ML-INSIGHT: Machine Learning for Inrush Current
Prediction and Power Switch Network Improvement

Vikram Gopalakrishnan, Bing-Yue Wu, and Vidya A. Chhabria,

Arizona State University

ABSTRACT

Today’s large-scale designs utilize power gating to achieve
low power consumption. This strategy involves creating an
efficient power switch network that considers both the surge
current (inrush) and the time it takes for the domain to wake
up (wakeup latency). Optimized design of the power switch
network requires an approach that minimizes the inrush cur-
rent while meeting the wakeup latency specification. How-
ever, analyzing the network for inrush is computationally
very expensive with large runtimes, particularly for com-
plex networks, making an optimization framework that calls
the analysis engine under the hood prohibitively slow. To
address this challenge, this paper introduces the use of ma-
chine learning (ML) techniques to estimate inrush current.
The ML-enabled fast inference for inrush prediction is ap-
plied to optimize the power switch network to minimize the
inrush current and also meet the wakeup latency constraint.
The ML model demonstrates a mean error of 5% compared
to SPICE simulations, offering an acceleration of over 50Xx.
ACM Reference Format:

Vikram Gopalakrishnan, Bing-Yue Wu, and Vidya A. Chhabria,.
2024. ML-INSIGHT: Machine Learning for Inrush Current Predic-
tion and Power Switch Network Improvement. In Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics
and Design (ISLPED °24), August 5-7, 2024, Newport Beach, CA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3665314.
3670807

1 INTRODUCTION

Modern semiconductor chips, particularly those in battery-
powered devices, prioritize energy efficiency highly. How-
ever, as technology advances and process technologies shrink,
leakage currents increasingly account for a significant por-
tion of total power usage, adversely affecting the longevity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ISLPED °24, August 5-7, 2024, Newport Beach, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0688-2/24/08...$15.00
https://doi.org/10.1145/3665314.3670807

Enable
Signal

C

Figure 1: A power switch and its model.

of device batteries [1]. Power gating has emerged as a crucial
and standard practice within the industry to counteract leak-
age power dissipation. It does so by controlling the power
supply to different chip blocks/domains, thereby effectively
reducing unnecessary power consumption by deactivating
idle blocks. The introduction of the power gates, results in a
complex power network consisting of three components: the
permanent power network (VDD), the power switches (PSW),
and the gated/switched power network (VDD_SW). Fig. 1 il-
lustrates the model of this power network. The gate/switch is
modeled as a transistor, the enable signal determines whether
the gated domain is turned ON or OFF, the gated domain is
modeled as a capacitance and a leakage current source.

Activating a power-gated block from sleep to active mode
causes a significant inrush current due to the simultaneous
charging of its internal capacitors vg/hich is given by:

7]

Lrush = Cloadg (1)
where Cioyq is the capacitance of the domain being gated
(shown in Fig 1), and 9V is the change in voltage during
power ramp up and ot is the time for power ramp up. This
inrush current substantially exceeds the operational cur-
rent required for the block’s active functionality, potentially
causing permanent damage to the circuit, increasing power
consumption and voltage drops, and, in battery-operated
systems, reducing battery life due to the increased load cur-
rent. The industry’s standard practical method to manage
inrush current involves using multiple (hundreds of) power
switches linked in a hybrid daisy chain [2]. These switch cells
are progressively activated in a sequence delayed by a buffer
chain, with the inrush current managed by the buffer delay,
which sets the sequential activation timing of the switch
cells. If the buffer delay is too short, the switch cells turn on
almost simultaneously (hammer approach), possibly causing

https://doi.org/10.1145/3665314.3670807
https://doi.org/10.1145/3665314.3670807
https://doi.org/10.1145/3665314.3670807

Stage1 Stage NS
—_— T o 427588 =

[voo_sw

Figure 2: Power switch network (daisy chain topology).

a large rush current. Conversely, a fully daisy approach with
one switch per stage results in prolonged wakeup latency
due to the slow charging to full voltage. Thus a hybrid daisy
chain combines the benefits from both approaches.

