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Abstract

According to classic stomatal optimization theory, plant stomata are regulated to
maximize carbon assimilation for a given water loss. A key component of stomatal optimization
models is marginal water-use efficiency (mWUE), the ratio of the change of transpiration to the
change in carbon assimilation. Although the mWUE is often assumed to be constant, variability
of mWUE under changing hydrologic conditions has been reported. However, there has yet to be
a consensus on the patterns of mWUE variabilities and their relations with atmospheric aridity.
We investigate the dynamics of mWUE in response to vapor pressure deficit (VPD) and aridity
index using carbon and water fluxes from 115 eddy covariance towers available from the global
database FLUXNET. We demonstrate a non-linear mWUE-VPD relationship at a sub-daily scale
in general; mWUE varies substantially at both low and high VPD levels. However, mWUE
remains relatively constant within the mid-range of VPD. Despite the highly non-linear
relationship between mWUE and VPD, the relationship can be informed by the strong linear
relationship between ecosystem-level inherent water-use efficiency (IWUE) and mWUE using
the slope, m*. We further identify site-specific m* and its variability with changing site-level
aridity across six vegetation types. We suggest accurately representing the relationship between
IWUE and VPD using Michaelis-Menten or quadratic functions to ensure precise estimation of

mWUE variability for individual sites.
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Plain Language Summary

Plants use diverse strategies for water utilization during growth. Marginal water-use efficiency
(mWUE) quantifies how effectively plants gain carbon relative to the water they lose through
their leaves. A scientific debate exists regarding how mWUE responds to dry conditions. To
investigate this, we analyze data from various vegetation types worldwide, observing changes in
mWUE under dry conditions. Contrary to common assumptions, mWUE is not a constant; it
varies substantially based on moisture levels. Additionally, we show that a simpler measure
called inherent water-use efficiency (IWUE) can help explain this complicated relationship,

which is useful for predicting plant growth under different moisture conditions.

Keywords

Climate change, drought, eddy covariance, stomatal optimization theory, vapor pressure deficit,

water-use efficiency

Running title

Response of mWUE and IWUE to changing aridity
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1. Introduction

Terrestrial plants mitigate global warming by sequestering atmospheric carbon dioxide
(CO») through photosynthesis (Beer et al., 2010). However, photosynthesis is inherently linked
with plant water loss via transpiration, as CO; and water vapor share the same stomatal pathway.
Plants risk hydraulic damage during droughts if they maintain high stomatal conductance as soil
water availability decreases and atmospheric demand increases, resulting in low leaf water
potential and xylem cavitation. Therefore, plants must balance stomatal function to optimize
carbon uptake while minimizing transpirational water loss and hydraulic stress (Cowan &
Farquhar, 1977; Katul et al., 2010; Sperry et al., 2017; Wang et al., 2020). To predict plant
ecophysiological responses to projected changes in atmospheric CO; concentration, elevated
atmospheric water demand, and more severe and frequent drought events, we need a mechanistic
understanding of how different ecosystems regulate the trade-off between photosynthetic carbon
assimilation and transpirational water loss.

Although carbon uptake is usually represented through mechanistic models of
photosynthesis (e.g., the Michaelis-Menten equation (Marshall & Biscoe, 1980; Michaelis &
Menten, 1913; Thornley, 1976); the Farquhar model (Von Caemmerer, 2000; Farquhar et al.,
1980a)), water use (i.e., transpiration) is often described based on empirical relationships that
prescribe how stomatal conductance responds to environmental drivers and carbon uptakes. For
example, the Ball-Berry model (Ball et al., 1987) is one of the most widely used empirical
stomatal conductance models (Anderegg et al., 2017; Buckley, 2017; Katul et al., 2010), and has

been readily incorporated into many climate models (Bonan et al., 2014). It takes the form:

A
gs = 9o + 91C_RH (D

a
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where g; is stomatal conductance (mol m s™), 4 is carbon assimilation rate (umol m? s!), ¢, is
atmospheric CO; concentration (ppm), RH is relative humidity at the leaf surface, and go and g
are empirically fitted parameters. To simulate the non-linear variation in gs with changing

humidity, Leuning (1995) modified the Ball-Berry model by replacing relative humidity with a

vapor pressure deficit (VPD) response function as follows:

A
s = Yo + g1 VPD (2)

(ca =) (1 +ypp,)
where I'* is CO2 compensation point for photosynthesis (ppm) and VPDy is the empirically

determined coefficient, representing the slope of the relationship between gs and VPD. These
empirical models are relatively simple, easy to use, and work well for well-watered conditions
(Bonan et al., 2014). However, they have an incomplete grounding in physiological theory,
leading to uncertainty when they are extrapolated to predict plant function under unprecedented
climate conditions (Franks et al., 2018; Knauer et al., 2015, 2018; Medlyn et al., 2012; Sabot et
al., 2022).

An alternative way to enable the theoretical interpretation of leaf-level stomatal
conductance models is to adopt the principle of stomatal optimization theory (Anderegg et al.,
2018; Bonan et al., 2014; Katul et al., 2009; Katul et al., 2010; Medlyn et al., 2012; Novick et al.,
2016b; Sperry et al., 2017; Wolf et al., 2016). Stomatal optimization theory was originally based
on a hypothesis that stomata are regulated to maximize carbon assimilation (4) for a given water
loss (transpiration, E). A key parameter in this class of models is the so-called “marginal water-
use efficiency (mWUE),” here defined as the ratio of a change in £ to a change in 4 (0E /0A)
following Cowan and Farquhar (1977), although it is sometimes defined as the inverse form
(0A/OE) (Katul et al., 2010; Manzoni et al., 2011). The optimality models often maintain the

mWUE constant over arbitrary time steps (e.g., daily), assuming abundant water at the canopy
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(Buckley, 2017; Cowan & Farquhar, 1977; Makela et al., 1996). However, this may not hold true
at sub-daily timescales, where high atmospheric demand (i.e., VPD) during midday can decrease
water potential at the canopy level even when soil moisture is abundant (Anderegg et al., 2017;
Grossiord et al., 2020).

