
RLJ | RLC 2024

JoinGym: An Efficient Join Order Selection Environment

Junxiong Wang∗ Kaiwen Wang∗ Yueying Li Nathan Kallus
Immanuel Trummer Wen Sun

Cornell University
{jw2544, kw437, yl3469, kallus, it224, ws455}@cornell.edu

Abstract

Join order selection (JOS), the ordering of join operations to minimize query execution
cost, is a core NP-hard combinatorial optimization problem in database query
optimization. We present JoinGym, a lightweight and easy-to-use reinforcement
learning (RL) environment that captures both left-deep and bushy variants of the
JOS problem. Compared to prior works that execute queries online, JoinGym has
much higher throughput and efficiently simulates the cost of joins offline by looking
up the intermediate table’s cardinality from a pre-computed dataset. We provide
such a cardinality dataset for 3300 queries based on real IMDb workloads, which
is the largest suite its kind and may be of independent interest. We extensively
benchmark several RL algorithms and find that the best policies are competitive
with or better than Postgres, a strong non-learning baseline. However, the learned
policies can still catastrophically fail on a small fraction of queries which motivates
future research using JoinGym to improve generalization and safety in long-tailed,
partially observed, combinatorial optimization problems.

1 Introduction

Reinforcement learning (RL) has demonstrated impressive successes in video games (Bellemare et al.,
2013), robotics simulators (Tassa et al., 2018), and real-world tasks such as inventory management
(Madeka et al., 2022). In this work, we focus on the database query optimization task of ordering
join operations to minimize query execution cost, a problem called join order selection (JOS) which
is also known as join order optimization or access path selection. JOS is an NP-hard combinatorial
optimization problem (Ibaraki & Kameda, 1984) and RL is a promising modern approach (Krishnan
et al., 2018; Marcus et al., 2019; Yang et al., 2022). Unfortunately, there do not exist realistic and
efficient simulators for JOS which makes research quite expensive and time-consuming; in particular,
cost models, i.e., estimators for query cost, can be inaccurate and take seconds per evaluation,
while live query execution can take hours to days on large queries. To fill this gap, we provide
JoinGym, the first lightweight and easy-to-use JOS simulator that can efficiently simulate query
costs in real-world databases. Our goal is to make JOS accessible to the machine learning (ML)
community and to accelerate methodological research in learning-based data systems.

The key advantages of JoinGym are the following. First, JoinGym can simulate thousands of
queries per second on a commodity laptop and can be easily parallelized via multi-processing. In
contrast, prior query optimization environments used cost models (Mao et al., 2019) or executed live
queries (Lim et al., 2023), which can be much more expensive in time, compute and setup. Second,
JoinGym also adheres to the Gymnasium API (Farama Foundation, 2023) and is as easy-to-use
and setup as CartPole or Mountain Car. Third, we furnish JoinGym with a large suite of 3300
queries derived from real workloads in the Internet Movie Database (IMDb). Our query suite is 30×
larger than the standard Join Order Benchmark (JOB) (Leis et al., 2015) used by prior works (Mao

*Equal contribution.

RLJ | RLC 2024

et al., 2019; Marcus et al., 2019). We note that JOB queries are also included in JoinGym but we
recommend our larger query set as it is more diverse and representative.

The main idea behind JoinGym’s efficiency is to simulate the cost of individual joins completely
offline by replaying from a pre-computed dataset. To model the cost of a join, we use the cardinality
of the intermediate table produced by the join. We made this design choice for two main reasons: (1)
cardinalities can be pre-computed while runtime metrics cannot be; and (2) minimizing cardinality
has arguably the largest impact on runtime metrics, e.g., latency and resource consumption (Lohman,
2014; Leis et al., 2015; Neumann & Radke, 2018; Kipf et al., 2019). For (1), cardinalities are
deterministic and agnostic to the hardware or database system, which means they can indeed be
pre-computed for efficient offline replay. As part of JoinGym, we provide a cardinalities dataset for
3300 IMDb queries that took weeks of total CPU time. We note our novel cardinality dataset may
be of independent interest, e.g., for cardinality estimation research, which is beyond the scope of
this paper. For (2), numerous works have observed that large join result cardinalities are often the
main culprit of bad runtime metrics, which we detail in Appendix E. For example, Lohman (2014)
observed that inaccurate cost models can account for ≤ 30% degradation in runtime metrics, while
large cardinalities can cause runtime metrics to blow up by many orders of magnitude. Thus, by
reducing JOS to its core, we provide a lightweight simulator that is practically useful for RL research.

We now outline the paper. In Section 2, we rigorously describe JOS and 2 × 2 popular problem
variants which are all included in JoinGym. Namely, JoinGym supports both left-deep and bushy
plans as well as toggling on and off Cartesian products, which trade-off the search space size for
a slight bias in optimality (Leis et al., 2015). Then, in Section 3, we model JOS as a Partially
Observable Contextual Markov Decision Process (POCMDP) and describe the state, action and
reward representations in JoinGym. Finally, in Section 4, we extensively benchmark standard RL
algorithms on JoinGym and show that the best RL policies are competitive with or better than
Postgres, a strong non-learning baseline. However, we still observe that RL algorithms in JOS face
three key challenges: (1) long-tailed return distributions, (2) generalization in discrete combinatorial
problems, (3) partial observability. Not typically captured by video game or robotic simulators,
these challenges are understudied which motivates future research with JoinGym to develop better
algorithms for systems applications. To summarize, our main contributions1 are:

1. We provide a lightweight JOS simulator that is faster and cheaper than cost models or executing
real queries. JoinGym supports left-deep and bushy plans, as well as toggling Cartesian products.

2. We release a cardinalities dataset of 3300 queries on IMDb, which is 30× larger than the Join
Order Benchmark. This dataset may be useful beyond JoinGym, e.g., for cardinality estimation.

3. We extensively benchmark RL algorithms and find that the learned policies can attain lower
cardinality than Postgres. However, they can still fail to generalize on 10% of queries, motivating
future research with JoinGym to address safety in long-tailed combinatorial problems.

1.1 Related Works

There is a rich literature on applying ML and RL to database query optimization that can be divided
into two types. First, numerous works show that learning-based approaches can be more effective than
traditional non-learning approaches in query optimization (Yang, 2022; Marcus et al., 2019; Krishnan
et al., 2018; Yang et al., 2022; Marcus et al., 2021; Gunasekaran et al., 2023; Trummer et al., 2021;
Wang et al., 2023a;b) and general system optimization (Wang et al., 2021a;b; 2022). This first category
aims to directly improve the state-of-the-art query optimizers. Second, there are “environment and
benchmark” contributions that aim to provide a Gym-like interface for query optimization (Mao
et al., 2019; Lim et al., 2023). This second category aims to make query optimization a useful test-bed
for RL researchers, which provides unique challenges that are not captured by existing environments.
Then, the new insights and algorithms can hopefully lead to real improvements in query optimizers

1Code is available at https://github.com/kaiwenw/JoinGym.

RLJ | RLC 2024

(first category). Our main contribution is a lightweight simulator for JOS and hence falls into the
second category.

RL Environments for Query Optimization (Second Category). Park (Mao et al., 2019) and
DB-Gym (Lim et al., 2023) are Gym-like interfaces for an RL agent to act as the query optimizer in a
database management system (DBMS). In these environments, the reward signal can be derived from
either the DBMS’s cost model, which estimates runtime metrics, or the real physical runtime from an
online execution of the join. Unfortunately, both require setting up a DBMS, e.g., Postgres or Calcite,
and may be slow and computationally expensive: cost models can take seconds per evaluation and can
have estimation errors, while true physical runtime can take hours or days on a commercial database
for large queries (e.g., q29_44, q29_80 in our query suite). The key difference in JoinGym is how
our reward signal is defined and computed: JoinGym’s reward is derived from the true intermediate
result cardinality which is a good proxy for true runtime (see Lohman (2014) and Appendix E) and
has the advantage of being system-agnostic, deterministic, and hence pre-computable. Moreover,
there is no estimation error from cost models as we use true cardinalities. Since we have pre-computed
all the cardinalities already, JoinGym is very lightweight and efficient as it computes rewards by
replaying cardinalities offline. JoinGym can simulate thousands of trajectories per second on a
standard laptop, which is several orders of magnitude faster than prior environments.

