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Abstract

We present a unified framework for deriving PAC-Bayesian generalization bounds. Unlike
most previous literature on this topic, our bounds are anytime-valid (i.e., time-uniform),
meaning that they hold at all stopping times, not only for a fixed sample size. Our approach
combines four tools in the following order: (a) nonnegative supermartingales or reverse
submartingales, (b) the method of mixtures, (c) the Donsker-Varadhan formula (or other
convex duality principles), and (d) Ville’s inequality. Our main result is a PAC-Bayes
theorem which holds for a wide class of discrete stochastic processes. We show how this
result implies time-uniform versions of well-known classical PAC-Bayes bounds, such as
those of Seeger, McAllester, Maurer, and Catoni, in addition to many recent bounds. We
also present several novel bounds. Our framework also enables us to relax traditional
assumptions; in particular, we consider nonstationary loss functions and non-i.i.d. data. In
sum, we unify the derivation of past bounds and ease the search for future bounds: one
may simply check if our supermartingale or submartingale conditions are met and, if so,
be guaranteed a (time-uniform) PAC-Bayes bound.

Keywords: PAC-Bayes, martingales, anytime-valid bounds, Ville’s inequality, statistical
learning theory

1. Introduction

PAC-Bayesian theory is broadly concerned with providing generalization guarantees over
mixtures of predictors in statistical learning problems. It emerged in the late 1990s, cat-
alyzed by an early paper of Shawe-Taylor and Williamson (1997) and shepherded forward
by McAllester (McAllester, 1998, 1999, 2003), Catoni (Catoni, 2003, 2004, 2007), Maurer
(Maurer, 2004), and Seeger (Seeger, 2002, 2003), among others. The earliest works were
focused mainly on classification settings but the techniques have expanded to regression
settings (Audibert, 2004; Alquier, 2008), and more recently to settings beyond supervised
learning (e.g., Seldin and Tishby, 2010). We refer the reader to Alquier (2021) and Guedj
(2019) for excellent surveys.

In the supervised learning setting, PAC-Bayesian (or simply “PAC-Bayes”) theory seeks
to bound the expected risk in terms of the expected empirical risk, where the expectation is
with respect to a data-dependent distribution ⇢ over the hypothesis space. This is in contrast
to uniform convergence guarantees, which give worst case bounds over all hypotheses. The
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PAC-Bayes approach is not without limitations (Livni and Moran, 2020), but has led to
non-trivial guarantees for SVMs (Ambroladze et al., 2006), sparse additive models (Guedj
and Alquier, 2013), and neural networks (Dziugaite and Roy, 2017; Letarte et al., 2019).
Whereas uniform convergence bounds typically rely on some notion of the complexity of
the hypothesis class, PAC-Bayes bounds depend on the distance between ⇢ and a prior
distribution ⌫. Depending on the choice of ⌫ and ⇢, the resulting bounds can be tighter and
easier to compute.

Despite these successes, we point out two drawbacks. First, there does not seem to be
a clearly established recipe to deriving PAC-Bayes bounds. Many full-length papers are
dedicated to deriving one or two interesting bounds, using di↵erent techniques. Is there a
common thread to tie the decades of work together? Can a unified view (achieved with the
power of hindsight) yield new bounds with relative ease? Second, most existing PAC-Bayes
bounds are fixed-time results. That is, the bounds hold at a fixed number of observations
determined a priori, despite the fact that the distribution ⇢ can be data-dependent. In fact,
this is the case for the vast majority of the learning theory literature. Undoubtedly, this
is a consequence of the extensive number of fixed time concentration inequalities stemming
from the statistics literature (e.g., the Cherno↵ bound and the Azuma-Hoe↵ding inequality;
see Boucheron et al., 2013 for an overview). However, fixed-time bounds are not valid at
stopping times; if the bound is computed at a sample size that is itself data-dependent
(perhaps resulting from sequential decisions), then it is invalid. Näıve union bounds over
all of time are too loose, falling short theoretically, practically, and aesthetically.

In this work, we take advantage of recent progress on unified schemes for deriving
anytime-valid concentration inequalities (Howard et al., 2020, 2021) to give a general frame-
work for developing anytime-valid (a.k.a. time-uniform)1 PAC-Bayes bounds. Anytime-valid
bounds hold at all stopping times. Importantly, this means they hold regardless of whether
one has looked at the data or not when deciding the final sample size. They are thus
inherently immune to continuous monitoring of data and adaptive stopping.

Concurrent to our own work, Haddouche and Guedj (2023) derived several anytime-
valid PAC-Bayes bounds. They also employ supermartingales and Ville’s inequality, two
ingredients which are central to our approach. Our general framework will encompass their
results, recovering their theorems as special cases of our own. More importantly however,
our unified framework will cover a much broader slew of existing PAC-Bayes bounds. See
Table 1 for a summary of these results.

At a high level, our approach combines four tools in the following order: (A) nonnegative
supermartingales or reverse submartingales, (B) mixtures of said processes (often called the
“method of mixtures”), (C) a change-of-measure inequality which provides a variational
representation of some convex divergence (e.g, the Donsker-Varadhan formula in the case
of KL divergence), and (D) Ville’s inequality (Ville, 1939), a time-uniform extension of
Markov’s inequality to nonnegative supermartingales and reverse submartingales. Recent
work has established that principles (A)+(D) yield a unified approach to deriving time-
uniform Cherno↵ bounds (e.g., Howard et al., 2020), while using (A)+(B)+(D) yields a
unified approach to deriving confidence sequences (e.g., Howard et al., 2021). This paper

1. In this paper, “anytime-valid” and “time-uniform” are synonymous. However, this is not always the
case. See the discussion at the end of Section 1.1.
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(A)
Non-negative forward
supermartingale or

reverse submartingale

(B)
Method of Mixtures

(C)
Variational

Representation of a
Convex Divergence
(Change of Measure)

(D)
Ville’s Inequality

(A) + (D) =) Unified recipe for time-uniform Cherno↵ bounds

(Howard et al., 2020; Manole and Ramdas, 2023)

(A) + (B) + (D) =) Unified recipe for time-uniform confidence sequences

(Ramdas et al., 2020; Howard et al., 2021)

(A) + (B) + (C) + (D) =) Unified recipe for time-uniform PAC-Bayes bounds (this work)

Figure 1: An overview of the tools employed in this paper, and how they relate to previous
work on time-uniform bounds.

shows that adding (C) yields a unified approach to PAC-Bayes bounds. See Figure 1 for a
schema of how this work relates to other unified recipes and time-uniform bounds.

1.1 Setting

We observe a sequence of data (Zt)
1
t=1 where each Zi lies in some domain Z. The data have

a distribution D over Z1. We emphasize that D is a distribution over sequences of obser-
vations, enabling us to consider non-i.i.d. data. We will specify the precise distributional
assumptions later on. Each time step t is associated with a function ft : Z ⇥ ⇥ ! R>0,
where ⇥ is some (measurable) parameter space. Each ✓ 2 ⇥ gives rise to the loss function
ft(·, ✓). Thus, ft should be seen as a family of loss functions parameterized by ⇥. If f = ft
does not change with time, we say it is stationary.

In a typical supervised learning task, the domain is taken to be the product Z = X ⇥Y ,
where X is the feature space and Y the label space. In this case, we might consider the
(stationary) loss function f(Zt, ✓) = (Yt � h✓, Xti)2, where Zt = (Xt, Yt). However, PAC-
Bayesian bounds have proven useful outside of supervised learning—for instance, estimating
means (Catoni and Giulini, 2017, 2018), clustering (Seldin and Tishby, 2010), and discrete
density estimation (Seeger, 2003; Seldin and Tishby, 2009). Thus, we choose to adopt the
more general notation. We note that allowing the loss function to change as a function of
time is not the typical assumption in the PAC-Bayes literature. However, we find that our
framework can handle non-stationary losses at no extra cost, so we see no harm (and some
benefit) in this additional level of generality.

For a fixed ✓ 2 ⇥, the empirical risk and the (conditional) risk at time t are, respectively,

bRt(✓) =
1

t

tX

i=1

fi(Zi, ✓), and Rt(✓) =
1

t

tX

i=1

E[fi(Zi, ✓)|Fi�1]. (1)

Here Fi�1 is the �-algebra generated by Z1, . . . , Zi�1 (formally introduced in Section 2).
If the losses are stationary and the data are i.i.d. (or, more generally, E[ft(Zt, ✓)|Ft�1] is
assumed to have a common mean across all t > 1) then the conditional risk is constant as
a function of time, and we denote it as R(✓) = E[f(Z, ✓)].
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Uniform convergence guarantees provide a natural and popular way to bound the risk in
terms of the empirical risk. Such guarantees provide bounds simultaneously for all ✓ 2 ⇥,
and typically depend on quantities such as the VC dimension or the Rademacher complexity
of the family of losses (see, e.g., Wainwright, 2019). In contrast, PAC-Bayes bounds seek to
give guarantees on the di↵erence between E✓⇠⇢

bRt(✓) and E✓⇠⇢Rt(✓) for all data-dependent
mixture distributions ⇢ 2 M(⇥), where M(⇥) is the set of probability distributions over
⇥. Additionally, we typically begin with a (data-free) prior ⌫ 2 M(⇥) over the parameters.

In order to orient the reader, we state a PAC-Bayes bound due to Catoni (2003) for
bounded, stationary losses in [0, 1]. The order of quantifiers below is particularly important
to note. For all priors ⌫ 2 M(⇥), error probabilities � 2 (0, 1), sample sizes n and tuning
parameters � > 0, we have that with probability at least 1� �, for all ⇢ 2 M(⇥),

E✓⇠⇢[Rn(✓)� bRn(✓)] 6
�

8n
+

DKL(⇢k⌫) + log(1/�)

�
, (2)

where DKL(⇢k⌫) is the KL divergence between ⇢ and ⌫ (defined in Section 2). Said di↵er-
ently, “Fixing ⌫, �, n,�, with probability 1 � �, (2) holds simultaneously for all ⇢.”, empha-
sizing the quantities that are fixed before seeing the data.

Notice that the generalization guarantee depends not on a measure of complexity of the
class of functions {f(·, ✓) : ✓ 2 ⇥} as it would in uniform convergence bounds. Instead, it
depends on the divergence between our prior ⌫ and a data-dependent ⇢. The KL divergence
is the most common measure of divergence used in PAC-Bayes bounds because of the famous
“change of measure” inequality by Donsker and Varadhan (1975) but Rényi divergence
(Bégin et al., 2016), f divergences (Alquier and Guedj, 2018; Ohnishi and Honorio, 2021),
and Integral Probability Metrics (Amit et al., 2022) have also been studied.

Let us now introduce anytime-valid and time-uniform bounds. As stated, (2) is a fixed-
time bound because, as discussed above, the universal quantifier on n is “outside” the prob-
ability statement. This is characteristic of most concentration inequalities. A time-uniform
bound, on the other hand, incorporates the number of samples “inside” the probability
statement. It is of the form “with probability 1 � �, for all n, ...”. Moving forward, we
will substitute t (standing for time) in place of n to draw attention to the distinction. For
instance, here is the time-uniform equivalent of (2) above. For all priors ⌫ 2 M(⇥), error
probabilities � 2 (0, 1), and tuning parameters �, n > 0, with probability at least 1� �, we
have that simultaneously for all t > 1 and ⇢ 2 M(⇥),

E✓⇠⇢[Rt(✓)� bRt(✓)] 6
�

8n
+

DKL(⇢k⌫) + log(1/�)

�t/n
. (3)

Here we have kept a pre-specified n in the bound to facilitate easy comparison with (2);
however, this parameter could be absorbed into �. While the distinction between time-
uniform and fixed-time bounds may seem a minor notational detail, it is in fact a ma-
jor mathematical di↵erence with ramifications across science and any kind of data-driven
decision-making (Howard et al., 2021; Grünwald et al., 2023; Ramdas et al., 2023). Impor-
tantly, time-uniform results are immune to “peeking” because they remain valid at stopping
times.

Anytime-valid bounds, meanwhile, are (in)equalities that hold at arbitrary stopping
times. A full discussion of the distinction between anytime-valid and time-uniform bounds
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is beyond the scope of this work, but we refer the interested reader to Ramdas et al.
(2020) for further detail (see Lemmas 2 and 3 in particular). Su�ce it to say that for
probability statements like above, time-uniformity is synonymous with anytime-validity.
This manuscript is concerned with anytime-valid probability statements, so we use the two
terms interchangeably.

1.2 Contributions and Outline

In this work, we identify a general martingale-like structure at the heart of many existing
PAC-Bayes bounds. This structure takes the form of either a nonnegative supermartingale
or a nonnegative reverse submartingale. Such an identification enables us to (i) give a
general framework for seeking new bounds, and (ii) give time-uniform extensions of many
existing PAC-Bayes bounds. Our main contribution is a general result (Theorem 4) which
provides a time-uniform PAC-Bayes bound for any process which is (upper bounded by)
a nonnegative supermartingale or reverse submartingale. We proceed to instantiate this
bound with a variety of particular processes and relate them to existing results in the
literature (Table 1). For those bounds which admit a supermartingale structure, we find that
their time-uniform extensions remain as tight as their fixed-time counterparts. For those
that admit a reverse submartingale structure we provide two results: (a) a time-uniform
bound holding for all t > 1 which loses at most a constant factor plus an iterated logarithm
term (i.e., log log t) over the original, and (b) a bound which holds for all times t > n,
where n is some time of special interest chosen beforehand, which remains just as tight as
the original fixed-time bounds. Finally, our framework enables us to relax many traditional
assumptions (Table 2). For instance, many of our bounds do not require i.i.d. data. In fact,
our supermartingale-based bounds require no explicit distributional assumptions.

As was mentioned in the introduction, the closest work to ours is the concurrent preprint
of Haddouche and Guedj (2023). They apply Ville’s inequality to a supermartingale iden-
tified by Bercu and Touati (2008), which gives a time-uniform PAC-Bayes bound for un-
bounded loss functions. In Section 4 we will demonstrate that this supermartingale was
known to be a part of a much wider class of stochastic processes known as sub- processes
(Howard et al., 2020), and provide an anytime-valid PAC-Bayes result for this large class,
recovering their result as a special case.

Stepping back from the particulars, our work is best viewed in the spirit of recent
progress in time-uniform Cherno↵ bounds and sequential estimation (Figure 1). We draw
much inspiration from the recent works by Howard et al. (2020, 2021) who study a unifying
approach to time-uniform bounds via supermartingales. Howard et al. (2020) showed that
many (or most, or all) Cherno↵ bounds can be made time-uniform at no loss (and sometimes
a gain) by identifying an appropriate supermartingale and applying Ville’s inequality (our
Lemma 1). In other words, applying Ville’s inequality to nonnegative supermartingales
is a unifying strategy for generating Cherno↵ bounds. This insight was the inspiration
for seeking to identify underlying supermartingales in PAC-Bayes bounds. Howard et al.
(2021) then built upon this foundation, and developed confidence sequences (i.e., confidence
intervals that hold at all stopping times) with zero asymptotic width using a variety of
mixtures of supermartingales. This “method of mixtures” plays an important role in our
results in two respects. For one, it is required since the PAC-Bayes framework gives bounds
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Existing result Our result

Forward
supermartingale

McAllester (1999), Thm. 1 Corollary 9

Catoni (2003) Corollary 7

Catoni (2007) Corollary 16

Seldin et al. (2012), Thm. 5 & 6 Corollary 37

Seldin et al. (2012), Thm. 7 & 8 Corollary 38

Balsubramani (2015), Thm. 1 Corollary 38

Alquier et al. (2016), Thm. 4.1 Corollary 7

Kuzborskij and Szepesvári (2019), Thm. 4 Corollary 6

Haddouche et al. (2021), Thm. 3 Corollary 17

Haddouche and Guedj (2023), Thm. 5 Corollary 6

Haddouche and Guedj (2023), Thm. 7 Corollary 18

Jang et al. (2023), Thm. 1 Corollary 15

Reverse
submartingale

McAllester (1999), Thm. 1 Corollary 26

Langford and Seeger (2001), Thm. 3 Corollary 25

Seeger (2002), Thm. 2 Corollary 42

Maurer (2004), Thm. 5 Corollary 25

Catoni (2007), Thm. 1.2.6 Corollary 22

Germain et al. (2009), Thm. 2.1 Corollary 22

Seldin et al. (2012), Thm. 4 Corollary 39

Tolstikhin and Seldin (2013), Eqn. 3 Corollary 25

Tolstikhin and Seldin (2013), Thm. 3 & 4 Corollary 27

Germain et al. (2015), Thm. 18 Corollary 22

Bégin et al. (2016), Thm. 9 Corollary 34

Thiemann et al. (2017), Thm. 3 Corollary 22

Alquier (2021), Eqn. (3.1) Corollary 25

Amit et al. (2022), Prop. 4 and 5 Corollary 30

Table 1: A summary of how various existing results are related to our framework. The first
column refers to the type of underlying process used to construct the bound. For
supermartingales, the time-uniform extension sacrifices no tightness compared to
the original. For reverse submartingales, our anytime bound loses essentially an it-
erated logarithm factor over the fixed-time bound (but the fixed-time bound itself
remains recoverable at no loss). The final column points to which corollary implies
the existing result (either directly or as a consequence of selecting certain param-
eters; the precise relationship will be described in the text). The above results
are mostly corollaries of Theorem 4 (a PAC-Bayes framework with the KL diver-
gence), but several rely on Theorem 31 (a framework for general �-divergences)
or Theorem 33 (a framework for Rényi divergences). The PAC-Bayes literature
is large and we cannot include all previous results and their relationships, but we
hope this gives the reader an idea of the scope of our approach. We do not pro-
vide numbers in the second and third rows because the bounds were not explicitly
written out in Catoni (2003, 2007). See Alquier (2021) for a summary.
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over mixtures of hypotheses. Second, it yields novel PAC-Bayes bounds by mixing the
supermartingales that underlie existing bounds with various mixing distributions. The
former yields uniformity over distributions, the latter over sample size.

Interestingly, we find that not all existing PAC-Bayes bounds can be given time-uniform
generalizations based on nonnegative supermartingales. For some, including those of Seeger
(2003); Tolstikhin and Seldin (2013); Germain et al. (2015) which ultimately rely on apply-
ing convex functions to the risk and empirical risk, we must instead rely on reverse sub-
martingales. Our inspiration for such tools comes from recent work by Manole and Ramdas
(2023), who showed that convex functionals and divergences are reverse submartingales
(with respect to the exchangeable filtration). Since there also exists a reverse-time Ville’s
inequality, backwards submartingales and (backwards) Ville’s inequality provide a second
unifying recipe for deriving time-uniform bounds.

In short, this paper shows how systematically combining four techniques provides a
unified recipe to derive time-uniform PAC-Bayesian inequalities.

Outline. The rest of the manuscript is organized as follows. Section 2 provides rele-
vant background on (reverse) martingales, Ville’s inequalities, and the change-of-measure
inequality which lies at the heart of PAC-Bayesian analysis. Section 3 provides a “master
theorem” which gives an anytime-valid PAC-Bayes bound for general nonnegative stochastic
processes which are upper bounded by either a supermartingale or reverse submartingale.
Section 4 then explores various consequences in the supermartingale case, and Section 5
does the same for the reverse submartingale case. Section 6 then discusses a number of
extensions; Sections 6.1 and 6.2 study extensions of our master Theorem to Integral Proba-
bility Metrics, �-divergences, and the Rényi divergence. Section 6.3 gives some connections
to recent work on time-uniform confidence sequences, Section 6.4 demonstrates that our
results hold for martingale di↵erence sequences, and Section 6.5 investigates to what ex-
tent we can employ data-dependent priors. Finally, Section 6.6 ends with an application to
Gaussian process classification.

2. Background

Notation. As discussed previously, we let D be a distribution over sequences (Zt) 2 Z1.
In order to save ourselves from an overload of notation, we will write ED[·] to denote
the expectation when drawing (Zt) ⇠ D, i.e., ED[·] = E(Zt)⇠D[·]. Furthermore, we will
use the convention that expectation over lowercase Greek letters refer to expectation over
parameters ✓ 2 ⇥, e.g., E⇢[·] = E✓⇠⇢[·]. We also write Zn as shorthand for Z1, . . . , Zn. For
a stochastic process (At)

1
t=t0 (or infinite sequence more generally) we will often simply write

(At), where t0 will be understood from context. We write M(⇥) for the set of probability
distributions over ⇥. We use R>0 to be the set of nonnegative reals (similarly for R>0).
When we say that ⌫ 2 M(⇥) is a prior, it should be assumed that it is data-free, i.e.,
independent of the data (Zt). Writing, e.g., ED[g(Zi)] for some function g should be taken
to mean that the sequence (Zt) was drawn from D but we are restricting ourselves to the i-th
value. We may also write EZi [g(Zi)] in this case. Finally, we let µt(✓) = ED[ft(Zt, ✓)|Ft�1].

