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Abstract

In offline RL, we have no opportunity to explore so we must make assumptions
that the data is sufficient to guide picking a good policy, and we want to make
these assumptions as harmless as possible. In this work, we propose value-based
algorithms for offline RL with PAC guarantees under just partial coverage, specif-
ically, coverage of just a single comparator policy, and realizability of the soft
(entropy-regularized) Q-function of the single policy and a related function defined
as a saddle point of certain minimax optimization problem. This offers refined and
generally more lax conditions for offline RL. We further show an analogous result
for vanilla Q-functions under a soft margin condition. To attain these guarantees,
we leverage novel minimax learning algorithms and analyses to accurately estimate
either soft or vanilla Q-functions with strong L2-convergence guarantees. Our
algorithms’ loss functions arise from casting the estimation problems as nonlinear
convex optimization problems and Lagrangifying. Surprisingly we handle partial
coverage even without explicitly enforcing pessimism.

1 Introduction

In offline Reinforcement Learning (RL), we must learn exclusively from offline data and are unable
to actively interact with the environment (Levine et al., 2020). Offline RL has garnered considerable
interest in a range of applications where experimentation may be prohibitively costly or risky.

Offline RL is generally based on two types of assumptions: sufficient coverage in the offline data and
sufficient function approximation. For instance, classical Fitted-Q-iteration (Antos et al., 2008; Chen
and Jiang, 2019) requires (a) full coverage in the offline data, max, o) dr ., (5, @)/ Pr, (s, a) < 00
for any policy m where Py, (s, a) is the offline data’s distribution on the states and actions and
dr (8, @) is the state-action occupancy distribution under a policy 7 and initial-state distribution
1o(s); (b) realizability of the Q*-function in a hypothesis class; and (c) Bellman completeness,
i.e., the Bellman operator applied to any function in the hypothesis class remains in the class. Full
coverage (a) and Bellman completeness (c) can be particularly stringent because offline data is often
insufficiently exploratory and Bellman completeness significantly restricts transition dynamics.

To overcome these challenges, we here propose algorithms with guarantees under realizability of
single functions and refined partial coverage of single policies, and without Bellman completeness.
We tackle this by introducing two novel value-based algorithms. The first algorithm, MSQP (mimimax
soft-Q-learning with penalization), comprises of two steps: learning soft Q-functions (a.k.a., entropy-
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Table 1: Summary of partial-coverage-type guarantees with model-free general function approxima-
tion. Here, w* := dx« ,, /P, where d~ ,, is the occupancy distribution under the optimal policy
7* starting from po and P, is the distribution over the offline data. A function @}, is a regularized
marginal density ratio that satisfies w{ = w*. Functions ¢*, ¢}, ¢» are the optimal QQ*-function, the
soft Q-function, and the Q-function under a policy 7, respectively. Functions v}, [%, are Lagrange
multipliers of specific minimax optimization problems. The operator B™ is a Bellman operator under
a policy 7. Function classes W, Q, L,V consist of functions that map states (and actions) to real
numbers. Note the guarantees provided by Jiang and Huang (2020); Xie et al. (2021) are more
general than the below in that the output policy can compete with any policy in the policy class II.
For simplicity, we set the comparator policy to be the optimal policy 7* in this table. Note that other
studies (Ozdaglar et al., 2023; Rashidinejad et al., 2022; Zhu et al., 2023) proposing model-free
general function approximation under partial coverage rely on the completeness-type assumption as
in (Xie et al., 2021) or realizability for any 7 as in Jiang and Huang (2020).

Primary Assumptions
Jiang and Huang (2020) w*eW, g € QVr ell

Xie et al. (2021) qr € Q, B"Q C QVrell
Zhan et al. (2022) wh €W, vh eV
MSQP gy € Q, el
Chen and Jiang (2022)  Hard margin, w* € W, ¢* € Q
MQP Soft margin, ¢* € Q, I* € L

regularized Q-functions, as defined in Fox et al., 2015; Schulman et al., 2017) from offline data, and
using the softmax policies of the learned soft Q-functions. The second algorithm, MQP (mimimax
Q-learning with penalization), consists of two steps: learning standard Q-functions from offline data
and employing the greedy policy of the learned Q function on the offline data.

