, our choice of § = 16 ensures the inequality above. This implies that after sparsification, each cut in
Cr. has value strictly smaller than (k + I)ATH in H. Since there are Ay trees produced by Lemma 3.2 and every
edge can appear at most twice, it follows that every cut in Cy has strictly less than k + 1 edges on average across
the trees. Therefore, for every cut in Ci, there is at least one tree containing at most k edges from the cut.]

A

(1+6)(k+1—88) a- <(k+15E, for 8220k +1).

As a consequence of Lemma 3.3, it suffices to calculate the contribution to zg(p) of all cuts that 7-respect
some tree in the tree packing. We call this latter set C;. Note that the set C; includes all 3.5 -weak cuts in
G, but might include other cuts as well. The remainder of the section will design an unbiased estimator of
z7(p) = Y., cc, P°- Lemma 3.4 shows that the estimator for 27(p) is also a (biased) estimator of ug(p) with an

overall relative bias of O (1?}5;).

LEMMA 3.4. Assume p* < O(n™2). Then |27(p) — ua(p)| < O (bgﬁ) ug(p)-

Proof. Lemma 3.3 gives that 253° < 2z;(p) < 2g(p). By Lemma 3.1,
|27(p) — 26 ()| < [25%° = 26(p)] < [27*°] < O(™"%) - za(p).

By Lemma 2.2, since p* < O(n~3), we have |z¢(p) — uc(p)| < O (log") 2¢(p) and zg(p) = O(ug(p)). Therefore,

Jn

57(6) ~ ue0)| < 27(s) = 260 +) ~ o) < O (252) uolo)

|

Step 3: Unbiased Estimator for z;(p) via Importance Sampling. Recall that z7(p) is a sum of p©
over the O(n”) cuts C; in C;. This is much fewer than the O(2") cuts overall, but we still cannot afford to directly
enumerate all of them. Instead, using importance sampling, we obtain an estimator of z7(p) with small variance.

Our estimator X is defined as follows: X = q(p—;i) with probability ¢(C;), for some distribution ¢ : C7 — [0, 1]
that we will define later. To minimize the relative variance, we would ideally want ¢(C;) « p© for all C; € Cy.
But, this is impossible to ensure exactly because the set C; is unknown and too large to enumerate. Instead, we
use a surrogate distribution ¢ to approximate this ideal distribution. The surrogate distribution ¢ will be tailored
so that we can efficiently sample cuts from ¢, and moreover that given a cut C;, we can efficiently compute ¢(C;).

In Lemma 3.5, we show that X is an unbiased estimator of z;(p), and also obtain a bound on the relative
variance of X as a function of the distribution ¢:

LEMMA 3.5. X is an unbiased estimator of z7(p) and its relative variance n[X| satisfies whp

1

X< i (e s)

Proof. The expectation of X is given by

EIX] = 3 a(C): ey = 3 v = 2lo)
C,eCr A\ C;eCr
The relative variance of X satisfies
E[X?] 1 P\
e B s
Erv e P IR C A Ve

< (o) (B255) = 5 (e ie)

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

The distribution ¢ is defined as the mixture of a set of distributions ¢; for j € {1,2,...,7}, where j can
be loosely interpreted as the number of edges in the intersection of the sampled cut C' € C; and some tree T
chosen randomly from the packing 7 given by Lemma 3.2. For j > 2, the distribution g; is given by the following
process: First, we pick a tree T uniformly at random from the packing 7 given by Lemma 3.2. Next, pick j edges
uniformly at random from T" with replacement. The cut C' is then defined as the unique cut in G that intersects
T at precisely the chosen edges. (Note that the number of chosen edges might actually be less than j because the
sampling is with replacement.)

We now precisely calculate the values of ¢;(C;) for any cut C; and any j € {2,3,...,7}. The following fact
is useful for this purpose (we include a proof in the appendix):

FAcT 3.1. Given a universe U of N elements and a set A C U of size «, if we pick j elements from U uniformly
at random with replacement, then the probability that the set of elements picked is precisely A is given by M,
where S(j,«) is the Stirling number of the second kind.

In particular, when j = 2, the probability is w55 for o € {1,2} and 0 otherwise.
Using Fact 3.1, we can now infer that for any cut C; € C; and any j € {2,3,...,7}, we have

1 C;NT)!-S3,|CinT
'ZO D! S|)

(3.1) q;(Ci) = 7 1) ,

TeT

where S(j,) is the Stirling number of the second kind.

We will show later that in the sampling process for ¢; described above, cuts of value at least 1.5\ contribute
at most O(n'?) to the relative variance of the estimator. But, the contribution of 1.5\-weak cuts to the relative
variance of the estimator can be as large as (n?). So, we cannot simply repeat the sampling to obtain an
estimator with constant relative variance.

Instead, we mix an additional distribution in ¢ that we call ¢;. This distribution ¢; amplifies the weight on
the small cuts, so that they contribute less to the relative variance. Alternatively said, ¢; dampens the effect on
the relative variance of the very large cuts. This distribution is based on a tree packing on a contracted graph.

To define the contracted graph, we construct a Gomory-Hu tree Y (Definition 2.1) of our input graph G. Let
7 be the y/n-th smallest edge weight in Y. We contract all edges of weight at least 7 in Y'; the sets of vertices that
are contracted into single nodes are now contracted in G as well. This results in a graph G’ and its Gomory-Hu
tree Y, both on n’ < y/n vertices. Next, we repeat the sparsification (Lemma 2.4) and tree packing (Lemma 3.2)
steps on G’ to obtain a tree packing T’ on a sparsifier H' of G’. By the same argument as for 7, we have
|7’ = O(log®n) = O(1). Now we define ¢; as follows: First, pick a tree 7" in 7" uniformly at random. Then,
choose 2 edges with replacement uniformly at random from 7. Finally, define the sampled cut C as the unique
cut in G’ (and therefore in G) that intersects T” at precisely the chosen edges. (Note that because of sampling
with replacement, the number of edges in the intersection can be either 1 or 2.) Using Fact 3.1, we can precisely
state the probability ¢;(C;) for any cut C; € Cy:

1 c;nT
(3.2) 0 (C;) = kad) |(n/ll)2|
T eT’:|C;NT"|e{1,2}
We have given a set of distributions ¢y, ga, . . ., g7 for defining the cut C. Finally, we combine these distributions
uniformly: namely, we choose an index j € {1,2,...,7} uniformly at random and then choose C' according to

distribution g;. Thus, ¢(C;) = = Z] 14;(C;) for C; € Cr.

Recall that in Lemma 3.5, we bounded the relative variance of the estimator by

i

- Maxc, ec, q{’ oAk We

27 (p)
start by obtaining a bound on q(3 by individually boundlng for every j € {1,2,...,7}.

LEMMA 3.6. If a cut C; 2-respects some tree in T, then (< O(n). Forje€{2,3,...,7}, if a cut C; j-respects
some tree in T, then m < O(n).

Proof. First, consider a cut C; that 2-respects a tree 77 € T'. Since |C; N T’| € {1, 2}, we have

1
~q1(Cy) > T =1

1

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

We have |77| = O(log® n) and n’ < \/n. Hence, (C) < O(n).
For C; that j-respects T' € T for some j € {2,3,...,7}, we have 1 <|C; NT| < j. Note that S(j,a) > 1 for

1 < a < j. Therefore,
1

>
Tl (1)

Since || = O(log® n), we have 76 < O(n?). 0

Next, we bound the expression o (p) q(C) for every cut C; € C7, thereby bounding the relative variance using
Lemma 3.5.

LEMMA 3.7. Assume p* < O(n*?’). For every cut C; € C7, we have %(m . qfcvi‘) < O(n'?).
Proof. By Lemma 3.6, = O(n") for every cut C; € C7. This is quite a loose bound but it already suffices for

—7.5)

large cuts, namely When cl 2 3.5\. In this case, p%~—* < p??* < O(n . Therefore,

1 . pci pci—k s _
21(p) q(@)gq(q)ﬁo()-O(n™) < O(1).