Understanding how mWUE changes under hydrologic stress is necessary for the
optimization models in a prognostic sense, yet no consensus on the magnitude or even direction
of these changes exists. For instance, Manzoni et al. (2011) and Zhou et al. (2013, 2014)
performed meta-analyses of leaf gas exchange measurements from previous studies that spanned
wide ranges of species and moisture conditions. A major difference in their approaches was the
proxy for plant water status; Manzoni et al. (2011) used mid-day leaf water potential, whereas
Zhou et al. (2013, 2014) used pre-dawn leaf water potential as a proxy for soil moisture
availability. Similarly, Lin et al. (2015) compiled a global database of leaf gas exchange
measurements spanning diverse plant functional types and estimated a slope parameter (g1)
(Medlyn et al., 2012), which is analogous to the slope parameter from empirical models (Egs. 1
& 2) and proportional to \/m (Medlyn et al., 2012). They further evaluated the relationship
between g1 and a moisture index, defined as the ratio of mean annual precipitation to the
equilibrium evapotranspiration. Mikela et al. (1996) and Lu et al. (2016) took a theoretical
approach to examine short- and long-term optimal stomatal behavior, respectively, in response to
the soil moisture availability assuming that plants are adapted to the stochastic rainfall patterns of
their environments. More recently, alternative stomatal optimization perspectives have been
proposed, which presume stomata function to maximize carbon uptake while minimizing water
costs, including those linked to hydraulic damage during droughts (Anderegg et al., 2018; Sperry

etal., 2017; Wolf et al., 2016). Although promising, in contrast to the Medlyn et al. (2012)
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model, these newer formulations have yet to be integrated into land surface model schemes (but
refer to Kennedy et al., 2019, for a study implementing plant hydraulics in the Community Land
Model). Although theoretical expectation and many studies indicate decreasing mWUE as water
stress drives reductions to g, there is some evidence of increasing mWUE under water stress
(Farquhar et al., 1980b; Grieu et al., 1988; Zhou et al., 2013), although reasons for this needed to
be clarified.

It is also important to note that canopy water status and water potential are not
determined solely by the availability of water supply but by the balance between water supply
and demand, with VPD as a major force exerted on the canopy by the atmosphere (Manzoni et
al., 2011, 2013; Novick et al., 2019). Thus, it is reasonable to expect that mWUE needs to be
adjusted with changing atmospheric water demand unless other factors limit the plant response
(e.g., compromised hydraulic conductivity under water stress, limited soil moisture availability
to plants) (Brodribb et al., 2005; Medlyn et al., 2012). Different plants or ecosystems may adjust
differently, resulting in divergent responses of mMWUE to changing VPD. Understanding the
relationship between mWUE and VPD is important given that VPD is expected to keep
increasing in the future, which will exert further water stress on plants (Ficklin & Novick, 2017;
Grossiord et al., 2020; Novick et al., 2016a; Zhang et al., 2019). Furthermore, while soil
moisture is a stochastic variable due to its dependency on intermittent rainfall, VPD is smoother
in time and easier to monitor through various meteorological or gas exchange measurement
techniques. Although VPD and soil moisture limit plants’ carbon uptake and water use
independently (Yi et al., 2019), VPD can be used as a proxy of water stress at a sub-daily scale
where VPD plays a primary role in regulating stomatal regulation unless severe soil moisture

deficiency, as indicated by the models with sub-daily timesteps (e.g., Ball-Berry model and its
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variations), and in turn influencing the balance between carbon uptake and water loss (i.e., water-
use efficiency) at a sub-daily scale (Baldocchi et al., 2022; Grossiord et al., 2020; Novick et al.,
2016a). Therefore, examining the association between mWUE and VPD would add insight into
the predictability of soil moisture alone.

The objectives of this study are (1) to investigate the variation of mWUE at an hourly
timescale in response to changing VPD and (2) to explore approaches for estimating mWUE
explicitly from the modeled relationship between intrinsic water-use efficiency (iIWUE, carbon
assimilation per unit stomatal conductance, representing water-use efficiency at leaf level) and
VPD. The Ball-Berry model (Eq. 1) reveals that the parameter g1, which is proportional to
\/m (Medlyn et al., 2012), is related to 4/gs (= iWUE at leaf level). The iWUE can be more
straightforwardly estimated from field measurements across various spatiotemporal scales,
including leaf gas exchange (daily to weekly at the leaf level), dendrochronology
(seasonal/annual at the tree level), and eddy covariance (hourly at the stand level) (more
discussion on iWUE at different scales is available from Beer et al., 2009 and Yi et al., 2019).
Notably, the inference of iWUE from tree-ring analyses provides an avenue for understanding
historical variations in iWUE and, potentially, mWUE. While iWUE has a mathematically
simpler form and thus facilitates modeling its response to water stress, the complex mathematical
expression of mWUE poses challenges in generalizing its variability at a sub-daily timescale. By
elucidating the correlation between iWUE and mWUE, we can gain insights into the response of
mWUE to water stress. Additionally, through site comparisons, we further explore whether there
is an emerging pattern in the correlation between iWUE and mWUE across different vegetation

types and aridity levels.



178

179

180

181

182

183

184

185

Table 1. A glossary of terms related to water-use efficiency.

Term or

Definition
symbol

A Carbon assimilation rate

Al Aridity index: the ratio of annual precipitation to annual potential
evapotranspiration

Ca Atmospheric CO2 concentration

E Transpiration rate

ET Evapotranspiration rate

go Intercept parameter in Ball-Berry model (represents minimum leaf conductance)

g1 Slope parameter in Ball-Berry model (represents marginal water-use efficiency,
mWUE)

gs Stomatal conductance

Gs Surface conductance

GPP Gross primary productivity

iWUE Intrinsic water-use efficiency; leaf-level water-use efficiency (= 4 / gs)

IWUE Inherent water-use efficiency; a proxy of intrinsic water-use efficiency at the
ecosystem level (= GPP/ET X VPD / P,, Beer et al., 2009)

m* The slope of the linear relationship between IWUE! and mWUE

mWUE Marginal water-use efficiency, the ratio of a change in £ to a change in 4 (=
0E /0A)

P, Atmospheric pressure

VPD Vapor pressure deficit

2. Materials and Methods

2.1. FLUXNET data

We obtained half-hourly measurements of carbon and energy fluxes, along with ancillary

environmental data, from 115 flux towers across FLUXNET sites. These data were collected

using the FLUXNET 2015 Tier 1 database (Table S1) (Pastorello et al., 2020). Eddy covariance

records, which have the benefit of providing continuous meteorological and gas exchange data at
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the high temporal resolution, are very well suited for investigating the relationship between gas
exchange dynamics, mWUE, and VPD at the ecosystem scale.