Using the above-mentioned two algorithms, we attain PAC guarantees under partial coverage and
realizability, yet without Bellman completeness. In particular, in MSQP using soft Q-functions,
we ensure strong performance under the realizability of ¢, [, and the (density-ratio-based) partial
coverage maxs q) drx (S, a)/Py(s,a) < co. Here g is a soft Q-function, [}, is a function that
possesses a certain dual relation to ¢}, 7}, is the soft-max optimal policy, and « is the temperature
parameter for the entropy-regularization. Notably, max s q) drx ., (5,a)/Py(s, a) < oo is signifi-
cantly less stringent than the uniform coverage in that the coverage is only imposed against a policy
7. In MQP using Q-functions, we similarly ensure strong performance under a soft margin, the
realizability of ¢*, [*, and the partial coverage max, ) dr+ u,(5,a)/Py(s,a) < oo. Here ¢* is
the vanilla Q-function and [* is a function that possesses a certain dual relation to ¢*, and 7* is
the usual optimal policy. Note the soft margin is introduced to allow realizability on standard Q-
functions rather than soft Q-functions. However, the conditions max s 4) dr+ (5, a)/ Py(s,a) < 0o
O MAX(5,q) dr* o (8, @)/ Py(s,a) < oo may still be strong as these marginal density ratios may not
exist in large-scale MDPs. For example, this condition is easily violated when the initial distribution
Mo is not covered by P, (i.e., max, pio(s)/Py(s) = oo where Py(s) =Y, Py(s, a)). Therefore, as
an additional innovation, in our algorithms we can further relax these density-ratio-based partial
coverage conditions. Specifically, we can demonstrate results under a refined partial coverage, which
is adaptive to Q-function classes, even when the initial distribution 1 is not covered by P.>

The primary challenge lies in the design of loss functions for effectively learning soft Q-functions
and vanilla Q-functions from offline data without Bellman completness. To tackle this, we devise
new minimax loss functions with certain regularization terms to achieve favorable L?-convergence
rates on the offline data (i.e., in terms of E(, oy p, [{Ga — q}?(s,a)] given an estimator §). This
result serves as the key building block for obtaining refined partial coverage under realizability and
is of independent interest in its own right. Existing results are often constrained to specific models,
such as linear models (Shi et al., 2022a), or they require Bellman completeness (Antos et al., 2008;
Chen and Qi, 2022; Chen and Jiang, 2019). In contrast, our guarantee is applicable to any function

Note p10 and P, could be generally different even in the contextual bandit setting. This important setting is
often considered in the literature on external validity/transportability in causal inference, as results of randomized
clinical trials cannot be directly transported because covariate distributions in offline data and target data are
different (Cole and Stuart, 2010; Pearl and Bareinboim, 2014; Dahabreh et al., 2019).



approximation method, without the need for Bellman completeness. To the best of our knowledge,
this is the first guarantee of its kind.

Our work exhibits marked improvements over two closely related studies (Zhan et al., 2022; Chen
and Jiang, 2022). Similar to our work, they propose algorithms that operate under the realizability of
specific functions and partial coverage, yet without Bellman completeness. Zhan et al. (2022) ensures
a PAC guarantee under (a’) partial coverage in the offline data max, ) dz+ ,, (5, a)/Py(s,a) < 0o
where 7}, is a specific near-optimal policy under the regularization, which differs from the soft
optimal policy, and (b’) realizability of dz+ ,,/P, and the regularized value function. However,
unlike MSQP, it is unclear how to refine the abovementioned coverage, i.e., the guarantee could be
vacuous when the initial distribution is not covered by offline data. A similar guarantee, but without
regularization, is obtained under the additional hard margin (a.k.a., gap) condition in Chen and Jiang
(2022). Our soft margin is a strict relaxation of the hard margin, which is important because, unlike
the soft margin, the hard margin generally does not hold in continuous state spaces and involves
very large constants in discrete state spaces. Lastly, although Chen and Jiang (2022); Zhan et al.
(2022) use completely different algorithms and attain guarantees for regularized value-functions and
non-regularized value functions, respectively, our guarantee can afford guarantees for regularized
and non-regularized value-functions in a unified manner since MQP can be seen as a limit of MSQP
when « goes to 0.

Our contributions are summarized below and in Table 1.

1. We establish that the optimal policy can be learned under partial coverage and realizability
of the optimal soft Q-function and its dual. Notably, we abstain from the use of possibly
stronger conditions in offline RL, such as full coverage, Bellman completeness, and uniform
realizability over the policy class (such as ¢, € Q for any 7 as in Jiang and Huang, 2020).
In particular, while a similar guarantee is provided in Zhan et al. (2022), our partial coverage
guarantee has an advantage in that we are able to potentially accommodate scenarios where
the initial distribution is not covered by P,. This is feasible because our algorithm is value-
based in nature, which allows us to leverage the structure of the Q-function classes and
refine the coverage condition.

