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Abstract. Quenching has been an extremely important natural phe-
nomenon observed in many biomedical and multiphysical procedures,
such as a rapid cancer cell progression or internal combustion process.
The latter has been playing a crucial rule in optimizations of modern solid
fuel rocket engine designs. Mathematically, quenching means the blow-
up of temporal derivatives of the solution function ¢ while the function
itself remains to be bounded throughout the underlying procedure. This
paper studies a semi-adaptive numerical method for simulating solutions
of a singular partial differential equation that models a significant num-
ber of quenching data streams. Numerical convergence will be investi-
gated as well as verifying that features of the solution is preserved in the
approximation. Orders of the convergence will also be validated through
experimental procedures. Milne’s device will be used. Highly accurate
data models will be presented to illustrate theoretical predictions.

1 Introduction

A key behavior observed during tumor progress, wound healing, and cancer inva-
sion is that of rapid collective and coordinated cellular motion. Hence, under-
standing the different aspects of such coordinated migration is fundamental for
describing and treating cancer and other pathological defects [1,2]. To reduce
the number of invasive surgical procedures on patients, accurate tumor models
and simulations have become crucial in the study. One of such effective models
is built the nonlinear quenching partial differential equation which characterizes
sudden growths of cancer cells once certain environmental criteria are reached.
Similar modeling equations are frequently used in the energy industry for inter-
nal combustion machine designs [3-5].

For the sake of simplicity in formulations, we focus at an one-dimensional
quenching model problem in this paper. In the circumstance, the quenching
dynamics can be characterized through following modeling problem [3,6-8]:
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1
o(s)q = 3dss T #(q), 0<s<1,tg<t<T, (1.1)
Q(Ovt) = q(]-vt) = 0, t>to, (12)
q(s,t0) = qo(s), 0<s<1, (1.3)

where a > 0 is the physical size of a tumor contaminated region, or a linear
combustion chamber, ¢ is the cell population index, ¢(q) — 400 as ¢ — b~, b
is a trigging threshold of the population, and 7" < +o0 is sufficiently large. We
adopt the following degenerate and reaction functions,

o(s) = ase(l - 5)179, dg)=0b—-—q7?, a>0,0<0<1, p>0. (1.4)

Note that o(s) = 0 indicates possible hidden defects within combustion chamber

walls, and locations of such defects can be stochastically distributed in the spacial

domain. Size of such a location set is often extremely small otherwise they can

be detected in earlier stage of the manufacturing process [4,6,9]. On the other

hand, the nonlinear source function ¢(¢) must be monotonically increasing with

#(0) = ¢ > 0 and 1irlr)1 ¢(q) = oo. Our functions in (1.4) are particularly chosen
a—

to reflect aforementioned features in a relatively simple manner, and to achieve
quick and successful data stream analysis in mathematics.

It has been shown that there exists a critical value a* > 0 such that if a in
(1.1) is greater than a* then the maximal value of solution of (1.1)—(1.3) reaches
its ceiling b in finite time T, = T'(a). This indicates that

lim max ¢(s,t) =b and lim sup q.(s,t) = +oo.
t—T, s€[0,1] t—T, s€(0,1)

Such a phenomenon is refereed to as quenching, and the corresponding ¢ is a
quenching solution. Further, ¢ must increase monotonically as t increases at any
fixed cell location 0 < s < 1 [10-13].

In the study of numerical combustion, the quenching stream (1.1)—(1.3) is
particularly used to model combustible systems utlizing solid or liquid fuels.
The ignition process starts with appearance of a outside thermal source which
results in an region heating up. If the conditions are appropriate then the region
will have high temperatures with drastic increase in reaction rates, eventually
resulting in an explosion. The process may be found in everyday applications like
automobile engine and in a more interesting setting, rocket engines. In addition
to the function w used to show certain defects in side-wall of a combustor, air
bubbles contained in the fuel and, more seriously, hidden cracks in engine struc-
tures can also be formulated approximately. The partial differential equations
often provide lower cost evaluations of modern engine designs before any expen-
sive physical tests and experiments. The mathematical model and data obtained
also help optimize the improvement of engines to maximize the efficiency in fuel
consumptions. Needless to say, this has been one of the top concerns in the
energy industry.
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Our investigation is organized as follows. In the next section, we propose a
second order Crank-Nicolson scheme for solving (1.1)—(1.4) on uniform spatial
mesh and adaptive temporal steps. Preservations of the solution geometry such
as the cell population positivity and monotonicity are studied. A proof of the
convergence of the numerical solution sequence is given. A remark is stated for
the more general simulation applications. Section 3 focuses on multiple numeri-
cal experiments that illustrate our analysis. Comparisons are offered with typical
numerical methods in the field. Experiments are conducted on the order of accu-
racy of our simulation method. It is found that the method remarkably retains
second order accuracy in space and first order in time, except in the quenching, or
cell bursting, area as the quenching time is approached. Finally, in Sect. 4, brief
concluding remarks and discussions are given for future endeavors in biomedical
simulations.