We selected the study sites from six vegetation types (grassland, cropland, shrubland,
savanna, broadleaf forest, and needleleaf forest, based on the International Geosphere-Biosphere
Programme (IGBP) land cover classification system; Loveland & Belward, 1997) based on the
data availability for the variables required for the analysis. For reliable and clear mWUE
analysis, we only included the sites that had at least three years of data and a strong iWUE-VPD
correlation. Specifically, we selected the sites that had a coefficient of determination (R?) > 0.8
with any of the three model fits—linear, quadratic, or Michaelis-Menten, which was the case for
more than 70% of the sites over three years of data (refer to section 2.4 for more information
about the model fits). In addition, we only used the data where net ecosystem exchange (NEE),
latent heat flux (LE), and sensible heat flux (H) were either original measurements (quality
control flag = 0) or gap-filled data of good quality (quality control flag = 1) to ensure data
quality and make the most of the data. We only used daytime data when net radiation was greater
than 0 W m? without precipitation. While we acknowledge the potential benefits of excluding
more days after rainfall (e.g., Lin et al., 2015), we believe that omitting only the precipitation
days is sufficient for our analysis. This is because iWUE had low variability under humid
conditions, as evidenced by the low standard deviations of IWUE under low VPD levels in
Figure 2. Additionally, we implemented a procedure to remove outliers in soil water content and
relative humidity as described in the following paragraph, which would help mitigate the impact
of periods after rainy days on our analysis.

We limited our analysis to the growing season, where daily GPP was larger than 10% of

the 95 percentiles of daily GPP for each site with > 5°C air temperature. We used the GPP

10
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partitioned based on the standard daytime method (variable name: GPP_DT VUT REF, Lasslop
et al., 2010). Additional filtering criteria were applied for some key variables: atmospheric CO:
concentration between 350 ppm and 420 ppm, friction velocity (") greater than 0.1 m s!, and
canopy conductance calculated by Penman-Monteith equation (Monteith, 1965) greater than 0.05
mol m? s'!. Lastly, we removed outliers of the environmental drivers and biological variables
(i.e., air temperature, relative humidity, atmospheric CO2 concentration, latent heat flux, wind
speed, VPD, atmospheric pressure, friction velocity, net radiation, soil water content, canopy
conductance, iWUE, and mWUE) by excluding data that were below the 5" or above the 95®
percentiles of each variable. Note that the purpose of data filtering was to remove exceptionally
low or high values of the variables, which we consider outliers. Our goal was to ensure that the
results, especially the variability of mWUE, were not unduly influenced by these outliers. We
carefully examined the histograms for the variables for each site to minimize data reduction

while retaining useful information.

2.2. Two different approaches describing mWUE

We used two different approaches for describing the mWUE: two optimization-theory-
driven mWUE, the solution of “0E /0A” suggested by Katul et al. (2010) and the “g:” parameter
proposed by Medlyn et al. (2012). The difference between the optimization-theory-driven
mWUE is based on their interpretation of stomatal optimization. Katul et al. (2010) assumed that
stomata are optimizing for photosynthesis limited by Rubisco activity (i.e., carbon-limited), and
plant stomatal optimality is subject to change (i.e., mWUE is not constant). On the other hand,
Medlyn et al. (2012) assumed that stomata are optimized for photosynthesis limited by Ribulose-

1,5-bisphosphate (RuBP) regeneration (i.e., light-limited). In either case, the optimization

11
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objective should result in constant mWUE values at short timescales—Katul et al. (2010)
suggested approximately 10 minutes, whereas Medlyn et al. (2012) suggested daily or longer—
although it may change at longer timescales as hydrologic conditions evolve.

Following Katul et al. (2010), the dE /0A emerges from an optimality condition
determined with a linearized variant of the Farquhar et al. (1980b) photosynthesis model, defined
as:

OF _ . upp (A)_Z _16VPDc,
94~ ‘a\g.)] T iwuEZ ®

where iWUE is defined as a ratio of 4 to g at the leaf-scale (Beer et al., 2009).
The other perspective on optimality proposed by Medlyn et al. (2012) takes an analogous

form to an empirical model proposed by Leuning (1995) (Eq. 2):

g1 A
\/VPD) G W

Ca
This approach indicates that the parameter g1 represents a slope between gs and A/c,VVPD and

gszg0+1.6<1+

is proportional to \/m (Lin et al., 2015; Medlyn et al., 2012). Therefore, to facilitate
comparison between the two approaches, we compare dE /0A with squared g1 (i.e., g1%)

throughout the results. Eq. 4 was rearranged with an assumption that go, which represents
cuticular conductance to water vapor, is negligible (but refer to Manzoni et al. (2011) and

Lanning et al. (2020) for discussion of the role of cuticle conductance under drier conditions):

b= e ) T (o )T

Consequently, two different mWUE parameters, dE /dA (mol H,O - kPa - mol™! of dry air) and g
(mol H>O - kPa%> - mol™! of dry air), were expressed as functions of iWUE, ca, and VPD.
Assuming c, is relatively stable over a short period, we focus on how iWUE (as a biological
factor) and VPD (as an indicator of water stress governing plant response at a short temporal

scale, e.g., sub-daily) affect both mWUE parameters (more details discussed in section 2.5). We

12
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applied an approximation of iWUE at the ecosystem level, inherent WUE (IWUE), defined by
Beer et al. (2009). IWUE (umol C mol™! H>O) was particularly suitable for our study because
IWUE can be calculated from the measurements of carbon and water fluxes by eddy covariance
technique and ancillary meteorological data, i.e., gross primary productivity (GPP; yumol m2 s'!)
from net ecosystem exchange representing canopy-level carbon assimilation, evapotranspiration
rate (ET, mol m2 s!) from latent heat flux, VPD under the assumption of equal temperatures of

leaves and atmosphere, and atmospheric pressure (Pa, kPa):

WUE — GPP - VPD ¢
~ ET-P, ®)

Several important assumptions for the definition of IWUE include (1) small and invariant soil
evaporation (E) compared to plant transpiration (7) over the course of the day (hence AET ~ A7)
especially during days without rainfall (conditions we used for our analysis), (2) thermal
equilibrium between leaf and air, which influences VPD, and (3) disregarding of aerodynamic
resistance through the boundary layer that can change depending on the vegetation structure
(refer to Beer et al. (2009) for more discussion about IWUE as a proxy of ecosystem-level
iWUE). We confirmed the robustness of IWUE as a proxy of iWUE at the ecosystem level by
comparing it with a few other definitions of iWUE (the comparison results are available in the
Supporting Information; Figs. S1 & S2). Note that IWUE and mWUE were computed using half-
hourly FLUXNET data; hence, their variabilities discussed here represent plant physiological

response at a sub-hourly scale.