Next suppose the value of C; satisfies (j — 86) -2 < ¢; < (j+1—66)- 2 for some j € {3,4,...,7}, where

6= 1Ogn and 8 = 16. Then, from Lemma 3.3, we know that C; j-respects some tree T in the packlng T. Thus,
q(lv = O(n?) by Lemma 3.6. Since p* < O(n?) and 4 ﬁ > 1, we get
Ci . =B _ i=Bs _ .

p < piiA Sp(jfﬁa)-gfx _ (p)\) 3 1 < (O(nﬁ%)) 7 —1 < O(n®~159),

z7(p)
So Z";—z;) : ﬁ < O(n*=9%7) < O(n'9) since j > 3.

Note that the previous cases cover all C; € Cy satisfying ¢; > (3 765) 2. The remaining case is ¢; < (3—f6) %

By Lemma 3.3, C; 2-respects some tree T in the packing 7, and hence —+~ @y = O(2) by Lemma 3.6. Now, there

are two subcases depending on whether ¢; > 7 or ¢; < 7. (Recall that 7 is the value of \/nth smallest weight edge
in the Gomory-Hu tree Y of G.)

Consider ¢; > 7. In this case, Y (and therefore G) has at least y/n cuts of value at most 7. Since 7 < ¢; < 1.5,
it follows that all these \/n cuts are in C;. For each such cut C, we have pl€l > p™. Therefore, z7(p) > /- p7.

Hence,
-

(e

o <Om?)--L
q(Ci) z2(p) 27(]9)
Next, consider ¢; < 7. In this case, we claim that the cut C; is preserved in G’. Since the edges that are
contracted in Y to form Y’ are all of value at least 7, it follows that any pair of vertices in G that are contracted
to the same node in G/ must be 7-connected®. On the other hand, every edge in C; is in a cut of value strictly
less than 7, and therefore, the vertices at the ends of the edge are not 7-connected. In particular, note that the
minimum cuts in G are also preserved in G’, and therefore, the min-cut value of G’ is also)\ Therefore, by

Lemma 3.3, we can conclude that C; 2-respects some tree in T It follows by Lemma 3.6 that (= O(n). W

< O(n'?).

1 pei
can now bound -7 - Frs < q(Ci) =O(n). |
Finally, we combine the results to give a proof of Lemma 1.3.

Proof. [Proof of Lemma 1.3] We show that the average of multiple samples of our estimator X satisfies the lemma.

By Lemma 3.5, IE[X] = z7(p). Using Lemma 3.7 and Lemma 3.5, we conclude that the relative variance of
our estimator is O(). Therefore, by repeating the sampling algorithm O(%) times, and using Lemma 2.7,
we obtain an unbiased estimator for z7(p) with relative variance O(1). By Lemma 3.4, this estimator has relative

bias O <log"> for ug(p).

We will show in Theorem 3.1 that the algorithm has preprocessing time m*t°(M) and each sample takes O(l)
time. We take O(n'®) samples, so the running time is m!'+t°) 4 O(n'?). d

5A pair of vertices s, t are 7-connected if the s-¢t min cut value is at least 7.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

3.3 Running Time of the Algorithm We now show that after m!'+t°(1) preprocessing time, we can sample
the estimator described in the previous section in O(1) time. Since the estimation algorithm is repeated O(n'-%)
times, this yields an overall running time of m!*°() 4 O(n!9).

Preprocessing of the algorithm. Preprocessing involves the following steps: computing a Gomory-Hu tree
(takes m!'t°() time for an unweighted graph by [1]), sparsification using uniform probabilities (takes O(m) time
by Lemma 2.4), tree packing (takes O(mAz) = O(m) time by Lemma 3.2 since Az = O(1)), and contractions on
the Gomory-Hu tree (takes O(m) time using, e.g., breadth-first search). Therefore, preprocessing takes a total of
m!to) time.

Data structure for cut queries. We are left to show that we can sample the estimator in O(1) time. For
this purpose, we describe a data structure with respect to any graph G and a tree T defined on the vertices V' of
G. (In general, we do not require T to be a subgraph of G.) First, we define a mapping of G = (V, E) into a set
of points in R2. To define the mapping, we define an order on the vertices V in G. We create an Euler tour of
T starting at an arbitrary vertex; call the resulting vertex sequence £(T'). Next, we order vertices by their first
appearance in £(T'); we call this order the preorder sequence of the vertices and denote it vy, ve, ..., v,. Next, for
every edge e = (v;,v;) in G where i < j, we map it to the point (i,) on R?.

Our data structure, which we denote S r, supports 2-dimensional orthogonal range queries on the set of
points corresponding to the edges in G. Namely, given a pair of intervals U and W in R, the data structure
reports the number of points in the rectangle U x W; we denote this count S¢ (U, W). In particular, suppose U
and W correspond to disjoint sets of vertices that are contiguous in the preorder sequence and U comes before W
in the sense that for every v; € U,v; € W, we have ¢ < j. Then, Sq (U, W) = |{(vi,vj) € E:v; € U,v; € W}.
In other words, it counts the number of edges between the vertex sets U and W. This data structure can be
implemented using standard results in computational geometry, e.g., [18]. For a set of m points, the data structure
has a preprocessing time of O(m) and supports orthogonal range queries (i.e., reports Sg (U, W) for given U, W)
in O(log® m) time.

On top of this data structure, we need to maintain some additional information. Recall the Euler tour £(T)
of tree T. Note that every edge is traversed twice in £(T"). We label the traversal of an edge by the number of
distinct vertices in V' that we have seen so far in the Euler tour. This means that for any ¢, the Euler tour visits
all edges that have a label of i between the first occurrences of v; and v;11 in £(T). Conversely, each edge gets
two labels ¢ and j and is visited between the first occurrences of v;, v;41 and v;,v;11 in E(T). We denote the two
labels for edge e by the (two-element) set L(e) and collectively, Ly = {L(e) : e € T'}. Note that we can compute
Ly in O(n) preprocessing time by a single traversal of £(T).

Let x be a set of edges in T. There is a unique cut in 7" such that the cut edges are exactly those in y. We
denote the vertex bipartition of this cut by C(x). Since G and T are defined on the same set of vertices, the
vertex bipartition C'(x) also induces a cut in G; overloading notation, we call this cut C(x) as well. Note that in
particular, if T is a subgraph of G, then x =T N C(x).

Using our data structures S 1 and Ly, we now show that the following cut query can be answered efficiently:
given an edge set x in T of constant size, calculate the cut value of the vertex bipartition C(x) in G.

LEMMA 3.8. Suppose we have the data structures Sgr and Lt for a graph G and a spanning tree T' of G. Now,
for any set x of a constant number of edges in T, the value of the cut C(x) in G' can be computed using a constant
number of orthogonal range queries on S . Therefore, the total query time for x is O(1).

Proof. Let Ly (x) be the multiset of labels L(e) corresponding to the edges e € x. Since each edge has two labels
and |x| = O(1), this multiset has constant size. Next, we sort the labels in Ly (x); denote this sorted sequence
ly,la, ..., L. We append this list with £y = 0 and f3|,|11 = n. For any pair of consecutive labels ¢;,(; 1 for
i =0,1,...,2|x| in this appended list, we define a vertex set V; = {v; : ; < j < £;41}. Note that it is possible
that ¢; = £; 11, in which case V; = @. Now, define Vogqa = V1 U V3 U... UV _1 and Veyen = VoU V2 U... U Vy .
Note that although the sets Voqq and Viven can be superconstant in size, they can be represented and computed
from the labels in Lr(x) in O(1) time by denoting each interval V; by its two endpoints ¢; + 1 and £; ;.

Finally, we note that the vertex bipartition C(x) is precisely given by the sets Voqq and Veyen. To see this,
consider the Euler tour £(T") and mark every edge in y on it. Now, the vertices switch from one side of C(x)
to the other side every time we traverse a marked edge. This corresponds to taking the odd and even indexed
sets V;, which is exactly how we defined the sets Voaq and Veven. Finally, we take each pair of sets V;, V; where
Vi € Voaa and V; € Veyen and run the query Sg r(V;, V;) on the data structure Sg 7. Note that this is only O(1)

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

number of queries, and each query takes O(log2 m) time by the properties of Sg, 7. Finally, we return the sum of
the values returned by these queries as the number of edges in cut C(x) in graph G. |

Specifically, we instantiate the following data structures S and L for our purpose. First, we construct S, r
for every tree T € T U T’ (with G as the input graph). Note that the data structure requires T to be defined on
the same set of vertices as G, which does not hold for the trees T7” € T’. To resolve this, we expand the contracted
vertices in G’ into connected components in G and connect each component by an arbitrary spanning tree. By
doing this, the tree T” is expanded into a tree defined on the vertices V. Moreover, this step will not change the
intersection of 7”7 with any cut in G’. Therefore, we can use the expanded tree to build Sg 7+ and report the
correct cut value of C(x) for any x defined on 7. We also build a data structure Sg, 1, for every pair of trees
T,,T5 € T UT’. Note that after expansion of the trees in 7", all the trees T}, T are on the same set of vertices
V', thus the data structures are well-defined. In addition to these data structures, we also construct the label
sets Ly for all trees T € T U T". Note that the total number of data structures is O(1), which implies that the
preprocessing time increases only by a O(1) factor.