2 Conservative and Convergent Algorithm

Let b = 1, N € N*;, N > 1 and h = 1/(N + 1). Further, let Dy =
{50,81,.--,5N41} C Q, where s, = kh, k = 0,1,...,N + 1. Denote q()
an approximation of ¢(sg,t;), k = 0,1,...,N + 1, i« = 0,1,... Assume that
Dy C Dy be the set of interior mesh points. We approximate the spacial deriva-
tive in (1.1) through second-order central difference

(4) (4) (2)
0 i1 — 24, +a
(qu)Ec) = 2 hI; "L 4 O(h?), sk € Da.

Drop the truncation error. Utilizing a Crank-Nicolson method we obtain the
following semi-adaptive nonlinear method from (1.1)—(1.3):

. " —1 . ) . ) ) .
@t = (1-Za)" (1+ Z4) [o9 + Zw (V)] + Zu (aU) s =010 (21)

4 = o (2.2)
NT
; 5 ; 3 g N0
Whereq():(qg),qé),...,qN)) , Y = < SR o , A= BT €
RNXN
-2 1
1-2 1
1 1 1 1
B = dlag[...,], T = gz | , k=1,2... N,
g1 02 ON a 1-2 1
1-2

and q(é) is an approximation of ¢(t;), ty = Z T, £ =0,1,2,...,7+ 1, and

variable temporal steps 7; can be determined through a proper monitoring func-
tion, such as an arc-length function [6,14]. Needless to mention, an iterative
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procedure, or a linearization of the last term in (2.1), needs to be implemented
for solving system (2.1), (2.2). Monotone upper-lower solution vector procedures
may also be incorporated in such computations [11].

As discussed intensively in [12,15,16], solution positivity and monotonicity
are among the most distinguished mathematical characteristics of singular prob-
lems such as (1.1)—(1.3), and thus (2.1), (2.2). These properties reflect proper
natural behaviors of the cancer cell population growth or decay, and should be
preserved throughout simulations. To the end of analysis, we let V be one of the
operations <, <, >, >.Fora, 3€ R, we assume following notations:

1. oV B means ag V B, k=1,2,...,N;
2. ¢cVameans cVag, k=1,2,...,N, for any ¢ € R.

If 4 < 20 ;¢ N. Then matrices I — FA, I+ %A are nonsingular.

Omax

Furthermore, I + %A is nonnegative, I — %A is monotone and inverse-positive.
Under the same constraint, If there exits £ > 0 such that

) , .
%WQ, k=1,2,...,N; Aqmw(q“)) >0, j=0,1,....¢

then the solution sequence, ¢(*, ¢V, ... ¢ ... generated by (2.1), (2.2) are
monotonically increasing. To see the above, from (2.1) we may observe that

O g0 = (13 A)‘l (1+24) [ + Do (49)]
+ Ty <q<j+1>) g9 = (I N %A)‘l W), (2.3)

where

w® =7, A4¢D + 753 (qo)) T %J (I _ %A) " (5@)) (qml) _ qu)) ,
Substitute the above back into (2.3) to yield
Ut g — 7. [1 _ %wq (5(”)} - (1 _ %A)’l [Aqo) o <q<j>)} .

Therefore [I - %wq (€9)] s nonnegative. This ensures the anticipated mono-
tonicity ¢U+1) > ¢U),
Theorem A. The semi-adaptive method (2.1), (2.2) is convergent.