2.3. Sensitivity of mWUE parameters to moisture condition

13
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Variations of mWUE parameters in response to moisture conditions (i.e., atmospheric
water demand and site-level aridity) were evaluated at the individual site level and across sites.
For the individual sites, mWUE parameters were partitioned into discrete bins spanning a range
of VPD. To avoid biases from unevenly distributed data points across the range of VPD (i.e.,
sample sizes at low and high VPD are smaller than those for the intermediate level of VPD), data
binning was performed in a way that the sample sizes were evenly distributed into 30 bins across
the range of VPD at each site. Then, mWUE-VPD relationships were produced based on the
mean mWUE values generated for the different VPD bins.

To compare across the sites, the relationships between site-specific mWUE and aridity
index (AI) were evaluated (refer to Fig. S3 in the Supporting Information for Al at all the study
sites). Al was defined as the ratio of annual precipitation (P) to annual potential

evapotranspiration (PET) and averaged over the observation period for each site (UNEP, 1992):

P

Al = —
PET

(7)
The annual PET was determined by summing up the half-hourly PET values over the course of a
year, using the United Nations Food and Agriculture Organization (FAO) Penman-Monteith
method as outlined by Allen et al. (1998):
900
0408A(Rn - G) + ymu(es - ea)

8
A+ y(1+0.34u) ®)
where 4 is the slope of vapor pressure curve (kPa °C™1), R, is the net radiation (MJ m hr'!), G is

PET =

the soil heat flux density (MJ m hr'!), y is the psychrometric constant (kPa °C™1), T, is the air
temperature (°C), u is the wind speed (m s™!), es is the saturation vapor pressure (kPa), and e, is
the actual vapor pressure (kPa). The estimation of Al is sensitive to gaps in precipitation data.

Therefore, we used long-term mean annual precipitation provided on the site information page at

14
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the FLUXNET website (https://fluxnet.org/sites/site-list-and-pages/) rather than calculating mean
annual precipitation from the FLUXNET2015 dataset. For the sites where annual precipitation
records were not provided, the high-frequency precipitation record in the FLUXNET2015 dataset

was used.

2.4. Assessing the relationship between mWUE and IWUE

As a first step to conceptually understand the relationship between mWUE and IWUE,
the relationship between IWUE and VPD was modeled by three hypothetical functions—linear,
quadratic, and the Michaelis-Menten functions—based on the observations across the sites. The
quadratic model of IWUE-VPD (hereafter IWUEq) depicts the case where IWUE increases with
VPD until it reaches a maximum and then decreases afterward. In other words, when VPD is
low, increasing IWUE with increasing VPD reflects a faster decrease of gs than 4 (due to the
high intercellular CO2 concentration, c;), whereas decreasing IWUE with increasing VPD at high
VPD reflects a faster decrease of 4 than gs (low gs at high VPD reduces ¢; and eventually causes
the steep decline of 4). The linear model (hereafter INUEL), on the other hand, represents a
simplified IWUE-VPD relationship where IWUE would keep increasing with rising VPD
assuming IWUE is only limited by gs but not by photosynthetic capacity. The Michaelis-Menten
function (hereafter IWUEwm) represents the saturating IWUE under high VPD but does not
account for IWUE reduction. Thus, the linear and quadratic functions are considered plausible
“end members” describing the actual response of IWUE to VPD, while the Michaelis-Menten
function is a more intermediate case. Mathematically, the IWUEL, IWUEwm, and IWUE(q take the
forms:

IWUE,=mVPD+n  (9)

15
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IWUE, ., - VPD
k + VPD

IWUE,, = (10)

IWUE, = —a (VPD — b)* + ¢ (11)
where m is the slope of IWUEL, n is IWUEL at VPD = 0, IWUEmax is the maximum potential
IWUE, £ is the VPD at which IWUE proceeds at half IWUEnax, a represents the curvature of
IWUEq, b is the vertex, ¢ is the maximum IWUEq at the vertex.

The expected dynamics of mWUE across the FLUXNET sites in response to changing
VPD were simulated based on an empirically driven IWUE-VPD model to understand how the
mWUE metrics would respond to changing VPD and IWUE. To generate possible patterns of
mWUE-VPD, the range of coefficients in the IWUE models was determined empirically from
the data across the sites. To facilitate interpretation, the patterns were simulated by changing the
curvature of the quadratic equation (Eq. 11), assuming the intercept is equal to zero. For the
simulation of mWUE, a constant ¢, was applied by calculating its average across the sites to
focus on the interactions among VPD, IWUE, and mWUE (Egs. 3 & 5).

Lastly, we investigated how IWUE (as a biological factor) and aridity index (as an
environmental driver) influence the variability of mWUE. Based on the Egs. 3 and 5, we
hypothesized that a simple relationship between mWUE and the inverse of IWUE (IWUE™)
might emerge and would be affected by changing moisture conditions. Therefore, we identified a
relationship between mWUE and IWUE'! for each study site and examined whether the

relationship can be generalized across the sites based on the site-specific aridity index.

3. Results

3.1. Empirical response of IWUE to changing VPD or Al
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To test the robustness of IWUE as a proxy of intrinsic water-use efficiency at the

ecosystem level, we first compared the two different definitions of intrinsic water-use

efficiencies at stand level, GPP divided by surface conductance (Gs) (i.e., iWUE = GPP/Gs) and

inherent WUE (i.e., IWUE = GPP/ETxVPD/P;). The two WUE definitions were linearly

correlated across the study sites (Fig. 1), and most sites had R? values larger than 0.95 (Fig. 1b),

indicating the robustness of IWUE as a proxy of intrinsic water-use efficiency at the ecosystem

level (refer to the Supporting Information for an additional comparison of multiple definitions of

intrinsic water-use efficiency; Figs. S1 & S2). We also performed the entire analysis using these

two WUE definitions and observed similar results, which led to the same conclusion. Therefore,

we only show the results from using IWUE hereafter.
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Figure 1. Comparison of two different definitions of water-use efficiencies at all sites (a) and at
three sample sites (c, d, e): inherent water-use efficiency at the ecosystem level, IWUE (=
GPP/ETXVPD/P,), and intrinsic water-use efficiency at the ecosystem level, iWUE (= GPP/Gs).
Refer to Beer et al. (2009) for the comparison of different definitions of water-use efficiencies at
leaf and ecosystem-level. Individual dots in panels a, ¢, d, and e indicate WUE partitioned into
discrete bins spanning a range of VPD. Solid red lines indicate significant linear regressions (P <
0.05), and dashed red lines indicate 95% confidence interval. Dashed gray lines represent 1:1
lines. Panel b shows the histogram of coefficients of determination (R?) of the linear fits between

IWUE and iWUE across the study sites.