2. We demonstrate that the optimal policy can be learned under partial coverage, realizability
of the Q-function and its dual, and a soft margin. While a similar guarantee is obtained in
Chen and Jiang (2022), our guarantee has the advantage that the soft margin is significantly
less stringent than the hard margin required therein.

1.1 Related Works
‘We summarize related works as follows. Further related works is discussed in Section A.

Offline RL under partial coverage. There is a growing number of results under partial coverage
following the principle of pessimism in offline RL (Yu et al., 2020; Kidambi et al., 2020). In
comparison to works that focus on tabular (Rashidinejad et al., 2021; Li et al., 2022; Shi et al.,
2022b; Yin and Wang, 2021) or linear models (Jin et al., 2020; Chang et al., 2021; Zhang et al.,
2022; Nguyen-Tang et al., 2022; Bai et al., 2022), our emphasis is on general function approximation
(Jiang and Huang, 2020; Uehara and Sun, 2021; Xie et al., 2021; Zhan et al., 2022; Zhu et al., 2023;
Rashidinejad et al., 2022; Zanette and Wainwright, 2022; Ozdaglar et al., 2023). Among them, we
specifically focus on model-free methods. The representative work is summarized in Table 1.

Soft (entropy-regularized) Q-functions. Soft Q-functions are utilized in various contexts in RL
(Geist et al., 2019; Neu et al., 2017). They have been shown to improve performance in online RL
settings, as demonstrated in Soft Q-Learning (Fox et al., 2015; Schulman et al., 2017) and Soft Actor
Critic (Haarnoja et al., 2018). In the field of imitation learning, they play a crucial role in Maximum
Entropy IRL (Ziebart et al., 2008, 2010). Furthermore, within the realm of offline RL, these soft
Q-functions are utilized to make the learned policy and behavior policy sufficiently similar (Wu et al.,
2019; Fakoor et al., 2021). However, to the best of the authors’ knowledge, none of these proposals
in the context of offline RL have provided sample complexity results under partial coverage.

Lagrangian view of offline RL. In the realm of offline policy evaluation (OPE), Nachum and Dai
(2020); Yang et al. (2020); Huang and Jiang (2022) have formulated the problem as a constrained



linear optimization problem. Notably, within the context of policy optimization, Zhan et al. (2022)
have proposed estimators for regularized density ratios with L2-convergence guarantees, which is
a crucial step in obtaining a near-optimal policy. Our work is similarly motivated, but with a key
distinction: our target functions are the soft Q-function and Q-function, rather than the regularized
density ratio, which presents additional analytical challenges due to the nonlinear constraint.

2 Preliminaries

We consider an infinite-horizon discounted MDP M = (S, A, P, 7,7, 110) where S is the state space,
A is the finite action space, v € [0, 1) is the discount factor, reward r is a random variable following
P.(- | s,a) on [Rumin, Rmax] (Rmin > 0), po is the initial distribution. A policy 7 : § — A(A)
is a map from the state to the distribution over actions. We denote the discounted state-action
occupancy distribution under a policy 7 starting from an initial distribution 1y by dx ., (s, a). With
slight abuse of notation, we denote dr ,,(s) = >, dr (5, a). We define the value under 7 as
J(m) = Er[> o7 7(st, ar)] where the expectation is taken under 7. We denote the optimal policy

arg max, J(7) by 7*, and its Q-function E« [>°, v'7(s¢, ar) | so = s, a0 = a] by ¢*(s, a).

In offline RL, using offline data D = {(s;,a;,74,8;) : ¢ = 1,...,n}, we search for the policy
7* that maximizes the policy value. We suppose each (s;,a;,r;, s;) is sampled i.i.d. from s; ~
Py,a; ~ (- | 8),r ~ Pe(- | si,0a4),8, ~ P(- | s8i,a;). We denote the sample average of f by
Enlf(s,a,r, )] =237 | f(si,a;,7i, s;), and the expectation of f with respect to the offline data
distribution by E[f (s, a, r, s")] (without any scripts). The policy 7, used to collect data is typically
referred to as a behavior policy. With slight abuse of notation, we denote Py (s, a) = Py(s)m(a | s).

Notation. We denote the support of Py(-) by (S x .A)p, and the L>°-norm on (S x A)p by || ||co,5- The

L*>-norm on (S x A) is denoted by || - [|c. We define w(s,a) = dr 4, (s,a)/Py(s, a) (if it exists).
xp(h(s,

We define sofmax(h) = sEED) s and [|hl|z = E(s a)~p, [B2(s, )]/ for b : S x A — R. We

denote universal constants by ¢y, ¢a, . . .. We use the convention a/0 = oo when a # 0 and 0/0 = 0.

