
ML-INSIGHT: Machine Learning for Inrush Current
Prediction and Power Switch Network Improvement

Vikram Gopalakrishnan, Bing-Yue Wu, and Vidya A. Chhabria,
Arizona State University

ABSTRACT
Today’s large-scale designs utilize power gating to achieve
low power consumption. This strategy involves creating an
efficient power switch network that considers both the surge
current (inrush) and the time it takes for the domain to wake
up (wakeup latency). Optimized design of the power switch
network requires an approach that minimizes the inrush cur-
rent while meeting the wakeup latency specification. How-
ever, analyzing the network for inrush is computationally
very expensive with large runtimes, particularly for com-
plex networks, making an optimization framework that calls
the analysis engine under the hood prohibitively slow. To
address this challenge, this paper introduces the use of ma-
chine learning (ML) techniques to estimate inrush current.
The ML-enabled fast inference for inrush prediction is ap-
plied to optimize the power switch network to minimize the
inrush current and also meet the wakeup latency constraint.
The ML model demonstrates a mean error of 5% compared
to SPICE simulations, offering an acceleration of over 50×.
ACM Reference Format:
Vikram Gopalakrishnan, Bing-Yue Wu, and Vidya A. Chhabria,.
2024. ML-INSIGHT: Machine Learning for Inrush Current Predic-
tion and Power Switch Network Improvement. In Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics
and Design (ISLPED ’24), August 5–7, 2024, Newport Beach, CA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3665314.
3670807
1 INTRODUCTION
Modern semiconductor chips, particularly those in battery-
powered devices, prioritize energy efficiency highly. How-
ever, as technology advances and process technologies shrink,
leakage currents increasingly account for a significant por-
tion of total power usage, adversely affecting the longevity
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0688-2/24/08. . . $15.00
https://doi.org/10.1145/3665314.3670807

Figure 1: A power switch and its model.
of device batteries [1]. Power gating has emerged as a crucial
and standard practice within the industry to counteract leak-
age power dissipation. It does so by controlling the power
supply to different chip blocks/domains, thereby effectively
reducing unnecessary power consumption by deactivating
idle blocks. The introduction of the power gates, results in a
complex power network consisting of three components: the
permanent power network (VDD), the power switches (PSW),
and the gated/switched power network (VDD_SW). Fig. 1 il-
lustrates the model of this power network. The gate/switch is
modeled as a transistor, the enable signal determines whether
the gated domain is turned ON or OFF, the gated domain is
modeled as a capacitance and a leakage current source.

Activating a power-gated block from sleep to active mode
causes a significant inrush current due to the simultaneous
charging of its internal capacitors which is given by:

𝐼rush = 𝐶load
𝜕𝑉

𝜕𝑡
(1)

where 𝐶load is the capacitance of the domain being gated
(shown in Fig 1), and 𝜕𝑉 is the change in voltage during
power ramp up and 𝜕𝑡 is the time for power ramp up. This
inrush current substantially exceeds the operational cur-
rent required for the block’s active functionality, potentially
causing permanent damage to the circuit, increasing power
consumption and voltage drops, and, in battery-operated
systems, reducing battery life due to the increased load cur-
rent. The industry’s standard practical method to manage
inrush current involves using multiple (hundreds of) power
switches linked in a hybrid daisy chain [2]. These switch cells
are progressively activated in a sequence delayed by a buffer
chain, with the inrush current managed by the buffer delay,
which sets the sequential activation timing of the switch
cells. If the buffer delay is too short, the switch cells turn on
almost simultaneously (hammer approach), possibly causing

https://doi.org/10.1145/3665314.3670807
https://doi.org/10.1145/3665314.3670807
https://doi.org/10.1145/3665314.3670807


Figure 2: Power switch network (daisy chain topology).

a large rush current. Conversely, a fully daisy approach with
one switch per stage results in prolonged wakeup latency
due to the slow charging to full voltage. Thus a hybrid daisy
chain combines the benefits from both approaches.