Fig. 2 shows the model of a power switch network (PSN) in
a daisy chain. Designing this network for a given power do-
main is extremely challenging as it requires determining the
total number of stages, and the number of switches per stage
(as shown in the figure) to minimize the inrush current while
also satisfying the wakeup latency constraint. This challenge
is compounded by the computationally intensive nature of
inrush current estimation, requiring circuit simulation us-
ing SPICE that solves Equation (1) numerically, making any
PSN design optimization framework that incorporates inrush
analysis under the hood prohibitively slow.

Our proposed work, ML-INSIGHT - Machine Learning
for Inrush Current Prediction and Power Switch Network
Improvement, seeks to address the scalability issue. ML-
INSIGHT develops a machine learning (ML) model (multi-
layer perceptron) to rapidly predict peak inrush current us-
ing the PSN pattern, capacitance (Cioaq), and leakage current
(Deax) as features. The model once trained can be transferred
across different designs, patterns, and different numbers of
switches. ML-INSIGHT then uses the model in an explo-
ration framework to identify the PSN topology that results
in the least inrush current while meeting the wakeup latency
constraints. This tool can determine the best PSN layout be-
fore floorplanning, which can then be implemented with any
commercial EDA tool. Our key contributions are as follows:

(1) To the best of our knowledge, this is the first work to
apply ML to address challenges in PSN optimization.

(2) We develop an ML model to predict peak inrush current
and leverage the model for PSN design space exploration.

(3) ML-INSIGHT can predict peak inrush with an average
accuracy of 95% and a speedup of over 50X compared
to SPICE. The model is transferable across designs (Cioad
and Ije,x) and a different number of power switches.

(4) ML-INSIGHT enables rapid exploration of the PSN pat-
terns with over 50X speedup compared to SPICE-based
exploration and an accuracy of over 98%.

ML-INSIGHT is open-source and available at [3].

2 PRELIMINARIES

Prior Work in PSN optimization and inrush current esti-
mation has been in the late 2000’s and early 2010’s. The
past research can be categorized into three classes. The first
class aims at finding the optimal placement of power switch
in the design in such a way to reduce the total number of
switches while meeting the voltage drop, inrush, and wakeup
constraints [4, 5]. The second class aims at minimizing the
wakeup latency while ensuring the inrush current constraint
is met [6—11]. The third class, aims at reducing inrush current
for a given latency specification [12-15].

In [12], the inrush current is reduced by applying a charge
recycling circuit, which requires change in power switch
design. In [13], the authors partition the design into multi-
ple blocks and activate each block in a particular order to
minimize inrush current, but partitioning based on PSN re-
quirement is practically hard to implement. The work in [14]
utilizes a voltage sensor to detect the switched voltage and
determine the activation times of the switches. In [15], a
genetic algorithm-driven method is employed to find an op-
timal sequence to turn on different gated domains in a chip,
aiming to decrease the global inrush current.

Although ML-INSIGHT falls into the third class of re-
search, we approach the problem differently. While the pre-
viously mentioned works change the power switch design
or require additional design components such as voltage sen-
sors, ML-INSIGHT addresses minimizing the inrush current
by optimizing the pattern of power switches in the network
before the floorplanning stage of physical design. Further,
compared to [10] which uses a simple model based on Equa-
tion (1) to estimate inrush that can be very inaccurate. ML-
INSIGHT leverages an ML model trained from golden SPICE
simulations for a faster and more accurate solution.!
Problem Formulation In industrial power-gated designs,
the power supply network design is done in two modes: the
operational mode and the wakeup mode. During operational
mode design, with all power switches activated, the perma-
nent (VDD) and gated power networks (VDD_SW) are linked
to create a unified power supply system. The goal here is to
reduce the area and operational IR drop impact by the in-
serted power switches while also ensuring the design meets
the operational voltage drop constraints. Therefore, the op-
erational mode design determines the number of switches
in the PSN. In the wakeup mode design, the switches in
the PSN are arranged in a daisy chain style with an opti-
mal power-on sequence pattern that minimizes the inrush
current during wakeup period while the meeting wakeup