RL for Query Optimization (First Category). DQ (Krishnan et al., 2018) applies Deep
Q-learning with data collected by a cost model to learn a competitive policy that is faster to execute
than the native optimizer. Neo (Marcus et al., 2019) first imitates an expert optimizer and then
learns from real query executions with a tree-search algorithm. While DQ assumes an expert cost
model and Neo assumes an expert optimizer, Balsa (Yang et al., 2022) bootstraps from a minimal
cost model and learns on-policy with safe exploration, leading to faster convergence than Neo. Rather
than replacing the query optimizer entirely, there have been works Marcus et al. (2021); Gunasekaran
et al. (2023) that proposed a hybrid approach: use RL to tune the hyper-parameters of a native query
optimizer. All these works rely on access to cost models or real query runtime as the reward signal,
which as mentioned before can have estimation errors and are prohibitively slow and expensive. Thus,
JoinGym provides an efficient simulator to enable rapid prototyping of algorithms whose insights
can hopefully transfer over to real query optimizers.

2 Join Order Selection Background

A database consists of Ntables tables, DB = {T1, T2, . . . , TNtables
}, where each table Ti has a set of

Ncols(Ti) columns, Cols(Ti) = {Ci,1, Ci,2, . . . , Ci,Ncols(Ti)}. A SQL query is described by a triple
q = (I, U, J). First, I = {i1, . . . , i|I|} ⊂ [Ntables] specifies the relevant tables for this query. Second,

U = {ui}i∈I specifies unary filter predicates such that for each i ∈ I, a filtered table T̃i = ui(Ti) is
produced from keeping the rows of Ti that satisfy the predicate ui. The fraction of rows that pass
the filter is defined as the selectivity, Seli = |T̃i|/|Ti|. Third, J = {Pi1i2

}i1 6=i2∈I specifies binary join
predicates that denote which columns should have matching values between two tables. Given two
tables R and S and join predicates P ⊂ [Ncols(R)] × [Ncols(S)], define their binary join as

R ⋊⋉P S = {r ∪ s | r ∈ R, s ∈ S, ra = sb ∀(a, b) ∈ P}, (1)

where r ∪ s means concatenating rows r and s, and ra = sb stipulates that the a-th column of r
matches the b-th column of s in value. Letting P = {(b, a) : (a, b) ∈ P}, we restrict Pi1i2

= Pi2i1
.

There are a combinatorial number of join orderings to compute q. For example, if I = {1, 2, 3, 4}, U =

{u1, u2, u3, u4}, J = {P1,2, P1,3, . . . }, two possible plans would be T̃1 ⋊⋉P1,2∪P1,3∪P1,4
(T̃2 ⋊⋉P2,3∪P2,4

(T̃3 ⋊⋉P3,4
T̃4)) and (T̃1 ⋊⋉P1,3

T̃3) ⋊⋉P1,2∪P1,4∪P3,2∪P3,4
(T̃2 ⋊⋉P2,4

T̃4). The former involves the in-

termediate results (IRs) IR1 = T̃3 ⋊⋉P3,4
T̃4 and IR2 = T̃2 ⋊⋉P2,3∪P2,4

IR1, while the latter involves

IR1 = T̃1 ⋊⋉P1,3
T̃3 and IR2 = T̃2 ⋊⋉P2,4

T̃4. The IRs in each plan can have drastically different cardi-
nalities, resulting in drastically different runtime metrics and resource consumption (Ramakrishnan

RLJ | RLC 2024

& Gehrke, 2003). The IR cardinality depends on the selectivity of base tables and the correlation of
joined columns, which is not fully observed in general. To summarize, JOS is the problem of selecting
the join order with the minimum cumulative IR cardinalities.

Left-Deep and Bushy Plans. Any join order is expressible as a binary tree where the leaves
are the filtered base tables T̃i and each internal node represents the IR from joining its two children.
If no further restrictions are made on the binary tree structure, the join order is called bushy. To
reduce the search space of join orders, one common restriction is to only allow left-deep trees, which
corresponds to plans that iteratively join new tables with the IR of cumulative joins so far. In
particular, joining two non-base-table IRs is allowed in bushy plans but disallowed in left-deep plans.
Left-deep plans can often maintain reasonable fast query execution while reducing the search space
(compared to bushy plans) by an exponential factor (Leis et al., 2015).

Toggling Cartesian Products. Given two tables R and S, the most expensive join is the Cartesian
Product (CP), where no constraints are placed on the column values, i.e., the CP between R and
S is R ⋊⋉∅ S = {r ∪ s | r ∈ R, s ∈ S}, which always has cardinality equal to |R||S|. Disabling (i.e.,
avoiding) CPs is a heuristic to rule out these expensive joins (Ramakrishnan & Gehrke, 2003) at a
possible loss of optimality. In some rare queries, the optimal plan may indeed contain CPs since it
may be beneficial to CP two small tables before joining a large table (Vance & Maier, 1996).

3 JoinGym: An RL Environment for Join Order Selection

We now formulate JOS as a Partially Observable Contextual Markov Decision Process (POCMDP)
which is efficiently simulated by JoinGym. Abstractly, a POCMDP consists of context space X ,
state space S, finite action space A, horizon H, transition kernel P (s′ | s, a), and contextual rewards
r(s, a;x), where s, s′ ∈ S, a ∈ A, x ∈ X . JOS can be viewed as playing a sequence of joins (actions)
to maximize cumulative rewards (inverse IR cardinalities); the trajectory is generated as follows.
First, a query q is sampled and encoded as context x ∈ X , which is fixed for this trajectory. Then, for
h = 1, 2, . . . , the state sh encodes the partial join order that has been executed so far and the action
ah specifies the next join to perform. For general bushy plans, ah can be any pair of unjoined tables
(i.e., any edge in the join graph); while for left-deep plans, ah is a single unjoined table (the next table
to join with the left-deep tree). Next, the join specified by ah results in an IR with cardinality ch.
We define the reward as rh ∝ C⋆

plan_type/H − ch, where C⋆
method is the minimum cumulative cardinality,

for plan_type ∈ {bushy, left-deep}. For numerical stability, we clip each ch by 100C⋆
plan_type. The

cumulative reward is non-positive with zero being optimal. This procedure iterates until all tables
are joined. For bushy plans, the horizon is H = |J | = |I| − 1. For left-deep plans, the horizon is one
larger since the a1 stages the first table; since staging does not perform any joins, we set r1 = 0 for
left-deep plans. The POCMDP is summarized in Table 1 and example trajectories are in Fig. 4.

Remarks. First, the set of legal actions shrinks throughout the trajectory since completed joins
cannot be re-selected. That is, if Ah represents the valid actions at time h, we have A = A1 ⊃ A2 ⊃
· · · ⊃ AH . We handle this by action masking (Huang & Ontañón, 2022), where we constrain the
policy’s actions and update rules to consider only legal actions at each step.2 Second, the transition
and rewards are deterministic, and the only stochasticity of the environment comes from sampling of
the queries, i.e., sampling of context. Third, the reward is contextual but the transition kernel is not.
Our POCMDP formulation can be interpreted as a latent MDP (Kwon et al., 2021): each query is
an MDP but we only see a partially observable context that cannot fully recover the query.

Partial Observability. As made precise in Section 3.1, the context x is a lossy encoding of the
query q. That is, the information in x is not fully predictive of the IR cardinalities for query q, which
creates partial observability in the contextual reward function. This is unavoidable since the contents

2Alternatively, we could penalize illegal actions with a very negative reward, but then the policy would need to
learn to avoid such actions.