Fig. 2 shows the model of a power switch network (PSN) in
a daisy chain. Designing this network for a given power do-
main is extremely challenging as it requires determining the
total number of stages, and the number of switches per stage
(as shown in the figure) to minimize the inrush current while
also satisfying the wakeup latency constraint. This challenge
is compounded by the computationally intensive nature of
inrush current estimation, requiring circuit simulation us-
ing SPICE that solves Equation (1) numerically, making any
PSN design optimization framework that incorporates inrush
analysis under the hood prohibitively slow.
Our proposed work, ML-INSIGHT – Machine Learning

for Inrush Current Prediction and Power Switch Network
Improvement, seeks to address the scalability issue. ML-
INSIGHT develops a machine learning (ML) model (multi-
layer perceptron) to rapidly predict peak inrush current us-
ing the PSN pattern, capacitance (𝐶load), and leakage current
(𝐼leak) as features. The model once trained can be transferred
across different designs, patterns, and different numbers of
switches. ML-INSIGHT then uses the model in an explo-
ration framework to identify the PSN topology that results
in the least inrush current while meeting the wakeup latency
constraints. This tool can determine the best PSN layout be-
fore floorplanning, which can then be implemented with any
commercial EDA tool. Our key contributions are as follows:

(1) To the best of our knowledge, this is the first work to
apply ML to address challenges in PSN optimization.

(2) We develop an ML model to predict peak inrush current
and leverage the model for PSN design space exploration.

(3) ML-INSIGHT can predict peak inrush with an average
accuracy of 95% and a speedup of over 50× compared
to SPICE. The model is transferable across designs (𝐶load
and 𝐼leak) and a different number of power switches.

(4) ML-INSIGHT enables rapid exploration of the PSN pat-
terns with over 50× speedup compared to SPICE-based
exploration and an accuracy of over 98%.

ML-INSIGHT is open-source and available at [3].

2 PRELIMINARIES
Prior Work in PSN optimization and inrush current esti-
mation has been in the late 2000’s and early 2010’s. The
past research can be categorized into three classes. The first
class aims at finding the optimal placement of power switch
in the design in such a way to reduce the total number of
switches while meeting the voltage drop, inrush, and wakeup
constraints [4, 5]. The second class aims at minimizing the
wakeup latency while ensuring the inrush current constraint
is met [6–11]. The third class, aims at reducing inrush current
for a given latency specification [12–15].

In [12], the inrush current is reduced by applying a charge
recycling circuit, which requires change in power switch
design. In [13], the authors partition the design into multi-
ple blocks and activate each block in a particular order to
minimize inrush current, but partitioning based on PSN re-
quirement is practically hard to implement. The work in [14]
utilizes a voltage sensor to detect the switched voltage and
determine the activation times of the switches. In [15], a
genetic algorithm-driven method is employed to find an op-
timal sequence to turn on different gated domains in a chip,
aiming to decrease the global inrush current.
Although ML-INSIGHT falls into the third class of re-

search, we approach the problem differently. While the pre-
viously mentioned works change the power switch design
or require additional design components such as voltage sen-
sors, ML-INSIGHT addresses minimizing the inrush current
by optimizing the pattern of power switches in the network
before the floorplanning stage of physical design. Further,
compared to [10] which uses a simple model based on Equa-
tion (1) to estimate inrush that can be very inaccurate. ML-
INSIGHT leverages an ML model trained from golden SPICE
simulations for a faster and more accurate solution.1
Problem Formulation In industrial power-gated designs,
the power supply network design is done in two modes: the
operational mode and the wakeup mode. During operational
mode design, with all power switches activated, the perma-
nent (VDD) and gated power networks (VDD_SW) are linked
to create a unified power supply system. The goal here is to
reduce the area and operational IR drop impact by the in-
serted power switches while also ensuring the design meets
the operational voltage drop constraints. Therefore, the op-
erational mode design determines the number of switches
in the PSN. In the wakeup mode design, the switches in
the PSN are arranged in a daisy chain style with an opti-
mal power-on sequence pattern that minimizes the inrush
current during wakeup period while the meeting wakeup

1It’s important to note here that there is no direct prior work that solves the
inrush analysis and minimization problem as a PSN pattern selection prob-
lem defined in Section 2 making apples-to-apples comparisons challenging.
Therefore, we perform comparisons against golden SPICE simulations.