3 Algorithms

In this section, we present two algorithms. The first algorithm aims to estimate the soft optimal
policy by first estimating a soft Q-function. The second algorithm estimates the optimal policy after
estimating the Q-function.

3.1 Minimax Soft-Q-learning with Penalization

Our ultimate aim is to mimic the optimal policy 7*. As a first step, we begin by finding a policy that
maximizes the following regularized objective: arg max,. J,(m) where for o > 0 we define

Jo(m) = (1= 7) " E(sa)mdy g Py ([sia) [1 — @log{m(a | 5)/mo(a | 5)}]

KL penalty (between 7 and 7,)

This objective function is used in a variety of contexts in RL as mentioned in Section 1.1. The optimal
policy that maximizes J,, (7) with respect to 7 is
7 = softmax(q), /o + log my), (D
where g% : § x A — Ris the soft Q-function uniquely characterized by the soft Bellman equation:
V(8. 0); Egmp(o.a) 1 0my (63)(8)) + 7 — @4 (s,a) | 5,a] =0,

where Q4 7, : [S X A = R] = [S = R] has Qq 1, (q)(s) = alog)_ {exp(q(s,a’)/a)m(a’ |
s)}. As opposed to the standard objective function with & = 0, the KL penalty term serves as a
regularization term that renders 7, sufficiently proximate to 7. As a approaches oo, the optimal
policy 7}, approaches 7. On the other hand, when oo = 0, 7% is 77*. Thus, in order to compete with
*, it is necessary to keep « sufficiently small. We elaborate on this selection procedure in Section 5.

The natural method for offline RL using this formulation involves learning ¢, from the offline data
and plugging it into (1). The question that remains is how to accurately learn ¢}, from the offline data.
We consider the following optimization problem:

argming e o/ 0.5E(s o)~ p, [4®(s,a)] 2)



Algorithm 1 MSQP (Minimax Soft-Q-learning with Penalization)

1: Require: Parameter o € R*, Models Q, £ C [S x A — R™].
2: Estimate ¢, as follows:

o € argminmax B, [¢*(s,a)/2 + {YQa.m, ()(s) + 7 — q(s,a)}(s,a)]. 5)
qeQ lel

3: Estimate the soft optimal policy: 7, = softmax(ja/a + log ).

Algorithm 2 MQP (Minimax Q)*-learning with Penalization)

1: Require: Models Q, £ C [S x A — R*].
2. Estimate ¢* as follows:

Go € argmin IlneaﬁxEn [*(s,a)/2 + {ymaxq(s',a') +r — q(s,a) }I(s,a)]. (8)
qeQ a’

3: Estimate the optimal policy: 7o(a | 8) = argmax,.., (ajs)>0 90(8,a)-

where Q’ consists of all functions g : S X A — R satisfying
Es’wPHs,a) [’)/Qa,m, (Q)(S,) +r— Q(Sv (L) ‘ s,a] =0 V(S, a‘) € (S X A)b (3)

Here, because of the constraint (3), the solution is ¢. Furthermore, we use q2(s7 a) in (2) because
this choice relaxes the equality in (3) to an inequality < 0 as we will demonstrate in Section B.
Consequently, the entire optimization problem outlined in (2) and (3) transforms into a convex
optimization problem.

Then, using the method of Lagrange multipliers, (2) is transformed into
ming max; La(4,0),  La(g:1) = E [42(5,0)/2 + {12a.r, (@)(s) + 7 — (s, ) }(s.0)] . @)

Being motivated by the above formulation, our MSQP algorithm, specified in Algorithm 1, approxi-
mates this formulation by replacing expectations with sample averages and restricting optimization to
function classes with bounded complexity.

Remark 1 (Computation). Although minimax optimization is generally difficult to solve, it is compu-
tationally feasible when we choose RKHS or linear function classes for L. In this case, we can solve
the inner maximization problem analytically in closed form, as the objective function is linear in l.
As a result, the minimax optimization problem reduces to empirical risk minimization.

3.2 Minimax (Q*-learning with Penalization

Next, we examine a policy learning algorithm utilizing Q*-functions. To learn @Q*, our objective
function is derived from the constrained optimization problem:

argmin ¢ 5. 0.5E( o)~ p, [4®(s,a)] (6)
where Q* consists of all functions ¢ : S x A — R satisfying
V(s,a) € (S X A)p; Egp(is,e)[ymaxecaq(s’,a’) +r —q(s,a) | s,a] = 0.