Proof. Assume that Q,(f) be the exact solution of (1.1)—(1.3), then
G (1-Tia) (14T G) 4 T (0] 4+ g (QU+D 2
@ *(I 2‘4) (I+2A> {Q +2w(Q )}+2¢(Q )+O(Tf)'

Subtracting (2.1) from the above and denote ) = QU+1) — ¢U+1 e find that
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sU“):(l—%Ay (1+34) {9+ 2w (@) -v(a?)]}
Jr% [1/} (Q(j+1)) — (q(JJrl))} +0 (Tj ) (2.4)
" (Qu)) — <q(e>> =, (gm) £

where elements of ¢, fl(f) € (min {q,(f), gf)} ,max {q,(f), QS)}) , k=
1,2,...,N. Recall (2.1). From (2.4) we obtain immediately that

Note that

o = (1= DR (12 2a) (14 D) (14 ZED) 0040 ().

It follows readily that

H6(3+1)H H T E(J+1)) (I— %A>_l (I—i— %A) (I+ E(J)) e +Co7—j27

where Cy > 0 is a constant. Using norm properties,

Hs(jJrl)H < (14 Mry) Hs(j)Hz + CTJZ,

2

where constants M, C € R*. Use the above inequality recursively. We acquire
that

HE(JH)H (1+M7)(1+ Mrj_4) "E(j_l)Hz +(1+ MT])CT 1+ CT
— (14 Mr;)...(1+ M) Hs@ HQ 4 Or2(1+ M) (1 + M) +

—|—CT (1 + M) +CT
=Crg(1+Mr)---(1+Mmn)+ +C’T 1(1+MTJ)+CT

since £(©) = (0 due to the initial value used. We further observe that

CTOQ(l—I—MTj)---(l—i-MTl) +CT 1(1+MTJ)+CT
:C¢§(1+Mrg)j+crl(1+Mrl)J Ly "'—|-CT]»71( —&—MTjil)—i—Csz,

where 77 for i = 0,1,...,7 — 1 are adaptive time steps used. Recursively, we
obtain that

Ce(1+ M) +Cri(1+ M7= 4 C’sz_l(l + M)+ CTj2
< Crée boT 4 CleeblT + -4 CTj{lebJ*IT + C'Tj27
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where b; for 1 = 0,1,...,7 — 1 are positive constants such that 7 = b;7; and
Ty, = T/N. Let us take the by that gives us the maximum of b; in the above.
Therefore,

CreeT +CrienT .. -—I—C'sz_leb-f‘lT —|—C’7'j2 <Ce (2414 -+Tj2_1 +T]2).

Now, denote Ce?*T = C and set 7, = max 7 < 1. From above investiga-

tions, we have

Hs(j+1) H2 <Crm(o+m+ - +11+7)=CrnT —0

as h, 7, — 0. This ensures the expected convergence. |

Remark 2.1. As an extension of the theorem, we may also prove that for any
given ¢ € N and beginning solution ¢\©) < 1, if

. 2a2 . . . .
U= < i Da(e) <1 k=12 N A4 (aD) 20, 5 =6 41,042,
then the vector solution sequence ¢(©, ¢+, ¢¥+2) . generated by the semi-

adaptive scheme (2.1), (2.2) increases monotonically until unity is exceeded by
a component of the vector (that is, until quenching occurs) or converges to a
steady solution of the problem (1.1)—(1.3). In the latter case, we do not have a
quenching solution.

Remark 2.2. We note that the last set of inequalities used in Remark 2.1 has
been ensured at least for the case ¢ = 0 and ¢(?). It seems that the solution
monotonicity requires more rigorous constraints than those for the numerical
convergence. This additional numerical feature is definitely justified for ensuring
expected quenching-blow up phenomena. However, the quenching data mono-
tonicity requirement has also made applications of nonuniform spacial grids much
more challenging.

Remark 2.5. The simulation method (2.1), (2.2) is numerical stable in the von
Neumann sense [17]. Since the scheme is often solved via a suitable linearization
of the nonlinear function v, the simulation method is also convergent due to a
natural conclusion of the Lax equivalence theorem. However, in the circumstance,
the order of convergence remains to be determined [11,18].

3 Order of Convergence and Simulation Results

The order of convergence r > 0 of a consistent numerical method is defined
through the error estimate,

|a = aty)

‘:Omm h—o0t, jel{0,1,...,J}, (3.1)
P
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in the p-norm (p > 1). Since (3.1) is in general difficult to use, r is often replaced
practically by the order of the truncation error, or defect, of the underlying
method [5,18,19].

Theorem B. The order of convergence of the semi-adaptive method (2.1), (2.2)
18 quadratic in the mazimum norm.