!It’s important to note here that there is no direct prior work that solves the
inrush analysis and minimization problem as a PSN pattern selection prob-
lem defined in Section 2 making apples-to-apples comparisons challenging.
Therefore, we perform comparisons against golden SPICE simulations.

latency constraint. This paper explores the challenges for
designing power switch networks for wakeup mode.

Therefore, in the wakeup mode design of the PSN, the
number of switches, Nr, to be used for a specific domain are
known and are pre-determined based on the operational volt-
age drop requirements and operational mode design. While
fewer switches could lower inrush current and contribute
a smaller area footprint, it could lead to increased voltage
drops during operation. Therefore, the goal of PSN optimiza-
tion in the wakeup mode is to synthesize a network that uses
exactly Nt switches, meets the wakeup latency constraints
T;, and results in the least possible inrush current I, for
a given power domain characterized by [,k and Cload, and
the unit buffer delay of the technology library Tyufer. The
problem is defined as follows:

Minimize: Lysh
Subject to: Tyakeup < Tc

@

where Tyaeup is the wakeup latency of the network and
its determined by the number of stages in the daisy chain
(shown in Fig. 2) and Tpuger. One way to solve this problem is
to fix the number of stages in the PSN such that the wakeup
latency constraint is met then, then work with minimizing
the inrush current for the fixed number of stages. Therefore,
we identify the maximum number of stages we can have
in the daisy chain Ns such that Tyakeup is less than T... The

maximum number of stages is given by Ns = [Tbﬁfﬂ -‘ (10, 16]?
Considering the objective is to identify a network structure
that minimizes Ish, employing the longest possible daisy
chain would achieve the least Iy, [17, 18].

Therefore, the problem is now converted into distribut-
ing Nt switches across Ng stages to design a network with
the least Iysh. Although it may seem that the optimization
problem is now of limited scope, it is still a practical and
extremely challenging problem to solve as the solution space
is of size (ig:}) and for Ns = 6, and Nr = 100, the peak
inrush current can vary by 30% for a given power domain
with Cigaq = 1pF and ieax = 10pA as shown in Fig. 3.

3 ML-INSIGHT FRAMEWORK

Addressing the optimization problem formulated in Section 2,
requires an exploration framework that can search through
the (%f:}) different configurations of PSNs to identify the
pattern that results in the least inrush. The exploration frame-
work must perform inrush current analysis where the input
to the analysis tool is the distribution of the Nt switches
across the Ng stages (patterns), and the Cipad, fleax Of the
power domain. ML-INSIGHT trains an ML model to predict

2We have not included wire delays in this equation since we are working
before the flooplanning stage. However, this could be modified to include
some pessimism that accounts for wire delay based on wire load models.

S . T 318 —(1,1,1,1,75,21)
|29,24% (49,47,1,1,1,1)
225 h.-zzs —(36,1,1,19,1, 42)
. —(52,18,1,1,1,27)

0 200 400 600 800 1000
Time (ps)

Figure 3: SPICE simulation-based I,,,5; for different pat-
terns PSN for a Cigaq = 1pF and fie, = 10pA.

— N

_ &

g%i o (X) ©-

o °) ° Output

° ° ° Layer
~ [} [} []

Input Layer \

[}
Hidden @) Hidden
Layer 1 Hidden Hidden Layer 14
Layer 2 Layer 3

Figure 4: MLP architecture with 14 hidden layers.

RS

é‘(‘...

the inrush current for a given number of stages Ns. The
trained model once trained is transferable across different
domains (different Cly,q and Ijeax values), and various number
of switches (different values of N7), but is specific to Ng.