RLJ | RLC 2024

of the data tables are needed to fully determine the cardinality, but it is prohibitively expensive
to use the entire table as the context. Hence, how to best compress tables into a feature vector is
still an active area of research (Ortiz et al., 2018; Marcus et al., 2019; Yang, 2022). We describe our
encoding scheme in Section 3.1. JoinGym can be easily updated to handle other encodings.

Left-deep JoinGym Bushy JoinGym

Context x Query encoding described in Section 3.1.

State sh Partial plan encoding described in Section 3.1.

Action ah Table to join, from Discrete(Ntables) Edge to join, from Discrete(
(

Ntables

2

)
)

Reward rh Negative step-wise regret: rh ∝ C
⋆
plan_type/H − ch for plan_type ∈ {left-deep, bushy}

Transition P Deterministic transition of dynamic state features, described in Section 3.1.

Horizon H |I| |I| − 1

Table 1: POCMDP components for query q = (I, U, J). The key difference between left-deep and
bushy is their action.

3.1 Context and State Encoding

We encode each query q as a context x = (vSel(q), vgoal(q)) with two main components. First, the
selectivity encoding is a vector vSel(q) ∈ [0, 1]Ntables where the t-th entry is the selectivity of ut if

t ∈ I, and 0 otherwise. Second, the query encoding is a binary vector vgoal(q) ∈ {0, 1}
Ncols (where

Ncols =
∑

T Ncols(T)) that represents which columns need to be joined for this query; the c-th entry
is 1 if column c appeared in any join predicate, and 0 otherwise. Formally:

∀t ∈ [Ntables], vSel(q)[t] := Selt · I [t ∈ I] ,

∀c ∈ [Ncols], vgoal(q)[c] := I [∃(R, S, P) ∈ J, ∃p ∈ P : c = p[0] ∨ c = p[1]] ,

where I [·] is 1 if · is True and 0 otherwise.

While the context x encodes the query and stays constant through the trajectory, the state sh encodes
the partial join order and evolves through the trajectory. In particular, the state sh at step h ∈ [H] is

the partial plan vector vpp
h ∈ {−1, 0, 1, 2, . . .}

Ncols which represents the joins specified by prior actions
a1:h−1. The c-th entry of vpp

h is (i) positive if column c has already been joined, (ii) −1 if the table
of column c has been joined or selected but column c has not been joined yet, and (iii) 0 otherwise.
We now explain each case in order.

Case (i) marks joined columns c, where the c-th entry is the index of its join-tree in the graph
representing the join plan. In left-deep plans, there is only one join-tree so this value will always be
1. In bushy plans, there may be more than one tree in the graph, so the value is the tree index which
can be larger than 1. Case (i) is important since the policy should know which columns have been
joined to choose the next valid join.

Case (ii) marks unjoined columns belonging to joined or selected tables, and we use the special value
−1. For example, in left-deep plans, we must be able to tell which table was selected by a1 at h = 2,
even though said table has only been “staged” but not joined. Beyond this special case, another
important use-case of the −1 marking is that marked columns have potentially small IR; perhaps the
rows of the table has been filtered from a prior join and so it is better to join with this table rather
than an unjoined base table.

Case (iii) marks the remaining columns of unjoined tables with the special value 0. In sum, our
partial plan vector vpp contains enough information to recover the current IRs and is a sufficient
statistic for deducing the future cardinalities. We note that vpp does not contain the join graph itself,
which would be enough to deduce how the current IRs were formed and was used in prior works
(Marcus et al., 2019). This additional structure is not necessary for predicting future cardinalities and
hence we omit it from the state vector. We provide example context and state vectors in Fig. 4(d).

RLJ | RLC 2024

Figure 1: On the left are three SQL queries. The middle are their query graphs where each edge
represents a join between two tables. Filtered tables are denoted by blue nodes and CPs are denoted
by dashed lines. On the right, we show tree representations of the query plan, where each leaf is a
table and each node is a join of its two children tables. Queries (a) and (b) are derived from the
same template and so share an identical query graph but their optimal query plans are different due
to different filters on the base tables. Query (c) is from a different template, but it contains (b) as a
subgraph and their optimal query plans share a common sub-tree (highlighted in red).

3.2 The Query Suite and Cardinality Dataset

We furnish JoinGym with a suite of 3300 queries simulating real workloads on the Internet Movie
Database (IMDb). Each query has a query_id of the form qN_M with N ∈ [33], N ∈ [100] signifying
that it is the M -th query from the N -th template, where the 33 templates are from the Join
Order Benchmark (JOB; Leis et al., 2015). We selected the queries to be representative of user
searches on IMDb; we simulated user searches by generating popular search terms with ChatGPT,
manually inspecting them to be sensible, and ensuring they have non-empty search results. Please
see Appendix G for more details and examples of our query selection process. The 113 JOB queries
are also included in JoinGym, although we recommend our new query suite since it is 30× larger
and more diverse than the JOB.

We then computed a dataset of all IR cardinalities for the query suite. That is, for each query, we
computed the cardinalities of all possible intermediate tables from valid join orders using MonetDB.
The exhaustive cardinality computation was a computationally heavy task that require online query
execution and took weeks to complete on hundreds of CPUs. However, once this dataset is collected

RLJ | RLC 2024

(each join plan only needs to be executed once to observe the cardinality), JoinGym can use it to
efficiently simulate costs of join plans entirely offline.

3.3 Query Templates and Generalization in Query Optimization

When interacting with a database for a real-world task (e.g., searching a movie), users typically
specify their searches with drop down menus and natural language rather than writing SQL. The
drop down menus and natural language are copied into query templates, which can automatically
construct a SQL query reflecting the user’s interest. A query’s template determines its final query
graph and different query templates may often share common subgraphs. Using the query graph
structure, deep RL models can generalize to improve future query execution planning. For example in
Fig. 1, the optimal join plan for (b) is a sub-tree of the optimal plan for (c). However, while queries
with the same template have a common query graph, optimal join orders can vary significantly due
to different filter conditions that are applied, e.g., Fig. 1 (a) & (b) are instances of the same template
(and hence share the same graph) but have different optimal join orders. Thus, the key challenge
in data-driven query optimization is to learn which correct query instances to mimic based on the
context (i.e., filter predicates, query graph).

3.4 JoinGym API

We now describe the JoinGym API, which adheres to Gymnasium (Farama Foundation, 2023).
The left-deep and bushy variants are registered under the environment-ids ‘joinopt_left-v0’ and
‘joinopt_bushy-v0’. JoinGym can be instantiated with env = gym.make(env_id, disable_cp,

query_ids), where disable_cp is a Boolean for Cartesian products (described in Section 2), and
query_ids specifies the queries to load. JoinGym implements the POCMDP in Section 3 with two
functions:

(i) state, info = env.reset(options={query_id=x}): reset the env to represent the query with
id x, and observe the initial state. If no query_id is specified, then a random query is picked
from the query set.

(ii) next_state, reward, done, _, info = env.step(act): perform the join specified by act.
done is True when all tables of the current query have been joined. There is no truncation.

state is the concatenation of the context x and sh (defined in Section 3.1) and next_state is
the concatenation of x and sh+1. Also, info[‘action_mask’] is a multi-hot encoding of the valid
actions Ah, which the algorithm should into account, e.g., mask out Q-values, so only valid actions
are considered.