Running time of the sampling algorithm. First, we compute the running time for producing a single
sample for the estimator X defined in Step 3 of Section 3.2 using the data structures S¢ v and Ly that we defined
above. The first step of the sampling algorithm is to choose a specific distribution ¢; from j € {1,2,...,7}
uniformly at random in O(1) time. Next, the algorithm chooses a tree T uniformly at random from the packing
T (or T for ¢1) in O(1) time. Third, the algorithm chooses a set x of j edges from T uniformly at random with

replacement. This takes O(1) time since j is a constant.
[e16%)
The only involved step is to calculate the estimator X at this point. Recall that X is defined as %.

First, we compute the cut value |C(x)| by querying Sg,r in O(1) time by Lemma 3.8. We are left to compute
q(C(x)), which only requires computing |C(x) N T”| for every tree T/ € T U T’ (where C(x) is defined on G)
by using Equations (3.1) and (3.2). (Note that the Stirling numbers in Equation (3.1) can be retrieved from a
constant-sized table since j < 7.) To compute |C(x) NT"|, we use the data structure S+ r to obtain the cut value
of C(x) in T, which is |C(x) N'T'| where C(x) is defined on graph G. Overall, this requires O(1) queries of the
data structures, each of which takes O(1) time by Lemma 3.8.

We have established the following theorem:

THEOREM 3.1. There is an algorithm that takes m'+°") preprocessing time and O(l) query time to produce a
sample of the estimator X .

4 Recursive Contraction

In this section, we design a recursive contraction algorithm that solves the moderately reliable case, that is,
dn=3 < p>‘ <n 05 Our goal is to show Lemma 1.4, which we restate below:

LEMMA 1.4. Suppose 4n=3 < p* < n= %% and p < 0. An estimator X for ug(p) with relative bias < 0.1 and
relative second moment < log®M n can be computed in m*ToM) 4 O(n'5e~1) time.

4.1 Description of the Algorithm We use a parameter 7 to measure how many near-minimum cuts
contribute significantly to zg(p). Intuitively, if there are very few such cuts, then the average degree is much larger
than A. In this case, random contraction will significantly decrease the size of the graph. On the other hand, if
there are many near-minimum cuts, then the variance of the estimator uy(p/q) will be small. Our definition of
~ allows us to smoothly interpolate between these two extreme cases.

We choose v as follows. First, compute the Gomory-Hu tree Y of G (Definition 2.1). Let Sy be the sum of
the k& smallest weights among the tree edges. Then,

— i 3 Sk _ 9—2/3
v—mln{)\74 k}fork—2 n.

Set ¢ so that ¢” = 1/2. The algorithm samples two graphs independently H;, H» ~ G(gq) and returns the
average of up, (p/q) and wm,(p/q), which are computed recursively. Note that G(q) represents (the distribution
of) the random graph generated by contracting each edge in G independently with probability 1 — g.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

It will be important to ensure that m < n'®~¢ for some small enough constant ¢ > 0 whenever we apply
the recursive contraction step. If this condition is violated, we perform two algorithmic steps that restore the
condition in expectation. The first step is to reduce the minimum cut of the graph to A= O(log3 n) if it is
larger. For this purpose, we use the (standard) sparsification algorithm in Section 5 with sparsification parameter

6 = @. To control the additional variance caused by this sparsification step, we also branch whenever we

sparsify. Namely, instead of creating a single sparsifier, we create two independent sparsifier graphs G; and Gs
from graph G using the same sparsification parameter. We now recurse on these graphs. In particular, if any of
the graphs satisfies one of the base cases given below, then we run the corresponding base case algorithm. If not,
then we must perform recursive contraction. This means that we draw two independent random samples each
from G(q) for any such graph G produced after sparsification. Let 7 be the number of edges in any graph drawn
from G(g). The important property that we we will establish (using Lemma 2.5) is that E[m] = O(n)) = O(n).
Now, the algorithm recurses on this graph. In other words, if this new graph has 7 vertices, then we check if
m > 7'°~¢ and continue the algorithm.
There are three base cases in the recursion:

1. When n is less than some sufficiently large constant (polynomial in =%, will be decided in Lemma 4.5),
we use Karger’s algorithm (Theorem 1.2) to compute an unbiased estimator of ug(p) with relative variance

o(1).

2. When p > 6 or p* > n~%° we use Monte Carlo sampling (Section 6) to get an unbiased estimator of ug(p)
with relative variance O(1) (Lemmas 1.1 and 1.2).

3. When p* < 4n3, we use importance sampling on a spanning tree packing (Section 3) to get an estimate
logn

of z7(p), which is a biased estimator for ug(p) with bias O() - ug(p) and relative variance O(1)

(Lemma 1.3).

4.2 Properties of the Parameter v The results in this section characterize important properties of ~ that
allow us to simultaneously relate v to the shrinkage of the graph under random contractions and the variance of
the recursive estimator for unreliability.

FAcT 4.1. 3A <y <A

Proof. Recall that Sy is the sum of the k edges with minimum weight in the Gomory-Hu tree and v =
min {\, 3 - %} for k = 272/3n. If v = A, the statement is trivial. Next, assume v = 3 . % < X. Because
each Gomory-Hu tree edge represents a cut in G whose value is at least that of the minimum cut X, we have

Si > k. Hence,wz%-%zg)\. O

LEMMA 4.1. Assume p* > 4n=3. Then zg(p) > p”.

Proof. If v = A, then zg(p) > p” is trivial. Next assume v = % - Sk’“ Consider the partial sum of the &k = 2
smallest cuts represented by edges in the Gomory-Hu tree. Let their cut values be (aq,...,ax).

-2/3 .,

k k
1
(4.3) za(p) = E p* =k (k g pai> > k- pk Siea @i (by convexity) = kpS+/F = 272/3 . . p37.
i—1 i=1

Since p* > 4n~3, we have p~*/3 < 272/3 . n. Therefore, from Equation (4.3), we get

,_.

4y
3

wh&

37 (since y < \) =

w\»—A

za(p) > p377 3N > p37

d

The next two claims are crucial in our analysis of the shrinkage of the graph under random contractions.
Lemma 4.2 gives a lower bound on the number of edges in the graph relative to the number of vertices as we
randomly contract edges. This can be compared to the bound of ‘lggggl‘ > 1)\ used in [14]. The latter bound

can be derived from the fact that the value of the minimum cut in H, obtalned by contracting edges in G, is at

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

least A, which is the value of the minimum cut in G. Therefore, the degree of every vertex in H is at least .

% > %’y on the shrinkage of the

graph. To compare the two bounds, note that %’y > %)\ since vy > %)\ by Fact 4.1. Thus, our bound is always
(asymptotically) better, which will be crucial in obtaining the better running time bound.

In comparison, our use of the parameter v allows us to derive a bound of

LEMMA 4.2. Suppose H is formed by contraction from G, and |V (H)| > 272/3 . n. Then

BE(H)| 2
V() -1~ 3"

Proof. Root the Gomory-Hu tree Y at an arbitrary vertex r. Let wty(-) denote edge weights in Y. Let
E = |VH)| >k =223.n Let ¢ : V(G) — V(H) be the contraction map that takes each vertex of G
to its contracted node in H. Note that the nodes in H correspond to a partition of the vertices in G. Overloading
notation, we also use ¢ to map a vertex in V(G) to the subset of this partition that the vertex belongs to.