A forward filtration is a sequence of �-algebras (Ft)
1
t=1 such that Ft ✓ Ft+1 for all

t > 1. If Ft = �(Z1, . . . , Zt), we call (Ft)
1
t=1 the canonical (forward) filtration. Intuitively,

we conceive of Ft as all the information available at time t. Thus, if a function f is Ft-
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measurable, it may depend on data Z1, . . . , Zt, but not on any Zi for i > t. If a sequence
of functions (ft)

1
t=1 is such that ft is Ft measurable for all t, then we say that (ft)

1
t=1 is

adapted to Ft. If ft+1 is Ft measurable for all t, then we say the sequence is predictable.

A martingale adapted to the forward filtration (Ft)
1
t=1 is a stochastic process (St)

1
t=1

such that St is Ft measurable and E[St+1|Ft] = St for all t > 1. If the equality is replaced
with 6 (resp., >) we call (St) a supermartingale (resp., submartingale). Supermartingales
are thus decreasing with time in expectation, whereas submartingales are increasing. Mar-
tingales stay constant in expectation. For this reason, they often represent fair games.
Forward filtrations are in contrast to reverse filtrations, which we cover later in this section.
Henceforth, if we discuss filtrations unencumbered by a preceding adjective, then it is a
forward filtration.

It’s perhaps worth remarking that a martingale is only a martingale with respect to a
particular measure P. For instance, the process St =

1
t

P
iXi�m for i.i.d. Xi is a martingale

i↵ P(Xi) = m. Formally then, one should refer to (St) as (possibly) being a P-martingale.
However, in our case the measure will usually be clear from context and we will simply refer
to martingales. The same discussion holds for sub/supermartingales.

Supermartingales are natural tools to use when deriving anytime-valid bounds due to
Ville’s inequality (Ville, 1939), given in Lemma 1. Informally, Ville’s inequality is a time-
uniform version of Markov’s inequality. It states that a nonnegative supermartingale with
initial value 1 remains small (say, less than 1/�) at all times with probability roughly 1� �.
A digestible proof of Ville’s inequality may be found in Howard et al. (2020).

Lemma 1 (Ville’s Inequality for Nonnegative Supermartingales) Let (Nt)
1
t=1 be a

nonnegative supermartingale with respect to the filtration (Ft)
1
t=1. For all times t0 and

u 2 R>0,

P(9t > t0 : Nt > u) 6
E[Nt0 ]

u
.

Ville’s inequality can be restated as P(8t > t0 : Nt/Nt0 < u) > 1 � 1/u. Written this way,
its power for providing time-uniform guarantees becomes evident.

Under appropriate conditions, mixtures of martingales remain martingales. That is,
if Vt(✓) is a (sub/super) martingale, then E✓⇠⇢Vt(✓) for well-behaved mixtures ⇢ is also
a (sub/super) martingale. The precise statement and corresponding proof are given in
Appendix B. This is useful because if we have a family of nonnegative supermartingales
(say) of the form Nt(�) for � 2 R, we can look for appropriate mixture distributions F and
conclude that

R
�2RNt(�)dF (�) is also a nonnegative supermartingale, and thus by Ville’s

inequality:

P

✓
8t > t0 :

Z

�2R
Nt(�)dF (�) 6 1/�

◆
> 1� �.

This has been called the “method of mixtures”, and was noticed byWald (1945) and Robbins
(1970). Depending on the mixture distribution F , this bound can be more desirable than
that based solely onNt(�). Indeed, this approach has been successfully leveraged to generate
time-uniform confidence intervals (i.e., confidence sequences) (Howard et al., 2021; Waudby-
Smith et al., 2021, 2023). For our part, in Section 4.2 we give a novel PAC-Bayes bound
using a Gaussian mixture distribution, as a demonstrative example.
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The machinery of nonnegative supermartingales (and their mixtures) in addition to
Ville’s inequality is su�cient to give time-uniform PAC-Bayes bounds in a wide variety of
situations. Section 4 is dedicated to this task. See the first half of Table 1 for those bounds
which are recovered using this technique. However, to recover time-uniform versions of other
well-known PAC-Bayes bounds, we must rely on reverse-time martingales. We introduce
these next.

A reverse filtration (Rt)
1
t=1 is a sequence of �-algebras such that Rt ◆ Rt+1 for all t.

That is, a reverse filtration represents decreasing information with time. A reverse mar-
tingale (St) adapted to a reverse filtration (Rt) is a stochastic process such that St is Rt

measurable and E[St|Rt+1] = St+1 for all t > 1. Again, replacing the equality with 6

(resp., >) results in reverse supermartingales (resp., submartingales). Reverse processes
are also called backwards or reverse-time processes. We will use such language interchange-
ably. An example of a reverse martingale is the empirical mean 1

t

Pt
i=1 Zi adapted to the

canonical reverse filtration Rt = �(Zt, Zt+1, . . . ). Since filtrations and stochastic processes
are typically considered in the context of “increasing” time, reverse-time processes can be
initially confounding. When thinking about reverse martingales, we encourage the reader
to imagine time flowing backwards, i.e., information being revealed first at time t, then at
time t � 1, t � 2 and so on. Thus, reverse submartingales are increasing in expectation in
reverse-time and, if one were to plot the expected values such a process would resemble a
supermartingale in forward time. With this insight in mind, it is relieving to know that
there is a variant of Ville’s inequality for reverse submartingales. Proofs may be found in
Lee (2019); Manole and Ramdas (2023).

Lemma 2 (Reverse Ville’s Inequality) Let (Mt) be a nonnegative reverse submartin-
gale with respect to a reverse filtration (Rt)

1
t=1. For all t0 and u 2 R>0,

P(9t > t0 : Mt > u) 6
E[Mt0 ]

u
.

Section 5 will employ reverse submartingales in order to give time-uniform PAC-Bayes
bounds on convex functions ' of the expected and empirical risk. This will enable us to
give time-uniform versions of inequalities presented by Seeger (2003); McAllester (1998);
Maurer (2004); Germain et al. (2009, 2015); Tolstikhin and Seldin (2013), among others.
Finally, we present the change-of-measure inequality due to Donsker and Varadhan (1975)
which is central to the majority of existing PAC-Bayes bounds. Before it is stated, let us
recall that the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) between two
distributions µ and ⇡ in M(⇥) is

DKL(µk⇡) = E✓⇠µ


log

✓
dµ(✓)

d⇡

◆�
=

Z

Θ

log

✓
dµ

d⇡
(✓)

◆
µ(d✓),

if µ is absolutely continuous with respect to ⇡ (i.e., µ(A) = 0 whenever ⇡(A) = 0), and +1
otherwise. Here dµ

d⇡ is the Radon-Nikodym derivative. As stated in the introduction, the
utility of the KL divergence in PAC-Bayes bounds comes from the following the change of
measure formula. This was first stated by Kullback (1959) for finite parameter spaces, and
then proved more generally by Donsker and Varadhan (1975) and Csiszár (1975).

9
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Lemma 3 (Change of Measure) Let h : ⇥ ! R be a measurable function. For any
⌫ 2 M(⇥),

logE✓⇠⌫ exp(h(✓)) = sup
⇢2M(Θ)

�
E✓⇠⇢[h(✓)]�DKL(⇢k⌫)

 
.

While the Donsker-Varadhan formula is the most popular change of measure formula,
it is not unique in its ability to furnish PAC-Bayes bounds. In Appendix 6.2, we provide
change of measure inequalities for � and Rényi divergences and discuss how we can use such
formulas in our bounds.

3. A General Recipe for Stochastic Processes

We now present results for nonnegative processes upper bounded by either a supermartin-
gale or a reverse submartingale. We will consider processes P (✓) = (Pt(✓))t>1 which are
functions of a parameter ✓ 2 ⇥. While the following theorem does not appear to be in
the form of a traditional PAC-Bayes bound, a variety of typical bounds can be recovered
by considering particular processes P (✓) (Table 1). Many such fruitful processes will be
presented throughout the remainder of this manuscript.

Theorem 4 (Master anytime PAC-Bayes bound) For each ✓ 2 ⇥, assume that a
stochastic process of interest, P (✓) = (Pt(✓))

1
t=t0, is upper bounded by another process

U(✓) = (Ut(✓))
1
t=t0, which is such that expU(✓) is either a supermartingale or a reverse

submartingale satisfying ED[expUt0(✓)] 6 1. Then for any � 2 (0, 1) and prior ⌫ 2 M(⇥),
with probability at least 1� �, we have that for all t > t0 and ⇢ 2 M(⇥),

E⇢Pt(✓) 6 DKL(⇢k⌫) + log(1/�). (4)

In fact, the bound also holds with ⇢ being replaced by ⇢t on both sides of (4) for any adapted
sequence of posteriors (⇢t)t>t0.

Note that the KL divergence in (4) can be replaced by a variety of other divergences,
provided they have their own variational representations (which they typically do). We
discuss several alternative divergences in Sections 6.1 and 6.2.
Proof For t > t0, set

V mix
t := exp sup

⇢

�
E✓⇠⇢[Ut(✓)]�DKL(⇢k⌫)

 
.

If expU(✓) is a supermartingale (resp., reverse submartingale), then we claim (V mix
t ) is a su-

permartingale (resp., reverse submartingale). Indeed, Lemma 3 gives V mix
t = E⌫ expUt(✓),

so V mix
t is a mixture of supermartingales or reverse submartingales, which is itself a su-

permartingale or reverse submartingale (Lemma 46). Applying Ville’s inequality (either
Lemma 1 or 2), we obtain

P(9t > t0 : exp sup
⇢

�
E⇢Pt(✓)�DKL(⇢k⌫)

 
> 1/�)

6 P(9t > t0 : exp sup
⇢

�
E⇢Ut(✓)�DKL(⇢k⌫)

 
> 1/�)

= P(9t > t0 : V
mix
t > 1/�) 6 ED[V

mix
t0 ]� 6 �,

10



A Unified Recipe for Deriving (Time-Uniform) PAC-Bayes Bounds

where the first inequality follows since Pt(✓) 6 Ut(✓) by assumption. The final inequality fol-
lows since ⌫ is data-free, enabling Fubini’s theorem to be applied: E[V mix

t0 ] = EDE⌫ expUt0(✓) =
E⌫ED expUt0(✓) 6 1. Thus, with probability 1� �, for all t > t0, exp sup⇢2M(Θ){E⇢Pt(✓)�
DKL(⇢k⌫)} 6 1/�. Taking logarithms gives the desired result.

Several remarks are in order. First, the final sentence of Theorem 4 highlights that the
uniformity of time and probability measures implies that the bound holds over all sequences
of posteriors. This is the form in which we expect the result to be most useful. A concrete
example of changing posteriors is given in Section 6.6, where we apply our result to Gaussian
process classification. Second, it’s worth noting that Theorem 4 posits no distributional
assumptions on the underlying data. Indeed, it does not even assume that the underlying
filtration is the canonical data filtration. While our examples in subsequent sections will use
either the canonical forward filtration Ft = �(Zt) or a particular backward “exchangeable”
filtration (Et), Theorem 4 holds for more general processes. Third, we note also that we
need not specify that ⇢ be absolutely continuous with respect to the prior ⌫ in inequality (4)
since, if not, then DKL(⇢k⌫) = 1 and the bound holds trivially. Finally, in addition to
bounding ED[V

mix
1 ], the fact that the prior ⌫ is data free is required by Lemma 46. That

is, it is required to ensure that E⌫ expUt(✓) is a super/submartingale.

Condition on (ft)t>1 Condition on (Zt)t>1 Results

SubGaussian or subexponential No explicit assumption Corollaries 7, 9

Bounded No explicit assumption Corollaries 12, 13, 14

Bernstein No explicit assumption Corollary 11

Bounded MGF No explicit assumption Corollary 16

E[f2

t
(Zt, ✓)|Ft−1] < 1 No explicit assumption Corollaries 17, 18

Stn. & MGF of 't(✓) exists Exchangeable Corollaries 22, 24, 30, 34

Stn. & bounded in [0,1] i.i.d. Corollaries 25, 26, 15, 27, 42

Table 2: A summary of the conditions on the loss and the data required by several bounds.
“Stn” stands for stationary. Even though for most rows there is no explicit depen-
dence assumption required of (Zt), the usefulness of the bounds or the establish-
ment of conditions on (ft) may sometimes require implicitly making distributional
assumptions on the data, but these will often be (much) less restrictive than an
i.i.d. assumption. See Section 4.2 after Corollary 7 for more discussion. As all
results require (ft) to be predictable, this requirement is disregarded above. We
omit results from Section 6.4 (martingale di↵erence sequences) as the setting is
slightly di↵erent.

4. PAC-Bayes Bounds via Supermartingales

We first construct PAC-Bayes bounds via supermartingales in light of Theorem 4. Our
general framework for doing so is based on sub- -processes (Howard et al., 2020), which are
generalizations of processes amenable to exponential concentration inequalities. Many stan-
dard concentration inequalities (e.g., Hoe↵ding, Bennett, Bernstein) implicitly use sub- 
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processes which, if identified, yield time-uniform Cherno↵ bounds (Howard et al., 2020). For
our purposes, sub- processes can be used in Theorem 4 to yield a time-uniform PAC-Bayes
bound (Corollary 6). Many existing PAC-Bayes bounds rely on fixed-time concentration
inequalities which can be generalized to sub- processes, thus yielding time-uniform exten-
sions. We begin by defining sub- processes and then proceed to give explicit bounds for
light-tailed losses (Section 4.2), and then for heavier-tailed losses (Section 4.3).

4.1 The sub- Condition

Roughly speaking, a sub- process is a stochastic process which is upper bounded by a
supermartingale but takes a particular functional form. They are at the heart of recent
progress on time-uniform Cherno↵ bounds (Howard et al., 2020). This section presents
a corollary of Theorem 4 for sub- processes which, in turn, yields many time-uniform
extensions of existing PAC-Bayes bounds. We find that many existing bounds are implicitly
relying on sub- processes without recognizing it.

Definition 5 (Sub- process) Let (St)
1
t=1 ✓ R and (Vt)

1
t=1 ✓ R>0 be stochastic processes

adapted to an underlying filtration (Ft)
1
t=1. For a function  : [0, max) ! R, we say (St, Vt)

is a sub- process if, for every � 2 [0, max), there exists some supermartingale (Lt(�))
1
t=1

with L1(�) 6 1 such that, for all t > 1,

exp{�St �  (�)Vt} 6 Lt(�), a.s. (5)

Definition 5 may appear rather abstract at first glance. Useful intuition comes from con-
sidering what happens when (St) is a martingale. In this case, (exp(�St)) is a submartingale
by Jensen’s inequality. Thus,  (�)Vt must be a process which appropriately “dominates”
St in order to ensure that exp(�St� (�)Vt) decreases in expectation rather than increases.
For instance, suppose X1, X2, . . . are i.i.d. with mean 0. If St =

P
i6tXt, then taking

 (�) to be the log-MGF logEe�X1 and Vt = t is su�cient to turn exp(�St �  (�)Vt) into
a martingale. Indeed, E[exp(�St �  (�)Vt)|Ft�1] =

Qt
i=1 E[exp(�Xi � logEe�X1)|Ft�1] =Qt�1

i=1 exp(�Xi � logEe�X1). Corollary 16 gives a PAC-Bayes bound based on this process.
Another example comes from supposing the Xi are �-subGaussian. In that case we may
take  (�) = �2�2/2, keeping St and Vt the same. Then exp(�St �  (�)Vt) is a super-
martingale (as opposed to a martingale). This process is used (albeit in more generality)
by Corollary 7. If, as in the examples above, St is a sum then we may let � = �t change
as a function of time. This will be the case in the majority of our bounds. Finally, notice
that in these examples, we may simply take Lt(�) = exp(�St �  (�)Vt), meaning that the
exponential process is itself a supermartingale. This is often the case. We refer the reader
to Howard et al. (2020) for a more lengthy discussion and further examples.

A nonnegative process that is upper bounded by a supermartingale (but may or may
not itself be a supermartingale) has recently been termed an “e-process” (Ramdas et al.,
2023). Theorem 4 yields bounds for such processes. Instead of working with more general
definitions, however, we prefer to base our discussion on sub- processes specifically because
it’s helpful to consider particular functions  and processes (Vt) which can bound our process
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(St) of interest. More to the point, we will often consider St to be the martingale

tX

i=1

ED[fi(Z, ✓)|Fi�1]� fi(Zi, ✓). (6)

Di↵erent assumptions on ft (e.g., bounded, light-tailed, heavy-tailed) will then lead us to
particular selections of  and (Vt). Moreover, our PAC-Bayes inequalities will bound St in
terms of  and Vt. Consequently, if one finds themselves dealing with a sub- process, then
the form of the bound will be immediately apparent.

As we did for more general processes, we will consider sub- processes which are indexed
by parameters ✓ 2 ⇥ and we will write that (St(✓), Vt(✓)) is a sub- process. This should be
taken to mean that, for each fixed ✓, exp{�St(✓)� (�)Vt(✓)} 6 Lt(�, ✓) for an appropriate
supermartingale Lt(�, ✓). Since, by construction, sub- processes are nonnegative and upper
bounded by a supermartingale with unit initial value, we obtain the following corollary of
Theorem 4.

Corollary 6 Assume that for each ✓ 2 ⇥, (St(✓), Vt(✓)) is a sub- process. Let ⌫ 2 M(⇥)
be a data-free prior and let � 2 [0, max). Then for any � 2 (0, 1), with probability at least
1� �, we have that

E✓⇠⇢[�St(✓)�  (�)Vt(✓)] 6 DKL(⇢k⌫) + log(1/�), (7)

for all times t > 1 and ⇢ 2 M(⇥).

4.2 Light-tailed losses

Here we return to our main problem setting and consider anytime bounds on the di↵erence
between the expected risk and the empirical risk. By choosing particular sub- processes
and applying Corollary 6, we can develop anytime bounds for light-tailed losses (this section)
and more general losses (Section 4.3). It will often be useful to consider the quantity

�i(✓) := µi(✓)� fi(Zi, ✓),

where µi(✓) = ED[fi(Zi, ✓)|Fi�1]. Note that the process (
P

i6t�i(✓))t>1 is a martingale, but
it is not nonnegative. Throughout the remainder of this section, the underlying filtration
will be the canonical data filtration Ft = �(Z1, . . . , Zt).

4.2.1 SubGaussian losses

We begin by giving an anytime-valid PAC-Bayes bound for subGaussian losses. Recall
that a random variable Y is �-subGaussian conditional on F if E[exp(s(Y � E[Y ]))|F ] 6
exp(s2�2/2) for all s 2 R. We will say the loss ft is �-subGaussian if ft(Zt, ✓) is �-
subGaussian for all ✓ 2 ⇥.

Corollary 7 Let (Zt) be a stream of (not necessarily i.i.d.) data. Let (ft)
1
t=1 be a pre-

dictable sequence of loss functions such that fi is �i-subGaussian conditional on Fi�1. Let
(�t) be a nonnegative predictable sequence and consider any data-free prior ⌫ 2 M(⇥).

13



Chugg, Wang, and Ramdas

Then, for all � 2 (0, 1), with probability at least 1� � over the random draw of (Zt), for all
t and measures ⇢ 2 M(⇥),

tX

i=1

�iE⇢�i(✓) 6
tX

i=1

�2i�
2
i

2
+DKL(⇢k⌫) + log(1/�).

The proof is in Appendix A.1. Suppose the loss is stationary and bounded in [0, H], implying
that it is H/2-subGaussian. If �i = � is constant, then Corollary 7 implies that with
probability at least 1� �,

E⇢EDf(Z, ✓) 6 E⇢
bRt(✓) +

�H2

8
+

DKL(⇢k⌫) + log(1/�)

�t
, (8)

for all times t and measures ⇢ 2 M(⇥). For any fixed time n of special interest, setting
�i = �/n for all � recovers (2) (Catoni’s bound) exactly at time n, but still makes a
nontrivial claim for all t 6= n at no extra cost. This time-uniform bound for bounded losses
was recently also given by Haddouche and Guedj (2023). As noted previously, it generalizes
well-known fixed-time bounds of the same flavour (Catoni, 2003, 2004, 2007; Alquier et al.,
2016). This phenomenon of exactly recovering a fixed-time Cherno↵-style bound by a more
general time-uniform bound was a central contribution of the unified “supermartingale +
Ville” framework of Howard et al. (2020).