Proof. Since our simulation method (2.1), (2.2) is proven to be convergent and
numerical stable according to the Lax equivalence theorem, we know that r > 0.
To estimate such an order via a defect function, we notice that

J(S)qt - %QSS - ¢(Q) =0

due to (1.1). Further, let 7, h be the temporal and spacial discretization param-
eters, respectively. Based on the forward temporal difference and central spacial
difference, we acquire from the above equation that

G+ _ () (@) _9,0) 4 )
q -4 1[4 2q; " + 4= ;
o(si) <ka + om) - ( e 0(h2)> — o)) =0,

k=1,2,...,N; j=0,1,...,J.
Recall the Courant constraint 7/h% = O(1) for thermodynamic finite differ-

ence approximations [18]. Then the above equalities imply that the pointwise
defect

(J+1) (4) ) (7) )
j " —q 1 gyl —2q +aq” ;
dl(cﬂ) = o(sp) k - ko = k+1 hk2 k-1 </5(q;(f)) _ O(hz)’ (3.2)

k=1,2,....,N; j=0,1,...,J

Therefore Hd(j)Hm = O(h?) as h — 0%, j € {0,1,...,J}. Hence the order of
convergence of the data stream method (2.1), (2.2) is quadratic in the maximum
norm. |

Remark 3.1. The order of convergence of the semi-adaptive simulation method
(2.1), (2.2) is r = 1.5 in the Euclidean norm.

This can be seen readily from (3.2). We observe that d,(cj ) ~ ck ;h?, where
ck,; > 01is a constant, k =1,2,...,N; j=0,1,...,J Now,

Hd(j)H ~ ¢;VNht = ¢;V/Nh? < %m =c;h3?, j=0,1,...,J,
2

where ¢;, j =0,1,...,J, are positive constants. This completes our derivation.

Although a replacement definition based on defects cannot warrant (3.1), it
offers straightforward estimate and is extremely convenient to use. In fact, the
actual order of convergence defined in (3.1) is often lower than that calculated
via the replacement definition [20,21]. Since a quadratic or higher convergence
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is often favorable to applications, such as those in cell migration model simu-
lations [22], it is extremely meaningful to investigate and ensure the quality of
convergence of (2.1), (2.2).

Fortunately, the task is possible through a generalized Milne device. This is
stated through the following remark.

Remark 3.2. The order of convergence of the semi-adaptive simulation method
(2.1), (2.2) is quadratic based on computational verifications via a generalized
Milne device.

To demonstrate the result, we let ¢ denote the quenching solution with
temporal steps 7 € {71, 72,...,7s} h being the uniform spatial step. Further, let
q;, /2 be the numerical solution with halved spatial step size h/2. Likewise, we
define ¢, /4 by a similar argument. It follows that a generalized Milne formula
can be built for estimating the point-wise order of convergence via

NONEE S (q§j>>;/2_(q§j>>;

b In(2) (qgﬁ)f -—(qf”)T , k=1,2,...

h/4 h/2

(3.3)
given that the denominator is nontrivial [20]. Stretch the data from compu-

tational space [0,1] to original physical space [0,5] [19]. A surface of function

r,(j ) is shown in Fig. 1. The surface can be viewed as a computational order of

convergence spreading the entire space-time domain considered. Although the
evaluation takes place on three “consecutive” meshes in the space, it can be
)

conveniently extended for multidimensional cases. Detailed values of r,(g imme-
diately before the quenching time are given in Table 1.

There is little surprise that such a surface of r obtained is not linear due to the
strong quenching-blow up singularity of the quenching problem. We may notice
the dramatic decay of the point-wise order of convergence from quadratic to one
half in the quenching neighborhood near T,. The phenomenon is consistent with
existing discussions [15,19,20]. We note that if the variable Courant numbers
Vi = 7'j/h2 < a%pmin, 7 = 1,2,...,J, then a quadratic convergence in space
implies a linear convergence in time, that is,

Hq(j) - q(tj)H2 —OF), 70", je{0,1,...,J} (3.4)

where 7 = maxo<;<JjTj-
Formula (3.3) can be also extended via any standard p-norm, that is,

. [CED U
TZJ _ p

_1 9 In . . ’
n(2) H(q<4y));/4 _ (q<2y));/2Hp

1<p<oo, j=12,...,J (3.5)

On the other hand, if us consider a subset of the numerical solution sequence

Qm,n = {q(m)7q(m+1)7"'7q(‘j)""’q(n)} g {q(0)7q(1)7"'7q(j)""7q(J)}’
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Fig. 1. [LEFT] Surface plot of the point-wise order of convergence of the numerical
solution v by (2.1), (2.2). Formula (3.3) is employed.; [RIGHT] A locally enlarged
surface plot of the left image near the quenching singularity. It can be observed that

the the point-wise order is approximately quadratic except in a small area around the

quenching data location which is at (s*,7T,). Though the order decreases dramatically
in such a small area, it still stays above 0.5 which indicates a satisfactory data reliability
even in the tumor cell population blow-up area.