3.1 Inrush prediction: Feature engineering

ML-INSIGHT aims to predict inrush current by training an
ML model. For accurate prediction, it is critical to account
for important features that impact inrush.

Feature extraction Given a PSN pattern as in Fig. 2, ML-
INSIGHT uses the following features to train the ML model.
(1) Number of switches in each stage: An array of size Ng that
lists the number of switches per stage.

(2) Slews of the enable signal at each stage: An array of size N
that lists the input transition times at each stage. The slew
of the enable signal at each stage is estimated based on the
strength of the buffer driving the next stage and the number
of switches in the next stage. We extract this information
from pre-characterized timing libraries.

(3) Leakage (Iieqk) : We estimate the leakage power of the
domain by running power analysis on the netlist.

(4) Load capacitance (Cjoqq4) : The capacitance of the domain is
the sum of the capacitance of the power grid and the capaci-
tance of the instances in the domain connected to the power-
gated domain. The power grid capacitance is extracted by
multiplying the per-unit capacitance of the metal layers used
in the power grid and the length of the power grid wires.
Feature importance To demonstrate that each selected fea-
ture is indispensable to the model, we perform a sensitivity
analysis by measuring the mean absolute error (MAE), and

0.7
0.6
Z0.5
E
0.4
<
203

0.2

0.1

2 4 6 8 10 12 14 16 18
Number of hidden layers

Figure 5: Hyperparameter exploration: Test MAE vs.
number of hidden layers.
3.00 200
2.50
2.00

1.50 100
1.00

0.50 W

000 ®mllm_ B snfl. &=
No feature
removed

Percentage

I- | . 0
Switchesin Slews at

c:Ioad IIeak
each stage each stage

Feature Removed
W MAE ® RMSE
Figure 6: Feature importance and analysis.

Max error M Max error % ™ Mean error %

root mean square error (RMSE) for different models, each
trained by removing one specific feature at a time. The x-
axis of Fig. 6 lists the feature that has been removed, and
the y-axis highlights the %error (right) and MAE (left) of
the testset. The figure shows an error bar that also shows
the maximum %error. We find that the model has the best
accuracy when all the features are selected.

3.2 Inrush prediction: Model architecture

For inrush prediction, we leverage a multi-layer perception
(MLP) as depicted in Fig. 4. The input layer is of size 2 X Ng+2
corresponding to the slews and number of switches at each
stage, and the leakage and capacitance of the gated-domain.
The input layer is followed by 14 hidden layers each with 128
nodes except the first and the last hidden layer. The output
layer has only one node, representing the maximum inrush
current for the PSN topology and the given gated domain. We
selected the number of hidden layers by performing hyper-
parameter tuning using the synthetic training data. Fig. 5
shows a plot of MAE vs. the number of hidden layers and we
observed that the MAE was the least with 14 hidden layers.

3.3 Inrush prediction: Model training

Ground-truth data generation Our ground-truth data is
generated using SPICE simulations of the PSN in Fig. 2 imple-
mented in a FinFET 7nm technology node [19]. We conducted
simulations over a spectrum of N7 values 100, 150, and 200—
with each comprising three stages, yielding 4, 851, 11, 026,
and 19,701 distinct patterns, respectively. In addition, we

explored a range of Cipaq from 1pF to 24pF and [ieax at 1pA,
10pA, and 20pA, culminating in 0.46M, 1.06M, and 1.91M
datapoints for each respective Ny grouping. Consequently,
our model is informed by an aggregate of 3.4M datapoints.
We designate 70% of this dataset for training purposes and
the remaining 30% for testing.