Next, again using the method of Lagrange multipliers, (6) is transformed into

min, max; Lo(q,1), Lo(q, 1) :=E[¢*(s,a)/2 + {ymaxa q(s',a') + 7 — q(s,a)}(s,a)]. (7)
Note L is the limit of L, as a — 0.
Our MQP algorithm, specified in Algorithm 2, similarly approximates this formulation by replacing
expectations with sample averages and restricting optimization to function classes with bounded

complexity. Our final policy is greedy with respect to the learned Q-function but restricting to the
support of the offline data in order to avoid exploiting regions not covered by the offline data.

Remark 2 (Prominent differences). There exist several other minimax estimators for Q* including
BRM (Antos et al., 2008) and MABO (Xie and Jiang, 2020). Although these ensure convergence
guarantees in terms of Bellman residual errors, they do not ensure the guarantee in terms of L?-
errors, which is our focus. Our minimax objective function differs significantly from that of the
aforementioned approaches, and its unique design plays a pivotal role in enabling L*-rates.



4 [’-convergence Rates for Soft Q)-functions and Q*-functions

To analyze our Q-estimators we first establish conditions that ensure g} =
arg min,c o maxez La (g, 1) on the support (S x .A);. Building on this, we prove L?-convergence

rates for g, and go. These L?-convergence guarantees are subsequently translated into performance
guarantees of the policies we output in Section 5.

4.1 Identification of Soft Q-functions

Consider an L?-space H where the inner product is define as (h1, ha) = E(; a)~p, [h1 (s, a)ha(s, a)].
Then we define two operators and a key function:?

Py M3 [ Eyipsayanmf(sad)](s,a) =] €
{PAYT 1o for [P(|sa)my(-|)f(s,a)d(s,a) €
(

I—AP} )" (Pu(s,0)q} (5,0))
l;(S, a) = Py(s,a) ( ) S X A)b,
( 5, ) (S X A)b

These satisfy a key adjoint property, which we leverage to show (¢, [¥) is a saddle point of L (g, ).
Lemma 1. Vg € H, we have (I}, (I —vP})q)u = (¢ @)

Our first assumption ensures that [, exists.
Assumption 1. Suppose ||dx+ p,/Py||oc < 00. Note the infinity norm || - || is over S x A.

Proposition 1. Under Assumption 1, we have ||I%,||cc < 00.

Proposition 1 is immediate noting that (I — v{Px} ") (P, (")g5(-)) = > meo V' ({ P2} ) (Pog)
and recalling the discounted occupancy measure under 7, with initial distribution po is written as
drs o = (L= )L = H{P;}T) " (no). Hence, [[I]loc < (1= 7) " Rumaxlldry, ,, /Polloc- Note
that ||+ / Py||oo crucially differs with the standard density-ratio-based concentrability coefficient
l|drex Ho/PbHOO in offline RL. Unlike ||dx= p,/Ps||s » the value of ||dr= .,/ Ps|loo can be infinite

when the initial distribution Lo 1S not covered by offline data P, as the practlcal motivating example
is explained in the footnote in Section | and Example 2.

Our next assumption ensures ¢ > 0, which also guarantees that [, > 0.

Assumption 2. Suppose alog ||7% /7p||co < Rumin-

Assumption 2 can be satisfied by rescaling reward (i.e., rescaling Ry;,) as long as ||7% /7| oo 18
finite. Hence, it is very mild. Putting Lemma 1 together with our assumptions we have the following.

Lemma 2. Suppose Assumptions 1 and 2 hold Then, (q’,1%) is a saddle point of L,(q,1) over

ONOL

q € H,l€H, e, Lo(q,l%) > Lo(q,1%) > La(qh,l) Vg € H,VI € H.

Recall that a point (g, l~) is a saddle point if and only if the strong duality holds, and ¢ €
argming ¢, sup;ey La(q,1),1 € argmax;cq, infieqy Lo (g,1) using the general characterization
(Bertsekas, 2009). Hence, Lemma 2 ensures g, € arg min,c, max;ey La(q,1).

Next, we consider the constrained optimization problem when we use function classes Q@ C H, L C
‘H. As long as the saddle point is included in (Q, £), we can prove that ¢, is a unique minimaxer.

Lemma 3. Suppose Assumptions 1 and 2 hold, g}, € Q, and I}, € L. Then, we have that ¢, =
arg min,c o Sup;e 2 La(q; 1) on the support (S x A)y.

This establishes that realizability (¢}, € Q, I} € £) is sufficient to identify ¢, on the offline data
distribution. At a high level, ¢, € argmin, g sup;c, La(g,!) is established through the invariance
of saddle points, i.e., saddle points over original sets remain saddle points over restricted sets. Its
uniqueness is verified by the strong convexity in ¢ of Ly (g, 1) induced by E(, o)~ p, [¢*(s, a)].