For any W € V(H)\ {¢(r)}, pick an arbitrary vertex w € V(G) such that ¢(w) = W. Since ¢p(w) # ¢(r), the
tree path from r to w in Y contains at least one tree edge (uy , vy) (where uy is the parent of vy in T') such that
d(uw) # W and ¢(vw) = W. Let T” be the collection of such edges, i.e., T" = {(uw,vw) : W € V(H)\ {¢(r)}}.
Note that for W # W', we have (uw,vw) # (uw-, vw) since ¢p(vw) = W and ¢(vw) = W', Thus, |T'| = k' — 1.

For any W € V(H) \ {¢(r)}, the edge (uw,vw) represents a minimum (uw,vw) cut in G. Note also that
the degree cut of W in H (denote its value degy (W)) is a (uw,vw) cut in G. Thus, wty (uw,vw) < degy (W).
Taking the sum over edges in T” gives

(4.4) Z wty (e) < Z deg (W Z deg (W

eeT’ WeV(H)\{¢o(r)} WGV(H

Recall that Sp/_; denotes the the sum of the smallest &' — 1 weights of edges in Y. Hence, we have
ZeeT’ wty (e) > Sk—1. Now, note that Sg/_; is the prefix sum of a nondecreasing sequence, where &/ — 1 > k.

Thus, &= T >3 Sk > %’y by the definition of . Putting these together, we get

) k/

4 Skr—1

(4.5) g’yg 1S k’ Zwty
eeT’
Combining Equations (4.4) and (4.5), we get
2 (45 1 Y B
L IOy e (V) = oy (e S degy(w) = 2| E(H).
e€T’ Wev(H weV (H)

An important consequence of the previous lemma (Lemma 4.2) is that the number of vertices in the graph
after a contraction step can be bounded as follows:

LEMMA 4.3. H ~ G(q) has vertex size at most (272/3 +n=%1) - n whp.

Proof. The random graph G(q) can be modeled by the following continuous-time random process. Initially, the
graph is empty. Edges e € E arrive at times t., which are i.i.d. exponential variables with rate 1.

Let us define a graph G; by contracting all edges in G' that arrive before time ¢. Notice that G_ 1,4 is exactly
G(q). Let ny and m; be the number of vertices and edges in G; respectively. We consider how the vertex size
ny evolves with ¢. Let (k) be the first time that n; < k. Initially ng = n and ¢(n) = 0. Now, n; decreases by
1 whenever an uncontracted edge arrives. Since there are m; uncontracted edges at time ¢, the earliest arriving
time follows an exponential distribution of rate m;. Let Ay = t(k—1) —¢(k); note that Ay follows the exponential
distribution of rate my).

Because of the memoryless property of the exponential distribution and independence of edges, Ay, for different
values of k are independent. By Lemma 4.2, we have myy > %W(k — 1) for any k > 272/3 . n. We couple each

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Ay, with a new random variable A}, where A/, follows an exponential distribution of rate %'y(k; —1). Thus, Ay is
stochastically dominated by A}, for any k > 2-2/3 ..

The random variables A/ can be coupled with the aforementioned contraction process on a star graph. Let R
be a star on n vertices with n—1 edges. We use the same notation as above for graph R, but with a superscript of R.
Note that during the contraction process, we always have mf* = nft —1. Therefore, A% = t%(k—1) —tf(k) follows
an independent exponential distribution of rate k — 1 by the same argument. We can re-define A} = A/ (%7)

The coupling now gives that for all k > 272/3 . n, we have
t(k) =tk) —tn) = Y A; < Y E-AR—E. Ry — B _i.tRk
(k) = t(k) —t(n) = > Z_ZQ i = (t"(k) = t"(n)) = (k).
, . Y 2y 2y
i=k+1 i=k+1
This implies that either n; < 2-2/3. n, or ng < nf where 7 = %’Y -t
Recall that when t = —In g, n; is the vertex size of G(g). This corresponds to 7 = —2% -In ¢ in the contraction

process defined for R. That is each edge in R fails with probability e™" = q%v = 272/3 since ¢=7 = 2. Let X be
the number of uncontracted edges in R at time 7. Then by Hoeffding’s inequality,

1
Pr[X > (14+n"Y.2728 . (n—1)] < exp(—5 - (1+ n~0N2.272/3 (n — 1)) = exp(—Q(n"?)).
Sonf =X +1< (2723 +n7%) . n whp. By coupling, |V (H)| =n_m, < (272/3 +n7%1) . n whp. |

4.3 Bias and Variance of the Estimator First, we bound the bias of the estimator. We start by observing
that the contraction steps themselves are unbiased.

LEMMA 4.4. Assume H is generated by H ~ G(q) for some q < p. Then, ug(p/q) is an unbiased estimator of
uc(p)-

Proof. The lemma follows from the observation that deleting each edge with probability p from G is equivalent to
first creating a set of candidate edges by sampling each edge with probability ¢, and then removing each candidate
edge with probability p/q. d

We prove a similar property of unbiasedness of sparsification steps (Lemma 5.1 in Section 5). Given these
lemmas, the only source of bias are the base cases. We can now bound overall bias of the estimator as follows:

LEMMA 4.5. The algorithm outputs an estimate of ug(p) with bias at most 0.1¢ - ug(p).

Proof. Let X be the output of the algorithm. Consider the base cases of the recursion. Karger’s algorithm
(Theorem 1.2) for a small instance and the Monte Carlo sampling algorithms have no bias.

In the last base case of importance sampling, the bias is O (%) -ug(p) by Lemma 1.3. We can set the
constant threshold for the first base case to be O(e~2log? %), so that for n larger than the threshold we have

0 (1"%) <0.1e.

We use induction on recursion depth to prove that (1 —0.1¢) - ug(p) < E[X] < (1+0.1¢) - ug(p) holds for the
recursive case as well.

Consider an inductive step where the algorithm takes the average of two recursive calls. Let X; and X5 be
the output of the two recursive calls, so that X = % This can happen for two reasons: recursive contraction
or sparsification. First, we consider the case of contraction. Later, we extend the same analysis to sparsification.

Let Hy and Hs be the two recursively generated graphs by contraction. By the inductive hypothesis,

|E[X:|H;] — um, (p/q)| < 0.1€ - um, (p/q)-

By Lemma 4.4, Elugy, (p/q)] = uc(p). Therefore,

[E[Xi] —ua(p)| = [En, [E[X|Hi]] = Ep, [un, (p/q)]| < Ep, [[E[X;|Hi] — um, (p/q)l]
< Epg,[0.1e - up,(p/q)] (by inductive hypothesis) = 0.1¢ - Eg, [ug, (p/q)] = 0.1€ - ug(p).

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Thus, |E[X] — ue(p)| < 3 (|E[X1] — uc(p)] + |E[X2] — ua(p)]) < 0.1¢ - ug(p), using the previous inequality.

In a sparsification step, the algorithm also takes the average of two recursive calls X = % on the sparsifier
graphs G4, Gs. To replicate the proof above, we need to show that ug, (q) and ug, (q) are unbiased estimators of
ug(p). We show this in Lemma 5.1 in Section 5. |

We now need to bound the relative variance of the estimator. Again, there are two cases depending on
whether contraction or sparsification is being used in the current computation node. We first prove the bound
on the relative variance due to contraction steps below. The bound for sparsification is very similar, and is
established formally in Section 5.