Remark 8 As in Corollary 7, the remainder of Section 4 is concerned with bounding the
conditional risk 1

t

Pt
i=1 E✓⇠⇢µi(✓) where µi(✓) = E[fi(Zi, ✓)|Fi�1]. However, we will often

state bounds on
Pt

i=1 �iE✓⇠⇢µi(✓), where (�t)t>1 is a predictable sequence of positive scalars.
Considering such sequences is useful if the conditional risk is constant as a function of t,
i.e., R(✓) = µt(✓) for all t, as we can then remove R(✓) from the sum and divide by

Pt
i=1 �i.

Values of �t can be chosen such that difference between E⇢R(✓) and t�1
P

i6t E⇢fi(Zi, ✓) —
the width of the bounds — goes asymptotically to zero with t. This has been called the
method of “predictable plug-ins” (see, e.g., Waudby-Smith and Ramdas (2023)).

On the other hand, if µt(✓) is changing with time, then we must select �i = � to be
constant in order to isolate the mean. In this case, we can still achieve bounds with widths
that go to zero, but via a different (and more complicated) method of applying different
bounds over geometrically spaced epochs. We provide details in Section 6.3. Otherwise, if
such a method is not used, one may still select � as a function of some fixed-time n, in
which case the bound will be tight at that point but progressively looser as the number of
samples t moves away from n (the bound will remain valid at all times, however).

The lack of independence assumptions in Corollary 7 may seem surprising at first, but
it is another consequence of the supermartingale approach. The proof of the Corollary is
based on the process

Nt(✓) :=

tY

i=1

exp

⇢
�i(µi(✓)� f(Zi, ✓))�

�i�
2
i

2

�
. (9)

Since Nt�1(✓) is Ft�1 measurable,

E[Nt(✓)|Ft�1] = Nt�1(✓) · E exp

⇢
�t(µt(✓)� ft(Zt, ✓))�

�t�
2
t

2

����Ft�1

�
.
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By definition of (conditional) subGaussianity, the expected value term in the above display
is at most 1. This demonstrates that (Nt(✓)) is a nonnegative supermartingale, meaning
that Theorem 4 applies. The same reasoning holds for other bounds we will present: if
exp{�t�t(✓)� gt|Ft�1} has expectation at most 1, then (exp{

P
i �i�i(✓)�

P
i gi})t>1 is a

supermartingale, yielding a time-uniform PAC-Bayes bound with no independence assump-
tions on the data. However, we feel it important to emphasize that there is no free lunch.
Despite there being no such assumptions, the fact that we must have E[ft(Zt, ✓)|Ft�1] < 1
is implicitly relying on a type of dependence between ft and the past. In some sense, the
lack of distributional assumptions places the burden on (ft) as opposed to (Zt). Thus, while
the mathematics holds with no conditions on (Zt), the bounds may be meaningless for very
“ill-behaved” data and/or losses.

We now present a novel bound for subGaussian losses based on the method of mixtures.
Fix �i = � above to consider the supermartingale Mt(�, ✓) :=

Qt
i=1 exp

�
��i(✓) � �2

2 �
2
i

 
.

As discussed in Section 2 and proven in Appendix B, the mixture

Mt(✓) :=

Z

�2R
Mt(�, ✓)dF (�), (10)

is also a nonnegative supermartingale for an appropriate distribution F . By choosing F to
be Gaussian with mean 0 and some fixed variance, we can generate the following bound.
The proof is in Appendix A.2.

Corollary 9 (Gaussian-mixture bound for subGaussian losses) Let Z1, Z2, . . . be a
stream of (not necessarily i.i.d.) data. Let (ft)

1
t=1 be a predictable sequence of loss functions

such that fi is �i-subGaussian. Let ⌫ 2 M(⇥) be a data-free prior. Then, for all � 2 (0, 1)
and � > 0, with probability at least 1� � over the random draw of (Zt), for all times t and
measures ⇢ 2 M(⇥),

tX

i=1

E⇢�i(✓) 6

✓
st(�)

�

✓
DKL(⇢k⌫) + log

st(�)

�

◆◆1/2

, (11)

where st(�) = 1 + �
Pt

i=1 �
2
i .

The parameter � comes from the variance of the Gaussian mixture in (10). It is worth
comparing the above bound to the one from McAllester (1999). Considering stationary loss
functions bounded in [0, 1], McAllester’s fixed time bound reads

E⇢R(✓) 6 E⇢
bRn(✓) +

✓
DKL(⇢k⌫) + log(n/�)

2(n� 1)

◆1/2

. (12)

In our case, f being bounded implies that �2i = 1/4 for all i since f is 1/2-subGaussian.
Fix a time n of interest and take � such that sn(�) = n, i.e., � = 4(n � 1)/n. The
Gaussian mixture bound (11) then yields McAllester’s bound, but tighter by a factor of

p
2.

Meanwhile, we can achieve a time-uniform version of McAllester’s bound by considering
� = 1, in which case st(�) = 1 + t/4 6 t for all t > 2 and the bound becomes

E⇢R(✓) 6 E⇢
bRt(✓) +

✓
DKL(⇢k⌫) + log(t/�)

t

◆1/2

, (13)
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which is looser than McAllester’s by a factor of
p
2. We might thus consider (13) to be

a time-uniform generalization of McAllester’s bound. However, this was for a particular
choice of �. In general, our bound contains the parameter � over which we can optimize.
Performing this optimization gives an implicit equation for �:

log(st(�)) +
1

�
= log(�)�DKL(⇢k⌫).

(Though note that the result should not depend on t unless it is fixed in advance.) This is
di�cult to solve in closed-form, but after choosing ⌫ and ⇢ and computing the KL diver-
gence, we might generate an approximate solution computationally. Section 5 will explore
another generalization of McAllester’s bound using a separate (reverse submartingale based)
technique and Section 4.2.4 will discuss yet another generalization using betting martingales.

Remark 10 Corollaries 7 and 9 may be strengthened to handle sub-exponential losses,
where we say that Y is subexponential with parameters (�, c) if E exp(s(Y�EY )) 6 exp(s2�2/2)
for all |s| 6 1/c. SubGaussian random variables are subexponential random variables with
c = 0. To extend Corollary 7 to subexponential variables, we take �i 6 1/ci if fi is subex-
ponential with parameter (�i, ci).

It is worth noting here that the method of mixtures has been previously employed in the
PAC-Bayesian literature. For instance, it was used by Kuzborskij and Szepesvári (2019),
who were interested in providing bounds on h(Zn, ✓)�ED[h(Z

n, ✓)], where h : Zn⇥⇥ ! R

is a measurable function and n 2 N. Here Zn = (Z1, . . . , Zn), where we assume all elements
Zi are drawn i.i.d. from D. Kuzborskij and Szepesvári (2019) give bounds based on an
Efron-Stein variance proxy:

V (✓) =
nX

i=1

Vi(✓), where Vi(✓) = E[(h(Zn, ✓)� h(Z(i), ✓))2|Fi], (14)

where Z(i) is the same as Zn but contains an independent copy of Zi. Equations (17) and
(18) in Kuzborskij and Szepesvári (2019) show that the Doob-decomposition of h(Zn, ✓)�
E[h(Zn, ✓)] for a fixed ✓ obeys a sub- condition with respect to {Vt(✓)}. Denoting Di(✓) =
E[h(Zn, ✓)|Fi]� E[h(Zn, ✓)|Fi�1], they showed that

E


exp

✓
�Di(✓)�

�2

2
Vi(✓)

◆����Fi�1

�
6 1; 1 6 i 6 n.

The processes {(Pt(✓))t>1 : ✓ 2 ⇥} where Pt(✓) =
Q

i6t exp{�Di(✓) � �2

2 Vi(✓)} thus
constitute a family of supermartingales, and mixing over the family yields another su-
permartingale. Theorems 3 and 4 of Kuzborskij and Szepesvári (2019) are based on
such a mixture (again using a Gaussian mixture distribution), and provide bounds on
h(Zn, ✓) � ED[h(Z

n, ✓)] in terms of V (✓). Their result thus follows as a consequence of
Corollary 6 and the method of mixtures. Note, however, that time-uniformity apparently
does not gain us much in this case because the empirical risk (in this case h(Zn, ✓)) is not
computable until time t = n.
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4.2.2 Losses obeying a Bernstein condition.

The consideration of subexponential random variables in Remark 10 naturally leads us to
consider a Bernstein condition on the losses, which implies that they’re subexponential. In
particular, we say that a random variable Y satisfies Bernstein’s condition with parameter
c if

|E[(Y � E(Y ))k]| 6
1

2
Var(Y )k!ck�2, 8k 2 N, k > 2.

It is well known that if Y is Bernstein with parameter c then it is subexponential with pa-
rameters (

p
2Var(Y ), 1/2c) (see, e.g., Boucheron et al., 2013, Theorem 2.10 or Wainwright,

2019, Corollary 2.10). For bounded random variables, the resulting concentration inequality
can be much tighter than Hoe↵ding’s (which is not variance adaptive), especially when the
variance of Y is much smaller than its range. It is therefore worth stating the following
PAC-Bayes result for Bernstein-type losses, the proof of which is in Appendix A.6.

Corollary 11 (Bernstein condition anytime bound) Let (Zt) be a stream of (not nec-
essarily i.i.d.) data. Let (ft) be a predictable sequence of functions with Var(ft(Zt, ✓)|Ft�1) 6
�2t and, for all t and integers k > 2, |ED[(ft(Zt, ✓) � µt(✓))

k|Ft�1]| 6
1
2�

2
t k!c

k�2
t . Let (�t)

be a predictable sequence such that �t 2 (0, 1/ct) for all t. Fix a prior ⌫ 2 M(⇥). Then,
for all � 2 (0, 1), with probability at least 1� � over the random draw of (Zt), for all times
t > 1 and measures ⇢ 2 M(⇥), we have

tX

i=1

�iE⇢�i(✓) 6

tX

i=1

�2i�
2
i

2(1� ci�i)
+DKL(⇢k⌫) + log(1/�).

To our knowledge, this result (even the implied fixed-time counterpart) is new to the
PAC-Bayes literature.

4.2.3 Bounded losses

The next few results consider bounded loss functions. The first relies on a Bernstein-type
process

Bt(✓) :=
tY

i=1

exp

⇢
�i�i(✓)� �2i (e� 2)E[�2

i (✓)|Fi�1]

�
. (15)

It is so termed because (Bt(✓)) can be seen to be a supermartingale via the application of
Bernstein’s inequality. The details are in the proof of the following Proposition, which can
be found in Appendix A.3. The resulting bound has been applied to martingale di↵erence
sequences (MDSs) (Seldin et al., 2012, Theorem 7). Corollary 38 gives the precise time-
uniform extension of the MDS result.

Corollary 12 (Bernstein-like anytime bound for bounded losses) Let (Zt) be a stream
of (not necessarily i.i.d.) data. Let (ft) be a predictable sequence of loss functions such that
kftk1 6 Ht for all t and constants Ht > 0. Let (�t) be a predictable sequence such that
�t 2 [0, 1/Ht] for all t. Fix a prior ⌫ 2 M(⇥). Then, for all � 2 (0, 1), with probability at
least 1� � over the random draw of (Zt), for all times t and measures ⇢ 2 M(⇥), we have

tX

i=1

�iE⇢�i(✓) 6 (e� 2)
tX

i=1

�2iE⇢ED[�
2
i (✓)|Fi�1] +DKL(⇢k⌫) + log(1/�).
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A second result for bounded losses can be obtained via a supermartingale based on a
Bennett-like inequality (Boucheron et al., 2013, Theorem 2.9). It is the first example in
this paper of a result where the empirical risk is bounded by the expected risk. That is, it
is a bound on ��i(✓). The reader can be forgiven for wondering whether such bounds are
useful. However, Catoni’s MGF-based PAC-Bayes bound (Catoni, 2007) is also an example
of such a bound and has found various uses, such as in estimating means of random vectors
and matrices (Catoni and Giulini, 2017). We therefore opt to include the next result. More
discussion can be found in the next section when we present a time-uniform extension of
Catoni’s bound (Corollary 16).

Corollary 13 (Bennet-like anytime bound for bounded losses) Let (Zt) be a stream
of (not necessarily i.i.d.) data. Let (ft) be a predictable sequence of loss functions such that
kftk1 6 Ht for all t and constants Ht > 0. Let (�t) be a predictable sequence of positive
values with �t < inf✓{1/ED[ft(Zt, ✓)|Ft�1]}. Fix a prior ⌫ 2 M(⇥). Then, for all � 2 (0, 1),
with probability at least 1 � � over the random draw of (Zt), for all times t and measures
⇢ 2 M(⇥), we have

tX

i=1

�iE⇢(fi(Zi, ✓)� µi(✓)) 6

tX

i=1

E⇢,D[f
2
i (Zi, ✓)|Ft�1]

H2
i

 P (�iHi) +DKL(⇢k⌫) + log(1/�),

where  P (x) = (ex � x� 1).

The proof is in Appendix A.4. Both Corollary 12 and 13 are based on one-sided con-
centration inequalities and thus hold in the more general setting when losses are not non-
negative. The subscript in  P references sub-Poisson processes (Howard et al., 2020).

Our final result for bounded losses comes via an “unexpected Bernstein inequality”
provided by Mhammedi et al. (2019, Lemma 13) and based on an inequality in Fan et al.
(2015). More specifically, Fan et al. (2015, Equation (4.11)) demonstrate that for random
variables X > �1 and � 2 [0, 1),

E exp{�X + (�+ log(1� �))X2} 6 1.

This bound was extended to derive empirical Bernstein concentration inequalities and con-
fidence sequences in Howard et al. (2021). Following this lead, Mhammedi et al. (2019) use
Fan’s inequality to show that for a random variable X 2 (�1, b), for all 0 6 � < 1/b,

exp{�(E[X]�X � cX2)} 6 1, 8c > �#(�b). (16)

where #(↵) = � log(1�↵)�↵

↵2 . We can use such an inequality to construct a supermartingale
which furnishes the following result.

Corollary 14 (Unexpected Bernstein anytime bound for bounded losses) Let (Zt)
be a stream of (not necessarily i.i.d.) data. Let (ft) be predictable sequence of loss func-
tions such that kftk1 6 Ht for all t and constants Ht > 0. Let (�t) be a predictable
sequence of positive values such that 0 6 �t 6 1/Ht. Let (ct) be a predictable sequence with

18



A Unified Recipe for Deriving (Time-Uniform) PAC-Bayes Bounds

ct > �t#(�tHt). Fix a prior ⌫ 2 M(⇥). Then, for all � 2 (0, 1), with probability at least
1� � over the random draw of (Zt), for all times t and measures ⇢ 2 M(⇥), we have

tX

i=1

�iE⇢�i(✓) 6

tX

i=1

�iciE⇢f
2
i (Zi, ✓) +DKL(⇢k⌫) + log(1/�).

A big distinction between Corollary 14 and Corollaries 12 and 13 is the lack of an expectation
over D on the right hand side. Instead, we work directly with the random variables ft(Zt, ✓).
While the process used in the proof of Corollary 14 is at the core of the result of Mhammedi
et al. (2019), our result is not a time-uniform version of theirs. Indeed, they employ several
tools which make an anytime-valid extension challenging, such as the use of data-dependent
priors. We discuss such priors more in Section 6.5.

4.2.4 Interlude: Implicit Bounds via Wealth Processes

There has been a recent surge of interest in so-called game-theoretic probability and statis-
tics (Shafer and Vovk, 2019; Ramdas et al., 2023) owing to its fresh perspective on sequential,
anytime-valid inference. Here we demonstrate how some of the ideas may be employed to
generate PAC-Bayes bounds, and how this perspective recovers some concurrent work by
Jang et al. (2023).

Central to game-theoretic statistics is the idea of a fictitious bettor playing an iterated
game against nature. The game is structured as follows. The bettor begins with an initial
wealth of K0 = 1. At time t, the bettor chooses a Ft�1-measurable payoff function St :
V ! [0,1] obeying E[St(V )|Ft�1] 6 1, where the expectation is taken with respect to
some strategically chosen distribution(s) P . For instance, in hypothesis testing problems,
P is chosen to be the set of distributions comprising the null. See Ramdas et al. (2023)
for more details. Nature then reveals a value Vt 2 V and the bettor updates his wealth as
Kt = Kt�1 · St(Vt). The total wealth of the bettor at time t is therefore Kt =

Qt
i=1 Si(Vi),

and the process (Kt)t>0 is guaranteed to be a supermartingale (on P ) due to the assumption
on the payo↵ function.

We apply this to the PAC-Bayes setting as follows. Assume that the data are i.i.d. and
that the losses are stationary and bounded in [0, 1]. We will consider playing a game for
each parameter ✓ 2 ⇥, and will thus have a family of wealth processes {(Kt(✓))t>0 : ✓ 2 ⇥}.
We take the values Vt to be the losses f(Zt, ✓). Following recent work in this area, suppose
we use the following payo↵ function for each ✓: St(f(Zt, ✓)) = 1 + �t(✓)(f(Zt, ✓) � µ(✓))
where (�t(✓))t>0 is a predictable sequence (often called a betting strategy) and we enforce
that �t(✓) 2 [�1/(1�µ(✓)), 1/µ(✓)] to ensure that St is nonnegative. Recalling that µ(✓) =
E[f(Zt, ✓)|Ft�1], it’s easy to verify that the resulting wealth process defined by

Kt(✓) =
tY

i=1

�
1 + �i(✓)(f(Zi, ✓)� µ(✓))

 
, (17)

is a nonnegative martingale. Consequently, it may be employed in Theorem 4 where we
take expUt(✓) to be Kt(✓). However, the results of Jang et al. (2023) concern not only the
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wealth, but the optimal wealth, which is defined as

K⇤
t (✓) := max

�2C(µ(✓))

tY

i=1

�
1 + �(f(Zi, ✓)� µ(✓))

 
, C(x) :=

 �1

1� x
,
1

x

�
. (18)

Orabona and Jun (2023) show that there exists a betting strategy such that the wealth and
the optimal wealth are related as

logK⇤
t (✓)� logKt(✓) 6 log

✓
⇡�(t+ 1)

�(t+ 1/2)

◆
. (19)

This yields the following result, which is Theorem 1 of Jang et al. (2023).

Corollary 15 (Betting-based anytime bound) Let (Zt) be i.i.d. and f a stationary
loss function bounded in [0,1]. Fix a data-free prior ⌫ 2 M(⇥). Then, for all � 2 (0, 1),
with probability at least 1 � � over the random draw of (Zt), for all times t and measures
⇢ 2 M(⇥),

E⇢ logK
⇤
t (✓) 6 DKL(⇢k⌫) + log(1/�) + log

✓
⇡�(t+ 1)

�(t+ 1/2)

◆
. (20)

Proof Since (Kt(✓)) is a nonnegative martingale, Theorem 4 applied to the wealth process
immediately yields that with probability 1�� over (Zt), E⇢ logKt(✓) 6 DKL(⇢k⌫)+log(1/�).
Applying (19) then finishes the proof.

By applying various inequalities to the term log(1+�(f(Zi, ✓)�µ(✓))), Jang et al. (2023)
are able to recover (up to constants), Theorems of McAllester (1999), Maurer (2004), and
Tolstikhin and Seldin (2013). We omit the details here and refer the reader to Propositions
2, 3, and 4 in Jang et al. (2023).