In most cases, the Michaelis-Menten model and the quadratic model explained empirical
IWUE patterns across the range of VPD better than the linear model (Fig. 2 and Fig. S3 in the
Supporting Information). Specifically, the Michaelis-Menten model worked better for the sites
where the increase of IWUE plateaued at high VPD, and the quadratic model worked better for
the sites where IWUE started decreasing at very high VPD. On the other hand, the linear model
often overestimated IWUE at low and high VPD, except the sites where IWUE-VPD was highly

linear.
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Figure 2. Examples of empirical (black dots) and modeled (linear: blue, Michaelis-Menten:
green, quadratic: red) responses of inherent water-use efficiency (IWUE) to changing vapor
pressure deficit (VPD). The examples include three sites best represented by the linear model
(IT-BCi, cropland), the Michaelis-Menten function (CA-NS2, needleleaf forest), and the
quadratic model (US-Ton, savanna), respectively. Each error bar (light gray) represents the
standard deviation of IWUE for each VPD bin (95% confidence). Refer to Fig. S4 in the

Supporting Information for the IWUE-VPD relationships of all the study sites (n = 115).

When the site-specific IWUE-VPD slope values derived from the linear model (i.e., m in
Eq. 9) were combined, we found increasing m with rising aridity index (P < 0.001, Fig. 3a).
However, site-level aridity did not influence the intercept of IWUE-VPD relationship (P > 0.05,
not shown here). When the sites were divided by their vegetation types, m increased with a rising
aridity index in all vegetation types. However, the trend was only significant in grasslands,

croplands, and shrublands (P < 0.05, Fig. 3).
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Figure 3. Relationship between the site-level aridity index and the regression slope of IWUE-
VPD from individual sites (i.e., m in Eq. 9). Panel a shows the relationship when all sites were
consolidated. The relationship is also illustrated separately for six different vegetation types in
panels b to g (GRA: grassland, CRO: cropland, SH: shrubland, SAV: savanna, BF: broadleaf
forest, NF: needleleaf forest). Each circle represents m from an individual site. Error bars
represent standard errors of linear regressions. Solid lines indicate significant linear relationships

(P <0.05) and dashed lines indicate 95% confidence intervals.

3.2. Response of mWUE to changing VPD

Both of the mWUE indices, dE /0A and squared g1 (g1%), showed a very similar response
to changing VPD and indicated that the directional change of mWUE can be interpreted
differently depending on the pattern of IWUE-VPD (Fig. 4). When the iWUE-VPD relationship
is strongly linear, mWUE decreased exponentially and became less variable as VPD increased

(Brighter curves in Figs. 4b & 4c). However, as the iWUE-VPD relationship became more non-
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linear, mWUE declined at lower VPD and then increased at higher VPD (i.e., concave-up),

rendering the mWUE-VPD relationship non-monotonic (darker curves in Figs. 4b & 4c).
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Figure 4. Hypothetical models of IWUE-VPD relationship (a), simulated 0E /dA-VPD (b) and
212-VPD (c) relationships based on typical cases, and their corresponding patterns illustrated

using observations from all study sites (d, e, and f). The mWUE curves are the results of using
the IWUE-VPD relationships of the corresponding colors. Note that IWUE-VPD relationships

become more linear with lighter colors.

The simulated patterns of mWUE-VPD agreed well with the patterns from the empirical
observation when the appropriate function for the IWUE-VPD relationship was applied. We

show mWUE-VPD relationships from three study sites as examples (Fig. 5), of which IWUE-
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VPD was represented best by linear, the Michaelis-Menten, and quadratic functions, respectively
(refer to Fig. 2 for their corresponding IWUE-VPD relationships. Also, refer to Fig. S5 in the
Supporting Information for the results of all study sites). As indicated by the simulation, the site
with highly linear IWUE-VPD (IT-BCi) showed exponentially decreasing mWUE with rising
VPD. In contrast, the other two sites with highly non-linear IWUE-VPD relationships had a
concave-up pattern of mWUE-VPD. Notably, the mWUE-VPD relationship generated using a
less optimal IWUE-VPD model can differ substantially from the empirical pattern. For example,
application of linear IWUE-VPD function to the CA-NS2 and US-Ton, the sites represented best
by the Michaelis-Menten and quadratic functions, respectively, generated concave-down
mWUE-VPD pattern that is opposite to the actual pattern (Fig. 5). The disagreements between

models and observations increased as VPD approached very high and very low extremes.
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Figure 5. Examples of empirical (black dots) and modeled (linear: blue, Michaelis-Menten:
green, quadratic: red) relationships between dE /0 A (analytical solution by Katul et al., 2010)
and vapor pressure deficit (VPD), and between gi> (Medlyn et al., 2012) and VPD. The examples
include three sites best represented by the linear INWUE-VPD model (IT-BCi, cropland), the
Michaelis-Menten function (CA-NS2, needleleaf forest), and the quadratic model (US-Ton,
savanna), respectively. Note that the terms ‘linear’, ‘Michaelis-Menten’, and ‘quadratic’ denote
the regression fits for the IWUE-VPD relationships (Refer to Fig. 2 for the IWUE-VPD
relationships at the corresponding sites). Each error bar (light gray) represents the standard error
of the mean IWUE for each VPD bin (95% confidence). Refer to Fig. S5 in the Supporting

Information for the dE /A -VPD relationships at the 115 study sites.

The variability of mWUE to changing VPD was substantial in most cases (Fig. 6). Out of
the total of 115 study sites, the percent increase of 0E /dA (i.e., growth in 0E /0A from the
lowest to the largest value at a site) was larger than 50% in 43 sites, and larger than 100% in 22
sites. Note that the reported percent increase was determined by excluding the upper and lower
10% of values. This step was taken to prevent exaggeration caused by extremely high 0E /0A at
low VPD, which is commonly observed across the study sites (refer to Figure S5 in the
Supporting Information for the variability of dE /dA with VPD at all the study sites). As a result,

the reported percent increase represents a conservative estimate overall.
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Figure 6. Sorted percent increase of JE /0A (from the lowest E /dA) (GRA: grassland, CRO:
cropland, SH: shrubland, SAV: savanna, BF: broadleaf forest, NF: needleleaf forest). Embedded
plots in GRA and SH are zoomed in for those sites where percent increases are lower than 100%.
Note that the percent increases were calculated after removing values of the highest 10% and
lowest 10% to avoid exaggeration due to very high dE /9A at low VPD at some sites. Therefore,

the reported percent increase values are conservative estimates for most sites.