Instead of bounding the relative variance of ug(p/q), we will bound the relative variance of zy(p/q) and
invoke the following lemma:

LEMMA 4.6. Assume p < 0. If zy(q) is an unbiased estimator of zg(p) with relative variance 1, and ug(q) is an
unbiased estimator of ug(p), then ug(q) has relative variance at most (1 +0 (loén)) n+ 0 (loén)

1
logn

Proof. Since p < 6, we have ug(p) > (1 -) - zg(p) by Lemma 2.1. We also have ug(q) < zg(q) for any

q € [0,1]. Since E[ug(q)] = ue(p), the relative variance of up(q) can be bounded as follows:

(N e

logn
]

We now bound the relative variance of zg(p/q). For the base case, we will use the following known bound:

LEMMA 4.7. (LEMMA 3.1 OF [14]) Assume p < 0. Sample H ~ G(q) for ¢~ = ©(1). Then, ug(p/q) is an
unbiased estimator of ug(p), and zg(p/q) is an unbiased estimator of zg(p). Moreover, both estimators have
relative second moment upper bounded by

¢ (1+0 % ot .
logp—> logn

LEMMA 4.8. Assume that 4n=2 < p* < n™9%% and p < 0, where 0 is given in Lemma 2.1. Then the relative
second moment of zg(p/q) is 2+ O (1) where H ~ G(q) and ¢7 = /2.

logn

Proof. There are two cases depending on the relative values of v and A.
First, suppose (1 + %) v > A. Then,

q—)\ < q—’y(1+5/logn) — 21+5/10gn <2(1+0 1 —9240 1 .
logn logn

By Lemma 4.7, when p* < n~%?, the relative second moment of z5 (p/q) is upper bounded by ¢=* (1 +0 (#»,

logn

which is at most 2 + O (1) by our bound on ¢~ above.

logn
In the rest of the proof, we assume (1 + %) v < A. This proof now follows the same template as in Karger’s

analysis [14]. The main difference is that we use the parameter v whereas Karger uses A.
The relative second moment is bounded as:

e P Y) N ==l v G ()

Cq‘,7Cj6C C'i,CjGC(G)
1 p2ci pcmLCj pciJer
(2¢(p))? q“ q!CinCil Z qICinG;|
Ci Ci#C;:|CinCj| <y Ci#C;:|CiNCy >

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

In the above expression, we distinguished between the cases C; = C; and C; # (), and the second case is further
split into |C; N C;| <« and |C; N Cj| > . We define:

pQqu
ey
Ci
pCi +cj

V2 = Z ¢ICinC;]

C;#C;:|C;NCj <y

B pci-‘er
Vs = > Pk
Ci#C;:|CiNCy | >
We first bound V;:
2¢; 2, (1 1 p’ ei L pei= (g~ (€= ¥ ei L pei= (g~ (€=
Vi—2> p* =) p) Zp : —1)=2-p") pp(q -1)

~
q C,

Let us also denote t; = % and f(t;) = (2u)t —ub = p%~7 (¢~ (¢~ — 1) where u = p”. Therefore,
Vim2) p =27y pt - ()
C; C;

Note that since p* € [n™3,n7%5] and v € [2A, \], we have u = p7 € [n=3,n~%-37%]. We now use the following fact,
which we prove in the appendix:

FACT 4.2. For function f(t) = (2u)t — u', suppose u < n=937 and t > logn. Then, for n larger than some

constant, we have % < 0.

Thus, f is monotone decreasing when ¢ > %. Since t; > 2=2 > 5 we can upper bound flt) <

¥ = logn’
f (logn) = y®/logn . (25/1ogm _ 1) Combined with p7 < z¢(p) by Lemma 4.1, we have
5
V-2 2Ci < 9. Y. . <9. 2 5/10gn.25/10gn_1
2T 2 20) S () €2 ol e)
1
<9 2 (,,—0-375\5/1087 95/logn _ 1) <) 2
< 2(za(p))? (=097 ")20 () - Galo)
Thus,
1
4. < : 242y pl
(46) 120 (g)) +2 5

Next, we bound V5 as follows:
ci+cj
p 7 CiTCj C; (&2
(4.7) Vy = > 7q‘cimcj|§q > poite —q E P> =2(2a(p))® —2- E P

Ci#C;,|CiNCG | <y Ci,C5

Finally, we bound V3 as follows:

|CiNC; |
V= > p'wf'(f;) <> p'C“C() =7 26(p) p? <2-76(p) - 26(p).

Ci7$Cj,|CiﬂCj‘>’y C; ;éC

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Since p < 6, Lemma 2.1 gives z¢(p) < —— - 2¢(p). Therefore,

[\

(4.8) Vs <2-a6(p) - 2a(p) < (26 (p))*.

logn

Putting the bounds on Vi, V2 and V3 given by Equations (4.6) to (4.8) together, we get

Elzu(p/a)®] _ Vit+Va+Vs _ o
@) - e®)? 2o <1Ogn> '

|

Combining Lemmas 4.6 to 4.8, we obtain the following:

. 1
COROLLARY 4.1. ug(p/q) is an unbiased estimator of ug(p) with relative second moment at most 2+ O <logn)'
We now use induction to bound the second moment of the overall estimator. This requires our bounds on the
base cases as well as that established for a recursive contraction step in Lemma 4.8 and the corresponding bound
for a sparsification step that we establish in Lemma 5.2 in Section 5.

LEMMA 4.9. The second moment of the estimator given by the overall algorithm is at most log® ™M n - (uc(p))?

whp.

Proof. Let X be the estimator given by the overall algorithm. We use induction on recursion depth to prove
E[X2] < (log® n) - (ug(p))? for some constant K > 1.

Consider the base cases of the recursion. In the first case (Karger’s algorithm (Theorem 1.2) the relative
variance is O(1). In the second case (Monte Carlo sampling), we get an unbiased estimator of ug(p) with relative
variance O(1) by Lemmas 1.1 and 1.2. In the last case (importance sampling on spanning tree packing), we get an
estimator of ug(p) with relative bias 0.1¢ (by Lemma 4.5) and relative variance O(1) (by Lemma 1.3). For such an
estimator X', we have E[X’] < (140.1¢)u and E[X"?] < O(1)-E[X']? < O(1)-(140.1¢)*(uc(p))? = O(1)- (uc(p))?.

Therefore, the statement of the lemma holds for all the base cases.

Next we consider the inductive step where the algorithm takes average of two recursive calls. Let X; and X5
be the outputs of the two recursive calls, so that X = % Again, we have two cases depending on whether
we are in a contraction step or a sparsification step. First, we consider a contraction step. The sparsification step
is similar and handled at the end.

Let Hy and Hs be the two random contracted graphs. Now, we have

X+ X2\
2
since X1, X5 are respectively independent of Hs, Hj.

By the inductive hypothesis, E[X?|H;] < (log™ n;) - (um,(p/q))? for i = 1,2. By applying Lemma 4.5 on the
recursive calls; we have

E[X?] =E

EDGIHL] + EIX3|H]) + 5 - BIX [Hy] - E[Xa|Ha]

1
=Eu, 1, [

E[X,|H)] < (1+0.1¢) - ur, (p/q).

We can now bound the second moment by

EIX?] < - Ea i, [(0g" m) - (wrr, (p/0))? + (08" m2) - (s, (/)]

5 (U401 - Eag o, s, (p/) -, (/)]

IA
RNy

(108 m) - B, [(ur, (p/0))?] + § - (08 m2) - Ery (s, (0/)"
(49) +EH1 [qu (p/q)] 'EH2 [qu (p/Q)L

by independence of Hy, Hs and since € < 1.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

To bound the first term in Equation (4.9), note that by Corollary 4.1, we have

El(ur, (p/4))?] < (2 Lo ()) (we(p))? for i = 1,2.

logn
To bound the second term in Equation (4.9), note that E[ug, (p/q)] = ug(p) by Lemma 4.4. Thus,

Em, [un, (p/q)] - Ba, [un, (p/q)] = (ua(p))®.

Putting the two terms together, we get

E[X?] <

< 0g" -+ 10g") (240 ()) (w0 + (ua (1)

logn

By Lemma 4.3, n; < (272/34n=91).n whp. Then, for a fixed constant ¢ € (0, 1), we have log™ n; < (logn—c)*
for i = 1,2. Continuing the bound on E[X?],

5 Gogn =0 (240 (1)) o) + walp)?

E[X? 1 K o(1)
[7]2<(logn—c)K 1+0(— —|—1§10gKn- 1-— ¢ 14+ ¢ SlogKn,
(uc(p)) logn logn logn

for a large enough K and n larger than some constant. B
For a sparsification step, we can repeat the same argument after replacing H by G and ug(p/q) by us(q)-
By Lemma 5.1, us(q) is also an unbiased estimator of ug(p). The bound for relative second moment of us(q) is

240 <1oén> by Corollary 5.1, which is as good as Corollary 4.1.]

E[X?]

IN

4.4 Running Time of the Algorithm We first establish the following property enforced by sparsification
steps.

LEMMA 4.10. Assume m > n'>~¢ and the algorithm executes a sparsification step followed by a contraction step.
Let m’ be the number of edges in a resulting graph. Then, the following bounds hold in expectation: m’ = O(n)
and log?m’ < 272/3 . log? m.

Proof. Sparsification generates a graph G with min-cut value A= O(l) Then we perform random contraction
on G with ¢7 = 1/2, where v < A. Then qS‘ < ¢¥ =1/2 and %_q = 0(5\) By Lemma 2.5, the expected edge size
of the graph after contraction (which follows distribution G(g)) is at most T = O(n\) = O(n). (Note that n is
the vertex size before sparsification.)