4.2.5 Losses with bounded MGF

Finally, we consider losses which may not be bounded or subGaussian but which have
bounded moment generating functions (MGFs). The following bound is an anytime-valid
version of Catoni’s bound based on the log-MGF of the loss (Catoni, 2007). Like Corol-
lary 13, it is somewhat of an unusual bound seeing as the empirical risk is “on the wrong
side”, i.e., we bound the empirical risk in terms of the log-MGF of the expected risk. How-
ever, as discussed above, the bound has proven useful in various estimation problems (Catoni
and Giulini, 2017, 2018). It reads as follows. Suppose f is stationary and the data are i.i.d.
Fix n 2 N and a prior ⌫. Then, with probability at least 1� �, for all ⇢,

1

n

nX

i=1

E⇢f(Zi, ✓) 6 logE⇢ED[exp(f(Z, ✓))] +
DKL(⇢k⌫) + log(1/�)

n
. (21)

Our time-uniform extension is given by Corollary 16. It recovers (21) exactly by taking
t = n, �i = 1 for all i, and then dividing both sides by n (and assuming that the losses are
stationary and the data i.i.d.).
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Corollary 16 (Losses with bounded MGF) Let Z1, Z2, . . . be a stream of (not nec-
essarily i.i.d.) data. Let (ft) be a predictable sequence of loss functions. Let (�t) be a
nonnegative predictable sequence and consider any data-free prior ⌫ 2 M(⇥). Then, for all
� 2 (0, 1), with probability at least 1 � � over the random draw of (Zt), for all times t and
measures ⇢ 2 M(⇥),

tX

i=1

�iE⇢fi(Zi, ✓) 6
tX

i=1

logE⇢ED[exp(�ifi(Z, ✓))|Fi�1] +DKL(⇢k⌫) + log(1/�). (22)

The proof may be found in Appendix A.7.

4.3 More General Losses

Now we consider less well-behaved losses.

4.3.1 Losses with Bounded Second Moment.

Our second bound in this section assumes only that the conditional second moment of the
loss is finite, i.e., ED[f

2
t (Z, ✓)|Ft�1] < 1 for all ✓ 2 ⇥, and relies on the nonnegative process

Mt(✓) :=
tY

i=1

exp

⇢
�i�i(✓)�

�2i
2
ED[fi(Zi, ✓)

2|Fi�1]

�
,

which can be seen to be a supermartingale via an application of a one-sided Bernstein
inequality. Lemma 44 gives the relevant statement and proof of this result. As far as we
are aware, the resulting PAC-Bayes bound is novel.

Corollary 17 (Losses with bounded conditional second moment) Let Z1, Z2, . . . be
a stream of (not necessarily i.i.d.) data. Let (�t) be a nonnegative predictable sequence and
consider any data-free prior ⌫ 2 M(⇥). Let (ft) be a sequence of predictable loss functions
such that �2t (✓) = ED[f

2
t (Z, ✓)|Ft�1] < 1. Then, for all � 2 (0, 1), with probability at least

1� � over the random draw of (Zt), for all t and ⇢ 2 M(⇥),

tX

i=1

�iE⇢�i(✓) 6
tX

i=1

�2i
2
E⇢�

2
i (✓) +DKL(⇢k⌫) + log(1/�). (23)

We now give another bound assuming only the second moment is finite. It is based
on a supermartingale discovered by Bercu and Touati (2008) and the resulting bound (for
stationary losses ft and constant � = �i) was given by Haddouche and Guedj (2023). Let

Mt(✓) =

tX

i=1

�i(✓) =

tX

i=1

(µi(✓)� fi(Zi, ✓)).

The quadratic variation of Mt(✓) is [M(✓)]t :=
Pt

i=1�
2
i (✓) and its conditional quadratic

variation is hM(✓)it :=
Pt

i=1 E[�
2
i (✓)|Fi�1]. Bercu and Touati (2008) (see also Howard

et al., 2020, Table 3) demonstrate that the process

Lt(✓) = exp

⇢
�Mt(✓)�

�2

6

✓
[M(✓)]t + 2hM(✓)it

◆�
,
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is a supermartingale for all � 2 R. Our unified proof technique leads us immediately to the
following result.

Corollary 18 (Anytime bound finite second moment) Let Z1, Z2, . . . be a stream of
(not necessarily i.i.d.) data and (ft) be a sequence of predictable loss functions such that
ED[f

2
t (Z, ✓)|Ft�1] < 1. Let (�t) be a nonnegative predictable sequence and consider any

data-free prior ⌫ 2 M(⇥). Then, for all � 2 (0, 1), with probability at least 1 � � over the
random draw of (Zt), for all times t and measures ⇢ 2 M(⇥),

X

i6t

�iE⇢�i(✓) 6
1

6

X

i6t

�2iE⇢

✓
�

2
i (✓) + 2ED[�

2
i (✓)|Fi�1]

◆
+ log(1/�) +DKL(⇢k⌫). (24)

The proof of this result (including that Lt(✓) above forms a supermartingale) can be
found in Appendix A.9. The right hand side of (24) can be upper bounded to give a more
interpretable result. In particular, if we consider stationary losses and i.i.d. data, then we
can replace (24) with the following:

E⇢R(✓) 6 E⇢
bRt(✓) +

�

6t

X

i6t

f2(Zi, ✓) +
�

3
E⇢,D[f

2(Z, ✓)] +
log(1/�) +DKL(⇢k⌫)

�t
. (25)

This recovers (with slightly tighter constants), Theorem 2.3 of Haddouche and Guedj
(2023). The relationship between (25) and Corollary 17 is worth investigating. For i.i.d.
data and fixed �i = � > 0, (23) can be rearranged to read

E⇢R(✓) 6 E⇢
bRt(✓) +

�

2
E⇢,D[f

2(Z, ✓)] +
DKL(⇢k⌫) + log(1/�)

�t
. (26)

Subtracting the right hand side of (25) from (26) gives

D :=
�

6t

X

i6t

f2(Zi, ✓)�
�

6
E⇢,D[f

2(Z, ✓)],

which converges to zero almost surely via the LLN. Because (25) is looser than (24), this
implies that Corollary 17 is looser than Corollary 18. Corollary 17 is, however, a cleaner
result, and one we felt was worth stating. Let also note that using (25), Haddouche and
Guedj (2023) are able to generalize previous work of Haddouche et al. (2021) on unbounded
losses under the Hypothesis Dependent Range Condition (HYPE). The same discussion and
generalization thus applies here.

We end this section with an open problem: Can we obtain a time-uniform PAC-Bayes
bound for losses under the sole assumption of a bounded p-th moment, 1 < p 6 2? Wang
and Ramdas (2023a), based on previous work of Chen et al. (2021) and Catoni (2012), have
provided nonnegative supermartingales under such conditions. They do not, however, result
in closed form expressions of the risk, making the resulting PAC-Bayes bound di�cult to
use.
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5. PAC-Bayes Bounds via Submartingales

While Section 4 was able to generalize several fixed-time PAC-Bayes bounds, the sub- 
approach explored therein does not cover all existing PAC-Bayes bounds. Here we explore
the other half of Theorem 4, giving bounds based on reverse-time submartingales.

Throughout this section, for reasons that will become clear later, we will require that
the loss is stationary (ft = f) and that the data (Zt) are exchangeable. In particular,

for all t > 1, and permutations g : [t] ! [t], (Z1, . . . , Zt)
d
= (Zg(1), . . . , Zg(t)). Exchange-

ability is slightly weaker than the i.i.d. assumption. For instance, sampling without re-
placement gives rise to exchangeable sequences which are not i.i.d. Another example comes
from considering X1 + Y, . . . , Xn + Y for some random variable Y and i.i.d. X1, . . . , Xn.
Observe that exchangeability implies a common mean, so throughout this section we set
R(✓) = Rt(✓) = ED[f(Z, ✓)] for all t.

The bounds in the previous section were based on the process St =
Pt

i=1(µi(✓) �
fi(Zi, ✓)), while those in this section will be based on the process (St/t). This is because,
while the partial sums (St) form a martingale, only the partial means (St/t) form a reverse
submartingale. We’ll see that while PAC-bounds based on reverse submartingales can
capture a larger variety of relationships between Rt(✓) and bRt(✓), this comes at the expense
of slightly looser bounds in addition to stronger distributional assumptions.

A formidable example of a bound which is not recovered by appealing to supermartin-
gales is that of Germain et al. (2015) (a similar bound was stated by Lever et al. (2010);
Theorem 1). This generalizes a class of bounds which consider convex functions acting
on the risk and empirical risk. In particular, this recovers earlier bounds of Seeger (2002,
2003); Germain et al. (2009); McAllester (1998, 2003). A similar bound was given recently
by Rivasplata et al. (2020) when considering PAC-Bayes bounds for stochastic kernels.

Proposition 19 (Germain et al., 2015) Let Z1, . . . , Zn be i.i.d., ' : [0, 1]2 ! R be con-
vex and f = ft be stationary and bounded in [0, 1]. Let ⌫ be a data-free prior. For all n and
� > 0, with probability at least 1� � over the random draw of (Zt), for all ⇢ 2 M(⇥),

'(E⇢
bRn(✓),E⇢R(✓)) 6

1

�
logE⌫ED exp(�'( bRn(✓), R(✓)) +

DKL(⇢k⌫) + log(1/�)

�
.

Let us consider for a moment attempting to give an anytime-valid version of the above
result using the machinery from Section 4. One would need to guarantee that the nonneg-
ative process Pt(✓) = exp

�
�'(E⇢

bRn(✓),E⇢R(✓))� logE⌫ED exp(�'( bRt(✓), R(✓))
 
is upper

bounded by a supermartingale. Since ' may not be linear, however, one cannot write this
as a product of exponential terms, thereby making it di�cult to write E[Pt(✓)|Ft�1] in
terms of Pt�1(✓). We thus require a di↵erent approach. Interestingly, one can show that
convex functions acting on the empirical risk are reverse submartingales with respect to
an appropriate filtration, which we define below. From here, Ville’s inequality for reverse
submartingales (Lemma 2) will provide us with an anytime version of Proposition 19.

Given a sequence of data Z1, Z2, . . . , the exchangeable reverse filtration (Et)
1
t=1 is the

reverse filtration where Et is the �-algebra generated by all (Borel) measurable functions of
the data which are permutation symmetric in their first t arguments. We say a function s
is permutation symmetric if s(Z1, . . . , Zt) = s(Zg(1), . . . , Zg(t)) for all permutations g : [t] !
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[t]. Formally, Et is written

Et = �

✓�
s(Z1, . . . , Zt) : s is permutation symmetric

 
[ {Zj}j>t

◆
. (27)

We find the following intuition from Manole and Ramdas (2023) helpful when thinking
about Et. E1 might be viewed as an omniscient oracle with access to all information over
the whole future. As time goes on, her memory of the past decays but she retains perfect
knowledge of the future. Importantly, she does not forget what happened in the past, only
the order in which events occurred. That is, the oracle Et is omniscient with respect to
Zt+1, Zt+2, . . . , but forgets the order of Z1, . . . , Zt. Manole and Ramdas (2023) also give a
su�cient condition for a process to be a reverse submartingale with respect to (Et).

Lemma 20 (Leave-one-out, Manole and Ramdas, 2023, Corollary 5) If a sequence
of permutation invariant functions {ht : Zt ! R} satisfies the “leave-one-out” property,
namely, ht(Z

t) 6 1
t

Pt
i=1 ht�1(Z

t
�i) (where Zt

�i omits Zi), then (ht(Z
t))1t=0 is a reverse

submartingale with respect to (Et). Moreover, if the expression above holds with equality
then (ht(Z

t)) is a reverse martingale with respect to (Et).

To reduce notational clutter, given a convex function ' : R>0 ⇥ R>0 ! R, define

't(✓) := '( bRt(✓), R(✓)). (28)

That is, 't simply fixes the second argument of ' as R(✓) and sets the first as the empirical
risk at time t. Considering 't is useful because the stochastic process ('t(✓))

1
t=1 for fixed ✓

is a reverse submartingale with respect to (Et). This holds by Lemma 20, since the empirical
risk bRt(✓) is permutation invariant and the convexity of ' ensures that the leave-one-out
property holds, as proven below.

Lemma 21 For an exchangeable sequence (Zt), ('t(✓)) is a reverse submartingale with
respect to (Et).

Proof First note that 't(✓) is permutation invariant by construction. Thus, by Lemma 20,
we need only show that it satisfies the leave-one-out property. For each i 2 [t], define

bR(�i)
t (✓) :=

1

t� 1

X

j 6=i

f(Zj , ✓),

and observe that

tX

i=1

bR(�i)
t (✓) =

1

t� 1

tX

i=1

X

j 6=i

f(Zj , ✓) =

tX

i=1

f(Zj , ✓) = t bRt(✓).

Consequently, by the convexity of ' and Jensen’s inequality,

't(✓) = '( bRt(✓), R(✓)) = '

✓
1

t

tX

i=1

bR(�i)
t (✓), R(✓)

◆

6
1

t

tX

i=1

'( bR(�i)
t (✓), R(✓)) =

1

t

tX

i=1

'0((Z1, . . . , Zi�1, Zi+1, . . . , Zt), ✓),
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which is precisely the leave-one-out property.

Our reliance on Lemma 20 is the reason that this section considers only stationary loss
functions (but so do the bounds we generalize). More specifically, stationary losses are
required for 't(✓) to be permutation invariant. We cannot in general swap Zi and Zk if fi
and fk are di↵erent.

5.1 A Time-Uniform Bound for Convex Functions

As we alluded to in the introduction, while the supermartingale approach of Section 4 was
able to generalize fixed-time bounds at no cost, this is not true for the bounds presented
in this section. Roughly speaking, this is because even though the process ('t(✓))t>1 is a
reverse submartingale with respect to (Et) (and therefore so is (exp(�'t(✓)))t>1), the process
(exp{�'t(✓) � logE⌫,D exp(�'t(✓))})t>1 may not be. Thus, we cannot use such a process
in Theorem 4 to recover (a time-uniform version of) Proposition 19 exactly.

Instead, we rely on a “stitching” argument in a similar vein to Howard et al. (2021)
and Manole and Ramdas (2023). This entails considering a series of submartingales over
geometrically spaced epochs [2t�1, 2t), t > 0, each holding with a precise probability such
that we may take the union bound over all such intervals to obtain our result. As we’ll see,
the resulting bounds will su↵er at most a small constant factor plus an iterated logarithm
factor over the originals.

Formally, we consider a “stitching function” function ` : N>0 ! (1,1) such thatP1
k=1

1
`(k) 6 1. Di↵erent choices will leads to di↵erent shapes of the resulting bounds.

For clarity and concreteness, however, we will consider the following stitching function for
the remainder of this manuscript:

`(k) = k2⇣(2), where ⇣(2) =
1X

j=1

j�2 ⇡ 1.645.

We also introduce the following “iterated logarithm” factor that captures the small excess
error inherent to our anytime-valid bounds:

ILt := log(`(log2(2t))) < 2 log log 2t+ 1.3. (29)

Additionally, throughout this section we set

t̄ := 2blog2(t)c. (30)

With these definitions in hand, we now state our time-uniform version of Proposition 19.

Corollary 22 (General anytime bound for convex functions) Let (Zt) be exchange-
able. Let ' : R>0 ⇥ R>0 ! R be convex and ⌫ 2 M(⇥) be a prior. Let (�t) be a sequence
of positive values. Then, for all � 2 (0, 1), with probability at least 1 � � over the random
draw of (Zt), for all ⇢ 2 M(⇥) and at all times t > 1,

E⇢'t(✓) 6
logE⌫ED exp

�
�t̄'t̄(✓)

 

�t̄
+

DKL(⇢k⌫) + log(1/�) + ILt

�t̄
, (31)

for ILt as in (29), t̄ as in (30), and 't(✓) = '( bRt(✓), R(✓)).

25



Chugg, Wang, and Ramdas

Ideally, the subscripts t̄ above would have been equal to t, but we were not able to prove
such a result. Since t/2 6 t̄ 6 t, this results in a slight looseness; see Remark 23.

Proof Recall the shorthand 't(✓) = '( bRt(✓), R(✓)). For j 2 N, define

M j
t (✓) = �j't(✓)� logE⌫,D exp(�j'j(✓)). (32)

the second term on the right hand side is deterministic, so Lemma 21 implies that (M j
t (✓))t>1

is a reverse submartingale with respect to (Et). Hence, by Jensen’s inequality, so is the
process (expM j

t (✓))t>1. Moreover, note that ED exp(M j
j (✓)) = 1. Therefore, Theorem 4

implies that, for all ⇢,

P(9t > j : E⇢M
j
t (✓)�DKL(⇢k⌫) > log(u/�)) 6 �/u, (33)

for u > 0. Suppose that for some t⇤ > 1 and some ⇢ 2 M(✓) we have the inequal-
ity E⇢M

t̄∗
t∗ (✓) � DKL(⇢k⌫) > log(`(log2(2t

⇤))/�). By construction, t̄⇤ = 2k
∗

where k⇤ =
blog2(t⇤)c 2 N. Therefore,

E⇢M
2k

∗

t∗ (✓)�DKL(⇢k⌫) = E⇢M
t̄∗
t∗ (✓)�DKL(⇢k⌫)

> log(`(log2(2t
⇤))/�) > log(`(k⇤ + 1)/�),

where the final inequality follows since log2(2t
⇤) = log2(t

⇤) + 1 > blog2(t⇤)c + 1 = k⇤ + 1,
and ` is an increasing function. We have thus shown that the event

{9⇢, 9t > 1 : E⇢M
t̄
t (✓)�DKL(⇢k⌫) > log(`(log2(2t))/�)},

is contained in
1[

k=0

�
9⇢, 9t > 2k : E⇢M

2k

t (✓)�DKL(⇢k⌫) > log(`(k + 1)/�))
 
,

implying that

P

✓
9⇢, 9t > 1 : E⇢M

t̄
t (✓)�DKL(⇢k⌫) > log(`(log2(2t))/�)

◆

6 P

✓ 1[

k=0

�
9⇢, 9t > 2k : E⇢M

2k

t (✓)�DKL(⇢k⌫) > log(`(k + 1)/�))
 ◆

6

1X

k=0

P(9⇢, 9t > 2k : E⇢M
2k

t (✓)�DKL(⇢k⌫) > log(`(k + 1)/�)) 6
1X

k=0

�

`(k + 1)
= �,

where we’ve applied (33) with u = `(k+1). In other words, expanding M t̄
t (✓), we have that

with probability at least 1� �, for all ⇢ and t > 1,

�t̄E⇢'t(✓) 6 E⇢ logE⌫,D exp(�t̄'t̄(✓)) +DKL(⇢k⌫) + log(`(log2(2t))/�)

6 logE⌫,D exp(�t̄'t̄(✓)) +DKL(⇢k⌫) + log(1/�) + ILt,

using the definition of ` and the fact that log is concave. Dividing by �t̄ completes the
argument.
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Remark 23 Notice that our choice of t̄ may leave us with a bound that is approximately
twice as big as the fixed time counterpart. Indeed, if t = 1023 then t̄ = 512 ⇡ t/2. Thus if
�j = j (say), then � ¯1023 = 512 ⇡ �1023/2. The culprit is our choice of t̄ and the constant 2
therein. We chose 2 simply as a matter of convenience, but the analysis can be modified. In
particular, for any fixed s > 1, we may consider t̄ = sblogs(t)c, which obeys t/s 6 t̄ 6 t. As
s ! 1, t̄ thus lags behind t less and less. The price we pay is that the iterated logarithm error
term must be modified to ILt = log(`(logs(st))) which grows as s ! 1. We leave the choice
of s and the appropriate trade-off between the lag and the additive error to the practitioner.

Comparing Corollary 22 and Proposition 19, we see there are several di↵erences aside
from ILt. For one, our expectation is on the outside of 't on the left hand side. Of course,
because ' is convex, E⇢'( bRt(✓), R(✓)) > '(E⇢

bRt(✓),E⇢R(✓)), so our result implies a bound
on the latter term. Second, as noted in the remark above, our log-MGF term is based on
t̄ 2 [t/2, t] instead of t, thus “lags behind” the fixed-time result. This is a consequence of
stitching. However, if there is a fixed time n of special interest, we can obtain the following
time-uniform bound for all t > n, which is just as tight as Proposition 19.

Corollary 24 Let (Zt) be exchangeable. Let ' : R>0 ⇥ R>0 ! R be convex and ⌫ 2 M(⇥)
be a prior. Fix � > 0 and n 2 N. Then, for all � 2 (0, 1), with probability at least 1 � �

over the random draw of (Zt), for all ⇢ 2 M(⇥) and at all times t > n,

E⇢'( bRt(✓), R(✓)) 6
logE⌫ED exp

�
�'( bRn(✓), R(✓))

 

�
+

DKL(⇢k⌫) + log(1/�)

�
. (34)

Proof Similarly to the proof of Corollary 22, set

Mn
t (✓) = exp

�
�'t(✓)� logE⌫,D exp(�'n(✓))

 
.