Table 1. The order of convergence of the solution g(s,t) calculated via (3.3) at ten
different s; locations right before data quenching. Note the order is approximately
2 everywhere except around s = 2.5 which decreases to 0.5 due to the quenching
singularity. These results are consistent with the existing theory [10-13].

S; order of convergence
2.02970297 1.99667070
2.12871287 1.99507152
2.22772277 1.99132454
2.32673267 1.97782804
2.42574257 1.80611369
2.52475247 0.50791656
2.62376237 1.95012804
2.72277227 1.98707873
2.82178217 1.99364935
2.92079207 1.99601168
3.01980198 1.99715469

where 0 < m < n < J, then the following (n — m + 1)-dimensional vectors

Wy = (q]E;m)7 QI(gm+l)7 .

(4)

Co Gy

g

.,q,gn)>T, k

can be defined. Therefore (3.5) can be simplified to

=1,2

)

P

)

N

)
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T T
1 Hwk,h/2 - wk,hH
Te,k = In

In(2)

L 1<l<o0, k=1,2,...,N. (3.6)
Hw;,h/zl - w;,h/z‘

L

The above new formula is extremely convenient to use in cell simulation
experiments. It also provides an effective order of convergence estimate span-
ning from ¢, to t, at each spacial location si, kK = 1,2,..., N. It reflects the
quality of performance of the algorithm dynamically in different stage of stream
simulations.

Again, for the simplicity of illustration, let us consider the case with an
uniform Courant number v = 7/h? = 1.0201 with »~ = 1/101. In Fig.2, we
present order estimates based on temporal intervals [to, t1674], [t1675, t3348] and
[t3349, t5023] in Fig. 2. The spectral norm (¢ = 2) is used. It is found that the order
is persistently stay at two, while decays repeatedly around the quenching-blow
up location s* = 2.5 in the last stage. We also notice that the order is slightly
higher in the first stage probably due to the excellent stability of the argorithm.

175 175 175

< =< X
~%425 ~425 2125

075 0.75 075

054 L L L L h 05g L L L L h 05g

Fig. 2. Simulations of the order of convergence estimates based on formula (3.6). The
three temporal stages used are [to, t1674], [t1675, t3348] and [t33a9, t5023], respectively.

Finally, we may show a simulated quenching solution ¢ and its rate-of-change
function ¢;. To do so, we may linearize (2.1), (2.2) to the following.

, S . o . A

@ = (1=Za) (1+ 2 4) [0 + Zu (a0)] + Zu (W) =010 (37

7 = g, (3.8)
where

WD g+ = g0) 4 1 [Aqu) i w(q@'))] ,

Consider a typical nonstochastic reaction function of the type (1.4) with
p = 1. Let us keep 7Y to be uniformly for simplicity in simulations. A fixed
physical space of a =5 is selected.
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Figure 3 shows the simulated solution and its corresponding temporal deriva-
tive function for the final 223 temporal levels before the quenching at T5 ~
0.50111987 (J = 723 temporal steps are used in the full simulation). Linearized
scheme (3.7), (3.8) is utilized. A single point quench is observed at s = 2.5 as
predicted [5,10,24]. The numerical solution is clearly nonnegative, and mono-
tonically increasing as time ¢ increases at any s € (0,a). It can also be observed
that while the solution ¢ remains bounded throughout the computation, its rate
of change, that is, the temporal derivative function ¢; seems to shoot to the
infinity at s = 2.5 as data quenching is approached [9,15,22].

In the thermal physics, the phenomenon indicates that a combustion is
ignited when the rate of change of the fuel temperature in a combustion cham-
ber tends to be unbounded. In Table 2, we list maximal values of ¢ and ¢; in ten
representative time levels, including six levels immediately before the quenching-
blow up. We note that 7; becomes variable after j = 500 due to the kick-in of the
adaptation. The patterns of the data agree very well with those given in [5,10].