3We use the notation - | because P} ' is interpreted as the adjoint operator in the non-weighted L?-space.



4.2 L%-convergence Rate for Soft Q-estimators

Based on the population-level results in Section 4.1, we give a finite-sample error analysis of ¢,
Assumption 3 (Realizability of soft Q-function). Suppose ¢, € Q and ||q|lcc < BgoVq € Q.
Assumption 4 (Realizability of Lagrange multiplier). Suppose I}, € L and ||l||co < B VI € L.

It is natural to set Bo = (1 —7) "' Riax and Bz = (1 — %) ™" Ruax||dxx P,/ Py || 0. but letting these
be arbitrary offers further flexibility to our results.

Theorem 1 (L2-convergence of soft Q-estimators). Suppose Assumptions 1, 2, 3, and 4 hold. Then,
with probability 1 — 6, the L?-error ||Go — q%||2 is upper-bounded by

(In(|QI[£]/8)/n)"/*.

¢ (B + BoBr{a +In(JA)})

Our result is significant as it relies on realizability-type conditions rather than Bellman closedness.
Since the majority of existing works focus on non-regularized Q-functions, we postpone the com-
parison to these existing works to the next section. Note when Q and L are infinite, we can easily
replace |Q|, |£| with their L>°-covering numbers following Uehara et al. (2021). Details are given in
the appendix.

4.3 L%-convergence Rate for Q*-functions

Next, we give analogous finite-sample error analysis of gy leveraging the same reasoning.

Assumption 5 (Realizability of Q*-functions). Suppose ¢* € Q and ||q||cc < BgoVq € Q.

Next, we define the Lagrange multiplier:

(PYT 3 frr [ PCY s (] ) f(ssa)dus,) € 7,

U= {( = {P*} )" Pr,)}/ Pr,-

While [* involves the density ratio, this is always well-defined as long as ||dx« p,/Fp|lcc < 00.
Then, it can be similarly established that (¢*, [*) is a saddle point of Lq(q,1) over g € H,l € H as
we show in Lemma 2. We lastly require its realizability.

Assumption 6 (Realizability of Lagrange multiplier). Suppose ||dx p,/Py|locc < 00 and I* € L.
Further suppose ||l||coc < Be VI € L.

Theorem 2 (L2-convergence of Q-estimators). Suppose Assumptions 5 and 6 hold. Then, with
probability 1 — 8, the L?-error ||Go — q*||2 is upper-bounded by

¢ (B + BcBo)'? (n(|Ql|L|/8) /n) /4.

To the best of our knowledge, this is the first guarantee on L? errors for learning ¢* using general
function approximation without relying on Bellman completeness. This is highly nontrivial, and we
have carefully crafted our algorithm to obtain this guarantee. Existing results are often specific to
particular models, such as linear models (Shi et al., 2022a), or they require Bellman completeness
(Chen and Jiang, 2019; Chen and Qi, 2022), or they are limited to offline policy evaluation scenarios
(Huang and Jiang, 2022) (i.e., cases involving linear Bellman operators, but nonlinear Bellman
operators). Actually, it seems that even under the assumption of Bellman completeness, obtaining an
L2 guarantee without strong coverage assumptions remains unclear. A detailed comparison among
these different approaches is presented in Section A.

5 Finite Sample Guarantee of MSQP

In this section, we present our primary sample complexity guarantee for our MSQP algorithm under
the assumptions of realizability of ¢ and [% and partial coverage. We first show the learned policy
7o can compete with 77;. Finally we show 7, can compete with 7* by selecting « properly.

We first introduce the flattened behavior policy j, which is uniform on the support of 7. We use it
as a technical device to define a model-free concentrability coefficient following Xie et al. (2021).



Definition 1 (Model-free concentrability coefficient). Define

Esnd, . ,a~vd(als) qu(87 a) - qg(& a)”%]

T B0

= sup

Co.d,.
’ €0 E(s,a)~p,[la(s, a) — g4 (s, a)|3]

%m0

0 m(-|s) =0

h (- = is the flattened behavi licy.
where w5 (- | s) {1/|{aEA|7rb(a|s)>0}| 7rb(-|s)>0ls e flattened behavior policy.

Clearly, Cg q_. o is smaller than density-ratio-based concentrability coefficient, in other words,

drs o (5)78(a | 5)
C . < PRy 20] b
Qo =0a)  Py(s)mola )

Here, we always have |75 /1| < oo even if m(a | s) is O for some (s, a). In the special case where
my(a | s) > 1/C’ for any (s, a), we have Codps g < C'||drs o/ Polloo- The coefficient CQdrs g
is is a refined concentrability coefficient, which adapts to a function class Q. For example, in linear
MDPs, it reduces to a relative condition number as follows. Similar properties are obtained in related

works (Xie et al., 2021; Uehara and Sun, 2021).