Then (Mn
t (✓))t>n is a reverse submartingale with respect to (Et)t>n with EDM

n
n (✓) = 1.

Therefore, Theorem 4 gives

P(9⇢, 9t > n : E⇢M
n
t (✓)�DKL(⇢k⌫) > log(1/�)) 6 �,

which rearranges to the claimed result.

Corollary 24 requires some interpretation. The right hand side of (34) is constant with
respect to t. While such a bound might be more straightforward for a fixed t > n, our bound
shows that it holds simultaneously for all t > n. These bounds are in some sense analogous
to Freedman-style deviation inequalities (which hold for all t 6 n, but with tightness only
depending on n and not improving for t ⌧ n) and perhaps even more analogous to de
la Peña-style deviation inequalities (which hold for all t > n, but with tightness only
depending on time n and not improving for t � n) — see Howard et al. (2020) for a
detailed discussion and a unification of the two types of boundaries (in particular Figures
1, 4 and 5 for intuition).
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5.2 A Time-Uniform Seeger Bound

By choosing particular convex functions ' and applying Corollary 22 (or 24), we recover
time-uniform versions of several classical PAC-Bayes inequalities. We present several of
them here, but refer the reader to resources such as Alquier (2021) and Germain et al.
(2009) for more comprehensive discussions. A particularly famous result is that of Langford
and Seeger (2001) and Maurer (2004). To state it, let us define, for any p, q 2 (0, 1),

kl(pkq) := p log

✓
p

q

◆
+ (1� p) log

✓
1� p

1� q

◆
,

which is the KL-divergence between Bernoulli distributions with means p and q, respectively.
That kl is convex (in each argument, p and q) thus follows from the fact that DKL(·k·) is
convex (in distribution space). Indeed,

kl(�p1 + (1� �)p2kq) = DKL(�Ber(p1) + (1� �)Ber(p2)kBer(q))
6 �DKL(Ber(p1)kBer(q)) + (1� �)DKL(Ber(p2)kBer(q))
= � kl(p1kq) + (1� �) kl(p2kq),

for any � 2 [0, 1], where Ber(p) is a Bernoulli distribution with mean p. An identical
argument holds for the second argument of kl. Now, for k 2 N, define

⇠(k) :=

kX

`=0

PY⇠Bin(k,`/k)(Y = `) =

kX

`=0

✓
k

`

◆
(`/k)`(1� `/k)k�`.

As noted by Maurer (2004); Germain et al. (2015),
p
k 6 ⇠(k) 6 2

p
k for all k 2 N.

Employing Corollary 22 leads to the following bound, which relates ⇠(k) to the log-MGF.
Recall that t̄ = 2blog2(t)c and ILt < 2 log log 2t + 1.3. The proof of the following bound can
be found in Appendix A.10.

Corollary 25 (Anytime-valid Langford-Seeger Bound) Let (Zt) be i.i.d. and con-
sider stationary losses bounded in [0, 1]. Let ⌫ 2 M(⇥) be a data-free prior. Then, for
all � 2 (0, 1), with probability at least 1� � over the random draw of (Zt), for all ⇢ 2 M(⇥)
and at all times t > 1,

E⇢ kl( bRt(✓)kR(✓)) 6
DKL(⇢k⌫) + log(⇠(t̄)/�) + ILt

t̄
. (35)

Moreover, for any fixed n, we obtain that for all � 2 (0, 1), with probability at least 1 � �

over the random draw of (Zt), for all ⇢ 2 M(⇥) and at all times t > n,

E⇢ kl( bRt(✓)kR(✓)) 6
DKL(⇢k⌫) + log(⇠(n)/�)

n
. (36)

For ease of comparison, let us recall the usual fixed-time version of this bound, which reads:
For all n 2 N, with probability at least 1� �, for all ⇢,

kl(E⇢
bRn(✓)kE⇢R(✓)) 6

DKL(⇢k⌫) + log(⇠(n)/�)

n
. (37)
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Noting that kl(E⇢
bRn(✓)kE⇢R(✓)) 6 E⇢ kl( bRn(✓)kR(✓)) due to Jensen’s inequality, we see

that at time t = n, (36) recovers the fixed-time Seeger bound. Moreover, by noting that
t̄ 2 [t/2, t], (35) provides a guarantee for all t > 1, that is at most a constant factor worse
than (36). We emphasize that this constant factor can be changed by altering the definition
of t̄; see Remark 23. As a brief historical note, (37) was first stated in that form by Germain
et al. (2015, Lemma 20). Langford and Seeger (2001, Theorem 3) use n in place of ⇠(n)
and Maurer (2004, Theorem 5) then tightens this to 2

p
n.

A time-uniform McAllester bound (McAllester, 1998, 2003) — distinct from that derived
in Section 4 — follows immediately by applying Jensen’s inequality and Pinsker’s inequal-
ity: For all x, y 2 (0, 1), 2(x � y)2 6 kl(xky). This implies that 2[E⇢( bRt(✓) � R(✓))]2 6

2E⇢( bRt(✓) � R(✓))2 6 E⇢ kl( bRt(✓)kR(✓)). Using this in conjunction with the fact that
⇠(k) 6 2

p
k yields the following.

Corollary 26 (Anytime-valid McAllester Bound) Let (Zt) be i.i.d. and consider sta-
tionary losses bounded in [0, 1]. Let ⌫ 2 M(⇥) be a data-free prior. Then, for all � 2 (0, 1),
with probability at least 1 � � over the random draw of (Zt), for all ⇢ 2 M(⇥) and at all
times t > 1, we have

E⇢R(✓) 6 E⇢
bRt(✓) +

✓
DKL(⇢k⌫) + log(2

p
t̄/�) + ILt

2t̄

◆1/2

.

Moreover, for any fixed n, we obtain that for all � 2 (0, 1), with probability at least 1 � �

over the random draw of (Zt), for all ⇢ 2 M(⇥) and at all times t > n,

E⇢R(✓) 6 E⇢
bRt(✓) +

✓
DKL(⇢k⌫) + log(2n/�)

2n

◆1/2

. (38)

As above, at the fixed time t = n, (38) recovers McAllester’s bound in (12). Other
bounds follow from other choices of '. Bégin et al. (2016) note that '(x, y) = �cx� log(1�
y(1� e�c) leads to Theorem 1.2.6 of Catoni (2007). Meanwhile, as pointed out by Alquier
(2021) and Pérez-Ortiz et al. (2021) we can also generate the bounds of Tolstikhin and
Seldin (2013) and Thiemann et al. (2017) by using other inequalities involving kl.

5.3 U- and V-statistics

We end this section by discussing the representation of U- and V-statistics as reverse sub-
martingales, thus opening the door for bounds based on these quantities. We will assume the
data (Zt) are drawn i.i.d. and that the loss function is stationary. We consider functionals
of the form � : P(Z)⇥⇥ ! R, where

�(P, ✓) =

ZZ
h(f(z1, ✓), f(z2, ✓))dP (z1)dP (z2).

Here, P is a distribution over the data, and h : R ⇥ R ! R>0 is symmetric, continuous,
and positive semi-definite. For instance, if we take h(a, b) = (a � b)2/2, then �(P, ✓) =
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VarZ⇠P [f(Z, ✓)]. The U- and V-statistics of � are, respectively,

Ut(✓) :=
2

t(t� 1)

X

16i<j6t

h(f(Zi, ✓), f(Zj , ✓)), (39)

Vt(✓) :=
1

t2

X

16i,j6t

h(f(Zi, ✓), f(Zj , ✓)). (40)

Berk (1966) and, more recently, Manole and Ramdas (2023) observe that Ut(✓) is a
reverse martingale with respect to (Et). Indeed, this can be seen by appealing to the leave-
one-property (Lemma 20). As for Vt(✓), it can be seen to be a reverse submartingale with
respect to (Et) if, in addition to the conditions on h above, the range of f is a compact
subset of R (Manole and Ramdas, 2023, Proposition 16).

In conjunction with Theorem 4, these properties enable us to give time-uniform PAC-
Bayes bounds involving functionals and their U- and V-statistics. To illustrate, we recover
time-uniform versions of Theorems 3 and 4 in Tolstikhin and Seldin (2013). Recalling
Remark 23, this result will employ stitching and thus lags behind the fixed-time result by
a small constant. As was discussed in Section 4.2.4, a tighter time-uniform bound (i.e., one
that uses forward supermartingales and thus does not have an iterated logarithm factor)
can be obtained by using a betting-style martingale. However, we state and prove the
following bound as an example of how U-statistics and their properties can be applied in
the PAC-Bayes setting.

Corollary 27 Let (Zt) be drawn i.i.d. and f be stationary. Let Vart(✓) be the unbiased
empirical variance, i.e., Vart(✓) := 1

t(t�1)

P
16i<j6t(f(Zi, ✓) � f(Zj , ✓))

2. Let (�t) be a

sequence of positive scalars. Denote the true variance as Var(✓) = VarZ⇠P [f(Z, ✓)]. Then,
for any � 2 (0, 1), with probability at least 1� � over (Zt), for all t > 1 and ⇢ 2 M(⇥),

E⇢[Var(✓)� Vart(✓)] 6
DKL(⇢k⌫) + log(1/�) + ILt +

�2
t̄
2

t̄2

t̄�1E⇢Var(✓)

t̄�t̄
, (41)

where t̄ = 2blog2(t)c and ILt < 2 log log 2t+ 1.3.

The proof may be found in Appendix A.11. Theorem 3 of Tolstikhin and Seldin (2013)
follows from optimizing over � with a union bound (for a fixed t = n). In particular,
they consider a grid of �s designed as a geometric progression. Then, for each ⇢, they find
the optimal value of � from the grid. Finally, they apply a union bound over the grid, a
technique inspired by Seldin et al. (2012) (and which we will see again in Section 6). Doing

so yields a bound with dependence eO(

q
Vart(✓)(DKL(⇢k⌫)+log(1/�))

n + DKL(⇢k⌫)+log(1/�)
n ), where

eO ignores iterated logarithm factors. If Vart(✓) is su�ciently small, the bound then scales at
a rate of roughly 1/n. In the anytime setting meanwhile, we might consider taking �j =

1p
j
,

in which case the right hand side of (41) becomes proportional to
DKL(⇢k⌫)+log(1/�)+EρVar(✓)p

t̄
,

thus shrinking at a rate of roughly 1/
p
t̄. Similary to the fixed-time setting, Theorem 4 of

Tolstikhin and Seldin (2013) follows from combining the above result with Corollary 38, a
time-uniform extension of results in Seldin et al. (2012).
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6. Extensions

Owing in part to the ability for PAC-Bayes bounds to provide insight into the performance
of neural networks (Dziugaite and Roy, 2017; Biggs and Guedj, 2022), recent years have seen
a surge of interest in and progress on the topic. In this section, we provide some comments
on the ability of our unified framework to incorporate some of these advances. In particular,
we discuss replacing the KL divergence with integral probability metrics, �-divergences, and
Rényi divergences, in addition to how Theorem 4 enables us to replace the loss function
with martingale di↵erence sequences. We also discuss how many of the bounds in the two
previous sections give rise to confidence sequences (i.e., time-uniform confidence intervals),
and provide some general advice on choosing (�t) in the supermartingale bounds.

6.1 Replacing the KL Divergence with IPMs

Given that all the bounds provided thus far rely on the KL divergence between ⇢ and ⌫,
a natural question is whether we can replace this term with an alternative distributional
metric? Here we answer in the a�rmative and demonstrate that recent work by Amit et al.
(2022), which replaces the KL divergence with a variety of Integral Probability Metrics
(IPMs), can be made time-uniform.

Definition 28 Let G be a family of functions which map ⇥ to R. The Integral Probability
Metric with respect to G between two distributions ⇢ and ⌫ over ⇥ is

�G(⇢, ⌫) := sup
g2G

��E✓⇠⇢g(✓)� E✓⇠⌫g(✓)
��. (42)

IPMs are a large class of divergences. By choosing the appropriate family G, one can
recover the Total Variation distance, the Wasserstein distance, the Dudley metric, and the
Maximum Mean Discrepancy (Sriperumbudur et al., 2009). We note that the KL divergence
is not a special case of an IPM.

The following theorem is our main result for IPMs. Just as Theorem 4 provided a gen-
eral framework for generating PAC-Bayes bounds with a KL-divergence term, Theorem 29
provides a framework for generating PAC-Bayes bounds with an IPM. The main idea is
to replace the use of the Donsker-Varadhan formula with an assumption on the family of
functions G : ⇥ ! R (or, more precisely, families of functions).

Theorem 29 Let (Gt)t>1 be a predictable sequence, where each Gt is a family of functions
from ⇥ ! R. Let (ht) be a sequence of functions such that ht 2 Gt for all t > t0. Sup-
pose that (expht(✓))t>t0 is a supermartingale or reverse submartingale (adapted to some
filtration) for all ✓ 2 ⇥ such that ED expht0(✓) 6 1. Then, for any � 2 (0, 1) and prior
⌫ 2 M(⇥), with probability at least 1� �,

E✓⇠⇢ht(✓) 6 �Gt(⇢, ⌫) + log(1/�), (43)

for all ⇢ 2 M(⇥) and times t > t0.

Proof By assumption, ht 2 Gt for all t. Hence �Gt(⇢, ⌫) > E⇢ht(✓)�E⌫ht(✓). Rearranging
and exponentiating gives

exp(E⇢ht(✓)� �Gt(⇢, ⌫)) 6 expE⌫ht(✓) 6 E⌫ expht(✓).
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Since (expht(✓))t>t0 is a super or submartingale by assumption and ⌫ is data-free, the
process (E⌫ expht(✓))t>t0 is also a super or submartingale by Lemma 46. Therefore, Ville’s
inequality gives

P
�
9t > t0 : exp

�
E⇢ht(✓)� �Gt(⇢, ⌫)

 
> 1/�

�
6 P

�
9t > 1 : E⌫ expht(✓) > 1/�

�
6 �.

Since ⇢ was arbitrary, this yields that with probability at least 1� �,

exp
�
E⇢ht(✓)� �Gt(⇢, ⌫)

 
6 1/�,

for all t > t0 and ⇢. Rearranging gives the desired result.

Following Amit et al. (2022), we let the family of functions Gt be a function of the
timestep (hence possibly dependent on data Z1, . . . , Zt). Sections 4 and 5 are replete with
processes (expht(✓)) which are super and submartingales, each of which furnishes a separate
bound after applying Theorem 29. We will not list them all here, trusting that practitioners
can combine results as befits their problem of interest. We will, however, state the following
consequence of Theorem 29 in order to compare our results with those of Amit et al. (2022).
In what follows, we use notation and concepts introduced in Section 5, such as t̄ = 2blog2(t)c,
ILt = log(log2(2t)⇣(2)), 't(✓) = '( bRt(✓), R(✓)), and the exchangeable reverse filtration (Et).
We also assume a stationary loss function.

Corollary 30 Let (Zt) be exchangeable, and let ' : R>0 ⇥ R>0 ! R be a convex function.
Fix a prior ⌫ 2 M(⇥). Consider a family of functions (Gt) with Gt : ⇥ ! R and let (�t) be
a positive sequence such that, for all natural numbers k > 0,

�2k't(✓)� logED exp(�2k'2k(✓)) 2 Gt, for all t > 1.

Then, for all � 2 (0, 1), with probability at least 1� � over the random draw of (Zt), for all
⇢ 2 M(⇥) and at all times t > 1,

E⇢'t(✓) 6
logE⌫ED exp(�t̄'t̄(✓))

�t̄
+
�Gt(⇢, ⌫) + log(1/�) + ILt

�t̄
. (44)

Moreover, suppose n is some fixed time of interest, and that �'t(✓)�logED exp(�'n(✓)) 2 Gt

for all t > n and some � > 0. Then, for all � 2 (0, 1), with probability at least 1 � � over
the random draw of (Zt), for all t > n:

E⇢'t(✓) 6
logE⌫ED exp(�'n(✓))

�
+
�Gt(⇢, ⌫) + log(1/�)

�
. (45)

A proof sketch is provided in Appendix A.12. The previous result parallels Corollaries
22 and 24 but using IPMs instead of the KL divergence. The reliance of (44) on t̄ and ILt

once again arises from stitching. For the fixed time t = n, (45) gives a generalized version
of Corollaries 4 and 5 in Amit et al. (2022). Those results are obtained by considering
particular functions ', as was done in Section 5.2. As noted by Amit et al. (2022), the
above bounds are merely “templates” in the sense that, to be insightful, one must choose
a family of functions Gt. A bound based on the total variation distance can be achieved by
considering the family Gt = {g : ⇥ ! [0,1) : kgk1 6 1}, and one based on the Wasserstein
distance can be achieved by appealing to Kantorovich-Rubinstein duality. We refer the
reader to Amit et al. (2022) for the details of these bounds.
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6.2 �-divergences and Rényi divergences

The KL divergence is a member of a more general family of divergences termed �-divergences
(Ali and Silvey, 1966) (often called f -divergences, but we have reserved f for our loss). For
a convex function � : R ! R, the �-divergence between measures ⇢ and ⌫ over ⇥ such that
⇢⌧ ⌫ is

D�(⇢k⌫) =
Z

Θ

�

✓
d⇢

d⌫

◆
d⌫ = E✓⇠⌫


d⇢

d⌫
(✓)

�
. (46)

The KL divergence is recovered by considering �(x) = x log x. �-divergences are a nearly
orthogonal set of divergences from IPMs, considered in the previous section. Indeed, the
total variation distance is the only (non-trivial) divergence which is both an IPM and a
�-divergence (Sriperumbudur et al., 2012).

The Donsker-Varadhan formula for the KL divergence is an improvement on a more
general variational representation of �-divergences (e.g., Sriperumbudur et al., 2009), which
states the following. For any measures ⇢ and ⌫ and any convex function � : R ! R,

D�(⇢k⌫) > E⇢[h(✓)]� E⌫ [�
⇤(h(✓))], (47)

where �⇤ is the convex conjugate of �, i.e.,

�⇤(y) = sup
x2R

{xy � �(x)}.

We can use (47) in place of the Donsker-Varadhan formula in Theorem 4, where the term
E⌫�

⇤(h(✓)) replaces logE⌫ exph(✓).

Theorem 31 (Anytime PAC-Bayes with �-divergences) Let � : R ! R be a con-
vex function. Let P (✓) = (Pt(✓))

1
t=1 be a stochastic process such that, for all ✓ 2 ⇥,

expE⌫ [�
⇤(Pt(✓))] is a supermartingale or reverse submartingale (adapted to some under-

lying filtration). Suppose that expE⌫ [�
⇤(P1(✓))] 6 1. Then, for any � 2 (0, 1) and prior

⌫ 2 M(⇥), with probability at least 1� �,

E⇢Pt(✓) 6 D�(⇢k⌫) + log(1/�), (48)

for all times t > 1 and ⇢ 2 M(⇥).

Proof Set V mix
t := exp sup⇢

�
E✓⇠⇢[Pt(✓)] � D�(⇢k⌫)

 
. The variational formula for D�

gives V mix
t 6 expE⌫ [�

⇤(Pt(✓))], so by assumption, V mix
t is upper bounded by a nonnegative

supermartingale or reverse submartingale. From here, the proof follows that of Theorem 4.

The key distinction between this result and Theorem 4 is that while the latter posits that
expP (✓) is (upper bounded by) a nonnegative super/submartingale, here we assume that
expE⌫ [�

⇤(P (✓)] plays this role. We consider establishing functions � and processes P (✓)
such that expE⌫�

⇤(P (✓)) has this property to be an interesting line of future research. We
note that Theorem 31 cannot strictly be called a generalization of Theorem 4 as the latter
relies on the Donsker-Varadhan formula which is tighter than the variational formula for
the KL divergence given by (47).
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Another (related) family of distances is the Rényi divergence. Here, for measures ⇢⌧ ⌫

and any ↵ 2 (0, 1) [ (1,1), we define

D↵(⇢k⌫) :=
1

1� ↵
E✓⇠⇢

✓
⇢(✓)

⌫(✓)

◆↵�
.

As ↵ ! 1, D↵(⇢k⌫) ! DKL(⇢k⌫), so by continuity we define D1(⇢k⌫) = DKL(⇢k⌫). The
Rényi divergence yields the following variational formula, which can be seen as an extension
of the Donsker-Varadhan formula (Lemma 3). It was given by Bégin et al. (2016).