Any datapoint configurations utilized in the assessment
of our actual circuits (referenced in Tablel) are meticulously
excluded from the training dataset. We derive the labels
for maximum inrush current directly from SPICE for every
datapoint, which are then employed to instruct our MLP as
depicted in Fig. 4. Although the process of generating ground-
truth data is notably slow, taking on average one minute per
five thousand (on a 16-core CPU Intel (R) Xeon Gold 6246R
CPU @ 3.4GHz) datapoints, it is a one-time cost for each
technology. This one-time cost enables the trained model
to be applied (transferred) to diverse PSN configurations
and designs, ensuring the rapid and accurate inrush predic-
tion. Furthermore, this one-time cost is amortized across
the number of times the trained model can be used in infer-
ence across multiple designs, multiple power domains, and
multiple times in the design cycle.

MLP training The model is trained with RMSE loss function,
an ADAM optimizer, a batch size of 64, and 10 epochs. The
training is done using Keras ML library in Python [20] and
took 18 minutes for training on NVIDIA RTX 5500 GPU.
3.4 Pattern exploration framework

The goal of the pattern exploration framework in ML-SIGHT
is to solve the optimization problem defined in Equation (2).
Our exploration framework, shown in Fig. 7, consists of a
pattern generator that creates the (%g:}) number of patterns,
and an inrush analysis engine. The range of estimated inrush
current can significantly depend on Ng and N7 (as shown
in Fig. 3). The generated patterns are individually simulated
for their peak inrush current. The inrush analysis engine in
"ground-truth" flow simulates the daisy chain PSN shown in
Fig. 2 using SPICE while the ML-INSIGHT flow leverages the
trained MLP to perform fast accurate inrush analysis. The
flow then selects the pattern that results in the least inrush.

4 ML-INSIGHT EVALUATION

We evaluate the proposed inrush prediction and pattern ex-
ploration framework versus SPICE for accuracy and speed.

4.1 Experimental setup and testcases

To evaluate ML-INSIGHT, we synthesize 10 designs from
open-cores [21], listed in Table 1 and OpenROAD GitHub
repository [22] in ASAP7 technology which vary in their
number of instances (2,000 to over 200,000). Next, we perform
floorplanning and placement using OpenROAD [23]. We
extract the leakage power, and the domain capacitance of

Patterns

Ny —1
Ng—1

Design
specifications
(Cload ’ ILeak)

R 2
OR ML-
4—’ INSIGHT

L 2

Find the least|

rush

Return the PSN pattern
corresponding to that least
|

rush

Figure 7: Pattern exploration framework.
Table 1: Circuit testcases in ASAP7 technology node.

_ 6/ @ 130Switches "f/"
<é< 160 Switches ”*&"
— 5| @ 190Switches o
= o™
S 4 o
2 (:./
3) (
5 3 ’,"{ .
o -~
o 7

2|

2 3 4 5 6

Actual g, (MA)
Figure 8: ML-INSIGHT accuracy: Predicted vs. SPICE
peak inrush on our synthetic testset for different Nr.

. . Cload Lieak

Design Nr | # instances (PF) | (uA)
Ariane 180 93,459 | 28.653 | 25000
AES256 175 233,579 22| 2371
Mempool 160 130,460 | 19.49 | 3700
Ibex 145 54,785 | 2.783 3.04
JPEG 140 53,317 6.13 6.57
AES128 140 15,807 | 2.048 1.89
Ethmac 140 162,614 | 9.148 | 11.74
Raven_SHA | 135 29,336 3.69 3.71
Mock—array 120 58,666 | 10.198 0.47
Amber 110 2,747 1 0.68

5/ ® Amber ® AES128 =
<45 JPEG ® EthMAC e
e @® Raven_SHA Mock-Array ’/5/
= 4/ @ Ibex }(’/’,

_235) ",
e} >
o 3 /j‘
o
5 2.5 -
2w
o g
157
15 2 25 3 35 4 45 5

Actual l ¢, (MA)
Figure 9: ML-INSIGHT accuracy: Predicted vs. SPICE
peak inrush on our synthetic testset with Ny = 140.