Example 1 (Linear MDPs). A linear MDP is one such that, for a known feature vector ¢ : S x A —
RY, the true density satisfies P(s' | s,a) = (u*(s'), ¢(s, a)) for some u* : S — R? and the reward
function satisfies E[r | s,a] = (0,, (s, a)) for some 6, € R%.

In linear MDPs, ¢ is clearly linear in ¢(s,a). Hence, the natural function class is Q =
{(0,6(s,a)) | ||0]| < B} for a certain B € R™. Then, we have

o - xTEswdwa,uo,awwg(aL‘;) [¢(87 a)¢(8, a)T]x
demiyuo - I;ﬁ% ITE(S,(L)NPE, [gf)(s,a)gi)(s,a)—r]l '

We are now prepared to present our main result, which states that given the realizability of the soft
Q-function ¢}, and Lagrange multiplier [, it is possible to compete with 7 under the coverage
condition Cg g, , < 00, ||drs p,/Ppllcc < 0.

& 1o
Theorem 3 (7, can compete with 7). Fix oo > 0. Suppose Assumptions 1, 2, 3, and 4 hold. With
probability 1 — ¢, the regret J(n%) — J(7to) is upper-bounded by

1
n_1/4P01y <|A7BQ7B£5 CQ,d,r* “ ,hl <QL£|> 5 175 Rmax)
& ho —

The proof mainly consists of two steps: (1) obtaining L2-errors of §,, as previously demonstrated in
Theorem 1, (2) translating this error into the error of 7. In the second step, the Lipshitz continuity of
the softmax function plays a crucial role. If there is no regularization (o« = 0) and the greedy policy
of ¢j is utilized, the second step does not proceed (without any further additional assumptions).

Our ultimate goal is to compete with 7*. Theorem 3 serves as the primary foundation for this goal.
The remaining task is to analyze the approximation error J(7*) — J (). Fortunately, this term can
be controlled through « and the density ratio between 7* and 7. Then, by properly controlling c,
we can obtain the following sample complexity result.

Theorem 4 (PAC guarantee of 7). Fix any ¢ > 0. Suppose Assumptions 1, 2, 3, and 4 hold for
a = c/n'® and |7 /|00 < Co, Cod,y ., < 00. Then, if nis at least

¢ "Poly(|A|, B, Br, Ca . ., m(IQIIL]/), (1 = )", 1n(Co), Rumax),

with probability at least 1 — §, we can ensure J(m*) — J(7,) < €.
In summary, the realiazability of ¢}, %, per-step coverage |75 /mp||cc < o0 and partial coverage
ng"g e <00, ldx+ P,/ Pblloo < 00 are sufficient to compete with 7*. This is a novel and attractive
result. Firstly, if we solely use the naive FQI or Bellman residual minimization, existing PAC results
require the global coverage ||d ,.,/Ps||« < oo for any possible policy 7 (Munos and Szepesviri,
2008; Antos et al., 2008). Our result only requires coverage under a single policy 7, (near-optimal
policy). Secondly, we only require the realizability of two functions, and we do not necessitate



realizability-type conditions for all policies in the policy class or Bellman completeness, unlike
existing works with partial coverage (Xie et al., 2021; Jiang and Huang, 2020).

The most similar result is Zhan et al. (2022). However, our guarantee possesses a certain advantage
over their guarantee as follows. They demonstrate the realizability of certain functions @, v} and
partial coverage ||dx,, .,/ FPb|| < oo are sufficient conditions in offline RL, where @}, = dx,, .,/ P»
(o is a certain regularized optimal policy, but fundamentally distinct from 7)) and v} is a near-
optimal regularized value function parameterized by «. Here, we have wg = w*, v = v*. Our
guarantee has a similar flavor in the sense that it roughly illustrates realizability and partial coverage
are sufficient conditions. However, the meanings of realizability and partial coverage are significantly
different. In particular, by employing our algorithm, we can ensure PAC guarantees under the
boundedness of the refined concentrability coefficient Cg 4., < o0 (and ||dxy p, /Py[|o through

Br). As aresult, the L°>°-norm of the density-ratio-based concentrability coefficient ||dr+ .o /P ||oo
can even be infinite. More specifically, we can permit situations where max; 19(s)/Py(s) = oo as
we will see the practical example soon. Conversely, Zhan et al. (2022) excludes this possibility since
the algorithm explicitly estimates the density ratio wy,.