3.3. Correlation between mWUE and IWUE
Although the trend of mMWUE-VPD seems hard to generalize, the simulated mWUE had a

clear linear relationship with IWUE'! for the majority of IWUE's range regardless of the linearity
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of the IWUE-VPD relationship except when IWUE is very high (i.e., under high VPD, Fig. 7).
Although limited to a small portion of the entire range, a sharp directional change in the variation
of mMWUE was near a point where IWUE"! was smallest, and strong linearities between mWUE
and IWUE"! were found before and after the transitional point. Substantial hysteresis became

more evident as the IWUE-VPD pattern became more curved (darker curves in Fig. 4).

(a) (b)

OE/DA

IWUE™ IWUE™"

Figure 7. Simulated relationship between mWUE metrics (0E /A and g1?) and IWUE™! (based
on the hypothetical IWUE-VPD model in Fig. 4). The colors of the curves correspond to those
used in Fig. 4: IWUE-VPD relationships become more linear with lighter colors. Dashed arrows

in panel a represent the directional change of VPD from low to high VPD.

As predicted by the simulated mWUE-IWUE! relationships (Fig. 7), the empirical
mWUE-IWUE"! relationship was strongly linear (P < 0.001 at all sites, Fig. 8). A sign of

hysteresis was noticeable for the site that showed decreasing iWUE under very high VPD (US-
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477  Ton, refer to Fig. 2 for its IWUE-VPD relationship). In contrast, hysteresis was less evident at
478  the other sites. When the relationship was drawn by grouping data by different levels of IWUE
479  (black dots in Fig. 8), hysteresis was not observed, and the mWUE-IWUE"! relationship was

480  strongly linear.
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Figure 8. Examples of empirical relationship between mWUE metrics (0E /dA and gi?) and
IWUE'!. The examples include three sites best represented by the linear IWUE-VPD model (IT-
BCi, cropland), the Michaelis-Menten function (CA-NS2, needleleaf forest), and the quadratic
model (US-Ton, savanna), respectively. Refer to Fig. 2 for the IWUE-VPD relationships at the
corresponding sites. Colorful dots represent hourly data points shaded based on the level of VPD
(refer to color bars for the scale of VPD). Black dots represent data binned by IWUE™!: Data
binning was performed to distribute sample sizes evenly across bins (~30 samples per bin). Error
bars represent standard deviations. The red and black solid lines indicate linear fits for hourly
and binned data, respectively. Dashed red lines represent confidence intervals for the slopes of
linear regressions. Note that red and black linear regressions and their confidence intervals
overlap. Refer to Fig. S6 in the Supporting Information for the dE /0A - IWUE"! relationships at

the 115 study sites.

We investigated whether the relationship between mWUE and IWUE™! could be
generalized across the sites based on the site-specific Al Specifically, the linear IWUE'-mWUE
slopes (hereafter m*) from all study sites were merged, and their variability in response to
changing Al was evaluated. We found a significant linear relationship between m* and Al when
both are scaled by logio (P < 0.001, Fig. 9). The m* was larger at the drier sites (i.e., sites of
lower Al) than at the wetter sites (i.e., sites of larger Al). However, we did not find a significant

relationship between the IWUE™! — mWUE intercept and AI (P > 0.05, not shown here).
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Figure 9. Relationships between IWUE'-mWUE slope and aridity index (= P/PET) derived
from all the study sites (n = 115). Each circle represents the slope obtained from an individual
site. Both the x and y axes are scaled by logio. The numbers in parentheses next to the x-axis tick
labels represent the aridity indices before the log transformation. The solid lines indicate linear

regressions, and the dashed lines indicate confidence intervals (95% confidence interval).

We further tested whether we could find the similar relationship when the sites were grouped by
the vegetation type. We found decreasing m* with rising Al in grasslands, croplands, and
shrublands (P < 0.01, Fig. 10). On the other hand, m* was relatively constant across the range of

Al in savannas, deciduous broadleaf forests, and evergreen needleleaf forests (P > 0.05, Fig. 10).
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Figure 10. Relationships between log-transformed IWUE !-mWUE slope and aridity index in
different vegetation types (GRA: grassland, CRO: cropland, SH: shrubland, SAV: savanna, BF:
broadleaf forest, NF: needleleaf forest). Each circle represents the log-transformed slope
obtained from an individual site. The numbers in parentheses next to the x-axis tick labels
represent the aridity indices before the log transformation. Solid lines indicate significant linear

relationships (P < 0.05), and dashed lines indicate 95% confidence intervals.

4. Discussion

Stomatal optimization theory, which originated with the work of Cowan and Farquhar
(1977), has experienced a recent surge in popularity as the vegetation modeling community
continually seeks ways to inject more theoretical rigor into Earth system models (Anderegg et
al., 2018; Bassiouni & Vico, 2021; Bonan et al., 2014; Feng et al., 2022; Katul et al., 2010; Katul
et al., 2009; Lin et al., 2018; Lin et al., 2015; Lu et al., 2020; Lu et al., 2016; Medlyn et al., 2012,
2017; Novick et al., 2016b; Sabot et al., 2022; Sperry et al., 2017; Wolf et al., 2016). The
marginal water-use efficiency (mWUE) is a key parameter in this type of model, but we still

need a clear understanding of how mWUE is regulated biologically and environmentally. Lin et
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al. (2018) previously suggested suboptimal mWUE in response to VPD at a sub-daily scale by
estimating site-specific, best-fitted exponent for VPD based on the variation model of optimality
theory (Medlyn model), which inspired our study. In comparison, our study is unique in
analyzing the dynamics of mWUE observed at the half-hourly timescale in response to changing
VPD owing to the long-term continuous carbon and water flux data from the network of eddy
covariance towers.