4 Benchmark Results on JoinGym

Experiment Setup. Recall that our new dataset contains 100 queries for each of the 33 templates
from the JOB (Leis et al., 2015). For each template, we randomly selected 60, 20, 20 queries for training
(1980 queries), validation (660 queries) and testing (660 queries) respectively. We benchmarked
four different RL algorithms: (i) an off-policy Q-learning algorithm Deep Q-Network (DQN) (Mnih
et al., 2015); (ii-iii) two off-policy actor-critic algorithms, Twin Delayed Deep Deterministic policy
gradient (TD3) (Fujimoto et al., 2018) and Soft Actor-Critic (SAC) (Haarnoja et al., 2018); and (iv)
an on-policy actor-critic algorithm Proximal Policy Optimization (PPO) (Schulman et al., 2017). For
DQN, we conducted an ablation with the Double Q-learning (Van Hasselt et al., 2016). For (i-iii),
we conducted ablations with standard replay buffer (RB) vs. prioritized experience replay (PER)
(Schaul et al., 2015).

Train and Eval. All algorithms were trained for one million steps on the training queries. Define
cumulative cost multiple (CCM) as the cumulative IR cardinality of the join plan divided by the
smallest possible cumulative IR cardinality for this query. This can be interpreted as a multiplicative

RLJ | RLC 2024

90% Quantile DQN DDQN TD3 SAC PPO

RB PER RB PER RB PER RB PER
d

is
a
b

le
C

P

b
u

sh
y trn 7.3 4.4 5.2 5.6 5.3 7.3 13 9.5 6

val 16 13 14 15 15 18 18 13 23

tst 46 25 30 30 26 40 55 33 42
le

ft

trn 5.5 5.6 7 6.5 6.9 5.2 11 8.6 5.2

val 12 15 13 14 13 9.5 20 14 11

tst 28 30 34 34 22 20 39 32 19

en
a
b

le
C

P

b
u

sh
y trn 6.4e+04 2.4e+05 4.6e+04 3.2e+04 1.8e+02 42 7.7e+18 3e+14 35

val 2e+05 1.1e+06 5.8e+04 6e+04 3.1e+02 1.4e+02 4e+18 2.8e+14 1e+02

tst 1.6e+05 1.2e+05 2.1e+05 6.9e+04 2e+03 4.9e+02 2.2e+17 2.1e+17 2.8e+02

le
ft

trn 17 6.3 17 9.9 3.6e+02 17 7.7 6.8 9.9

val 25 15 27 22 2e+02 24 13 12 27

tst 64 36 66 59 1.7e+03 1e+02 28 30 92

Table 3: The 90% quantile CCM (lower is better) over train (trn), validation (val) and test (tst) queries
of JoinGym. RB stands for “replay buffer”; PER stands for “prioritized experience replay”. The
best performing algorithm is highlighted in each row. We report confidence intervals in Appendix I.

JoinGym can be a useful environment for developing new RL algorithms for combinatorial query
optimization problems, particularly those with long-tailed returns and partial observability.

Acknowledgements This material is based upon work supported by the National Science Founda-
tion under Grant Nos. IIS-1846210, IIS-2154711 and CAREER 2339395.

References

Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational joins.
SIAM Journal on Computing, 42(4):1737–1767, 2013.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

Surajit Chaudhuri. An overview of query optimization in relational systems. In Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp.
34–43, 1998.

Farama Foundation. Gymnasium, 2023. URL https://github.com/Farama-Foundation/

Gymnasium.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Karthick Prasad Gunasekaran, Kajal Tiwari, and Rachana Acharya. Deep learning based auto tuning
for database management system. arXiv preprint arXiv:2304.12747, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao Cong,
Yanzhao Qin, Andreas Pfadler, et al. Cardinality estimation in dbms: A comprehensive benchmark
evaluation. arXiv preprint arXiv:2109.05877, 2021.

Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy gradient
algorithms. In The International FLAIRS Conference Proceedings, volume 35, 2022.

RLJ | RLC 2024

Toshihide Ibaraki and Tiko Kameda. On the optimal nesting order for computing n-relational joins.
ACM Transactions on Database Systems (TODS), 9(3):482–502, 1984.

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons Kemper. Learned
cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677,
2018.

Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter
Boncz, Thomas Neumann, and Alfons Kemper. Estimating cardinalities with deep sketches. In
Proceedings of the 2019 International Conference on Management of Data, pp. 1937–1940, 2019.

Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion Stoica. Learning to
optimize join queries with deep reinforcement learning. arXiv preprint arXiv:1808.03196, 2018.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.
Dr3: Value-based deep reinforcement learning requires explicit regularization, 2021.

Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Rl for latent mdps:
Regret guarantees and a lower bound. Advances in Neural Information Processing Systems, 34:
24523–24534, 2021.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann.
How good are query optimizers, really? Proceedings of the VLDB Endowment, 9(3):204–215, 2015.

Wan Shen Lim, Matthew Butrovich, William Zhang, Andrew Crotty, Lin Ma, Peijing Xu, Johannes
Gehrke, and Andrew Pavlo. Database gyms. In CIDR 2023, Conference on Innovative Data
Systems Research, volume 14, pp. 1241–1253, 2023.

Guy Lohman. Is query optimization a “solved” problem. In Proc. Workshop on Database Query
Optimization, volume 13, pp. 10. Oregon Graduate Center Comp. Sci. Tech. Rep, 2014.

Dhruv Madeka, Kari Torkkola, Carson Eisenach, Anna Luo, Dean P Foster, and Sham M Kakade.
Deep inventory management. arXiv preprint arXiv:2210.03137, 2022.

Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang, Haonan Wang, Ryan
Marcus, Mehrdad Khani Shirkoohi, Songtao He, Vikram Nathan, et al. Park: An open platform
for learning-augmented computer systems. Advances in Neural Information Processing Systems,
32, 2019.

Ryan Marcus and Olga Papaemmanouil. Deep reinforcement learning for join order enumeration. In
Proceedings of the First International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management, pp. 1–4, 2018.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska,
Olga Papaemmanouil, and Nesime Tatbul. Neo: A learned query optimizer. Proc. VLDB
Endow., 12(11):1705–1718, jul 2019. ISSN 2150-8097. doi: 10.14778/3342263.3342644. URL
https://doi.org/10.14778/3342263.3342644.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim Kraska.
Bao: Making learned query optimization practical. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD ’21, pp. 1275–1288, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450383431. doi: 10.1145/3448016.3452838. URL
https://doi.org/10.1145/3448016.3452838.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Thomas Neumann and Bernhard Radke. Adaptive optimization of very large join queries. In
Proceedings of the 2018 International Conference on Management of Data, pp. 677–692, 2018.

RLJ | RLC 2024

Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join algorithms.
Journal of the ACM (JACM), 65(3):1–40, 2018.

Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi. Learning state
representations for query optimization with deep reinforcement learning. In Proceedings of the
Second Workshop on Data Management for End-To-End Machine Learning, pp. 1–4, 2018.

Raghu Ramakrishnan and Johannes Gehrke. Database management systems, volume 3. McGraw-Hill
New York, 2003.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A Lorie, and Thomas G
Price. Access path selection in a relational database management system. In Proceedings of the
1979 ACM SIGMOD international conference on Management of data, pp. 23–34, 1979.

Ji Sun and Guoliang Li. An end-to-end learning-based cost estimator. Proceedings of the VLDB
Endowment, 13(3), 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram, Samuel Moseley, Saehan Jo,
Joseph Antonakakis, and Ankush Rayabhari. Skinnerdb: Regret-bounded query evaluation via
reinforcement learning. ACM Transactions on Database Systems (TODS), 46(3):1–45, 2021.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Bennet Vance and David Maier. Rapid bushy join-order optimization with cartesian products. ACM
SIGMOD Record, 25(2):35–46, 1996.

Junxiong Wang, Immanuel Trummer, and Debabrota Basu. Demonstrating udo: A unified approach
for optimizing transaction code, physical design, and system parameters via reinforcement learning.
In Proceedings of the 2021 International Conference on Management of Data, pp. 2794–2797,
2021a.

Junxiong Wang, Immanuel Trummer, and Debabrota Basu. Udo: universal database optimization
using reinforcement learning. Proceedings of the VLDB Endowment, 14(13):3402–3414, 2021b.