latency constraint. This paper explores the challenges for
designing power switch networks for wakeup mode.
Therefore, in the wakeup mode design of the PSN, the

number of switches, 𝑁𝑇 , to be used for a specific domain are
known and are pre-determined based on the operational volt-
age drop requirements and operational mode design. While
fewer switches could lower inrush current and contribute
a smaller area footprint, it could lead to increased voltage
drops during operation. Therefore, the goal of PSN optimiza-
tion in the wakeup mode is to synthesize a network that uses
exactly 𝑁𝑇 switches, meets the wakeup latency constraints
𝑇𝑐 , and results in the least possible inrush current 𝐼rush for
a given power domain characterized by 𝐼leak and 𝐶load, and
the unit buffer delay of the technology library 𝑇buffer. The
problem is defined as follows:

Minimize: 𝐼rush
Subject to: 𝑇wakeup ≤ 𝑇𝑐

(2)

where 𝑇wakeup is the wakeup latency of the network and
its determined by the number of stages in the daisy chain
(shown in Fig. 2) and𝑇buffer. One way to solve this problem is
to fix the number of stages in the PSN such that the wakeup
latency constraint is met then, then work with minimizing
the inrush current for the fixed number of stages. Therefore,
we identify the maximum number of stages we can have
in the daisy chain 𝑁S such that 𝑇wakeup is less than 𝑇𝑐 . The
maximum number of stages is given by𝑁S =

⌈
𝑇𝑐

𝑇buffer

⌉
[10, 16]2

Considering the objective is to identify a network structure
that minimizes 𝐼rush, employing the longest possible daisy
chain would achieve the least 𝐼rush [17, 18].
Therefore, the problem is now converted into distribut-

ing 𝑁𝑇 switches across 𝑁S stages to design a network with
the least 𝐼rush. Although it may seem that the optimization
problem is now of limited scope, it is still a practical and
extremely challenging problem to solve as the solution space
is of size

(
𝑁𝑇 −1
𝑁𝑆−1

)
and for 𝑁S = 6, and 𝑁𝑇 = 100, the peak

inrush current can vary by 30% for a given power domain
with 𝐶load = 1𝑝𝐹 and 𝐼leak = 10𝜇𝐴 as shown in Fig. 3.

3 ML-INSIGHT FRAMEWORK
Addressing the optimization problem formulated in Section 2,
requires an exploration framework that can search through
the

(
𝑁𝑇 −1
𝑁𝑆−1

)
different configurations of PSNs to identify the

pattern that results in the least inrush. The exploration frame-
work must perform inrush current analysis where the input
to the analysis tool is the distribution of the 𝑁𝑇 switches
across the 𝑁𝑆 stages (patterns), and the 𝐶load, 𝐼leak of the
power domain. ML-INSIGHT trains an ML model to predict
2We have not included wire delays in this equation since we are working
before the flooplanning stage. However, this could be modified to include
some pessimism that accounts for wire delay based on wire load models.

Figure 3: SPICE simulation-based 𝐼𝑟𝑢𝑠ℎ for different pat-
terns PSN for a 𝐶load = 1𝑝𝐹 and 𝐼leak = 10𝜇𝐴.

Figure 4: MLP architecture with 14 hidden layers.

the inrush current for a given number of stages 𝑁𝑆 . The
trained model once trained is transferable across different
domains (different𝐶load and 𝐼leak values), and various number
of switches (different values of 𝑁𝑇 ), but is specific to 𝑁𝑆 .

3.1 Inrush prediction: Feature engineering
ML-INSIGHT aims to predict inrush current by training an
ML model. For accurate prediction, it is critical to account
for important features that impact inrush.
Feature extraction Given a PSN pattern as in Fig. 2, ML-
INSIGHT uses the following features to train the ML model.
(1) Number of switches in each stage: An array of size 𝑁𝑆 that
lists the number of switches per stage.
(2) Slews of the enable signal at each stage: An array of size 𝑁𝑆

that lists the input transition times at each stage. The slew
of the enable signal at each stage is estimated based on the
strength of the buffer driving the next stage and the number
of switches in the next stage. We extract this information
from pre-characterized timing libraries.
(3) Leakage (𝐼leak) : We estimate the leakage power of the
domain by running power analysis on the netlist.
(4) Load capacitance (𝐶load) : The capacitance of the domain is
the sum of the capacitance of the power grid and the capaci-
tance of the instances in the domain connected to the power-
gated domain. The power grid capacitance is extracted by
multiplying the per-unit capacitance of the metal layers used
in the power grid and the length of the power grid wires.
Feature importance To demonstrate that each selected fea-
ture is indispensable to the model, we perform a sensitivity
analysis by measuring the mean absolute error (MAE), and



Figure 5: Hyperparameter exploration: Test MAE vs.
number of hidden layers.