Another motivation for our study was the conflicting arguments over the dynamics of
mWUE in response to water stress. Although mWUE is in general considered to be nearly
constant during a day under stable soil moisture conditions (Berninger & Hari, 1993; Fites &
Teskey, 1988; Hall & Schulze, 1980; Hari et al., 2000), several studies showed that mWUE
changed with different levels of water stress. For example, theoretical considerations indicate a
monotonic decrease of mWUE with higher water stress when the stochasticity of rainfall depths
is neglected (Cowan, 1982; Makela et al., 1996), although some empirical estimates showed that
mWUE increases under severe water stress (Farquhar et al., 1980b; Grieu et al., 1988). On the
other hand, Manzoni et al. (2011) performed a meta-analysis of 50 species to estimate mWUE
from gas exchange observations along gradients of soil moisture and showed that mWUE
decreases under mild water stress but increases under severe water stress (note that they defined
A = 0A/0E, which is inverse of the definition used by Cowan & Farquhar (1977) and this

study).

4.1. Relationship between IWUE and VPD
Based on the two equations of stomatal optimization theory (Egs. 3 & 5), we first

characterized the variability of mWUE based on the relationship between IWUE and VPD,
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557  representing biological and environmental factors, respectively. We show that the variability of
558  IWUE needs to be modeled accurately to emulate the variability of mWUE in response to water
559  stress correctly. For example, as demonstrated in Fig. 5 (CA-NS2 & US-Ton), oversimplifying
560  the IWUE-VPD relationship by modeling it with a linear function can incorrectly interpret

561  mWUE variability.

562 The non-linear IWUE-VPD relationship is presumably driven by different rates of carbon
563  assimilation and water loss in response to changing VPD at an hourly scale, reflecting the

564  balance between stomatal and non-stomatal limitations to photosynthesis at the leaf level

565  (Farquhar, 1978; Jones, 2014). Under low to moderate VPD conditions, photosynthesis is less
566  sensitive to changing intercellular CO; concentration because stomatal conductance is high

567  enough to maintain the high intercellular CO, when VPD is low to moderate. Therefore, the
568  quantity of reduced water loss by stomatal closure (ET at an ecosystem level) outweighs the
569  quantity of reduced carbon assimilation (GPP at an ecosystem level) when VPD rises (i.e.,

570  |AGPP| < |AET)|), resulting in the increasing phase of IWUE. As VPD keeps increasing,

571  photosynthesis can be limited when the reduction of stomatal conductance under high VPD

572  conditions substantially reduces intercellular CO» concentration (i.e., |AGPP| = |AET)),

573  resulting in the steady phase of IWUE. As VPD becomes excessively high, photosynthesis will
574  be further suppressed by high temperature (Yamori et al., 2014) and low leaf water potential
575  (Lawlor & Tezara, 2009) that are associated with dry conditions (i.e., |AA| > |Ags]|), leading to
576  the decreasing phase of IWUE.

577 Therefore, assuming a linear IWUE-VPD relationship may not only fail to emulate

578  observations but also oversimplify the physiological responses to water stress. Our analysis

579  recommends using the Michaelis-Menten function for most sites while utilizing a quadratic
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function for sites exhibiting extreme cases where IWUE declines under high VPD conditions.
The Michaelis-Menten function can be beneficial to characterize the IWUE-VPD relationship
because the maximum potential IWUE and the rate of IWUE increase can be identified during
parameterization (Eq. 10). Although the quadratic function can emulate IWUE-VPD
relationships very well or performs even better than the Michaelis-Menten function in some
cases where IWUE decreases at high VPD, it is parameterized empirically and as a result, lacks
mechanistic information. Nevertheless, the quadratic function is preferable to the linear function.
It is also important to consider the definition of water-use efficiency for accuracy. We
used inherent water-use efficiency (IWUE) as a proxy of intrinsic water-use efficiency (iWUE)
at the ecosystem level as suggested by Beer et al. (2009), which can be estimated by GPP and ET
inferred from the flux tower observations. This approximation is particularly useful over a more
common ecosystem-level iIWUE = GPP/G; because IWUE requires fewer variables and is easier
to extrapolate to a larger scale. However, it is important to note that ET/VPD in the equation of
IWUE (Eq. 6) is a proxy of canopy conductance, assuming the canopy is well coupled to the
atmosphere, boundary layer resistance is small, and thermal equilibrium between leaf and air is
achieved (Beer et al., 2009). In other words, IWUE under non-equilibrium between canopies and
atmosphere can be overestimated due to the higher VPD than the vapor pressure gradient near
the canopy surface (i.e., the difference between intercellular vapor pressure (e;) and atmospheric
vapor pressure (ea), ei — ea). Difference between leaf and air temperature can also influence the e;
— eq; 1f leaf temperature is higher than air temperature (as it often is, e.g., Novick & Barnes,
2023; Yi et al., 2020), e; will increase while e, remains constant, resulting in larger ei — e, than
measured VPD and consequently underestimate IWUE. Therefore, it is important to address this

potential bias to quantify iWUE accurately. According to our results, the correlation between the
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two ecosystem-level iWUE proxies was strong at the site level (Fig. 1), implying that the choice
of ecosystem-level iWUE definition is unlikely to influence our interpretation of the iWUE and
mWUE variabilities substantially. Furthermore, our comparison of multiple definitions of iWUE
using a mechanistic model, CANVEG (refer to the Supporting Information for more details),
indicated that IWUE is a good proxy of leaf-level iWUE and meets the general assumptions to
address scaling issues. Thus, we conclude that eddy covariance observation of carbon and water
fluxes is suitable to model the variability of intrinsic water-use efficiency in response to
changing VPD.

Of note, the linear relationship between the slope of IWUE-VPD and aridity index (Fig.
4) was stronger in the ecosystems characterized by lower vegetation types (e.g., grasslands,
croplands, and shrubland). In contrast, ecosystems with higher vegetation (e.g., savannas,
broadleaf forests, and needleleaf forests) exhibited a weaker relationship. This observation
implies a potential link between water-use efficiency and the vertical structure of vegetation,

although the exact underlying mechanism remains uncertain.