Junxiong Wang, Debabrota Basu, and Immanuel Trummer. Procrastinated tree search: Black-
box optimization with delayed, noisy, and multi-fidelity feedback. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 10381–10390, 2022.

Junxiong Wang, Mitchell Gray, Immanuel Trummer, Ahmet Kara, and Dan Olteanu. Demonstrating
adopt: Adaptively optimizing attribute orders for worst-case optimal joins via reinforcement
learning. Proc. VLDB Endow., 16(12):4094–4097, aug 2023a. ISSN 2150-8097. doi: 10.14778/
3611540.3611629. URL https://doi.org/10.14778/3611540.3611629.

Junxiong Wang, Immanuel Trummer, Ahmet Kara, and Dan Olteanu. Adopt: Adaptively optimizing
attribute orders for worst-case optimal join algorithms via reinforcement learning. Proceedings of
the VLDB Endowment, 16(11):2805–2817, 2023b.

RLJ | RLC 2024

Zongheng Yang. Machine Learning for Query Optimization. PhD thesis, EECS Department,
University of California, Berkeley, Aug 2022. URL http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2022/EECS-2022-194.html.

Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica.
Neurocard: one cardinality estimator for all tables. Proceedings of the VLDB Endowment, 14(1):
61–73, 2020.

Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and Ion Stoica. Balsa:
Learning a query optimizer without expert demonstrations. In Proceedings of the 2022 International
Conference on Management of Data, pp. 931–944, 2022.

RLJ | RLC 2024

et al., 2023). However, classical approaches that make strict data correlation assumptions to estimate
the IR cardinality can often be quite sub-optimal (Lohman, 2014). Towards a more data-driven
approach, Yang et al. (2022); Marcus et al. (2019); Krishnan et al. (2018) showed that RL is a
promising tool for optimizing the join order, capable of learning policies with improved inference
time and quality of join plans. These prior works are often benchmarked on the JOB, which consists
of 33 query templates and 113 total queries. In JOB, queries from the same template have similar
optimal query plans which does not require much generalization. In JoinGym, we provide a more
diverse dataset of 3300 total queries, comprised of 100 queries per query template.

Cost Models and Cardinality Estimation. There are many ML-for-database works that aim
to enhance cardinality estimation such as NeuroCard (Yang et al., 2020) and (Kipf et al., 2018;
2019; Sun & Li, 2020; Han et al., 2021). Instead of using estimated cardinalities, JoinGym uses
the true cardinalities from our novel cardinality dataset. Hence, it does not make sense to use
these cardinality estimation models in JoinGym since it would only introduce estimation error and
slow-down simulation throughput. We note that our cardinality dataset, the largest of its kind,
can be useful for research in cardinality estimation research and representation learning for table
embeddings (Ortiz et al., 2018), which is beyond the scope of this paper.

State and context embeddings. We use the same selectivity encoding as Balsa (Yang et al.,
2022) and Neo (Marcus et al., 2019). However, their query encoding is an adjacency matrix (at the
table level) that preserves the tree structure, while we encode queries with a multi-hot vector (at
the column level) marking which columns should be joined, similar to DP (Krishnan et al., 2018)
and ReJoin (Marcus & Papaemmanouil, 2018). To the best of our knowledge, marking the tree’s
component index in the partial plan encoding is novel and allows us to handle bushy plans without
keeping track of the whole tree; except DP, the aforementioned works only consider left-deep trees.
Note that since the graph structure does not influence future IR sizes but column information does,
our encoding is more compact than prior encoding schemes of Balsa and Neo. JoinGym is designed
so that one can easily change the state and context encoding schemes without needing to collect any
more data, which is the costly step of building JoinGym that we have already finished.

E Cardinality as a good proxy for query cost

In JoinGym, one design choice was to use the cumulative IR cardinality as cost which is a difference
from prior works that optimized a DBMS’s cost model or real runtime metrics. In this section, we
answer the question: why is cumulative IR cardinality a good proxy for the cost of a query plan?

1. Lohman (2014) puts it eloquently: “The root of all evil, the Achilles Heel of query optimization,
is the estimation of the size of intermediate results, known as cardinalities. In my experience, the
cost model may introduce errors of at most 30% for a given cardinality, but the cardinality model
can quite easily introduce errors of many orders of magnitude! Let’s attack problems that really
matter, those that account for optimizer disasters, and stop polishing the round ball.” In short,
minimizing the cardinality well is one of the most significant factors for finding the optimal join
order.

2. Neumann & Radke (2018) adopts IR cardinalities as the key metric for benchmarking query
optimization algorithms.

3. Numerous database papers focus on enhancing cardinality estimation with sketching/statistical
methods (Kipf et al., 2019) and neural models (Kipf et al., 2018). Also, many database theory
works (Atserias et al., 2013; Ngo et al., 2018) focus on designing new algorithms to minimize the
size of the intermediate result.

4. Furthermore, the IR cardinality metric provides computational advantages: (i) IR cardinality
does not depend on specific system configurations (e.g., IO and CPU); (ii) IR cardinality is

RLJ | RLC 2024

deterministic so we can pre-compute it for all our queries; (iii) with our pre-computed dataset,
users can simulate thousands of large joins per second.

In sum, cardinality is the most common and important metric for query optimization algorithms. At
the same time, its system-independent and deterministic nature allows us to design a realistic environ-
ment that is lightweight, enabling ML & RL researchers from diverse communities to collaboratively
tackle the core problem in query optimization.

F Implementation Details of JoinGym

We now describe the specific implementation details of JoinGym. This section is intended for
advanced users who want to change how we encode state, actions or rewards. We appreciate any
questions or feedback and welcome pull requests.

Our code registers two gymnasium.Env classes that implement bushy and left-deep join plans:

1. JoinOptEnvBushy (in file join_optimization/envs/join_opt_env_bushy.py),

2. JoinOptEnvLeft (in file join_optimization/envs/join_opt_env_left.py).

As mentioned in Table 1, the main difference between these two environments lies in their action space;
a bushy plan’s actions are pairs of tables, while a left-deep plan’s actions are single tables. Since their
state representations are nearly identical, both JoinOptEnvBushy and JoinOptEnvLeft subclass
a base class called JoinOptEnvBase (in file join_optimization/envs/join_opt_env_base.py),
which we describe first.

JoinOptEnvBase This base class handles most of the __init__ initialization work of loading in
the database schema, loading in the IR cardinality dataset, as well as constructing the selectivity
encoding vSel(q) and goal encodings vgoal(q) (defined in Section 3.1) for all the queries q in our
dataset. Recall that vSel(q) and vgoal(q) are static during the trajectory, so we can pre-compute them
when initializing the environment.

JoinOptEnvBase also contains a helper function log_cardinality_to_reward that
converts log IR cardinality at step h, i.e., log ch, to this step’s reward rh =

1
Cmax(q) (Cmin(q) − exp(min{log ch, logCmax(q)})), where Cmax(q) = 100 · C⋆(q), C⋆(q) is the optimal

(minimum-possible) cumulative IR cardinality for query q, and Cmin(q) = C⋆(q)/num tables to join in q.
To interpret this expression, note that exp(min{log ch, logCmax(q)}) = min{ch, Cmax(q)}. We
perform the clipping since IR cardinalities can get large, especially with Cartesian products enabled;
this is also why we perform clipping inside the exp and work in log-space. Next, we can interpret∑

h ch − Cmin(q) as essentially the regret of this trajectory, as Cmin(q) · H = C⋆(q). Finally, the
scaling by 1/Cmax(q) is for normalization. In essence, our reward is the per-step negative regret.

JoinOptEnvLeft and JoinOptEnvBushy Each class has three main jobs: 1) maintaining the
left-deep join tree, 2) a function to compute the partial plan encoding, 3) a function for computing
the valid action masks. As for (1), since left-deep and bushy trees have different structures, we
maintain them in different ways, though they both use the TreeNode data structure to do so. For (2),
the partial plan encoding can be computed by examining the TreeNode so far, and only retaining the
useful information. Finally, since the action spaces are different, each class has different functions for
the valid action mask (3). It is worth highlighting that each class has two functions for computing
the valid action mask: self.valid_action_mask() is used when Cartesian products are allowed,
and self.valid_action_mask_with_heurstic() is used otherwise.