Lemma 32 Let h : ⇥ ! R be measurable. For any measures ⇢ and ⌫, with ⇢⌧ ⌫, we have

logE⌫ [h(✓)
α

α−1 ] >
↵

↵� 1
logE⇢h(✓)�D↵(⇢k⌫),

for all ↵ 2 (0, 1) [ (1,1).

Using this formula, one can give a Theorem in the style of Theorem 4 and 31 for ↵-
divergences.

Theorem 33 Set ↵ > 1. Let P (✓) = (Pt(✓))t>t0 be a stochastic process such that, for

all ✓ 2 ⇥, exp(P
α

α−1 (✓)) is a supermartingale or reverse submartingale (adapted to some

underlying filtration) obeying ED expP
α

α−1

t0
(✓) 6 1. Then, for any � 2 (0, 1) and prior

⌫ 2 M(⇥), with probability at least 1� �,

E⇢[Pt(✓)] 6
↵� 1

↵
(D↵(⇢k⌫) + log(1/�)), (49)

for all times t > t0 and ⇢ 2 M(⇥).

Proof Following Theorems 4 and 31, put V mix
t = exp sup⇢{

↵
↵�1 logE⇢ expPt(✓)�D↵(⇢k⌫)}.

Then V mix
t 6 E⌫ expP

α

α−1

t (✓) by Lemma 32, where the process (E⌫ expP
α

α−1

t (✓))t>t0 is a
nonnegative supermartingale or reverse submartingale by assumption and Lemma 46. It
also has initial expected value at most 1 by assumption. Therefore, P(9t > t0 : V mix

t >

1/�) 6 P(9t > t0 : E⌫ expP
α

α−1

t (✓) > 1/�) 6 � by Ville’s inequality. Rearranging the
inequality V mix

t 6 1/�, we obtain that with probability at least 1� �,

E⇢Pt(✓) 6 logE⇢ expPt(✓) 6
↵� 1

↵

✓
D↵(⇢k⌫) + log(1/�)

◆
,

for all ⇢ and t > t0, as claimed.

Theorem 33 suggests the question: When is exp(P
α

α−1 (✓)) a supermartingale or reverse
submartingale? There are several candidates. By Jensen’s inequality, a su�cient condition
for this quantity to be a reverse submartingale is for P (✓) to also be a reverse submartingale.
Indeed, if (Nt) is a reverse submartingale with respect to (Rt), then

E[N
α

α−1

t |Rt+1] > E[Nt|Rt+1]
α

α−1 > N
α

α−1

t+1 , (50)
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since x 7! x
α

α−1 is convex. However, to apply Ville’s inequality, one would also need to

control EDN
α

α−1

1 which is less easily done, even if EDN1 6 1. One might also consider using
the processes employed in the proof of Corollary 22, but raised to the (↵�1)/↵. In that case,
of course, raising the result to the ↵/(↵ � 1) power would result in the original process.
However, in this case we achieve the same bound as Corollary 22, but with DKL(⇢k⌫)
replaced by D↵(⇢k⌫). This a weaker result since D↵(⇢k⌫) > DKL(⇢k⌫) for all ↵ > 0.
Instead, to take advantage of Lemma 32, we construct an altogether di↵erent process. This
leads to the following result. As in Section 5 we consider a stationary loss function and
exchangeable data. Recall the shorthand 't(✓) = '( bRt(✓), R(✓)) for a convex function ',
as well as the quantities t̄ = 2blog2(t)c and ILt = log(log22(2t)⇣(2)).

Corollary 34 Let (Zt) be exchangeable. Let ' : R>0 ⇥ R>0 ! R>0 be a convex function
and ⌫ 2 M(⇥) be a prior. Put ↵ > 1. Then, for all � 2 (0, 1), with probability at least 1� �
over the random draw of (Zt), for all ⇢ 2 M(⇥) and at all times t > 1,

logE⇢'t(✓) 6
↵� 1

↵

✓
D↵(⇢k⌫) + logE⌫,D['

α

α−1

t̄
(✓)] + log(1/�) + ILt

◆
. (51)

The proof is provided in Appendix A.13. Similarly to Corollary 24, we can obtain a
version of the above result which holds for all times t > n for some pre-selected time n.
These results constitute a time-uniform extension of Theorem 9 in Bégin et al. (2016), who
give a fixed-time version for binary classification. By taking ↵ = 2, we obtain a PAC-Bayes
bound using the �2 divergence (see Bégin et al., 2016, Corollary 10). We note that unlike
Corollary 22, the above result is a bound on the logarithm of '. By exponentiating both
sides, one obtains an intriguing PAC-Bayes bound in multiplicative form.

6.3 Confidence Sequences and Choice of (�t)

Our anytime-valid bounds enable us, under some circumstances, to construct time-uniform
confidence sequences, i.e., sequences of sets which contain the true parameter of interest
at all times with high probability (Darling and Robbins, 1967a; Lai, 1976). In our set-
ting, the parameter of interest is the conditional mean 1

t

Pt
i=1 E✓⇠⇢µi(✓), where µi(✓) =

ED[fi(Zi, ✓)|Fi�1]. A (1 � �)-confidence sequence is then a random sequence (Ct(⇢, ⌫))
1
t=1

such that

P

✓
8t > 1 :

1

t

tX

i=1

E✓⇠⇢µi(✓) 2 Ct(⇢, ⌫)

◆
> 1� �. (52)

Observe that the confidence sequence depends on the prior ⌫ and posterior ⇢. It does not
hold simultaneously across all such distributions.

While we allow the conditional mean t�1
P

i6t µi(✓) to change over time in general, let
us begin the discussion with the case of a common conditional mean and stationary loss
function f . More precisely, we assume that µ(✓) = µt(✓) = ED[f(Zt, ✓)|Ft�1] is unchanging
as a function of time. Many of the bounds generated in previous sections are based on
processes which are themselves based on tail bounds on the term ��i(✓) = �(µi(✓) �
f(Zi, ✓)). By considering ��i(✓) and applying the union bound, we may obtain a confidence
sequence. For instance, the following confidence sequence may be derived from Corollary 7.
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Corollary 35 Let f be �-subGaussian and let (Zt) ⇠ D be such that µ(✓) = ED[f(Z, ✓)|Ft�1]
is constant for all t > 1. Fix a prior ⌫ 2 M(⇥). Then, for all � 2 (0, 1), with probability at
least 1� � over the random draw of (Zt), for all ⇢ and t > 1,

E⇢µ(✓) 2
✓Pt

i=1 �if(Zi, ✓)Pt
i=1 �i

±Wt

◆
, where Wt :=

log(2/�) +DKL(⇢k⌫) + �2

2

Pt
i=1 �

2
iPt

i=1 �i
(53)

We note the factor of 2 in log(2/�) comes from the union bound. We state the above
proposition as an example only; many other confidence sequences may be derived from the
arguments throughout Sections 4 and 5.

Studying confidence sequences provides an opportunity to demonstrate why we allow �t
to change as a function of time. It is desirable that the width of the sequence, Wt, goes to
0 as t ! 1 so that the confidence sequence asymptotically converges on the correct value
with high probability. This would not be possible with fixed �, as Wt would converge to
�2�/2 6= 0. On the other hand, following Waudby-Smith and Ramdas (2023), if we instead
consider �t ⇣ (t log t)�1/2, then we have Wt = eO(

p
log(t)/t), where eO hides log-log factors.

Further, we can attain the optimal rate O(
p

log log t/t) due to the Law of the Iterated
Logarithm (LIL) (Darling and Robbins, 1967b) by the same technique of geometrically
spaced union bounds that was used in Section 5.1. Such a result applied to Corollary 35 is
stated and proved in Appendix A.15, but is omitted here in favor of the following discussion
which is more general and also provides a LIL bound.

Let us turn now to the case when µt(✓) is not assumed to be independent of t. Similarly
to Corollary 35, a union bound applied to Corollary 7 tells us that

tX

i=1

�iE⇢µi(✓) 2
✓ tX

i=1

�2i�
2
i

2
± [DKL(⇢||⌫) + log(2/�)]

◆
,

for all t > 1 with probability at least 1 � �. However, this does not yield a closed-form
expression for a confidence sequence. To construct an explicit confidence sequence with
optimal width, we turn once again to stitching. The technique we use is applicable to
general sub- processes (Section 4.1), but we demonstrate it in the case of 1-subGaussian
losses for simplicity.

Corollary 36 Let fi be 1�subGaussian and fix a prior ⌫ 2 M(⇥). Then, for all � 2 (0, 1),
with probability at least 1� � over the random draw of (Zt), for all ⇢ and t > 1:

1

t

tX

i=1

E⇢µi(✓) 2
✓
1

t

tX

i=1

E⇢fi(Zi, ✓)±Wt

◆
,

where

Wt .

p
log(log(t)) + log(1/�)p

t
+

DKL(⇢k⌫)p
t log(log(t)) + t log(1/�)

.

The proof can be found in Appendix A.14. There has been much recent work on devel-
oping sequences (�t) which achieve optimal shrinkage rates; we refer the interested reader
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to Catoni (2012); Howard et al. (2021); Waudby-Smith and Ramdas (2023); Wang and
Ramdas (2023a,b) for further discussion on this point.

We end this section by noting that we have now deployed the stitching technique in
two capacities. In Section 5 it was used to apply a di↵erent reverse submartingale in each
epoch, whereas in the above result it was used to choose appropriate constants in each
epoch. While the intuition behind stitching is similar, the two applications yield di↵erent
results. The former loses some tightness compared to fixed-time bounds, while the latter
enables us to achieve optimal rates.

6.4 Martingale Difference Sequences

Throughout this work we’ve considered loss functions ft acting on Z and ⇥. While this is a
natural setting for PAC-Bayes analysis owing to its connections to learning theory, di↵erent
settings have been considered. Seldin et al. (2012) and Balsubramani (2015), for instance,
consider PAC-Bayesian inequalities for martingale di↵erence sequences. In this section we
briefly demonstrate that our results extend to this setting. This is due to the fact that our
workhorse, Theorem 4, holds for general stochastic processes.

We consider a sequence of random functions (Ft) such that Ft : ⇥ ! R. We suppose
that (Ft) is a martingale difference sequence, i.e., E[Ft|Ft�1] = 0 for all t > 1, where Ft =
�(F1, . . . , Ft). That is, E[Ft(✓)|Ft�1] = 0 for all ✓ 2 ⇥. Note that the expectation is over the
functions themselves, not over ✓. Let St =

Pt
i=1 Fi (and, by extension, St(✓) =

Pt
i=1 Fi(✓)).

First, suppose the Ft are bounded, say Ft : ⇥ ! [↵t,�t]. Just as we did in Corollary 7,
we can consider the nonnegative process Nt(✓) = exp

�Pt
i=1 �iFi(✓)� 1

8

Pt
i=1 �

2
i (�i�↵i)

2
 
,

which is a supermartingale since E[Fi|Fi�1] = 0. (Note that we have substituted (�i�↵i)
2/4

for �2i in (9), since Fi is (�i � ↵i)/2-subGaussian.) This process, in conjunction with
Theorem 4, leads to the following result, which is the time-uniform extension of Theorem
5 of Seldin et al. (2012).

Corollary 37 (Anytime bound for bounded MDSs I) Let (Ft) be a martingale dif-
ference sequence where Ft : ⇥ ! [↵t,�t]. Let ⌫ 2 M(⇥) be a prior and (�t) a nonnegative
predictable sequence. Then, for all � 2 (0, 1), with probability at least 1�� over the sequence
of functions, for all t > 1 and ⇢ 2 M(⇥),

tX

i=1

�iE⇢Fi(✓) 6
1

8

tX

i=1

�2i (�i � ↵i)
2 +DKL(⇢k⌫) + log(1/�).

Using similar techniques, we can provide a time-uniform version of Theorem 7 in Seldin
et al. (2012), a result which also undergirds the main theorem of Balsubramani (2015).

Corollary 38 (Anytime bound for bounded MDSs II) Let (Ft) be a martingale dif-
ference sequence where Ft : ⇥ ! R such that |Ft(✓)| 6 H for all ✓ 2 ⇥. Let ⌫ 2 M(⇥) be
a prior and � 2 [0, 1/H]. Then, for all � 2 (0, 1), with probability at least 1 � � over the
sequence of functions,

tX

i=1

Fi(✓) 6 �(e� 2)
tX

i=1

E[F 2
i (✓)|Fi�1] +

DKL(⇢k⌫) + log(1/�)

�
,

for all t > 1 and ⇢ 2 M(⇥).
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Note that because Ft is bounded, all (conditional) moments exists. The bound is therefore
non-vacuous by assumption. The proof of the above result (and the statement itself) is very
similar to that of Corollary 12, and is thus omitted. Like that proposition, here � could be
taken to be a sequence {�t} ✓ [0, 1/H], but we leave it stationary for easier to comparison
to prior work.

Theorem 1 of Balsubramani (2015) is based on Corollary 38 and then choosing � strate-
gically (and stochastically) in order to tighten the bound. Such techniques have also been
used to generate sharp martingale concentration bounds. Seldin et al. (2012) also optimize
over � in the fixed-time version of Corollary 37 in order to provide a tighter bound (see
their Theorems 5 and 6). An anytime version of this result would follow from applying the
same procedure to Corollary 37, though we note that their optimization procedure employs
knowledge of the sample size and thus cannot be replicated precisely in the anytime setting.

Our final result generalizes Theorem 4 of Seldin et al. (2012), by providing a version
of Corollary 22 for di↵erence sequences. Here we will broaden the setting slightly from
martingale di↵erence sequences and let E[Ft|Ft�1] = G for all t > 1 some G : ⇥ ! R,
meaning that E[Ft(✓)|Ft�1] = G(✓) for all ✓ 2 ⇥. The proof of the following bound uses
precisely the same mechanics as that of Corollary 22, so we do not provide it. Recall that
t̄ = 2blog2(t)c and ILt = log(log22(2t)⇣(2)).

Corollary 39 Let (Ft) be a random exchangeable sequence of functions with Ft : ⇥ ! R

such that E[Ft|Ft�1] = G for all t > 1 and some fixed G : ⇥ ! R. Let ' : R>0 ⇥ R>0 ! R

be a convex function and set St =
Pt

i=1 Fi. Fix a prior ⌫ 2 M(⇥) and let (�t) be a positive
sequence of real numbers. Then, for all � 2 (0, 1), with probability at least 1 � � over the
sequence of functions, for all ⇢ 2 M(⇥) and at all times t > 1,

E⇢'

✓
1

t
St(✓), G(✓)

◆
6

logE⌫E exp(�t̄'(
1
t̄St̄(✓), G(✓)))

�t̄
+

DKL(⇢k⌫) + log(1/�) + ILt

�t̄
.

A time-uniform version of Theorem 4 of Seldin et al. (2012) follows from the above
bound by taking ' = kl (and taking �t = � for all t) as was done in both Sections 5.2
and 6.1. Finally, we note that Kuzborskij and Szepesvári (2019) also discuss bounds based
on martingale di↵erence sequences. In particular, they use the Doob decomposition to
construct a canonical di↵erence sequence when estimating a general function, and then
bound the increments using an empirical Efron-Stein like term. We discuss their work more
thoroughly in Section 4, where we relate it to sub- processes.

6.5 Data-dependent Priors

Several recent works have investigated the role of data-dependent priors (Rivasplata et al.,
2020; Awasthi et al., 2020). The appeal is clear: A well chosen prior with mass close to
the true parameter will typically enable much tighter bounds. Historically, this is often
achieved with sample splitting, i.e., reserving some fraction of the sample to choose the
prior, and then computing the bound on the remaining data (Parrado-Hernández et al.,
2012; Dziugaite and Roy, 2017). Here we provide some remarks on how to extend our
analysis to allow for data-dependent priors.

To set the stage, let P (✓) = (Pt(✓))t>1 be a stochastic process such that expP (✓)
is a supermartingale. In our results thus far, the prior ⌫ is data-free to ensure that
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Fubini-Tonelli can be applied so that the mixture E✓⇠⌫ [expP (✓)] is also a supermartin-
gale. We can, however, weaken this condition slightly. If ⌫ is Ft0�1-measurable, then the
process (E✓⇠⌫ expPt(✓))t>t0 remains a supermartingale, since ⌫ is deterministic at time t0.
Of course, di↵erent priors result in di↵erent processes: for ⌫i 2 M(⇥) which is Fti�1-
measurable, the process (E⌫1 expUt(✓))t>t1 can be distinct from (E⌫2 expUt(✓))t>t2 . Thus,
a bound which covers changing priors must cover di↵erent processes. We can ensure such
coverage but at the price of a union bound.

More formally, let T = {t1, t2, . . . , tN}, N 2 N [ {1} be a set of times at which we
change priors. We allow the times ti to be stopping times (i.e., {ti 6 n} is Fn-measurable
for all n), and we allow |T | to be infinite (e.g., ti = 2i is an example of a deterministic set
of times satisfying the condition). Suppose we begin with prior ⌫0. At time ti 2 T a new
prior ⌫i is used, where ⌫i is Fti�1-measurable. Define, for each ✓ 2 ⇥,

Mt(✓) =

8
>><
>>:

Pt(✓)�DKL(⇢k⌫0), 1 6 t < t1,

Pt(✓)�DKL(⇢k⌫1), t1 6 t < t2,
...

...

(54)

When T = ;, a bound on E✓⇠⇢Mt(✓) for all ⇢ and t > 1 is given by Theorem 4. The following
theorem generalizes this result and provides a bound for an arbitrary number of priors.
However, we pay a price (a loosening of the bound) for each change of prior. Interestingly,
our result does not allow for the stochastic process to be a reverse submartingale, only a
forward supermartingale. This is because, if (Rt) is a reverse filtration and ⌫i is Rt0�1-
measurable, it may not be Rt measurable for t > t0 since Rt ◆ Rt+1. Thus, the mixtures
may cease to be submartingales as time advances.

Theorem 40 For each ✓ 2 ⇥, let P (✓) = (Pt(✓))
1
t=1 be a stochastic process such that

expP (✓) is a supermartingale adapted to the filtration (Ft) and E expP1(✓) 6 1. Let T and
Mt be as above. Then, for any � 2 (0, 1), with probability at least 1 � �, for all t > 1 and
⇢ 2 M(⇥),

E⇢[Mt(✓)] 6 log

✓
(t† + 1)(t† + 2)

�

◆
, (55)

where t† is the number of times the prior has been changed up to and including time t.

Proof Let us briefly clarify notation. We begin with prior ⌫0, and switch to ⌫1 at time t1,
switch to ⌫2 at time t2, and so on. We set t0 = 1 for convenience. The optional stopping the-
orem for nonnegative supermartingales implies that for each ti, E expPti(✓) 6 E expP1(✓) 6
1 (Durrett, 2019, Theorem 5.7.6). Moreover, for each ✓, the process exp(Pt_ti(✓))t>0 is a
supermartingale adapted to the filtration (Ft_ti) (Klenke, 2013, Theorem 10.15). Combin-
ing this with Lemma 46 and the fact that ⌫i is Fti�1-measurable implies that the process
(E⌫i [exp(Pt_ti(✓))])t>0 is a supermartingale on the filtration (Ft_ti). Applying Theorem 4,
we have that for all times ti,

P

⇢
9t > ti, 9⇢ 2 M(⇥) : E⇢Pt(✓)�DKL(⇢k⌫i) > log

✓
s(i)

�

◆�
6

�

s(i)
,
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where s(i) = (i + 1)(i + 2). If at time t we are using the prior ⌫i, then we have switched
priors i times, so t† = i. Therefore,

�
9t > 1, 9⇢ : E⇢Mt(✓) > log(s(t†)/�)

 
✓
�
9i > 0, 9t > ti, 9⇢ : E⇢Mt(✓) > log(s(i)/�)

 
.

The union bound then implies that P(9t > 1, 9⇢ : E⇢Mt(✓) > log(s(t†)/�)) is bounded by

X

i>0

P ({9t > ti, 9⇢ : E⇢Pt(✓)�DKL(⇢k⌫i) > log(s(i)/�)}) 6
X

i>0

�

s(i)
= �.

completing the proof.

It’s perhaps worth noting that there is nothing special about our function s in the above
proof, and it only needs to satisfy

P1
i=0

1
s(i) 6 1. Given such a function, the resulting bound

reads E⇢[Mt(✓)] 6 log(s(t†)/�) in place of (55).