Example 2 (Contextual bandit under external validity). We consider the contextual bandit setting
where we want to optimize J(7) = Eyoyg amm(s).rnp, (s,0)[7] using offline data s ~ Py,a ~
(), r ~ P(s,a). This is the simplest RL setting with v = 0. Here, note py could be different from
Py. This case often happens in practice as discussed in the literature on causal inference related to
external validity (Pearl and Bareinboim, 2014; Dahabreh et al., 2019; Uehara et al., 2020), which
refers to the shift between the target population and the offline data. Here, our PAC guarantee
does not require that py(s) is covered by Py(s) in terms of the density ratio as long as the relative
condition number is upper-bounded when we use linear models. On the other hand, Zhan et al. (2022)
excludes this possibility.

Despite the aforementioned advantage of our approach, unfortunately, our sample complexity of
O(1/€®) is slower compared to that of O(1/¢%) in Zhan et al. (2022). In the following, we demonstrate
that MQP, which is a special version of MSQP when v — 0, can achieve a faster rate of O(1/€?).

6 Finite Sample Guarantee of MQP

In this section, building upon the convergence result of gy, we demonstrate the finite sample guarantee
of our MQP algorithm under partial coverage. We first introduce the soft margin.

Assumption 7 (Soft margin). For any a’ € A, there exists to € R, 3 € (0, 0o] such that
Pod, e, (0< |g"(s,7(5)) = ¢*(s,a")| <) < (t/t0)”

foranyt > 0. Here, we use the convention x> = 0if0 < x < land x> = oo if x > 1.

In the extreme case, if there exists a gap in ¢* (also known as a hard margin) so that the best action is
always better than the second-best by some lower bounded amount, then the soft margin is satisfied
with 8 = oo. Thus, the soft margin is more general than the gap condition used in Simchowitz and
Jamieson (2019); Wu et al. (2022). Crucially, a gap generally does not exist in continuous state
spaces unless Q-functions are discontinuous or one action is always option, or a gap involves a large
tp constant in discrete state spaces with bad dependence on the number of states. In contrast, a soft
margin with some 3 > 0 generally holds (see, e.g., lemma 4 in Hu et al., 2021). The soft margin
is widely used in the literature on classification, decision making, and RL (Audibert and Tsybakov,
2007; Perchet and Rigollet, 2013; Luedtke and Chambaz, 2020; Hu et al., 2021, 2022).

Theorem 5 (PAC guarantee of 7). Suppose Assumptions 5, 6, and 7 hold and ||7* /7y || 0o < Co. Fix
any € > 0. Then, if n is at least

at28 _ _
{%} s POly (to15|A|aBQ78[,7CQ,d,,*YHOaln <%> a(l 77) 171n(00);Rmax)
with probability at least 1 — 0, we can ensure J(7*) — J(7tg) < e.

The proof mainly consists of two steps: (1) obtaining L2-errors of gy as demonstrated in Theorem 2,
(2) translating this error into the error of 7y. In the second step, the soft margin plays a crucial role.

These theorems indicate that the realizability of the Q-function ¢* and Lagrange multiplier [*,

and the soft margin are sufficient for the PAC guarantee under partial coverage Cg 4_, o <00



ldzx P,/ Pslloo < o0 . Our algorithm is agnostic to 3 and operates under any value of 3. In particular,
when there is a gap (8 = o), we can achieve sample complexity of O(1/€2) *. In comparison to
Theorem 3, although we additionally use the soft margin, the realizability in Theorem 5 is more
appealing since it is imposed on the standard Q-function ¢*. The closest guarantee to our work
can be found in Chen and Jiang (2022), which demonstrates that the existence of the gap in ¢*, the
realizability of ¢*, w*(:= dx+ .,/ Pr,), and partial coverage || w* || < oo are sufficient conditions.
A similar comparison is made in Ozdaglar et al. (2023). In comparison to their work, we use the soft
margin, which is significantly less stringent.

7 Conclusions

We propose two value-based algorithms, MSQP and MQP, that operate under realizability of certain
functions and partial coverage (i.e., single-policy-coverage). Notably, our guarantee does not require
Bellman completeness and uniform-type realizability over the policy class. While guarantees with
similar flavors are obtained in Zhan et al. (2022); Chen and Jiang (2022), MSQP can potentially relax
the density-ratio-based partial coverage regarding the initial distribution as opposed to Zhan et al.
(2022), and MQP can operate under the soft-margin, which is less stringent than the hard margin
imposed in Chen and Jiang (2022). Moreover, both algorithms work on Q-functions, which are more
commonly used in practice.
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