Table 2: ML-INSIGHT accuracy vs. SPICE for inrush
prediction on 100 different patterns.

each of these designs and treat them as individual gated
domains. We determine the total number of switches Ny per
gated domain (or design) based on voltage drop requirements
(5% of VDD). For our testcases, we assume Ns = 3 to meet
the wakeup latency constraints for these designs in a 7nm
technology. We have developed ML-INSIGHT in Python3.9.
Our experiments are performed on a 16-core Intel (R) Xeon
Gold 6246R CPU @ 3.4GHz with an NVIDIA RTX A5500
GPU and all reported runtimes are on this machine.

4.2 MLP Evaluation

ML-INSIGHT accuracy vs. SPICE Fig. 8 shows a scatter
plot demonstrating the accuracy of our MLP in predicting
the max inrush current of our testset (unseen during train-
ing). This figure shows the accuracy of the 30% of the 3.4M
datapoints we generated (Section 3.3). ML-INSIGHT is trans-
ferable across a diverse range of Ny. We trained the model
on Nt values of 100, 150, and 200 and performed predictions
on 130, 160, and 190. The small errors show that the model
is transferable across different Nt values.

Fig. 9 shows the accuracy of the model inference on the
testcases shown in Table 1. Although, there are 10 testcases
listed in Table 1, the figure has several more datapoints and
only 8 unique testcases as we predict the inrush current for
different possible PSN patterns for each testcase. To ensure
that the range of the x and y axes is not too large across

Design | Ny | MAE | RMSE e“::‘;‘r Max | Mean
(mA) | (mA) (mA) % error | % error

Ariane 180 | 0353 | 0375 | 0532 | 9243 | 6.142
AES256 175 | 0378 | 0388 | 0544 | 9828 | 6814
Mempool | 160 | 0.115 | 0.138 | 0.288 | 5703 | 2.273
Tbex 145 | 0028 | 0036 | 0.104| 2994 | 0819
JPEG 140 | 0.116 | 0.120 | 0.181| 4368 | 2815
AES128 140 | 0.034 | 0046 | 0218 | 7.006| 1.122
Ethmac 140 | 0.162 | 0.164 | 0.199 | 4615| 3.775
Raven SHA | 135 | 0.065 | 0.088 | 0.211 | 5677 | 1784
Mock-array | 120 | 0.140 | 0.169 | 0314 | 8383 | 3.745
Amber 110 | 0.047 | 0.068 | 0.300 | 16.485| 2.673

the diverse testcases, we use a fixed number of switches and
show datapoints only a subset (8 of 10) of the testcases. The
scatter points lie along the 45-degree line indicating accurate
prediction on the real circuit testcases.

Table 2 lists the MAE, mean, and max percentage errors
for all testcases described in Table 1. The percentage error
is the absolute difference between the predicted and SPICE
inrush current divided by the SPICE inrush current. The
trained model is applied to all testcases for a fast inrush
prediction. The worstcase max error of ML-INSIGHT method
is 16.5% and the worstcase mean error is less than 4% showing
transferability of the model across different designs and Nr
values. The table lists the mean and max error for 100 random
PSN patterns showing transferability across patterns.

Table 3: Pattern exploration results from ML-INSIGHT
and SPICE with the least I,

ML-INSIGHT best SPICE best Comparison in least
Design pattern found pattern found Trush
Pred. | SPICE | Run- || SPICE | Run- || Error Speed-
. . %Error .
Lush | Irush | time || Lysn | time || Lysh I up with
(mA) | (mA) (s) (mA) (s) (mA) rush | parallelism
Ariane 5.721 5.753 0.63 5.744 | 4,713 0.009 0.16 74.28%
AES256 5.721 5.567 0.47 5.533 | 4,707 0.034 0.61 99.21x
Mempool || 4.728 5.065 0.45 5.056 | 3,816 0.009 0.18 85.26%
Ibex 3.341 3.453 0.38 3.435 | 2,859 0.018 0.52 74.33%
JPEG 4.165 4.17 0.33 4.088 | 2,846 0.082 2.00 86.14x
AES128 2.86 2918 0.34 2.898 | 2,672 0.02 0.69 78.77x
Ethmac 4.315 4.315 0.31 4.267 | 2,654 || 0.048 1.12 85.69%
Rav.SHA 3.596 3.639 0.31 3.608 | 2,634 || 0.031 0.86 85.68%
MockArr. 3.655 3.759 0.26 3.731 1,932 0.028 0.75 74.22%
Amber 1.590 1.658 0.34 1.639 | 1,709 0.019 1.16 50.81x