Remark 41 If T is finite and deterministic, then we can replace (55) with E⇢Mt(✓) 6

log(|T |/�), thus reducing the quadratic dependence on the number of priors used to a linear
dependence. This can be seen by setting s(i) = |T | for all i in the above analysis, and noting
that the final union bound need only cover |T | events.

Our result has a di↵erent flavor than those of Rivasplata et al. (2020) and Awasthi et al.
(2020). However, we believe its general form is useful and interpretable: For every switch
of the prior, the bound su↵ers an additional additive logarithmic factor.

6.6 Application: Gaussian Process Classification

Here we follow Seeger (2002) and apply the PAC-Bayes framework to Gaussian process
classification. We take Z = X ⇥ {0, 1} and consider a supervised classification problem
with features x 2 X and binary labels y(x). For a prediction ŷ(x) our loss is the 0-1 loss
1(ŷ(x) 6= y(x)). We assume that the labels y(x) are generated as y = sgn ✓(x), where
✓ : X ! R is some function in a nonparametric family ⇥. We adopt a Bayesian perspective
and consider ✓ to be a random function. Accordingly, we place a zero-mean Gaussian
process prior ⌫ over ⇥, i.e., ✓ ⇠ GP(0, k), where k is a Mercer kernel. More precisely, given
x = (x1, . . . , xt), we have

⌫(✓(x)) =
|Kx|

�1/2

(2⇡)t/2
exp

✓
� 1

2
x|K�1

x x

◆
,

where Kx is the symmetric matrix whose ij-th entry is given by k(xi, xj). Given a distri-
bution ⇢ over ⇥, the empirical risk at time t is

E✓⇠⇢
bRt(✓) =

1

t

X

i6t

P✓⇠⇢(sgn ✓(xi) 6= yi), (56)

and the expected risk is

E✓⇠⇢R(✓) = E✓⇠⇢E(x,y)⇠D1(sgn ✓(x) 6= y). (57)
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Note that the expected risk is constant because the data are i.i.d. and the loss function
is stationary. The posterior predictions ✓(xt) given training data xt = (x1, . . . , xt) and
yt = (y1, . . . , yt) depend on the distribution of y|✓, but can be written abstractly as

⇢t(✓(x
t)|xt, yt) = N(Kxtµt,⌃t),

for some µt 2 R
t, ⌃t 2 R

t⇥t. We have introduced the subscript t on ⇢t to emphasize that
this is the posterior at time t. Here N(·, ·) is a multivariate normal. Having introduced
µt and ⌃t, we can now write down the KL divergence between the prior ⌫ and posterior
⇢t, which reduces to the KL divergence between their finite-dimensional distributions on
the training data (given that ⇢t is defined via the Bayesian update rule), and can be thus
calculated via the usual KL divergence between multivariate Gaussians (see Seeger, 2002
for the derivation):

DKL(⇢tk⌫) = DKL(⇢t(x
t)k⌫(xt)) = 1

2
log |⌃�1

t Kxt |+
1

2
tr(⌃�1

t Kxt)�1 +
1

2
µ|
tKxtµt � t/2.

Note that our bound holds simultaneously for the entire sequence of posteriors (⇢t). As was
mentioned following the statement of Theorem 4, this showcases how one would typically
make full use our anytime valid bounds. Plugging this into Corollary 25 gives the following
result.

Corollary 42 (Anytime PAC-Bayes bound for GP Classification) Consider the clas-
sification setting described above with GP prior ⌫ and posterior ⇢. With probability at least
1� � over (Xt, Yt), for all times t > 1,

kl(E⇢t
bRt(✓)kE⇢tR(✓)) 6

log |⌃�1
t Kxt |+ tr(⌃�1

t Kxt)�1 + µ|
tKxtµt � t

2t̄
+

log(⇠(t̄)/�) + ILt

t̄
,

where the empirical risk and expected risk are as in (56) and (57), t̄ = 2blog2(t)c and ILt <
2 log log 2t+ 1.3.

We recall from Section 5 that t̄ and ILt capture the “lag” in our anytime bounds. While
we’ve chosen t̄ such that t/2 6 t̄ 6 t for convenience, we may choose it to lie in [t/s, t] for
any s > 1, though we pay price in the ILt term. See Remark 23 for details.

Seeger’s fixed time bound for the same problem reads: For any fixed n, with probability
at least 1� �,

kl(E⇢n
bRn(✓)kE⇢nR(✓)) 6

log |⌃�1
n Kxn |+ tr(⌃�1

n Kxn)�1 + µ|
nKxnµn � n

2n
+

log(n+1
�

)

n
,

though we note that Theorem 2 of Seeger (2002) uses a quasi-inverse of the kl function to
isolate bRn(✓) and R(✓). Any such inversion also applies here. We refer the reader to Seeger
(2002) for an extensive study on the behavior of the RHS for various GP models. All of his
analyses—theoretical and empirical—apply here. Finally, let us note that we might have
applied any other bound that handles bounded losses (e.g., Corollary 7). However, the kl

based bound is often acknowledged as the tightest, often provably so (Biggs and Guedj,
2023; Foong et al., 2021).
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7. Summary

We have demonstrated that underlying many PAC-Bayes bounds is a (typically implicit)
supermartingale or reverse submartingale structure. Such structure, when coupled with
the method of mixtures and Ville’s inequalities, provides a general method of deriving new
bounds and illuminates the connection between existing ones (Table 1). For instance, we are
able to generate PAC-Bayes bounds for sub- processes (Howard et al., 2020, Tables 3 and
4), a broad class of processes which itself encapsulates a large swath of existing concentration
inequalities. More generally, as soon as one identifies a nonnegative supermartingale or
reverse submartingale with bounded initial value, our framework supplies a PAC-Bayes
bound. We hope this serves to both ease the search for future bounds and to provide a
more unified view of the existing literature.

Beyond such unification, our martingale-based approach provides time-uniform bounds
(i.e., valid at all stopping times), whereas the majority of previous bounds in the literature
are fixed-time results. Moreover, we are able to shed many traditional distribution assump-
tions. Many of our bounds do not require i.i.d. data, and those based on supermartingales
require no explicit assumptions (Table 2). We hope that the anytime nature of our bounds
is not just a theoretical curiosity, but useful for computing generalization bounds in prac-
tice. Indeed, because they allow for adaptive stopping and continuous monitoring of data,
practitioners are able to repeatedly compute the bounds as more data are used without sac-
rificing statistical validity. We hope, for instance, that these properties can serve e↵orts to
generate non-vacuous generalization bounds for neural networks (Dziugaite and Roy, 2017;
Biggs and Guedj, 2022; Liao et al., 2020). Instead of computing bounds o↵ a fixed test set,
our methods enable the collection of more data and the monitoring of the evolution of the
bound over time.

Aside from applications to neural networks, there are additional practical benefits of
the time-uniform nature of our results. Beyond those applications mentioned in the intro-
duction, PAC-Bayes bounds have been used in bandit problems (Seldin et al., 2012; Flynn
et al., 2022, 2023), policy evaluation (Fard et al., 2011; Sakhi et al., 2023), multiple testing
(Blanchard and Fleuret, 2007), estimating means of random vectors (Catoni and Giulini,
2017), and domain adaptation (Germain et al., 2016). Several of these applications could
benefit from our techniques. For instance, Seldin et al. (2012) rely on a union bound to
cover all time steps which might be circumvented by our analysis, leading to tighter bounds
for contextual bandits. Similarly, our techniques applied to those of Blanchard and Fleuret
(2007) may lead to better bounds for sequential multiple testing procedures (bandit multiple
testing for instance, see Jamieson and Jain, 2018 and Xu et al., 2021), and anytime-valid
o↵-policy evaluation, in which there has been recent interest (Waudby-Smith et al., 2023).
Overall, we hope our work contributes to the increasing interest in applying PAC-Bayes
ideas to interactive learning settings, which have a wider scope for applications.
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Appendix A. Omitted Proofs

A.1 Proof of Corollary 7

Let  (�) = �2/2. Define the process P (✓) = (Pt(✓))t>1 as Pt(✓) =
Pt

i=1 �i�i(✓) �Pt
i=1  (�i)�

2
i . We claim that exp(P (✓)) is a supermartingale. Since �i and fi(Zi, ✓) are

Ft�1 measurable for all i 6 t� 1, we have

ED[exp(Pt(✓))|Ft�1] = ED

 tY

i=1

exp(�i�i(✓)�  (�i)�
2
i )

����Ft�1

�

= ED[exp(�t�t(✓)�  (�t)�
2
t )|Ft�1]

t�1Y

i=1

exp(�i�i(✓)�  (�i)�
2
i )

= ED[exp(�t�t(✓)�  (�t)�
2
t )|Ft�1] exp(Pt�1(✓)),

Now, the final line is at most exp(Pt�1(✓)) due to Hoe↵ding’s lemma:

ED[exp(�t�t(✓))|Ft�1] = ED[exp(�t(µi(✓)� fi(Zi, ✓)))|Ft�1] 6 exp(�2t�
2
t /8),

for all �t 2 R. This proves that exp(Pt(✓)) is a supermartingale, and also that ED[expP1(✓)|F0] 6
1. Consequently, we may apply Corollary 6 to obtain that with probability at least 1� �,

tX

i=1

�iE⇢�i(✓)�
tX

i=1

 (�i)�
2
i 6 DKL(⇢k⌫) + log(1/�),

for all ⇢ 2 M(⇥). The result follows from rearranging.

A.2 Proof of Corollary 9

Let g(�; a, b2) be the density of a Gaussian with mean a and variance b2. We are interested
in the mixing distribution F with dF (�) = g(�; 0, �2)d� for some fixed �. Before proving the
PAC-Bayes bound, we prove the following lemma. Let Dt =

Pt
i=1�i(✓) and Ht =

Pt
i=1 �

2
i .

Lemma 43 For

Mt(�, ✓) := exp

⇢
�

tX

i=1

�i(✓)�
�2

2

tX

i=1

�2i

�
,

we have

Mt(✓) =

Z

�2R
Mt(�, ✓)dF (�) =

1p
1 + �2Ht

exp

✓
�2D2

t

1 + �2Ht

◆
.
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Proof Compute

Mt(✓) =
1

�
p
2⇡

Z

�2R
exp

✓
�Dt �

�2Ht

2

◆
exp

✓
� �2

2�2

◆
d�

=
1

�
p
2⇡

Z

�2R
exp

✓
2��2Dt � �2�2Ht � �2

2�2

◆
d�

=
1

�
p
2⇡

Z

�2R
exp

✓��2(1 + �2Ht) + 2��2Dt

2�2

◆
d�.

Define u = 1 + �2Ht and v = �2Dt. Now rewrite the above expression as

Mt(✓) =
1

�
p
2⇡

Z

�2R
exp

✓�u(�2 � 2�v/u)

2�2

◆
d�

=
1

�
p
2⇡

Z

�2R
exp

✓�(�� v/u)2 + (v/u)2

2�2/u

◆
d�

=
1

�
p
2⇡

Z

�2R
exp

✓�(�� v/u)2

2�2/u

◆
d� exp

✓
v2

2u�2

◆

=

p
1/up

1�2/u
p
2⇡

Z

�2R
exp

✓�(�� v/u)2

2�2/u

◆
d� exp

✓
v2

2u�2

◆

=
p

1/u exp

✓
v2

2u�2

◆
,

where the final equality follows because

1p
�2/u

p
2⇡

Z

�2R
exp

✓�(�� v/u)2

2�2/u

◆
d� =

Z

�2R
g(�; v/u, 2�2/u)d� = 1,

where g(�; v/u, �2/u) is the density of a Gaussian with mean v/u and variance 2�2/u. Thus,
we have obtained that

Mt(✓) =
1p
u
exp

✓
v2

2u�2

◆
=

1p
1 + �2Ht

exp

✓
�2D2

t

1 + �2Ht

◆
.

This completes the proof of the lemma.

From here, in order to apply Corollary 6, write this as

Mt(✓) =
1p

1 + �2Ht

exp

✓
�2D2

t

1 + �2Ht

◆

= exp

✓
�2D2

t

1 + �2Ht
+ log([

p
1 + �2Ht]

�1)

◆

= exp

✓
�2D2

t

1 + �2Ht
� 1

2
log(1 + �2Ht)

◆
.
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Corollary 6 yields that with probability at least 1� �, for all t and ⇢,

E⇢


�2D2

t

1 + �2Ht

�
6

1

2
log(1 + �2Ht) +DKL(⇢k⌫) + log(1/�).

Rearranging and taking square roots gives

E⇢[Dt] 6


(��2 +Ht) log(1 + �2Ht) + (��2 +Ht)

✓
DKL(⇢k⌫) + log(1/�)

◆�1/2

=


(��2 +Ht)

✓
DKL(⇢k⌫) + log((1 + �2Ht)/�)

◆�1/2

=


st(�)

�

✓
DKL(⇢k⌫) + log(st(�))/�)

◆�1/2
,

where we’ve taken � = �2 and recalled that st(c) = 1 + cHt. Expanding the definition of
Dt completes the proof.

A.3 Proof of Corollary 12

Set

⇠t(✓) := �t�t(✓)� �2t (e� 2)E[�2
t (✓)|Ft�1],

for all t > 1. First we claim that the process in Equation (15), i.e., Bt(✓) =
Qt

i=1 exp ⇠i(✓),
is a nonnegative supermartingale. To see this, we recall the inequality

ex 6 1 + x+ (e� 2)x2, (58)

for all x 6 1. Since �t 6 | 1
2H | by assumption, we have

|�t�t(✓)| 6 �t(|µt(✓)|+ |ft(Zt, ✓)|) 6 �t2H 6 1,

so we may apply (58) with x = �t�t(✓). This gives

E[exp(�t�t(✓)|Ft�1] 6 1 + �tE[�t(✓)|Ft�1] + �2(e� 2)E[�2
t (✓)|Ft�1]

= 1 + �2t (e� 2)E[�2
t (✓)|Ft�1]

6 exp(�2t (e� 2)E[�2
t (✓)|Ft�1]),

where the equality in the second line follows by definition of �t(✓). Hence,

E[exp(⇠t(✓))|Ft�1] = E[exp(�t�t(✓)� �2t (e� 2)E[�2
t (✓)|Ft�1])] 6 1.

It follows that (Bt(✓)) is a nonnegative supermartingale and the result is then obtained by
applying Theorem 4.
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A.4 Proof of Corollary 13

Recall that  P (x) = ex � x� 1. Let v2i (✓) = ED[f
2
i (Zi, ✓)|Ft�1]. Consider the nonnegative

process

St(✓) =

tY

i=1

exp

⇢
�i(fi(Zi, ✓)� µi(✓))�

v2i (✓)

H2
i

 P (�iHi)

�
.

The function x�2 P (x) is nondecreasing (at x = 0 we continuously extend the function to
1/2 following the proof of Corollary 17). Since fi is bounded by Hi, we have

1

(�ifi(Zi, ✓))2
 P (�ifi(Zi, ✓)) 6

1

(�iHi)2
 P (�iHi),

that is,

e�ifi(Zi,✓) 6
f2
i (Zi, ✓)

H2
i

 P (�iHi) + �ifi(Zi, ✓) + 1.

Taking expectations,

E[e�ifi(Zi,✓)|Ft�1] 6
v2i (✓)

H2
i

 P (�iHi) + �iµi(✓) + 1.

Note that  P (x) > 0 for all x, so

v2i (✓)

H2
i

 P (�iHi) + �iµi(✓) > �iµi(✓) > �ivi(✓) > �1,

since �i < 1/vi(✓) by assumption. Note that we’ve used µ2
i (✓) 6 v2i (✓) (by Jensen) so

|µi(✓)| 6 vi(✓). Therefore, we may take the logarithm of the above and applying the
inequality log(1 + x) 6 x for x > �1 to obtain

logE[e�ifi(Zi,✓)|Ft�1] 6 log

✓
v2i (✓)

H2
i

 P (�iHi) + �iµi(✓) + 1

◆
6

v2i (✓)

H2
i

 P (�iHi) + �iµi(✓).

Adding ��iµi(✓) = log e��iµi(✓) to each side gives

logE[e�i∆i(✓)|Ft�1] 6
v2i (✓)

H2
i

 P (�iHi).

Exponentiating and rearranging implies that

exp

⇢
�i(fi(Zi, ✓)� µi(✓))�

v2i (✓)

H2
i

 P (�iHi)

�
6 1,

thus implying that (St(✓)) is a supermartingale, and the result thus follows from applying
Theorem 4.

A.5 Proof of Corollary 14

Due to the constraints on (�t) and (ct), (16) implies that the process defined by

Mt(✓) =
tY

i=1

exp

⇢
�i(µi(✓)� fi(Zi, ✓)� cif

2
i (Zi, ✓))

�
,

is a nonnegative supermartingale. Proceed as usual and apply Theorem 4.
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A.6 Proof of Corollary 11

Recall our assumption: E[(fi(Zi, ✓) � µi(✓))
k] 6 1

2k!�
2
i c

k�2
i . By Wainwright (2019, Propo-

sition 2.10), this implies that

E[exp(�(µi(✓)� fi(Zi, ✓)))|Fi�1] 6 exp

✓
�2�2i

2(1� ci|�|)

◆
, (59)

whenever |�| < 1/ct. Consider the quantity Nt(✓) =
Qt

i=1 exp
�
�i�i(✓) � �2

i �
2
i

2(1�ci�i)

 
. Simi-

larly to the proof in Appendix A.1, (Nt(✓)) is a supermartingale by appealing to (59), since
0 < �i < 1/ci by assumption. From here we apply Theorem 4.

A.7 Proof of Corollary 16

Consider Wt(✓) = �tft(Zt, ✓)� logED exp(�tft(Z, ✓)). Observe that the conditional expec-
tation of Wt(✓) is precisely 1:

ED[exp(Wt(✓))|Ft�1] = ED[exp(�tft(Zt, ✓)� logED exp(�tft(Z, ✓))|Ft�1]

= ED[exp(�tft(Zt, ✓) · [ED exp(�tft(Z, ✓))]
�1|Ft�1]

= [ED exp(�tft(Z, ✓))]
�1

ED[exp(�tft(Zt, ✓)|Ft�1] = 1.

Therefore, E[
P

i6tWi(✓)|Ft�1] = E[Wt(✓)|Ft�1]
Pt

i=1Wi(✓) =
Pt�1

i=1 Wi(✓), so the process
(
P

i6tWi(✓))t is a nonnegative supermartingale. Applying Theorem 4 we obtain that, with
probability at least 1� �, for all t and ⇢ 2 M(⇥),

E✓⇠⇢

tX

i=1

�ifi(Zi, ✓) 6 E✓⇠⇢

tX

i=1

logED exp(�ifi(Z, ✓)) +DKL(⇢k⌫) + log(1/�).

Using the concavity of the logarithm then completes the argument.

A.8 Proof of Corollary 17

First we prove a self-contained result concerning the relevant supermartingale. From here,
the result follows immediately from an application of Theorem 4.

Lemma 44 Let (Xt) be nonnegative random variables where Xi has conditional mean
Ei�1[Xi] = E[Xi|Fi�1] and conditional variance Vari�1(Xi) = Var(Xi|Fi�1) < 1. For any
predictable sequence of positive real numbers {�i}, the following process is a nonnegative
supermartingale:

Lt :=
tY

i=1

exp

⇢
�i(Ei�1[Xi]�Xi)�

�2i
2
Ei�1[X

2
i ]

�
.

Proof Since Lt�1 is Ft�1 measurable, we obtain

E[Lt|Ft�1] = Lt�1 · exp

⇢
�t(Et�1[Xt]�Xt)�

�2t
2
Et�1[X

2
t ]

����Ft�1

�
.
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Since �t is predictable, in order to show the above term is bounded by Lt�1 it su�ces to
show that for any nonnegative random variable X with finite mean µ and second moment
we have

E[exp(�(µ�X))] 6 exp(�2E[X2]/2),

for all � > 0. This fact follows from applying a one-sided Bernstein inequality to �X, but
we supply the proof for completeness. Let Z = �X and put  (s) = es � s� 1. Let

g(s) =

(
 (s)/s2, s 6= 0,

1/2, s = 0.