4.2. Modeling the variability of mWUE

We compared two solutions of mWUE by Katul et al. (2010) (JE /0A) and Medlyn et al.
(2012) (g1) developed based on different assumptions on stomatal optimality (carbon-limited
versus light-limited) for more robust conclusion. Despite the difference in the assumption, both
solutions yielded very similar results throughout our analysis, confirming that the optimality
assumption had little effect on evaluating the variability of mWUE in response to changing

moisture conditions.
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We characterized the trend of mWUE by using VPD as an environmental driver (Figs. 4
& 5), where its variability in response to VPD was unique and not necessarily unidirectional,
thus making it hard to generalize with commonly available functions. Specifically, the variability
of mWUE was simpler and decreased exponentially with rising VPD when the IWUE-VPD
relationship was more linear, making it easy to model the mWUE-VPD relationship (Figs. 4 &
5). However, the variability of mWUE was not unidirectional when the IWUE-VPD relationship
was non-linear, as observed in most cases (Fig. S5 in the Supporting Information); high
variability in mWUE is usually observed at low- and high-ends of VPD. On the other hand, when
mWUE was calculated under conditions of moderate VPD level only, the variability of mWUE
can be overlooked and considered constant. This complex pattern signifies the importance of a
comprehensive view of IWUE and mWUE across the full potential range of VPD. Observation
under conditions of a partial range of environmental factors is common in many types of field
measurements that have coarser time resolution (hourly versus daily to weekly, e.g., eddy
covariance versus leaf gas exchange measurements) unless they are performed frequently over a
long period to cover non-typical conditions. We were able to estimate precise variability of
mWUE matching with the hypothetical models owing to the large amount of data
(FLUXNET2015) collected every half-hour over the long period throughout the network of flux
towers (total 1,036 site years with many sites offering data collected over more than a decade),
highlighting the value of long-term, continuous measurements. Overall, our result of the mWUE-
VPD relationship supports the results of Manzoni et al. (2011) among the various conflicting
results over the response of mWUE in response to water stress, which found decreasing mWUE
under mild water stress and increasing mWUE under severe water stress from a meta-analysis of

gas exchange observations.
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As a solution to model unique patterns of mWUE, we attempt to address its variability
with information that can be obtained easily from various types of field measurements (e.g., eddy
covariance, gas exchange, and tree-ring cores) and modeled empirically—IWUE. The
relationship between mWUE and IWUE was inferred from the two equations of the optimization
theory (Egs. 3 & 5). We found a strong linear correlation between INUE™! and mWUE from both
empirical data (Fig. 8) and modeling exercise (Fig. 7). In other words, the variability of mWUE
in response to changing VPD can be characterized by (1) the function of IWUE-VPD
relationship and (2) the slope between IWUE™! and mWUE. The relationship between IWUE-
VPD is relatively simple and can be identified with various field measurements. This raises the
question of whether a simple way exists to identify the slope between IWUE™! and mWUE. By
synthesizing the IWUE'-mWUE slopes across the sites, we found that the IWUE-mWUE slope
is highly correlated with the site-specific Al that can be characterized for different vegetation
types (Fig. 9). The correlation is conceivable from the equations of mWUE (Egs. 3 & 5). If, for

instance, Eq. 3 is rearranged,

OE /A
IWUE -2

« VPD (12)
indicating that the slope between mWUE and the inverse of IWUE is proportional to VPD,
which is commensurate with Al at a site-level. The correlation between the INUE-mWUE
slope and the Al at a site level implies that the aridity index is a good surrogate for the site-
specific IWUE!-mWUE slope.

We further illustrated how the correlations between the IWUE'-mWUE slope (m*) and
Al vary across vegetation types (Fig. 10). Among the vegetation types, GRA, CRO, and SH had

strong correlations between m* and Al, which indicated that using different m* depending on the

site-level dryness would be appropriate. On the other hand, the low variability of m* observed in
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SAV, BF, and NF indicates that constant m* can generate a reasonably accurate mWUE-VPD
relationship regardless of the site-level dryness. Although the reasons for this difference are not
entirely clear, this empirical relationship can help more accurately model the variability of
mWUE in response to changing VPD across the sites and biomes. Growth in data availability
across the flux tower network helps ensure the coverage of the full potential range of
environmental factors. More data availability can be achieved by consistently collecting good-
quality data from existing study sites and establishing new sites in underrepresented areas.
Furthermore, additional data would also help the development of m* in detail, for instance, based
on the plant water-use strategies, with the aid of conjoined field measurements such as water

potential (¥) of soil and plant.

4.3. Implications for future research

It is important to note that plant response to water stress is not only determined by the
water demand (i.e., atmospheric dryness or VPD) but also by the availability of water sources
(i.e., soil moisture). Although volumetric soil moisture content () is often considered as a metric
of soil water available to plants, soil water potential (¥s) is the driving force of water flows that
becomes available to plants by moving along gradients of water potential through the plant (stem
and leaf) and eventually to the air. Moreover, ¥ is not only determined by the 6 but also by soil
physical properties, and thus can differ even under conditions of the same 6 (Campbell, 1974;
van Genuchten, 1980). Unlike ¥, 6 is widely measured and usually available with flux data, and
carbon and water fluxes are often explained as a function of 6 (Green et al., 2019; Novick et al.,
2016a). However, # may not characterize soil moisture availability to plants properly, and its

relationship with carbon and water fluxes is usually nonlinear and threshold-driven (Feldman et
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al., 2019; Novick et al., 2022; Stocker et al., 2018), making the modeling of the relationship
between IWUE and soil moisture availability challenging. Therefore, enhanced accessibility to
Y data by improving the ease and reliability of ¥ observations, for example, by building a
centralized and standardized network of ¥ (Novick et al., 2022) would be a necessary step to
better characterize the effect of soil moisture availability on plant responses such as IWUE and
mWUE.

In this study, we tested the two stomatal optimization models (Katul et al., 2010; Medlyn
et al., 2012) that are elaborations of the original Cowan & Farquhar (1977) model with few
modifications because our goal was to characterize variability of mWUE in response to dryness
(VPD and aridity index) using IWUE that can be calculated from the extensive, long-term
continuous data from the network of eddy covariance. Meanwhile, more recent optimization
models are incorporating additional physiological penalties than the water loss, for instance,
damage to the vascular system induced by water stress (Anderegg et al., 2018; Sperry et al.,
2017; Wolf et al., 2016), which may enhance prediction of long-term plant responses to climate
change. Although monitoring the integrity of the vascular system, which can be informed by the
dynamics of hydraulic conductivity, has not been widely conducted, recent advances in
psychrometric approaches allowing continuous measurements of plant ¥ (e.g., PSY1
manufactured by ICT International) and ¥ (e.g., TEROS 21 manufactured by Meter Group) are
now enabling the monitoring the dynamics of hydraulic conductivity. Moreover, the relationship
between plant and soil ¥ can be used to identify plant water-use strategies (e.g., isohydry
framework; Martinez-Vilalta et al., 2014), which can help develop m* based on plant water-use
strategies. The measurements of carbon and water fluxes using the eddy covariance technique

with the aid of the centralized and standardized deployment of ¥ sensors (Novick et al., 2022)
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will have a great potential to test models and theories of stomatal optimization and advance our

knowledge of it.
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