Figure 6: Feature importance and analysis.

root mean square error (RMSE) for different models, each
trained by removing one specific feature at a time. The x-
axis of Fig. 6 lists the feature that has been removed, and
the y-axis highlights the %error (right) and MAE (left) of
the testset. The figure shows an error bar that also shows
the maximum %error. We find that the model has the best
accuracy when all the features are selected.

3.2 Inrush prediction: Model architecture
For inrush prediction, we leverage a multi-layer perception
(MLP) as depicted in Fig. 4. The input layer is of size 2×𝑁𝑆 +2
corresponding to the slews and number of switches at each
stage, and the leakage and capacitance of the gated-domain.
The input layer is followed by 14 hidden layers each with 128
nodes except the first and the last hidden layer. The output
layer has only one node, representing the maximum inrush
current for the PSN topology and the given gated domain.We
selected the number of hidden layers by performing hyper-
parameter tuning using the synthetic training data. Fig. 5
shows a plot of MAE vs. the number of hidden layers and we
observed that the MAE was the least with 14 hidden layers.

3.3 Inrush prediction: Model training
Ground-truth data generation Our ground-truth data is
generated using SPICE simulations of the PSN in Fig. 2 imple-
mented in a FinFET 7nm technology node [19].We conducted
simulations over a spectrum of 𝑁𝑇 values –100, 150, and 200–
with each comprising three stages, yielding 4, 851, 11, 026,
and 19, 701 distinct patterns, respectively. In addition, we

explored a range of 𝐶load from 1pF to 24pF and 𝐼leak at 1𝜇A,
10𝜇A, and 20𝜇A, culminating in 0.46M, 1.06M, and 1.91M
datapoints for each respective 𝑁𝑇 grouping. Consequently,
our model is informed by an aggregate of 3.4M datapoints.
We designate 70% of this dataset for training purposes and
the remaining 30% for testing.
Any datapoint configurations utilized in the assessment

of our actual circuits (referenced in Table1) are meticulously
excluded from the training dataset. We derive the labels
for maximum inrush current directly from SPICE for every
datapoint, which are then employed to instruct our MLP as
depicted in Fig. 4. Although the process of generating ground-
truth data is notably slow, taking on average one minute per
five thousand (on a 16-core CPU Intel (R) Xeon Gold 6246R
CPU @ 3.4GHz) datapoints, it is a one-time cost for each
technology. This one-time cost enables the trained model
to be applied (transferred) to diverse PSN configurations
and designs, ensuring the rapid and accurate inrush predic-
tion. Furthermore, this one-time cost is amortized across
the number of times the trained model can be used in infer-
ence across multiple designs, multiple power domains, and
multiple times in the design cycle.
MLP training Themodel is trained with RMSE loss function,
an ADAM optimizer, a batch size of 64, and 10 epochs. The
training is done using Keras ML library in Python [20] and
took 18 minutes for training on NVIDIA RTX 5500 GPU.
3.4 Pattern exploration framework
The goal of the pattern exploration framework in ML-SIGHT
is to solve the optimization problem defined in Equation (2).
Our exploration framework, shown in Fig. 7, consists of a
pattern generator that creates the

(
𝑁𝑇 −1
𝑁𝑆−1

)
number of patterns,

and an inrush analysis engine. The range of estimated inrush
current can significantly depend on 𝑁𝑆 and 𝑁𝑇 (as shown
in Fig. 3). The generated patterns are individually simulated
for their peak inrush current. The inrush analysis engine in
"ground-truth" flow simulates the daisy chain PSN shown in
Fig. 2 using SPICE while the ML-INSIGHT flow leverages the
trained MLP to perform fast accurate inrush analysis. The
flow then selects the pattern that results in the least inrush.

4 ML-INSIGHT EVALUATION
We evaluate the proposed inrush prediction and pattern ex-
ploration framework versus SPICE for accuracy and speed.

4.1 Experimental setup and testcases
To evaluate ML-INSIGHT, we synthesize 10 designs from
open-cores [21], listed in Table 1 and OpenROAD GitHub
repository [22] in ASAP7 technology which vary in their
number of instances (2,000 to over 200,000). Next, we perform
floorplanning and placement using OpenROAD [23]. We
extract the leakage power, and the domain capacitance of



Figure 7: Pattern exploration framework.
Table 1: Circuit testcases in ASAP7 technology node.