The assumption gives m > n'5=¢. After contraction we have E[m/] < O(n) < O(m?/3+€). Notice that log?(z)
is concave when x > e and we can apply Jensen’s inequality. For £ < 0.1,

- 2 2
E[log® m'] < log? E[m’] < log® O(m?/3+¢) < ((3 +&+ 0(1)) log m> < 2723 Jog? m.

]
LEMMA 4.11. The algorithm runs in m*+°1) 4 O(n5e=1) time in expectation.

Proof. Let T'(n,m) be the expected running time of a recursive call on a graph with n vertices and m edges. Recall
that there are three types of nodes in the computation tree: base cases, contraction nodes, and sparsification nodes.
If the parent of a contraction node is a sparsification node, we call it an irregular contraction node; otherwise,
the contraction node is called a regular contraction node. First, we shortcut all irregular contraction nodes (by
making their parent the parent of their children). The running time of all such irregular contraction nodes are
accounted for by their parent sparsification nodes. Note that each sparsification node has at most two irregular
contraction nodes as children; hence, it accounts for the cost of at most three nodes (itself and its two children

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

irregular contraction nodes). Because of this transformation, the number of children of a sparsification node can
increase to at most 4.

In the rest of the discussion, we assume that the contraction tree has only three types of nodes: sparsification
nodes, regular contraction nodes and base cases (which are leaves of the computation tree). In the first base
case of n < O(e~%log? 1), the running time is O(n?) = O(n'®c~1) by Theorem 1.2. The second and third base
cases take m!te() 4 O(n1'5) time by Lemmas 1.1 to 1.3. In a sparsification node, the sparsification algorithm in
Section 5 takes O(m) time. In a contraction node, constructing a Gomory-Hu tree for unweighted graphs takes
time mHO(l) [1], which dominates all other operations. So the time spent at any node of the computation tree is

mito) 4 O(1:5¢=1) in total (including the charge received by a sparsification node from its children irregular
contraction nodes).

Lemma 4.3 shows that whp each recursive contraction reduces the vertex size by a factor of 272/3 +O(n=01).
In particular, this holds for a regular contraction node and its children, as well as a sparsification node and its
children inherited from an irregular contraction child.

First, we consider regular contraction nodes. Note that these nodes still have at most two children. Moreover,
they satisfy m < n'®~¢ (which implies m't°() < O(n'®)). Therefore, the recurrence is

(4.10) T(n,m) < O(n*°e™1) + 2727231 4+ n=%Y) . n,m).

Now, we consider a non-root sparsification node. This is more complicated because m > n'®~¢. Recall
that the running time incurred at this node (including that inherited from irregular contraction children) is
mite) O(1:5¢=1) Of these, the term O(n1'55_1) can be handled as in the previous case, namely it appears in
the recursion. The other term m!'*t°(1) is charged to the parent of the sparsification node. Let 7,7 respectively
represent the number of vertices and edges in the parent node. If the parent is a regular contraction node, then
we have m < < n'57¢. In this case, we can charge the m!T°() term to the parent’s recurence relation
Equation (4.10). Otherwise, the parent is a sparsiﬁcation node and we have m = O(f) in expectation by
Lemma 4.10. So, we can also charge m!T°() to O(). Finally, note that a sparsification node has at most 4
children. Let m’ denote the number of edges in any child of the sparsification node. We can write the following
recurrence for a sparsification node:

(4.11) T(n,m) < On*2e™) + 4727231 +n"") - n,m’), where m’ satisfies Lemma 4.10.

For the sake of the master theorem, we define a potential p = n - (1 +n=01). log® m. Lemma 4.10 measures
the progress in log” m for the second recurrence (Equation (4.11)) by log? m/ < 272/3 . 1og® m. We have

T(p) = O~(p1.55—1) + 2T<2—2/3p) or T(p) _ O(p1'5€_1) + 4T(2_4/3p)

The solution is T'(p) = O(p'5e~1), or T(n,m) = O(n'Pc~1).
Finally, note that the root node takes m!*°(1) 4+ O(n'%¢~1) time (and unlike non-root nodes, the m!*o()

term isn’t chargeable elsewhere). Therefore, the overall running time is m!'+t°() + O(n'®¢~1) in expectation.

d

Lemma 1.4 now follows from Lemmas 4.5, 4.9 and 4.11.

5 Sparsification in Recursive Contraction

This section describes the sparsification step, which is used in recursive contraction at the root of the computation
tree, or when the edge size m > n'5~¢. The goal is to reduce the minimum cut value to O(log® n) = O(1).

to obtain a sparsifier graph

We apply the sparsification lemma (Lemma 2.4) with parameter 6 = O <Iogn

G. The graph G is generated by picking each edge independently with probability o = © (log ") from G. G has

min-cut value \ = O(log3 n), which is our desired property.

In the rest of this section, we show that there is a value ¢ such that us(q) is an unbiased estimator of
uq(p) with O(1) relative variance. This would allow us to focus on estimating us(q) in the recursive contraction
algorithm.

Choose ¢ such that 1 — ¢ = ; Note that ¢ < p by the following argument: since A > Q(log n), we have
a < 1, which implies 1 — g > 1—pandq<p

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

LEMMA 5.1. Assume G is generated by picking every edge in G independently with probability o.. Also, suppose
q 1s chosen such that 1 —q = %. Then, us(q) is an unbiased estimator of ug(p).

Proof. Keeping each edge with probability 1 — p is equivalent to first choosing it with probability « and then
keeping it with probability 1 — ¢ = 1=2. 0

(03

Our goal now is to bound the relative variance of uz(q). Instead, we will bound the relative variance of zx(q)
and invoke Lemma 4.6. We now bound the relative second moment of zx(q):

LEMMA 5.2. When n=3 < p* <n=%5% we have that z5(q) is an unbiased estimator of zg(p) with relative second
moment at most 2+ O (L)

logn

Proof. Since p* > n3, we have 1 —p < 1 —e327/A < O (10%) Similarly, p* < n~= %% implies that

l—p>1—e08n/A >0 (10%) Therefore, denote

Recall from above that we defined ¢ so as to satisfy

logn
| g=T-o[a)-o
7= - log3 n - 2 .
« e log“n

Let Y, be the indicator that edge e is picked by the random graph G. For any edge e, we have

(5.12) E[qu]:aq+(1—a):1—a(1—q):p
(5.13) E[¢*]=a®?+(1-a)=1-7(1+q)<(1—-7)(1—7g) =p-(1—79).

We can bound E [qQYe] in two ways:

E 2Y.
1y BTl

P

E[¢®] 1-7q (1-7)+7(1-q) 7(1—q) 1
. < = = — < — = .
(5.15) < — 1+ 55— <1+2r(1—g) 1+O(Mogn>

Next we calculate the expectation and relative variance of z5(q). Notice that Y.’s are independent for each
edge e. Use C;AC; to denote the symmetric difference (C; \ C;) U (C; \ C;) over two cuts C;, C;. Use d(-) to
denote the cut value function in G. First, we calculate the expectation of zs(q):

Zq‘%i)] =) E [qzﬂeci YE} => IIEl"] 2 > 0= za(p).
C; C; Ci

C; ecC;

Elzg(q)] = E

Next, we bound the second moment of z5(q)

E [(24(9))*] =E ZZ gHen+aC) | = ZZE [QEGEQ YetY.eo, ye:|
C. O,

i Cj

; Z H E [qzyc] E [le] (5.12) ; ;p\CiACﬂ) (]E [que])wmc” .

C]‘ EECimC]‘ SECiAC]‘

We partition this sum into three parts and separately bound their ratios with (zg(p))?.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

For terms with C; = C},

Zci p|C,:ACf,\ . (E [QQYFJ)|CiﬂCi| B ZC

i

(2a(p))? (za)? X poza(p) ¢ za(p)

(5.14) (1 — +\A _ A (5.15) A
(5.16) MU= rt (1= e (] —1+0(—).
2a(p) D Alogn logn

For terms with |C; N C;| < A,

glge] | 19!
) . citcy o,
e x PO (E [qzye])\c,ncjl 2icine|<a PO (=)

(2a(p))? (2c(p))?