RLJ | RLC 2024

G Mechanism for generating queries

We use the 33 predefined query templates of the Join Order Benchmark (JOB) (Leis et al.,
2015) and introduce variations in unary predicates, i.e., filter statements, to generate new
queries. To randomly generate realistic unary predicates, we begin by conducting a manual
examination of all columns within each table to select a subset of columns that are typically used
in real user queries. The columns we identified were aka_name(name), aka_title(title),

char_name(name), comp_cast_type(kind), company_name(name, country_code),

company_type(kind), info_type(info), keyword(keyword), kind_type(kind),

link_type(link), movie_companies(note), movie_info(info), movie_info_idx(info),

name(name), person_info(note), role_type(role), title(title, production_year). To
simulate searches by real IMDb users, we compiled the top 100 most common values for each column
using ChatGPT. If any column has less than 100 unique values, we do not need to use ChatGPT
and simply used all the possible values.

For example, consider the SQL template q1, reproduced below.

SELECT MIN(mc . note) AS production_note ,
MIN(t . t i t l e) AS movie_tit le ,
MIN(t . production_year) AS movie_year

FROM company_type AS ct ,
info_type AS i t ,
movie_companies AS mc,
movie_info_idx AS mi_idx ,
t i t l e AS t

WHERE ct . id = mc . company_type_id
AND t . id = mc . movie_id
AND t . id = mi_idx . movie_id
AND mc. movie_id = mi_idx . movie_id
AND i t . id = mi_idx . info_type_id

We consider unary predicates from those candidate columns company_type(kind),

info_type(info), movie_companies(note), movie_info_idx(info), title(title,

production_year). For each candidate column, we flip a coin and decide to add a unary
predicate with probability 50%. Suppose that the coin flips for each column were respectively 1, 0, 0, 0,
so we only choose the company_type(kind) column to create a unary predicate. Subsequently, we
pick random number n ∼ Unif({1, 2, 3, 4, 5}) and take n random elements from the ‘top-100 list’
described above. Suppose that n = 2 and we randomly sampled ‘production companies’ and ‘special
effects companies’ from the ‘top-100 list’ for the company_type(kind) column. This process leads
us to the resulting query q1_0.

SELECT MIN(mc . note) AS production_note ,
MIN(t . t i t l e) AS movie_tit le ,
MIN(t . production_year) AS movie_year

FROM company_type AS ct ,
info_type AS i t ,
movie_companies AS mc,
movie_info_idx AS mi_idx ,
t i t l e AS t

WHERE ct . id = mc . company_type_id
AND t . id = mc . movie_id
AND t . id = mi_idx . movie_id
AND mc. movie_id = mi_idx . movie_id
AND i t . id = mi_idx . info_type_id
AND ct . kind in (’ product ion ␣companies ’ ,

’ s p e c i a l ␣ e f f e c t s ␣ companies ’)

RLJ | RLC 2024

Note the key addition is the last filter statement, AND ct.kind in (‘production companies’,

‘special effects companies’). We repeat this procedure 99 more times to produce q1_0, . . . ,
q1_99. We repeat the above for the 32 remaining templates q2, . . . , q33, which yields the 100× 33 =
3300 random queries that make up our new dataset.

H Limitations

Multiple base tables in a query. Our current solution is to introduce duplicate tables and treat
tables from the same basetables differently. Given query templates, our encoding has n positions
for a basetable, where n is the maximum number of times this basetable appears among all query
templates. We assume that query templates are fixed. We acknowledge that this solution may not
be elegant and can be improved in future work.

Dynamic workload. In this benchmark, we assume the RL agent is trained and evaluated on the
same database, i.e., we assume the DB content is kept static as in prior works Yang et al. (2022).
However, in real applications, the database may dynamically change over time. It is possible to add
more queries and databases to JoinGym by simply running our data collection script to collect more
cardinality data.

I Additional Results for Online RL

The following tables show the mean, p90, p95, p99 results with standard error confidence intervals
computed over 10 seeds.

RLJ | RLC 2024

Mean DQN DDQN TD3 SAC PPO

RB PER RB PER RB PER RB PER
d

is
a

b
le

C
P

b
u

sh
y trn 8.9e+06

(8.8e+06)
2.7e+04
(2.6e+04)

3.6e+06
(3.6e+06)

4.1e+04
(3.7e+04) 1.9e+04

(1.1e+04)

1e+05
(5.7e+04)

8e+04
(3.2e+04)

4.9e+04
(1.3e+04)

1.8e+06
(1.7e+06)

val 3.4e+04
(1e+04)

1.8e+04
(2.5e+03)

1.9e+04
(3.3e+03)

2.4e+04
(2.8e+03)

1.9e+04
(3.1e+03) 1.7e+04

(3.7e+03)

4.1e+04
(4.1e+03)

3e+04
(7.5e+03)

2.8e+04
(2.5e+03)

tst 2.6e+05
(1.4e+05)

1.4e+05
(3.3e+04)

4.1e+05
(1.4e+05)

8.3e+04
(2.5e+04)

1.5e+05
(9.2e+04) 3.4e+04

(6e+03)

3.8e+04
(1e+04)

3.5e+04
(9.8e+03)

1.3e+05
(4.6e+04)

le
ft

trn
4e+03
(7.7e+02)

1.3e+04
(6.9e+03)

2.2e+04
(1.1e+04)

8.3e+03
(5.8e+03)

1.3e+06
(1.3e+06)

4.4e+03
(2.7e+02)

4e+06
(1.7e+06)

2.8e+05
(2.7e+05)

2.1e+04
(1e+04)

val 1.5e+04
(1.5e+03)

1.2e+04
(1.3e+03)

1.4e+04
(2.6e+03) 9.2e+03

(1.2e+03)

1.6e+04
(3.7e+03)

1.3e+04
(1.4e+03)

2e+04
(2.4e+03)

1.2e+04
(1.4e+03)

1.1e+04
(1e+03)

tst 2.9e+05
(2.3e+05)

1.7e+05
(8.8e+04)

1.1e+05
(6.2e+04)

4.5e+05
(2e+05)

1.9e+04
(3.7e+03) 1.8e+04

(4e+03)

4.7e+05
(1.9e+05)

2.5e+05
(1.1e+05)

4.6e+04
(2.6e+04)

e
n

a
b

le
C

P

b
u

sh
y trn 2e+45

(2e+45)
1.5e+50
(1.5e+50)

3e+37
(2.9e+37)

5.8e+33
(5.7e+33)

7.8e+26
(7.8e+26)

1.1e+24
(1.1e+24)

1.7e+47
(1.7e+47)

2.1e+53
(2.1e+53) 1.1e+15

(1.1e+15)

val 1.4e+30
(1.4e+30)

1.6e+29
(1.6e+29)

8.1e+25
(5.4e+25)

5.3e+21
(5.3e+21)

2.1e+05
(6.8e+04) 1.8e+05

(4.2e+04)

1.6e+42
(8.8e+41)

3.5e+42
(2.2e+42)

3.8e+05
(1.1e+05)

tst 2.4e+46
(2.4e+46)

1.7e+45
(1.7e+45)

2.2e+41
(2.2e+41)

8.5e+30
(7.5e+30)

3.2e+25
(3.2e+25) 3.6e+19

(3.6e+19)

4e+49
(4e+49)

4.1e+51
(3.4e+51)

1.3e+28
(1.3e+28)

le
ft

trn 3.3e+24
(3.3e+24)

9.3e+08
(9.3e+08)

1.9e+08
(1.4e+08)

1.5e+14
(1.5e+14)

1.5e+14
(1.5e+14)