Design 𝑁𝑇 # instances 𝐶𝑙𝑜𝑎𝑑

(pF)
𝐼𝑙𝑒𝑎𝑘
(uA)

Ariane 180 93,459 28.653 25000
AES256 175 233,579 22 23.71
Mempool 160 130,460 19.49 3700
Ibex 145 54,785 2.783 3.04
JPEG 140 53,317 6.13 6.57
AES128 140 15,807 2.048 1.89
Ethmac 140 162,614 9.148 11.74
Raven_SHA 135 29,336 3.69 3.71
Mock-array 120 58,666 10.198 0.47
Amber 110 2,747 1 0.68

each of these designs and treat them as individual gated
domains. We determine the total number of switches 𝑁𝑇 per
gated domain (or design) based on voltage drop requirements
(5% of VDD). For our testcases, we assume 𝑁𝑆 = 3 to meet
the wakeup latency constraints for these designs in a 7nm
technology. We have developed ML-INSIGHT in Python3.9.
Our experiments are performed on a 16-core Intel (R) Xeon
Gold 6246R CPU @ 3.4GHz with an NVIDIA RTX A5500
GPU and all reported runtimes are on this machine.

4.2 MLP Evaluation
ML-INSIGHT accuracy vs. SPICE Fig. 8 shows a scatter
plot demonstrating the accuracy of our MLP in predicting
the max inrush current of our testset (unseen during train-
ing). This figure shows the accuracy of the 30% of the 3.4M
datapoints we generated ( Section 3.3). ML-INSIGHT is trans-
ferable across a diverse range of 𝑁𝑇 . We trained the model
on 𝑁𝑇 values of 100, 150, and 200 and performed predictions
on 130, 160, and 190. The small errors show that the model
is transferable across different 𝑁𝑇 values.
Fig. 9 shows the accuracy of the model inference on the

testcases shown in Table 1. Although, there are 10 testcases
listed in Table 1, the figure has several more datapoints and
only 8 unique testcases as we predict the inrush current for
different possible PSN patterns for each testcase. To ensure
that the range of the x and y axes is not too large across

Figure 8: ML-INSIGHT accuracy: Predicted vs. SPICE
peak inrush on our synthetic testset for different 𝑁𝑇 .

Figure 9: ML-INSIGHT accuracy: Predicted vs. SPICE
peak inrush on our synthetic testset with 𝑁𝑇 = 140.
Table 2: ML-INSIGHT accuracy vs. SPICE for inrush
prediction on 100 different patterns.

Design 𝑁𝑇
MAE
(mA)

RMSE
(mA)

Max
error
(mA)

Max
% error

Mean
% error

Ariane 180 0.353 0.375 0.532 9.243 6.142
AES256 175 0.378 0.388 0.544 9.828 6.814
Mempool 160 0.115 0.138 0.288 5.703 2.273
Ibex 145 0.028 0.036 0.104 2.994 0.819
JPEG 140 0.116 0.120 0.181 4.368 2.815
AES128 140 0.034 0.046 0.218 7.006 1.122
Ethmac 140 0.162 0.164 0.199 4.615 3.775
Raven_SHA 135 0.065 0.088 0.211 5.677 1.784
Mock-array 120 0.140 0.169 0.314 8.383 3.745
Amber 110 0.047 0.068 0.300 16.485 2.673

the diverse testcases, we use a fixed number of switches and
show datapoints only a subset (8 of 10) of the testcases. The
scatter points lie along the 45-degree line indicating accurate
prediction on the real circuit testcases.
Table 2 lists the MAE, mean, and max percentage errors

for all testcases described in Table 1. The percentage error
is the absolute difference between the predicted and SPICE
inrush current divided by the SPICE inrush current. The
trained model is applied to all testcases for a fast inrush
prediction. The worstcase max error of ML-INSIGHTmethod
is 16.5% and theworstcasemean error is less than 4% showing
transferability of the model across different designs and 𝑁𝑇

values. The table lists the mean andmax error for 100 random
PSN patterns showing transferability across patterns.



Table 3: Pattern exploration results from ML-INSIGHT
and SPICE with the least 𝐼rush.