09
1 08
08 0.7
06-
Xo05-
=
0.4-
03-

2 0.50112 o2r
0.50082
01/

—~ )
4 0.49990 0’
t

100 -

25 -
0.50112

~0.50021 [ B
.49990 0
t

Fig. 3. Surface plots of the numerical solution ¢ of (3.7)—(3.8) (first row), the corre-
sponding rate derivative ¢: (second row) for the last 223 temporal steps immediately

before quenching. It can be observed that Ts =~ 0.50111987, max q(s,t) =
0<s<5,0<t<T,

q(2.5,T,) =~ 0.99008661 and e, Jmax qt(s,t) = q+(2.5,Ta) =~ 99.77142399.

<s<5,0<t<T,
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Our simulation strategy is the following. (i) A uniform time step 7 is used
until the solution almost quenches, for example, as the value Jmax q(zx,t) reaches
ssa

0.950. (ii) Then the sequence of adaptive time steps, {7}, bgg;ns through

\ 2
7; = max {min {le,co mkin{(l - qi) }} ,mo},
j

where ¢y > 0 is a suitable speed controller, and mg is a minimum step size that
may keep the ratio of 7;/7,_1 being bounded and smooth [13,14]. A quadratic
function is being used to reflect the nonlinearity and determine the next step size
which allows the actual quenching singularity to drive the process. The above
monitoring function developed is different from classical arc-length formulas and
is highly satisfactory.

We plot the variable temporal steps generated as well as the performance
ratio 7;/7;_1 in final 223 advancements in Fig. 4. It can be observed that while
both ¢; and (g;); increases monotonically, 7, decreases monotonically due to our
effective grid adaptation mechanism. In fact, the decay of 7; is at a logarithmic
rate.

Table 2. Maximal values of the solution ¢(s,t) and its temporal derivative function
g+(s,t) at ten different time levels before quenching-blow up. Note that the tempo-
ral adaptation starts at j = 500. Both values increase monotonically, with the latter
increases exponentially immediately before the quenching-blow up. The results agree
with known results given in [3,5,21,23].

Jo|t Orgggaq(sytj) Jnax. qi(s,t5)
10 | 0.01 0.00904086 | 1.00963768
1001 0.1 0.10445547 | 1.11733601

500 | 0.49724053 | 0.91046311 | 11.22462715
700 | 0.50109449 | 0.98766458 | 81.72099321
7151 0.50111365 | 0.98937234 | 94.91275358
716 | 0.50111474 | 0.98947743 | 95.86501759
71710.50111580 | 0.98958149 | 96.82691747
718 1 0.50111685 | 0.98968452 | 97.79855187
719]0.50111787 | 0.98978654 | 98.78002048
720 | 0.50111887 | 0.98988755 | 99.77142399
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5 x10* 0.9804

0.98039 e,
0.98038 - .
i | ossoa7|
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i j
Fig. 4. [LEFT] Adaptive temporal step sizes used in the last 223 excursions of simula-
tions. [RIGHT] Profile of the ratio 7;/7;_1, in the final 223 temporal steps. It can be

noticed that both 7; and the ratio decrease monotonically while the ||g;||e increases
monotonically.

4 Conclusions and Expectations

To conclude, in this paper, we have extended the theory and practice of semi-
adaptive finite difference methods for degenerate quenching data stream simu-
lations via nonlinear reaction-diffusion partial differential equations. The par-
ticular modeling equation studied is emerged from multiple bio-medical and
physical applications, in particular in rapid cell bursts and solid fuel combus-
tion [1,2,4,7,9,13,21,22]. Systematic investigations and improved analysis of key
characteristic issues, including the convergence, positivity and monotonicity of
the simulated data streams.

Computational experiments are carried out to illustrate the theoretical
results though demonstrations of the solution accuracy and order of conver-
gences. It is found that the implicit simulation method implemented is quadrat-
ically convergent within the time-space physical regions considered.

The new preservative simulation method utilizes a uniform mesh in space
and a temporal adaption in time. In our forthcoming work, we shall implement
fully adaptive methods where mesh adaptations will be considered in both space
and time. These may help further improve the accuracy and efficiency of the
laboratory data. Geometrically non-symmetric degeneracy functions [10,21] and
initial values will be introduced and tested for potential biomedical and industrial
applications.
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