4.3 Exploration framework evaluation

Accuracy vs. a SPICE-based exploration Table 3 lists
the SPICE and ML-INSIGHT inrush currents for the ML-
INSIGHT-generated pattern which gives minimum inrush
current. Similarly, the pattern corresponding to the least in-
rush current is found from the SPICE and its SPICE-generated
I,sh values are listed. The last two columns in the table com-
pare SPICE and ML-INSIGHT. The columns list the absolute
and percentage error in the least inrush current reported by
ML-INSIGHT. It shows that the difference in the minimum
inrush between ML-INSIGHT and SPICE is very small (less
than 0.082mA, i.e., less than 2%). Considering that the peak
inrush current can fluctuate by up to 30% for a power domain
by varying the PSN pattern (Fig. 3), an error of 2% is insignifi-
cant. This shows that the trained model is transferable across
different designs and can result in patterns that have inrush
currents close to the SPICE least inrush.

4.4 Runtime comparison

Table 3 shows the speedup ML-INSIGHT provides, consider-
ing parallel SPICE simulations. Given our access to 100 SPICE
licenses and the capability to execute these simulations con-
currently, our minimum speedup exceeds 50%. The runtimes
listed in seconds are assuming we run SPICE sequentially
for all the (%Z:i) patterns. However, the speedup column
accounts for the parallel SPICE simulations. This shows the
scalability of ML-INSIGHT, which is crucial for large Ny and
Ngs values. The speedup comes at a very small error in the
least inrush current (less than 2%) and is license-free.®

5 CONCLUSION

This paper presents ML-INSIGHT, an ML-based inrush cur-
rent predictor. It is transferable across different designs but
is specific to a given wakeup latency and technology node.
ML-INSIGHT enables fast PSN pattern exploration to mini-
mize inrush, meeting latency constraints with <2% error and
over 50x faster than SPICE. ML-INSIGHT is available at [3].

3Runtime for feature extraction is common to both SPICE and ML-INSIGHT.

REFERENCES

[1] V.Sreekumar and S. Ravichandran, “Impact of leakage and short circuit
current in rush current analysis of power gated domains,” in Proceed-
ings of the IEEE SoutheastCon, pp. 41-44, 2010.

[2] K. Shi, Z. Lin, and Y.-M. Jiang, “A power network synthesis method
for industrial power gating designs,” in Proc. ISQED, pp. 362-367, 2007.

[3] “PowerSwitch-ML-INSIGHT,” 2024. https://github.com/
ASU-VDA-Lab/PowerSwitch-ML-INSIGHT.

[4] R. Vilangudipitchai and P. Balsara, “Power switch network design for
MTCMOS;” in Proc. VLSI Des. (VLSID), pp. 836—839, 2005.

[5] J. Kozhaya and L. Bakir, “An electrically robust method for placing

power gating switches in voltage islands,” in Proc. CICC, pp. 321-324,

2004.

A. Abdollahi, F. Fallah, and M. Pedram, “A robust power gating struc-

ture and power mode transition strategy for MTCMOS design,” IEEE T.

VLSI Syst, vol. 15, no. 1, pp. 80-89, 2007.

[7] C.-Y.Chang, P.-C. Tso, C.-H. Huang, and P.-H. Yang, “A fast wake-up
power gating technique with inducing a balanced rush current,” in
Proc. ISCAS, pp. 3086-3089, 2012.