Design
ML-INSIGHT best
pattern found

SPICE best
pattern found

Comparison in least
𝐼rush

Pred.
𝐼rush
(mA)

SPICE
𝐼rush
(mA)

Run-
time
(s)

SPICE
𝐼rush
(mA)

Run-
time
(s)

Error
𝐼rush
(mA)

%Error
𝐼rush

Speed-
up with

parallelism
Ariane 5.721 5.753 0.63 5.744 4,713 0.009 0.16 74.28×
AES256 5.721 5.567 0.47 5.533 4,707 0.034 0.61 99.21×
Mempool 4.728 5.065 0.45 5.056 3,816 0.009 0.18 85.26×
Ibex 3.341 3.453 0.38 3.435 2,859 0.018 0.52 74.33×
JPEG 4.165 4.17 0.33 4.088 2,846 0.082 2.00 86.14×
AES128 2.86 2.918 0.34 2.898 2,672 0.02 0.69 78.77×
Ethmac 4.315 4.315 0.31 4.267 2,654 0.048 1.12 85.69×
Rav.SHA 3.596 3.639 0.31 3.608 2,634 0.031 0.86 85.68×
MockArr. 3.655 3.759 0.26 3.731 1,932 0.028 0.75 74.22×
Amber 1.590 1.658 0.34 1.639 1,709 0.019 1.16 50.81×

4.3 Exploration framework evaluation
Accuracy vs. a SPICE-based exploration Table 3 lists
the SPICE and ML-INSIGHT inrush currents for the ML-
INSIGHT-generated pattern which gives minimum inrush
current. Similarly, the pattern corresponding to the least in-
rush current is found from the SPICE and its SPICE-generated
𝐼𝑟𝑢𝑠ℎ values are listed. The last two columns in the table com-
pare SPICE and ML-INSIGHT. The columns list the absolute
and percentage error in the least inrush current reported by
ML-INSIGHT. It shows that the difference in the minimum
inrush between ML-INSIGHT and SPICE is very small (less
than 0.082mA, i.e., less than 2%). Considering that the peak
inrush current can fluctuate by up to 30% for a power domain
by varying the PSN pattern (Fig. 3), an error of 2% is insignifi-
cant. This shows that the trained model is transferable across
different designs and can result in patterns that have inrush
currents close to the SPICE least inrush.
4.4 Runtime comparison
Table 3 shows the speedup ML-INSIGHT provides, consider-
ing parallel SPICE simulations. Given our access to 100 SPICE
licenses and the capability to execute these simulations con-
currently, our minimum speedup exceeds 50×. The runtimes
listed in seconds are assuming we run SPICE sequentially
for all the

(
𝑁𝑇 −1
𝑁𝑆−1

)
patterns. However, the speedup column

accounts for the parallel SPICE simulations. This shows the
scalability of ML-INSIGHT, which is crucial for large 𝑁𝑇 and
𝑁𝑆 values. The speedup comes at a very small error in the
least inrush current (less than 2%) and is license-free.3

5 CONCLUSION
This paper presents ML-INSIGHT, an ML-based inrush cur-
rent predictor. It is transferable across different designs but
is specific to a given wakeup latency and technology node.
ML-INSIGHT enables fast PSN pattern exploration to mini-
mize inrush, meeting latency constraints with <2% error and
over 50x faster than SPICE. ML-INSIGHT is available at [3].
3Runtime for feature extraction is common to both SPICE and ML-INSIGHT.

REFERENCES
[1] V. Sreekumar and S. Ravichandran, “Impact of leakage and short circuit

current in rush current analysis of power gated domains,” in Proceed-
ings of the IEEE SoutheastCon, pp. 41–44, 2010.

[2] K. Shi, Z. Lin, and Y.-M. Jiang, “A power network synthesis method
for industrial power gating designs,” in Proc. ISQED, pp. 362–367, 2007.

[3] “PowerSwitch-ML-INSIGHT,” 2024. https://github.com/
ASU-VDA-Lab/PowerSwitch-ML-INSIGHT.

[4] R. Vilangudipitchai and P. Balsara, “Power switch network design for
MTCMOS,” in Proc. VLSI Des. (VLSID), pp. 836–839, 2005.

[5] J. Kozhaya and L. Bakir, “An electrically robust method for placing
power gating switches in voltage islands,” in Proc. CICC, pp. 321–324,
2004.