Note that g(s) simply defines the continuous extension of  (s)/s2 at s = 0. Indeed,
lims!0+  (s)/s

2 = lims!0−  (s)/s
2 = 1/2. Note also g(s) is an increasing function for

all s 2 R. Therefore, for all s 6 0,  (s) = s2g(s) 6 s2g(0) = s2

2 . Since Z 6 0 and � > 0, we

may take s = �Z to obtain �(�Z) 6 (�Z)2/2. Thus, E[e�Z ]� �E[Z]� 1 6 �2

2 E[Z2], and

E[exp(�(Z � E[Z]))] 6 e��E[Z](1 + �E[Z] + �2E[Z2]/2)

6 e��E[Z] exp(�E[Z] + �2E[Z2]/2) = exp(�2E[Z2]/2).

Replacing Z with �X completes the proof.

A.9 Proof of Corollary 18

Let (�i) be a predictable sequence. (Delyon, 2009, Proposition 12) shows that for all x 2 R,
exp(x� x2/6) 6 1+ x+ x2/3. Applying this with x = �t�t(✓) and taking expectations, we
obtain that

E[exp
�
�t�t(✓)� �2t�

2
t (✓)/6

 
|Ft�1] 6 1 + E[�t�t(✓)|Ft�1] + E[�2t�

2
t (✓)/3|Ft�1]

= 1 + E[�2t�
2
t (✓)/3|Ft�1]

6 exp
�
E[�2t�

2
t (✓)/3|Ft�1]

 
,

where the equality in the second line follows since �t(✓) is mean zero. Therefore,

E


exp

⇢
�t�t(✓)�

�2t
6
(�2

t (✓) + 2E[�2
t (✓)|Ft�1])

�����Ft�1

�
6 1,

and we conclude that

Mt(✓) = exp

⇢X

i6t

�i�i(✓)�
1

6

X

i6t

�2i (�
2
i (✓) + 2E[�2

i (✓)|Fi�1])

�
,

is a nonnegative supermartingale with initial value E[M1(✓)] 6 1. Applying Theorem 4
gives that with probability at least 1� �, for all t and ⇢,

X

i6t

�iE⇢�i(✓) 6
1

6

X

i6t

✓
�2iE⇢[(�

2
i (✓) + 2E[�2

i (✓)|Fi�1])]

◆
+ log(1/�) +DKL(⇢k⌫).
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This proves the first part of the result. From here, we can simplify the bound by observing
that

X

i6t

�
2
i (✓) + 2

X

i6t

E[�2
i (✓)|Fi�1]

=

tX

i=1

(µi(✓)� fi(Zi, ✓))
2 + 2

tX

i=1

E[(µi(✓)� fi(Z, ✓))
2|Fi�1]

=
tX

i=1

⇢
f2
i (Zi, ✓)� 2µi(✓)fi(Zi, ✓) + 2E[f2

i (Z, ✓)|Fi�1]� µ2
i (✓)

�

6

tX

i=1

[f2
i (Zi, ✓) + 2ED[f

2
i (Z, ✓)|Fi�1]],

where we’ve used that the loss is nonnegative (therefore so is µi(✓)). This gives that with
probability at least 1� �, for all t and ⇢,

X

i6t

�iE⇢�i(✓) 6
1

6

X

i6t

�2iE⇢

✓
fi(Zi, ✓) + 2ED[f

2
i (Z, ✓)|Fi�1]

◆
+ log(1/�) +DKL(⇢k⌫).

If we take f = fi and � = �i as constants and divide both sides by t we obtain (25).

A.10 Proof of Corollary 25

For Z1, . . . , Zn i.i.d, Maurer (2004, Theorem 1) proved the inequality,

E(Zt)⇠D exp
�
n kl( bRn(✓)kR(✓))

 
6 EB⇠Bin(n,R(✓)) exp

�
n kl(B/nkR(✓))

 
,

where Bin denotes the binomial distribution. Following Germain et al. (2015), the latter
quantity is equal to ⇠(n). Indeed,

EB⇠Bin(n,R(✓)) exp

✓
n kl

✓
B

n

����R(✓)

◆◆

= EB⇠Bin(n,R(✓))

✓
B/n

R(✓)

◆B✓ 1�B/n

1�R(✓)

◆n�B

=
nX

k=0

P(B = k)

✓
k/n

R(✓)

◆k✓ 1� k/n

1�R(✓)

◆n�k

=
nX

k=0

✓
n

k

◆
R(✓)k(1�R(✓))n�k

✓
k/n

R(✓)

◆k✓ 1� k/n

1�R(✓)

◆n�k

=
nX

k=0

✓
n

k

◆
(k/n)k(1� k/n)n�k = ⇠(n).

Therefore, applying Corollary 22 with ' = kl and �t̄ = t̄ gives

E⇢'t(✓) 6
logE⇢,D exp(t̄'t̄(✓))

t̄
+

DKL(⇢k⌫) + log(1/�) + ILt

t̄

6
DKL(⇢k⌫) + log(⇠(t̄)/�) + ILt

t̄
,
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as desired. Finally, (36) follows from similar arguments and applying Corollary 24.

A.11 Proof of Corollary 27

Fix � > 0. Put

M j
t (✓) = exp

⇢
j�j(Var(✓)� Vart(✓))�

�2j

2

j2

j � 1
Var(✓)

�
.

Note that Vart(✓) = Ut(✓), i.e., it is the U-statistic for the functional �(P, ✓) = VarP (f(P, ✓)).
Jensen’s inequality combined with the fact that Ut(✓) is a reverse martingale with respect
to (Et) implies that (M j

t (✓))t>j is a reverse submartingale with respect to (Et). (Note that
everything else inside the exponential is constant with respect to t.) Moreover, we note
that EP [M

j
j (✓)] 6 1 due to the self-bounding property of Ut(✓) (Tolstikhin and Seldin,

2013, Equation (9)). From here, the argument resembles that of Corollary 22. Theorem 4
implies that

P(9t > j : E⇢M
j
t (✓)�DKL(⇢k⌫) > log(u/�)) 6 �/u.

We then apply a union bound over the events {9t > 2k : E⇢M
2k
t (✓)�DKL(⇢k⌫) > log(`(k+

1)/�)} implying that

P(9t > 1 : E⇢M
t̄
t (✓)�DKL(⇢k⌫) > log(`(log2(2t)/�))) 6 �,

completing the proof.

A.12 Proof of Corollary 30

The proof follows that of Corollary 22 very closely, so we provide only the outline. Define

hjt (✓) = �j't(✓)� logE⌫,D exp(�j'j(✓)).

Then (exphjt (✓)) is a reverse submartingale with respect to (Et) obeying ED[exph
j
j(✓)] = 1.

Theorem 29 along with our assumption implies that

P(9t > 2k : E⇢h
2k

t (✓)� �Gt(⇢, ⌫) > log(u/�)) 6 �/u.

The event {9t > 1 : E⇢h
t̄
t(✓) � �Gt(⇢, ⌫) > log(`(log2(2t))/�)} is contained in the eventS1

k=0{9t > 2k : E⇢h
2k
t ��Gt(⇢) > log(`(k+1)/�)}, where ` is the stitching function introduced

in Section 5.1. The union bound over all such events implies that

P(9t > 1 : E⇢h
t̄
t(✓)� �Gt(⇢, ⌫) > log(`(log2(2t))/�)) 6 �.

This proves the first part the result. The second part comes from applying Theorem 29 to
the process (hnt (✓)) with t0 = n.

A.13 Proof of Corollary 34

Let ↵0 = ↵/(↵� 1). Define the quantity

Sj
t (✓) = log't(✓)�

1

↵0
logE#⇠⌫,D['

↵0

j (#)].
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Note that the final term is not a function of ✓. First, we claim that (expSj
t (✓))t>1 is a

reverse submartingale with respect to (Et). Recalling that 't(✓) is reverse submartingale
with respect to the same filtration, we have

ED[expS
j
t (✓)|Et+1] =

ED['t(✓)|Et+1]

E⌫,D['
↵0

j (#)]
1

α0

>
't+1(✓)

E⌫,D['
↵0

j (#)]
1

α0

= expSj
t+1(✓).

Therefore, it follows from (50) that ([expSj
t (✓)]

↵0)t>1 is a reverse submartingale with re-
spect to (Et). Next we observe that, by construction, ED[expS

j
j (✓)

↵0 ] = 1. Therefore, by
Theorem 33, for all ⇢,

P(9t > j : E⇢S
j
t (✓) > ↵�1

0 (D↵(⇢k⌫) + log(u/�))) 6 �/u,

for u > 0. Let `(k) = k2⇣(2) be the stitching function introduced in Section 5.1. Following
the proof of Corollary 22, we claim that

�
9t > 1 : E⇢S

t̄
t(✓) > ↵�1

0 (D↵(⇢k⌫) + log(`(log2(2t))/�))
 

✓
1[

k=0

�
9t > 2k : E⇢S

2k

t (✓) > ↵�1
0 (D↵(⇢k⌫) + log(`(k + 1)/�))

 
.

The argument is identical to before: if there is some t⇤ such that the first event holds, then
n(t⇤) = 2k

∗

for some k⇤ so

E⇢S
2k

∗

t∗ (✓) = E⇢S
t̄∗
t∗ (✓) > ↵0(D↵(⇢k⌫) + log(`(log2(2t

⇤))/�))

> ↵0(D↵(⇢k⌫) + log(`(k⇤ + 1))/�)),

since log2(2t
⇤) = 1 + log2(t

⇤) > 1 + blog2(t⇤)c = 1 + k⇤. Applying the union bound, we
conclude that

P(9t > 1 : E⇢S
t̄
t(✓) > ↵�1

0 (D↵(⇢k⌫) + log(1/�) + ILt) 6
1X

k=1

�

`(k)
= �.

That is, with probability at least 1� �, for all t > 1 and ⇢ 2 M(⇥),

E⇢ log't(✓)�
1

↵0
logE#⇠⌫,D['

↵0

t̄
(#)] 6

1

↵0
(D↵(⇢k⌫) + log(1/�) + ILt).

The desired result then follows by rearranging, and by noting that logE⇢'t(✓) > E⇢ log't(✓).

A.14 Proof of Corollary 36

As in Section 5, we will make use of a nondecreasing function ` : {0, 1, 2, . . . } ! R>0 such
that

P1
k=0

1
`(k) 6 1. For concreteness, the reader is encouraged to keep `(k) = (k + 1)2⇣(2)

in mind, but other options are available. We note that the domain of this function di↵ers
slightly from that in Section 5. This is a matter of convenience only.
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Recall the notation �i(✓) = µi(✓) � fi(Zi, ✓) and set St(✓) =
Pt

i=1�i(✓). Let  (�) =
�2/2 be the  function for subGaussian random variables. The process (exp{�St(✓) �
 (�)t})t>1 is a nonnegative supermartingale, so Corollary 6 implies that, for all � 2 R,

P

✓
9t > 1 : E⇢St(✓) >

 (�)t+DKL(⇢||⌫) + log(1/�)

�

◆
6 �.

Let r = log(1/�) and take g�,r to be the lower bound on E⇢St(✓):

g�,r(u) =
 (�)u+DKL(⇢||⌫) + r

�
.

We can rewrite the time-uniform bound on E⇢St(✓) as

P(9t > 1 : E⇢St(✓) > g�,r(t)) 6 e�r. (60)

As in the proof of Corollary 22, we consider geometrically spaced epochs in time: [2k, 2k+1)
for k = 0, 1, . . . . We wish to employ (60) in each epoch [2k, 2k+1) with carefully chosen
parameters rk and �k and then take the union bound over all epochs to obtain our re-
sult. Following Theorem 1 of Howard et al. (2021), we select �k such that g�k,rk(2

k)/2k =

g�k,rk(2
k+1)/2k+1. This gives �k =  �1(rk/2

k+1/2) =
p
2rk/2k+1/2. Plugging this into g

gives

g�k,rk(u) =

p
rkup
2

✓r
u

2k+1/2
+

r
2k+1/2

u

◆
+

DKL(⇢||⌫)
p
2k+1/2

p
2rk

.

The first term on the right hand side can be bounded by 2
p
rku by maximizing

q
u

2k+1/2 +
q

2k+1/2

u over u 2 [2k, 2k+1]. Consider taking rk = log(`(k)/�). Then k 6 log2(u), so

rk = log(`(k)/�) 6 log(`(log2(u)/�)), implying the first term can be upper bounded as

2
p

u log(log2(u)/�). For the KL divergence term, note that 2k 6 u so
p
2k+1/2 <

p
2u.

Furthermore, k + 1 > log2(u), so rk = log(`(k)/�) > log(`(log2(u)� 1)/�). Putting this all
together yields

g�k,rk(u) 6 2
p
u log(`(log2(u))/�) +DKL(⇢||⌫)

r
u

log(`(log2(u)� 1)/�)
= B�(u).

That is, we have shown that for 2k 6 u < 2k+1, g�k,rk(u) 6 B�(u).
Now, consider the event E⇢St∗(✓) > B�(t

⇤). Let k⇤ be such that t⇤ 2 [2k
∗

, 2k
∗+1). Then

E⇢St∗(✓) > g�k∗ ,rk∗ (t
⇤), implying that the event {9t > 1 : E⇢St(✓) > B�(t)} is contained in

the event
S1

k=0{9t 2 [2k, 2k+1) : E⇢St(✓) > g�k,rk(t)}. Consequently, (60) in conjunction
with the union bound implies that

P(9t > 1 : E⇢St(✓) > B�(t)) 6

1X

k=0

e�rk = �

1X

k=0

1

`(k)
6 �.

We have thus shown that, with probability at least 1� �, for all t > 1,

1

t

tX

i=1

E⇢µi(✓) 6
1

t

tX

i=1

E⇢fi(Zi, ✓) +
2
p
log(`(log2(t))/�)p

t
+

DKL(⇢k⌫)p
t log(`(log2(t)� 1)/�)

.
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By considering �E⇢St(✓) and taking a union bound we conclude that

1

t
|E⇢St(✓)| 6

2
p
log(2`(log2(t))/�)p

t
+

DKL(⇢k⌫)p
t log(2`(log2(t)� 1)/�)

.

p
log(log(t)) + log(1/�)p

t
+

DKL(⇢k⌫)p
t log(log(t)) + t log(1/�)

,

as claimed.

A.15 LIL Bound for a Constant Mean

The following is obtained via an ingredient of stitching similar to both Howard et al. (2021,
Theorem 1) and Wang and Ramdas (2023a, Corollary 10.2). The resulting width of the
boundary is the same as in Corollary 36, but the argument is simpler as the mean is constant.

Corollary 45 Let f be 1-subGaussian and let (Zt) ⇠ D be such that µ(✓) = ED[f(Z, ✓)|Ft�1]
is constant for all t > 1. Fix a prior ⌫ 2 M(⇥). Then, for all � 2 (0, 1), with probability at
least 1� �, for all ⇢ and t > 1,

E⇢µ(✓) 2
✓Pt

i=1 f(Zi, ✓)

t
±W stch

t

◆
,

where the width W stch
t is

2

r
log(6.3/�) + 1.4 log log2 2t

t
+

DKL(⇢k⌫)p
(log(6.3/�) + 1.4 log log2(t+ 1))t

.

Proof Let

Wt(⇤, �) =
log(2/�) +DKL(⇢k⌫) + 1

2 t⇤
2

t⇤
(61)

be the width of the CS in (53) when the error level is set to �, the sequence {�t} is set to

a constant ⇤ > 0, and � is set to 1. Let tj = 2j , �j =
�(1+j)−1/4

3.15 , and ⇤j =
p
log(2/�j)2�j .

Note that
P1

j=0 �j < �. By Corollary 35, with probability at least 1 � �j , for all ⇢ and

integers t 2 [tj , tj+1), E⇢µ(✓) 2
⇣Pt

i=1
f(Zi,✓)
t ±Wt(⇤j , �j)

⌘
. Therefore, by the union bound,

we have for all ⇢ and t,

E⇢µ(✓) 2
✓Pt

i=1 f(Zi, ✓)

t
±W stch⇤

t

◆
, where W stch⇤

t := Wt(⇤j , �j) for tj 6 t < tj+1.

53



Chugg, Wang, and Ramdas

Next, we show the straightforward fact that W stch⇤
t satisfies an iterated logarithmic rate.

Note that log(6.3/�) + 1.4 log log2(t+ 1) 6 log(2/�j) 6 log(6.3/�) + 1.4 log log2 2t, so

W stch⇤
t =

log(2/�j) +DKL(⇢k⌫) + 1
2 t⇤

2
j

t⇤j

6
2 log(2/�j) +DKL(⇢k⌫)p

log(2/�j)t

= 2

r
log(2/�j)

t
+

DKL(⇢k⌫)p
log(2/�j)t

6 2

r
log(6.3/�) + 1.4 log log2 2t

t
+

DKL(⇢k⌫)p
(log(6.3/�) + 1.4 log log2(t+ 1))t

.

This concludes the proof.

Appendix B. Mixtures of Martingales

Lemma 46 (Mixture of martingales) Let {(Mt(✓))t2Z : ✓ 2 ⇥} be a family of martin-
gales (resp., super/submartingales) on a filtered probability space (⌦,A, (Ft)t2Z,P), indexed
by ✓ in a measurable space (⇥,B) such that

(i) each Mt(✓) is Ft ⌦ B-measurable; and

(ii) each E[Mt(✓)|Ft�1] is Ft�1 ⌦ B-measurable.

Let µ be a finite measure on (⇥,B) such that for all t,

P⌦ µ-almost everywhere Mt(✓) > 0, or E✓⇠µE[|Mt(✓)|] < 1.

Then the mixture (Mmix
t )t2Z, where Mmix

t = E✓⇠µMt(✓), is also a martingale (or su-
per/submartingale).

Proof First consider the case of supermartingales. Take any A 2 Ft�1. Employing
assumptions (i) and (ii) we can apply Fubini’s theorem to Mt(✓) on P|A ⌦ µ:

E


1A

Z
Mt(✓)µ(d✓)

�
=

Z
E [1AMt(✓)]µ(d✓) =

Z
E [1AE [Mt(✓)|Ft�1]]µ(d✓).

Next, again by the assumptions, either P|A ⌦ µ-a.e., E [Mt(✓)|Ft�1] > 0, or
Z

E [|E [Mt(✓) | Ft�1] |]µ(d✓) 6

Z
E [E [|Mt(✓)| | Ft�1]]µ(d✓)

=

Z
E [|Mt(✓)|]µ(d✓) < 1.

Hence we can apply Fubini’s theorem to E [Mt(✓)|Ft�1] on P|A ⌦ µ:
Z

E [1AE [Mt(✓)|Ft�1]]µ(d✓) = E


1A

Z
E [Mt(✓)|Ft�1]µ(d✓)

�
.
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Therefore, for all A 2 Ft�1, we have E
⇥
1A

R
Mt(✓)µ(d✓)

⇤
= E

⇥
1A

R
E [Mt(✓)|Ft�1]µ(d✓)

⇤
.

Further, by Fubini’s theorem,
R
E [Mt(✓)|Ft�1]µ(d✓) is Ft�1-measurable. Hence,

E

 Z
Mt(✓)µ(d✓)|Ft�1

�
=

Z
E[Mt(✓)|Ft�1]µ(d✓),

and so,

E[Mmix

t |Ft�1] = E

Z
Mt(✓)µ(d✓)

����Ft�1

�

=

Z
E [Mt(✓)|Ft�1]µ(d✓) 6

Z
Mt�1(✓)µ(d✓) = Mmix

t�1.

The fact thatMmix
t is Ft-measurable is again guaranteed by Fubini’s theorem. Hence (Mmix

t )
is a supermartingale. The case with submartingales can be proven by considering �Mt(✓).
The case with martingales is proven by combining the cases with supermartingales and
submartingales.

We remark that the above lemma, albeit stated in terms of forward (super/sub)martingales,
immediately implies that the mixture of reverse (super/sub)martingales is again a reverse
(super/sub)martingale. This is because we allow the indices of the process to run through
t 2 Z. To wit, letting {(Nt(✓))

1
t=1 : ✓ 2 ⇥} be a family of reverse submartingales on a

reverse filtered probability space (⌦,A, (Gt)
1
t=1,P) satisfying the equivalent measurability

assumptions, we may set M�t(✓) = Nt(✓) and F�t = Gt for t = 1, 2, . . . , and trivially
extrapolate M0(✓) = M1(✓) = · · · = N1(✓), G0 = G1 = · · · = F1 to make each (Mt(✓))t2Z a
forward submartingale on the forward filtration (Ft)t2Z. Lemma 46 is therefore applicable.
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