1.6e+05
(7.1e+04) 1.3e+04

(7.3e+03)

1.8e+04
(1.1e+04)

7.9e+10
(5.6e+10)

val 2.4e+04
(5e+03)

1.8e+04
(2.9e+03)

2.6e+04
(3.1e+03)

2.2e+04
(2.1e+03)

1.6e+05
(5.7e+04)

2.3e+04
(4.1e+03) 1.2e+04

(1.3e+03)
1.2e+04
(8e+02)

4.8e+04
(1.2e+04)

tst 7.7e+14
(5.5e+14)

1.9e+11
(1.5e+11)

8.1e+17
(7.5e+17)

1.4e+27
(1.4e+27)

2.1e+10
(2.1e+10)

1.7e+25
(1.7e+25) 5.6e+05

(1.9e+05)

1.1e+06
(7.5e+05)

5.2e+23
(5.2e+23)

90% Quantile DQN DDQN TD3 SAC PPO

RB PER RB PER RB PER RB PER

d
is

a
b

le
C

P

b
u

sh
y trn 7.3

(2.3) 4.4
(0.11)

5.2
(0.17)

5.6
(0.52)

5.3
(0.32)

7.3
(0.74)

13 (1.3) 9.5
(0.73)

6 (0.32)

val 16 (2.7)
13
(0.71)

14
(0.85)

15
(0.75)

15 (1.5) 18 (1.9) 18 (1.8)
13
(0.8)

23 (2)

tst 46 (15)
25
(2.5)

30 (5.4) 30 (2.9) 26 (3.6) 40 (7.7) 55 (11) 33 (3.1) 42 (4)

le
ft

trn 5.5
(0.51)

5.6
(0.37)

7 (1.1) 6.5
(1.4)

6.9
(0.98) 5.2

(0.43)

11
(0.99)

8.6
(0.69) 5.2

(0.92)

val 12
(0.73)

15 (1.7) 13
(0.79)

14 (2) 13 (1.7)
9.5
(0.41)

20 (1.5) 14 (1.1) 11 (1.5)

tst 28 (3.1) 30 (2.6) 34 (3.7) 34 (3.2) 22 (3.1) 20 (2) 39 (3.1) 32 (4)
19
(4.6)

e
n

a
b

le
C

P

b
u

sh
y trn 6.4e+04

(5.8e+04)
2.4e+05
(2.4e+05)

4.6e+04
(4.5e+04)

3.2e+04
(2.9e+04)

1.8e+02
(1.5e+02)

42 (21) 7.7e+18
(7.6e+18)

3e+14
(3e+14) 35

(5.5)

val 2e+05
(1.9e+05)

1.1e+06
(1.1e+06)

5.8e+04
(4.2e+04)

6e+04
(4.7e+04)

3.1e+02
(2.3e+02)

1.4e+02
(78)

4e+18
(3.9e+18)

2.8e+14
(2.8e+14) 1e+02

(26)

tst 1.6e+05
(6.9e+04)

1.2e+05
(1.1e+05)

2.1e+05
(1.5e+05)

6.9e+04
(4.4e+04)

2e+03
(1.8e+03)

4.9e+02
(2.6e+02)

2.2e+17
(2.2e+17)

2.1e+17
(2.1e+17) 2.8e+02

(43)

le
ft

trn 17 (8.5)
6.3
(0.38)

17 (6.2) 9.9
(3.2)

3.6e+02
(2.9e+02)

17 (1.4) 7.7
(0.32)

6.8
(0.31)

9.9
(0.62)

val 25 (8.9) 15 (2.2) 27 (7.7) 22 (4.2) 2e+02
(99)

24 (2.1) 13
(0.64) 12

(0.57)

27 (2.4)

tst 64 (21) 36 (2.7) 66 (16) 59 (16) 1.7e+03
(1.1e+03)

1e+02
(8.7) 28

(2.5)

30 (3.3) 92 (14)

Table 6: The results of Table 3 with standard error computed over 10 seeds.

RLJ | RLC 2024

95% Quantile DQN DDQN TD3 SAC PPO

RB PER RB PER RB PER RB PER

d
is

a
b

le
C

P

b
u

sh
y trn 80 (67)

9.4
(0.29)

13
(0.68)

14 (1.9) 16 (1.3) 25 (3.7) 85 (14) 48 (7.9) 37 (3.5)

val 2.6e+02
(1.1e+02)

2.2e+02
(39)

1.8e+02
(27)

2e+02
(19)

2.5e+02
(43) 1.5e+02

(20)

2.3e+02
(25)

1.8e+02
(23)

4.1e+02
(63)

tst 1.5e+03
(4e+02)

1.1e+03
(2.5e+02)

2e+03
(6.5e+02)

1.3e+03
(3.1e+02) 1e+03

(2.4e+02)

1.3e+03
(2.5e+02)

2.4e+03
(3.5e+02)

1.2e+03
(2.9e+02)

3.7e+03
(1.3e+03)

le
ft

trn 19 (3.8)
18
(2.7)

28 (7.8) 24 (8.4) 32 (8) 19 (2.3) 47 (7.1) 34 (5.3) 38 (14)

val 1.3e+02
(17)

1.6e+02
(21)

1.2e+02
(11)

1.5e+02
(39)

1.1e+02
(21) 67

(7.8)

1.5e+02
(30)

79 (8.6) 1.2e+02
(34)

tst 7e+02
(1.8e+02)

6.2e+02
(79)

8.3e+02
(1.4e+02)

1.3e+03
(3.1e+02) 5.2e+02

(72)

5.4e+02
(1.1e+02)

1.7e+03
(2.6e+02)

1e+03
(1.8e+02)

5.5e+02
(1.3e+02)

e
n

a
b

le
C

P

b
u

sh
y trn 3.7e+08

(3.4e+08)
3.8e+09
(3.8e+09)

2.8e+07
(2.7e+07)

2.9e+06
(1.9e+06)

1.2e+04
(1.2e+04)

4.2e+03
(3.8e+03)

4.7e+22
(3.2e+22)

7.6e+20
(7.3e+20) 1.4e+03

(4.3e+02)

val 8.9e+07
(5.3e+07)

5.8e+11
(5.8e+11)

6.6e+08
(6.5e+08)

2.6e+06
(1.2e+06)

3e+04
(2.7e+04)

3.6e+04
(3.3e+04)

2.5e+24
(2.5e+24)

5.1e+21
(3.1e+21) 7.1e+03

(1.9e+03)

tst 1.9e+09
(1.8e+09)

1.3e+08
(1.3e+08)

1.3e+08
(1.1e+08)

7.9e+06
(4.6e+06)

6.1e+04
(4.7e+04)

3e+04
(1.6e+04)

3.6e+22
(3.5e+22)

1.8e+24
(1.6e+24) 2.1e+04

(4e+03)

le
ft

trn 1.4e+02
(1.1e+02) 22

(2.2)

1.1e+02
(52)

54 (30) 5.9e+03
(4.3e+03)

83 (17) 28 (1.4) 23 (1.9) 1.6e+02
(30)

val 2e+02
(56)

1.9e+02
(45)

3.9e+02
(1.5e+02)

2.5e+02
(68)

1.1e+04
(7.5e+03)

2.7e+02
(20) 76 (7)

82 (8.8) 5.9e+02
(66)

tst 2.4e+03
(7.7e+02)

1.6e+03
(3.9e+02)

3.8e+03
(1.3e+03)

1.8e+03
(3.9e+02)

4.7e+04
(2.2e+04)

5.8e+03
(1.3e+03) 1.1e+03

(2.4e+02)

1.3e+03
(2.5e+02)

7.5e+03
(9.5e+02)

99% Quantile DQN DDQN TD3 SAC PPO

RB PER RB PER RB PER RB PER

d
is

a
b

le
C

P

b
u

sh
y trn 1.8e+04

(1.6e+04) 55
(3.8)