[6] A. Abdollahi, F. Fallah, and M. Pedram, “A robust power gating struc-
ture and power mode transition strategy for MTCMOS design,” IEEE T.
VLSI Syst, vol. 15, no. 1, pp. 80–89, 2007.

[7] C.-Y. Chang, P.-C. Tso, C.-H. Huang, and P.-H. Yang, “A fast wake-up
power gating technique with inducing a balanced rush current,” in
Proc. ISCAS, pp. 3086–3089, 2012.

[8] Y.-T. Chen, D.-C. Juan, M.-C. Lee, and S.-C. Chang, “An efficient
wake-up schedule during power mode transition considering spurious
glitches phenomenon,” in Proc. ICCAD, pp. 779–782, 2007.

[9] S. Kim, S. Paik, S. Kang, and Y. Shin, “Wakeup scheduling and its
buffered tree synthesis for power gating circuits,” Integr. VLSI J., vol. 53,
no. C, p. 157–170, 2016.

[10] S.-H. Chen, Y.-L. Lin, and M. C.-T. Chao, “Power-up sequence control
for MTCMOS designs,” IEEE T. VLSI Syst, vol. 21, no. 3, pp. 413–423,
2013.

[11] A. Ramalingam, A. Devgan, and D. Z. Pan, “Wakeup scheduling in mtc-
mos circuits using successive relaxation to minimize ground bounce,”
J. Low Power Electron., vol. 3, pp. 28–35, 2007.

[12] E. Pakbaznia, F. Fallah, and M. Pedram, “Charge recycling in MTCMOS
circuits: concept and analysis,” in Proc. DAC, pp. 97–102, 2006.

[13] A. Davoodi and A. Srivastava, “Wake-up protocols for controlling
current surges inMTCMOS-based technology,” in Proc. ASP-DAC, vol. 2,
pp. 868–871 Vol. 2, 2005.

[14] M.-C. Lee, Y.-T. Chen, Y.-T. Cheng, and S.-C. Chang, “An efficient
wakeup scheduling considering resource constraint for sensor-based
power gating designs,” in Proc. ICCAD, pp. 457–460, 2009.

[15] H. Jiang and M. Marek-Sadowska, “Power gating scheduling for
power/ground noise reduction,” in Proc. DAC, pp. 980–985, 2008.

[16] V. Singhal, A. Dey, S. Mallala, and S. Paul, “A methodology for early
and accurate analysis of inrush and latency tradeoffs during power-
domain wakeup,” in VLSI Design and Test, pp. 294–303, Springer Berlin
Heidelberg, 2013.

[17] K. Choi and J. Frenkil, “An analysis methodology for dynamic power
gating,” Sequence Design Inc, pp. 1–13, 2007.

[18] Y.-T. Shyu, J.-M. Lin, C.-C. Lin, C.-P. Huang, and S.-J. Chang, “An
efficient and effective methodology to control turn-on sequence of
power switches for power gating designs,” IEEE T. Comput. Aid. D.,
vol. 35, no. 10, pp. 1730–1743, 2016.

[19] V. Vashishtha, M. Vangala, and L. T. Clark, “ASAP7 predictive design
kit development and cell design technology co-optimization: Invited
paper,” in Proc. ICCAD, pp. 992–998, 2017.

[20] F. Chollet et al., “Keras,” 2015. https://github.com/fchollet/keras.
[21] “Open Cores,” 2024. https://opencores.org/projects.
[22] “OpenROAD,” 2022. https://github.com/The-OpenROAD-Project/

OpenROAD.
[23] “OpenROAD-flow-scripts,” 2022. https://github.com/

The-OpenROAD-Project/OpenROAD-flow-scripts.

https://github.com/ASU-VDA-Lab/PowerSwitch-ML-INSIGHT
https://github.com/ASU-VDA-Lab/PowerSwitch-ML-INSIGHT
https://github.com/fchollet/keras
https://opencores.org/projects 
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts

	Abstract
	1 Introduction
	2 Preliminaries
	3 ML-INSIGHT Framework
	3.1 Inrush prediction: Feature engineering
	3.2 Inrush prediction: Model architecture
	3.3 Inrush prediction: Model training
	3.4 Pattern exploration framework

	4 ML-INSIGHT Evaluation
	4.1 Experimental setup and testcases
	4.2 MLP Evaluation
	4.3 Exploration framework evaluation
	4.4 Runtime comparison

	5 Conclusion
	References