[8] Y.-T. Chen, D.-C. Juan, M.-C. Lee, and S.-C. Chang, “An efficient

wake-up schedule during power mode transition considering spurious

glitches phenomenon,” in Proc. ICCAD, pp. 779-782, 2007.

S. Kim, S. Paik, S. Kang, and Y. Shin, “Wakeup scheduling and its

buffered tree synthesis for power gating circuits,” Integr. VLSI ., vol. 53,

no. C, p. 157-170, 2016.

[10] S.-H. Chen, Y.-L. Lin, and M. C.-T. Chao, “Power-up sequence control
for MTCMOS designs,” IEEE T. VLSI Syst, vol. 21, no. 3, pp. 413-423,
2013.

[11] A.Ramalingam, A. Devgan, and D. Z. Pan, “Wakeup scheduling in mtc-
mos circuits using successive relaxation to minimize ground bounce,”
J. Low Power Electron., vol. 3, pp. 28-35, 2007.

[12] E.Pakbaznia, F. Fallah, and M. Pedram, “Charge recycling in MTCMOS
circuits: concept and analysis,” in Proc. DAC, pp. 97-102, 2006.

[13] A. Davoodi and A. Srivastava, “Wake-up protocols for controlling
current surges in MTCMOS-based technology,” in Proc. ASP-DAC, vol. 2,
pp. 868-871 Vol. 2, 2005.

[14] M.-C. Lee, Y.-T. Chen, Y.-T. Cheng, and S.-C. Chang, “An efficient
wakeup scheduling considering resource constraint for sensor-based
power gating designs,” in Proc. ICCAD, pp. 457-460, 2009.

[15] H. Jiang and M. Marek-Sadowska, “Power gating scheduling for
power/ground noise reduction,” in Proc. DAC, pp. 980-985, 2008.

[16] V. Singhal, A. Dey, S. Mallala, and S. Paul, “A methodology for early
and accurate analysis of inrush and latency tradeoffs during power-
domain wakeup,” in VLSI Design and Test, pp. 294-303, Springer Berlin
Heidelberg, 2013.

[17] K. Choi and J. Frenkil, “An analysis methodology for dynamic power
gating,” Sequence Design Inc, pp. 1-13, 2007.

[18] Y.-T. Shyu, J.-M. Lin, C.-C. Lin, C.-P. Huang, and S.-J. Chang, “An
efficient and effective methodology to control turn-on sequence of
power switches for power gating designs,” IEEE T. Comput. Aid. D.,
vol. 35, no. 10, pp. 1730-1743, 2016.

[19] V. Vashishtha, M. Vangala, and L. T. Clark, “ASAP7 predictive design
kit development and cell design technology co-optimization: Invited
paper,” in Proc. ICCAD, pp. 992-998, 2017.

[20] F. Chollet et al., “Keras,” 2015. https://github.com/fchollet/keras.

[21] “Open Cores,” 2024. https://opencores.org/projects.

[22] “OpenROAD,” 2022. https://github.com/The-OpenROAD-Project/
OpenROAD.

[23] “OpenROAD-flow-scripts,” 2022. https://github.com/
The-OpenROAD-Project/OpenROAD-flow-scripts.

[6

—_

[9

—

https://github.com/ASU-VDA-Lab/PowerSwitch-ML-INSIGHT
https://github.com/ASU-VDA-Lab/PowerSwitch-ML-INSIGHT
https://github.com/fchollet/keras
https://opencores.org/projects
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts

	Abstract
	1 Introduction
	2 Preliminaries
	3 ML-INSIGHT Framework
	3.1 Inrush prediction: Feature engineering
	3.2 Inrush prediction: Model architecture
	3.3 Inrush prediction: Model training
	3.4 Pattern exploration framework

	4 ML-INSIGHT Evaluation
	4.1 Experimental setup and testcases
	4.2 MLP Evaluation
	4.3 Exploration framework evaluation
	4.4 Runtime comparison

	5 Conclusion
	References