(5.15) E|Cmcj|<,\ pCi+CJ (1 —+ @) (Al(}gTL))/\ 1 A 1
Alogn logn

ci+ci
Zci,cj p=re

For terms with |C; N C;| > X and C; # C;, we have

oy (Bl
’ . c,uC;| .
AC| . g [¢2Ye] !N 20, |CinGy > PO < P)

> o
Ci#C;,|C:nCy|>A P

(za(p))? (zc(p))?
14 GG (1 — 7q) (1 —
(5§) ZC#CMCij(Z;(];))Q (1 —7q) < xc(p(la((;));qy (by definition of x¢(p)).

Applying Zg((g; < loén from Lemma 2.1, this is at most

1 1— A (5.16)
L A=t 1 o (<o L),
logn za(p) logn logn logn

In conclusion, the total relative variance is given by
Elzx(q)? 1 1 1 1
M <(1+0(— +{1+0(— +0|—)=24+0 .
(za(p))? logn logn logn logn

Combining Lemmas 4.6 and 5.2, we obtain the following:

|

COROLLARY 5.1. us(q) is an unbiased estimator of ug(p) with relative second moment at most 2 4+ O (L)

logn

6 Monte Carlo Sampling

Finally, we use Monte Carlo sampling for the unreliable case. We use it in two different ways: naive Monte Carlo
sampling and two-step recursive Monte Carlo sampling. These two algorithms respectively handle the cases p > 6
and n=2x < p < 0, for ug(h) = n=O(/leglogn) " (The precise value of 6 is the one given in Lemma 2.1.) Note that
in conjunction with the previous sections, this covers all possibilities.

6.1 Naive Monte Carlo Sampling When p > 0, we run a naive Monte Carlo sampling algorithm. Our goal
is to show Lemma 1.1, which we restate below:

LEMMA 1.1. For any p > 0, an unbiased estimator of ug(p) with relative variance O(1) can be computed in time
m! M) As a consequence, a (1 % €)-approzimation to ug(p) can be computed in m*t°Me=2 time under the
condition that p > 6.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

In each round of this algorithm, we run the following sampling process: remove each edge independently
with probability p and check whether the graph gets disconnected. The corresponding indicator variable X is a
Bernoulli random variable with parameter ug(p). The expectation, variance, and relative variance of this variable
are given below:

LEMMA 6.1. For a single round of Monte Carlo sampling, the mean, variance, and relative variance of the

estimator are given by E[X] = ug(p), V[X] = ua(p)(1 — ug(p)) and n[X] = uc(fig(;;‘)%(p)) < ual(p).

By repeated Monte Carlo sampling for 0(1 /uc(p)) independent rounds, we can reduce the relative variance
to O(1) by Fact 2.1. The running time of each round is O(m), so the total running time is O(m/ug(p)). Note
that ug(p) > ug(f) = n=°M); therefore, the running time is m!+o),

This completes the proof of Lemma 1.1.

6.2 Two-step Monte Carlo Sampling When p < 6 and p > n‘ﬁ, we use a two-step Monte Carlo sampling
algorithm. This follows a sparse sampling technique used by Karger [12]. Our goal is to show Lemma 1.2, which
we restate below:

LEMMA 1.2. For p such that p < 6 and p* > n~12, an unbiased estimator of ug(p) with relative variance O(1)
can be computed in O(m + n'?) time. As a consequence, a (1 & €)-approzimation to ug(p) can be computed in
O((m + n'5)e=2) time under the condition that p < 6 and p» > n~'/2.

To describe this algorithm, we first note that instead of removing each edge with probability p and checking
if the graph is disconnected, we can equivalently contract every edge with probability 1 — p and check if we get
more than one vertex. Instead of doing this in one shot, we stage this contraction process out into two steps: in
the first step, for some ¢ > p, we contract each edge with probability 1 — ¢ to form a graph H (i.e., H ~ G(q)),
and then in the second step, we contract each edge in H with probability 1 —p/q. Note that the indicator variable
for obtaining > 1 vertex at the end of this two step contraction process is an unbiased estimator for ug(p/q), and
since Elug (p/q)] = uc(p), is also an unbiased estimator of ug(p).

But, what do we gain in this two-step process? To understand this, we need to bound the running time for
each of the two steps. In each step, we bound the running time for a single round of Monte Carlo sampling and
also the relative variance of the resulting estimator, which in turn bounds the number of rounds by Lemma 1.1.

For the first step, we use a naive implementation of Monte Carlo sampling in O(m) time. To ensure efficiency
in terms of the number of rounds of sampling, we need to choose ¢ to be large enough such that the relative
variance at the end of this step is small. We choose ¢ such that ¢* = 1/2. Note that if ¢* = 1/2 and p < @ (for 0
given in Lemma 2.1), then

1
q)\ — 5 > n—O(l/loglogn) _ UG(H) > UG(p) > pA;

thus ¢ > p as required. Furthermore, since p < 6, we can apply Lemma 4.7. Note that p* < ug(p) < ug(d) =
n~O0/loglogn) (hy Lemma 2.1). Thus,

O(1) 0 <loglogn> —o(1).

logp—* logn

Since ¢~* = 2, Lemma 4.7 implies that the relative variance of ug(p/q) over the randomness of H is at most
2+0(1) =0(1).

Now, we consider the second step of Monte Carlo sampling. Here, we naively bound the relative variance of
the estimator by the relative variance of the overall estimator, which by Lemma 6.1 is given by 1/ug(p). Now,
since ug(p) > p* > n~1/2, we get that the relative variance of the estimator in the second step is at most V.
Since we are aiming for a running time of O(m +n?/ %), we must give an implementation of the second step of
Monte Carlo sampling in O(n) time. Crucially, because of edge contractions, the number of edges in H generated
after the first step of sampling is at most 1fq in expectation (by Lemma 2.5). By our choice of ¢ that ensures
¢ = 1/2, Lemma 2.5 implies that in expectation, H contains O(n)) edges. So, a naive implementation of Monte
Carlo sampling takes O(nA) time per round in expectation. But, this is still not enough since we are aiming for

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

a running time of O(n) per round. Recall that the probability of contracting an edge in H is 1 — p/q, which can
be bounded as follows (the second inequality uses p* > n=/2):

1_p<1_p§1_€0.51nn/,\§0~5111n_0<10gn>.
q

A A

Now, since H only has O(n\) edges in expectation, it follows that the expected number of contracted edges in H
is O(nlogn).

Instead of iterating over all edges in H, we directly choose the edges to contract and check if they contain a
spanning tree over the set of vertices in H. The first step is to determine the number of edges to contract. Note
that this is a Binomial random variable with parameters |E(H)| and 1 —p/q. Once we have selected the number
of contracted edges by generating the Binomial random variable, we must then select these edges to contract
uniformly at random from the edges in H. We choose edges uniformly at random (with replacement, discarding if
we get a duplicate) until we have the desired number of edges. This algorithm requires O(1) time per contracted
edge, which is O(n) time in expectation overall.

We now describe our overall algorithm. For each round of the first sampling step that reduces G to H, we
use O(y/n) independent rounds of the second step of Monte Carlo sampling on H. This gives an estimator of
ug (p/q) with relative variance 1, and takes O(m + n'®) time. The overall relative variance of the estimator of
ug(p) is now O(1) by Lemma 2.7. So, we now invoke Lemma 2.6 by repeating this sampling for O(¢~2) rounds
to get a (1 « ¢)-approximate estimate of ug(p) in O((m + n'®)e~2) time overall.

This completes the proof of Lemma 1.2.

7 Conclusion

We obtain an algorithm for the network unreliability problem that runs in m!+o() 4+ O(n1'5) time and improves
on the previous best running time of O(n2) Our main technical contribution is a new algorithm for estimating
unreliability in the wvery reliable situation, which is normally the bottleneck for unreliability algorithms. Our
algorithm utilizes a carefully defined importance sampling procedure on a collection of cuts defined via a spanning
tree packing of the graph. In addition, for the moderately reliable setting, we give a new, improved analysis
for (a version of) the recursive contraction algorithm. Our algorithm is almost-linear time for dense instances
(m = Q(n'?)). Obtaining an almost linear running time for all instances is the natural eventual goal. But, this
will require new ideas that go beyond the techniques described in this paper which are optimized to obtain the
O(n®) bound.

Our result holds for the uniform case where every edge fails with the same probability p. A more general
setting is when each edge e fails with a different probability p.. This can be simulated in the uniform setting by
using multiple parallel edges for each edge, and our algorithm works for this simulated graph but at the cost of
an increase in the running time because of the dependence on the number of edges m.

The problem of estimating reliability, i.e., the probability that the graph stays connected under edge failures, is
equivalent to the unreliability problem when we seek exact computation. However, for approximation algorithms,
the problems are different. For approximating reliability, the bottleneck graphs are the very unreliable ones,
and require an entirely different set of techniques. For the reliability problem, the current best running time is

0 (#’i)) due to Guo and He [7]. Improving this bound is also an interesting question in the general area of

network reliability.

Acknowledgements
RC, WH, and DP were supported in part by NSF grants CCF-1750140 (CAREER) and CCF-1955703.

References

[1] Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol Saranurak, and Ohad Trabelsi.
Breaking the cubic barrier for all-pairs max-flow: Gomory-hu tree in nearly quadratic time. In 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science (FOCS), pages 884-895, 2022.

[2] Noga Alon, Alan M. Frieze, and Dominic Welsh. Polynomial time randomized approximation schemes for tutte-
grothendieck invariants: The dense case. Random Struct. Algorithms, 6(4):459-478, 1995.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

[3] Sanjay Kumar Chaturvedi. Network reliability: measures and evaluation. John Wiley & Sons, 2016.

[4] Charles J Colbourn. The combinatorics of network reliability. Oxford University Press, Inc., 1987.

[5] H.N. Gabow. A matroid approach to finding edge connectivity and packing arborescences. Journal of Computer and
System Sciences, 50(2):259-273, 1995.

[6] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society for Industrial and Applied
Mathematics, 9(4):551-570, 1961.

[7] Heng Guo and Kun He. Tight bounds for popping algorithms. Random Structures & Algorithms, 57(2):371-392,
2020.

[8] David G. Harris and Aravind Srinivasan. Improved bounds and algorithms for graph cuts and network reliability.
Random Structures € Algorithms, 52(1):74-135, 2018.

[9] David R. Karger. Random sampling in cut, flow, and network design problems. Mathematics of Operations Research,
24(2):383-413, 1999.

[10] David R. Karger. A randomized fully polynomial time approximation scheme for the all-terminal network reliability
problem. STAM Journal on Computing, 29(2):492-514, 1999.

[11] David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46-76, 2000.

[12] David R. Karger. A fast and simple unbiased estimator for network (un)reliability. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 635-644, 2016.

[13] David R. Karger. Faster (and still pretty simple) unbiased estimators for network (un)reliability. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 755-766, 2017.

[14] David R. Karger. A phase transition and a quadratic time unbiased estimator for network reliability. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, page 485-495, New York, NY,
USA, 2020. Association for Computing Machinery.

[15] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized linear-time algorithm to find minimum
spanning trees. J. ACM, 42(2):321-328, 1995.

[16] David R Karger and Clifford Stein. A new approach to the minimum cut problem. Journal of the ACM (JACM),
43(4):601-640, 1996.

[17] Richard M Karp, Michael Luby, and Neal Madras. Monte-carlo approximation algorithms for enumeration problems.
Journal of algorithms, 10(3):429-448, 1989.

[18] George S. Lueker. A data structure for orthogonal range queries. In 19th Annual Symposium on Foundations of
Computer Science (sfcs 1978), pages 28-34, 1978.

[19] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410—
421, 1979.

A Additional Proofs

A.1 Proof of Lemma 2.1 To prove this lemma, we use the following lemma shown by Karger [14]:

LEMMA A.l. (THEOREMS 5.1 AND 7.1 OF [14]) There exist thresholds 0 < s < b < 1 such that

1. When p < s, 2283 < (p/s)M2.

2. ug(b) = 1, s* = Q(b*/log® n).

3. zg,a(b) = n~O0/loga) “yhere 26,a(b) is the expected number of failed al-weak cuts in G when each edge is
removed with probability b.

Recall that xg(p) is the expected number of failed cut pairs, and zg(p) is the expected number of failed cuts.
A simple inclusion-exclusion on ug(p) gives

za(p) — za(p) < ua(p) < za(p).
Let s and b be the thresholds provided by Lemma A.1. Set §* = s*/ log®n, 6 < s. Then, when p < 0,

1
< (p/s)M? < (0/5)? = logn’

so the second property holds.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Next we prove the first property. 6 = s*/log®n = Q(b*/log* n).

1
logn

1 o1 AN
=3 ¥ =g 3 oe(f)

Cici<aA Cici<aA

udsz)m@zlmM@

> ZG,O{(b) . (Q(log_4 n))a > nfO(l/ log o) | efo(aloglogn)

Set a = O(logn/(loglogn)?), then n=C(/loga) — y—-0@/loglogn) " 5 =Olaloglogn) — p=0O(1/loglogn) Ty
conclusion ug(#) = n~C1/1eglogn) Qo the first property holds.

A.2 Proof of Lemma 2.2 We first state a simple fact about the ratio p*, the probability that a specific min
cut fails, and ug(p), the probability that any cut fails.

LEMMA A.2. (COROLLARY I1.2 OF [12]) For a graph G with n vertices and min cut value A,
P <ug(p) < n’p.

By Lemma A.2 and the definition of b in Lemma A.1, we have
/2 = ug(b) < n?b*.

Therefore, s* = Q(b*/log?n) = Q(n=2/log?n). When p* = O(n=3), we have

(p/s)*? = \/p*/s* <

The lemma follows by plugging this bound into the first property of Lemma A.1.

A.3 Proof of Lemma 3.2 We use Gabow’s algorithm that packs directionless spanning trees in a directed
graph D. A directionless spanning tree of D is a subgraph of D such that if we replace all its edges with undirected
edges, we get a tree spanning all vertices of D.

LEMMA A.3. ([5]) Given a directed graph D with min-cut value X\, we can construct in O(Amlog(n?/m)) time a
packing of A edge-disjoint directionless spanning trees.

Given an undirected graph G, we construct a directed graph D by replacing every undirected edge by two
directed edges in opposite directions. Then the min-cut value in D is the same as the min-cut value A in G. We
apply Lemma A.3 to get A edge-disjoint directionless spanning trees in D. After that, remove the directions of
all edges in the trees to form a tree packing 7 in G. Removing direction maps two edges in D into one edge in
G. Therefore, each edge of G is used by at most two trees in 7.

A.4 Proof of Fact 3.1 Among the N7 possible sampling sequences, we count the number of sequences that
form set A. Such a sequence can be generated by first partitioning the j elements into « sets, then choosing a
bijection between these sets and elements in A. The first step has S(j, a) possibilities, and the second step has
a! choices. So, the total number of sequences that yield A is given by a! S(j,). The first part of the lemma now
follows since in uniform sampling with replacement, all N7 sequences are equally likely. For the second part, we
note that when j = 2, we have S(j,a) =1 for a € {1,2} and S(j, @) = 0 otherwise.

A.5 Proof of Fact 4.2 Since ¢t > 105 = 511’12 > li, we have 28 —1 > tln2 > 311n2. This implies
gn nn nn nn
¢ t
77 =145 <1+ 3111‘“"2, and 22,11‘12 < In2 + $Inn. When n is greater than some constant, we have
2;1? < 0.3751nn. Therefore,
df

1
i (2u)* In(2u) — u' Inu = v’ <2t In2— (2 —1)In > <u'(2'In2 — (2 - 1)0.3751nn) < 0.
u

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Our Contribution
	Our Techniques
	Overall Algorithm and Paper Organization

	Preliminaries
	Importance Sampling on a Spanning Tree Packing
	Dependence of zG(p) on Near-Minimum Cuts
	Algorithm for Estimating zG(p) for 3.5-weak Cuts
	Running Time of the Algorithm

	Recursive Contraction
	Description of the Algorithm
	Properties of the Parameter
	Bias and Variance of the Estimator
	Running Time of the Algorithm

	Sparsification in Recursive Contraction
	Monte Carlo Sampling
	Naïve Monte Carlo Sampling
	Two-step Monte Carlo Sampling

	Conclusion
	Additional Proofs
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 3.2
	Proof of Fact 3.1
	Proof of Fact 4.2