7e+02
(4.6e+02)

4.2e+02
(2.2e+02)

2.4e+03
(1.4e+03)

3e+03
(1.5e+03)

3.9e+04
(9e+03)

2.2e+04
(1e+04)

4e+04
(1e+04)

val 5.1e+05
(2e+05)

3.1e+05
(7.1e+04)

2.7e+05
(7.2e+04)

3.3e+05
(9e+04)

2.7e+05
(7.3e+04) 1.9e+05

(5.2e+04)

4.3e+05
(5.2e+04)

4.7e+05
(6e+04)

5.7e+05
(6.5e+04)

tst
3.3e+05
(3.3e+04)

7.5e+05
(4.1e+05)

6e+05
(1.6e+05)

5.4e+05
(1.3e+05)

4.5e+05
(9e+04)

4.6e+05
(3.3e+04)

6.2e+05
(1.1e+05)

4e+05
(8.6e+04)

6e+05
(5e+04)

le
ft

trn 2e+03
(9.1e+02) 1.5e+03

(8.3e+02)

7e+03
(3.6e+03)

3.3e+03
(2.2e+03)

9.6e+03
(4.1e+03)

2e+03
(7.6e+02)

9.9e+03
(3.7e+03)

4.6e+03
(2.3e+03)

2.8e+04
(1.6e+04)

val 3e+05
(3.9e+04)

2.5e+05
(2.8e+04)

2.2e+05
(4.4e+04)

1.4e+05
(2.4e+04)

2e+05
(3.8e+04)

1.5e+05
(2.6e+04)

2.4e+05
(3.1e+04) 1.2e+05

(2.1e+04)

2.1e+05
(3.3e+04)

tst 3.1e+05
(3.2e+04)

4.6e+05
(6.5e+04)

4.5e+05
(5.9e+04)

5.7e+05
(1.1e+05) 3e+05

(3.2e+04)

3.3e+05
(2.4e+04)

4.3e+05
(4.3e+04)

3.7e+05
(3.3e+04)

3.1e+05
(4e+04)

e
n

a
b

le
C

P

b
u

sh
y trn 4.3e+26

(3.7e+26)
5.7e+23
(5.7e+23)

1.3e+17
(1e+17)

7.9e+14
(7.7e+14) 4.2e+05

(1.6e+05)

2.5e+06
(1.6e+06)

1.8e+37
(1.1e+37)

3.6e+42
(3.6e+42)

1.6e+06
(4.2e+05)

val 1.2e+22
(1.2e+22)

5.7e+24
(5.7e+24)

2.8e+23
(2.1e+23)

1.7e+14
(9.8e+13) 2e+06

(4.4e+05)

3.1e+06
(1.8e+06)

3.7e+38
(2.9e+38)

4.2e+40
(2.8e+40)

5.6e+06
(1.5e+06)

tst 2.5e+29
(2.5e+29)

5.7e+25
(5.7e+25)

1e+23
(1e+23)

6.5e+18
(6.4e+18) 2.6e+06

(5.9e+05)

4.1e+06
(1.6e+06)

9.2e+39
(9.2e+39)

1.3e+41
(1.3e+41)

7.6e+06
(2.3e+06)

le
ft

trn 7.1e+04
(5.5e+04)

3.5e+03
(1.2e+03)

3.7e+04
(1.9e+04)

1.9e+04
(1.3e+04)

1e+06
(5.1e+05)

7.6e+04
(2.3e+04)

5.1e+03
(1.8e+03) 1.9e+03

(6.9e+02)

4.3e+05
(1.1e+05)

val 2.3e+05
(7.9e+04)

2.4e+05
(4.6e+04)

3.1e+05
(5.6e+04)

3.6e+05
(8.6e+04)

1.6e+06
(3.1e+05)

2.6e+05
(4.1e+04) 1.3e+05

(4.5e+04)

1.4e+05
(2.5e+04)

6.3e+05
(1.6e+05)

tst 1.8e+06
(7.1e+05)

7.6e+05
(1.6e+05)

7.9e+05
(1e+05)

1.4e+06
(3.6e+05)

4.8e+06
(7.6e+05)

7.6e+06
(6.1e+06) 3.8e+05

(4.1e+04)

4.4e+05
(3.6e+04)

3.3e+06
(1.9e+06)

Table 7: The 95% and 99% quantile of CMMs with standard error computed over 10 seeds.

RLJ | RLC 2024

J Benchmarking Offline RL

We also benchmark offline RL algorithms on optimizing left-deep plans with CPs disallowed. In this
section, we focus on the 113 queries from the JOB (Leis et al., 2015) which is a smaller and easier
setting than our main dataset of 3300 queries. We focus on the JOB for offline RL because Leis
et al. (2015) provided behavior policy traces for all 113 queries, based on popular search heuristics
(described below).

JOB Data DQN DDQN BC BCQ CQL

Median STD Median STD Median STD Median STD Median STD

d
is

a
b

le
C

P

le
ft

trn 3.22 1.9e6 1471 3.4e10 1.6e5 7.6e+11 3.1e3 2.7e13 79 4.1e12

tst 3.19 1.9e6 1470 3.3e10 8.0e4 7.3e12 9908 2.6e13 76 3.9e12

val 3.21 2.0e6 1.0e3 3.4e10 6.4e5 7.5e12 1.5e5 2.9e13 81 4.1e12

Table 8: CCM (lower is better) averaged over the training (trn), validation (val) or testing (tst)
query sets.

Experimental Setup Our offline dataset is comprised of trajectories from the following behavior
policies provided by the JOB (Leis et al., 2015): adaptive, dphyp, genetic, goo, goodp, goodp2,
gooikkbz, ikkbz, ikkbzbushy, minsel, quickpick, simplification (Neumann & Radke, 2018). We
highlight that these behavior policies are search heuristics, which operate given a cost model, e.g.,
estimated IR cardinalities, to plan over. To generate behavior trajectories, we provided these heuristics
access to the ground-truth IR cardinalities. Alternatively, one could take traces from existing DBMS
such as Postgres. For each heuristic, we collected 1000 trajectories across different queries. We
partition the dataset for training, evaluation and testing similarly as in our online experiments.

Discussions Table 8 summarizes our offline results. We find that DQN has the best performance
in terms of median and the validation/testing results are even better than online. CQL also obtains
reasonable performance, but all other methods seem to have relatively poor median performance
even on the training set. It’s worth noting that all methods seem to have a heavy tail performance
distribution (over queries), as shown by the large standard deviations. In later sections of the
appendix, we see this is the case for online RL as well. This heavy-tail distribution of returns
motivates applying risk-sensitive RL methods to JoinGym for future work.

We also tested on some other offline algorithms, such as SAC, and it is hard to converge hence we
didn’t report the results. We observe that the TD error is increasing, although the Q value functions,
actors and critics are learning. Making too many TD updates to the Q-function in offline deep RL is
known to sometimes lead to performance degradation and unlearning, we can use regularization to
address the issue (Kumar et al., 2021).

J.1 Hyperparameters for Offline RL Algorithms

We performed hyperparameter search with grid search and Bayesian optimization. The final parame-
ters we used for evaluation is shown below in Tables 10-13.

RLJ | RLC 2024

J.1.1 Batch-Constrained Q-learning

Table 9: Hyperparameter of Batch-Constrained Q-learning algorithm (BCQ).

Hyperparameter Value

Learning rate 6.25 × 10−5

Optimizer Adam (β = (0.95, 0.999))
Batch size 32
Number of critics 6
Discount factor 0.99
Target network synchronization coefficiency 0.005
Action flexibility 0.3
Gamma 0.99

J.1.2 Behavior Cloning

Table 10: Hyperparameter of Behavior Cloning (BC).

Hyperparameter Value

Learning rate 0.001
Optimizer Adam (β = (0.9, 0.999))
Batch size 100
Beta 0.5

J.1.3 Conservative Q-Learning

Table 11: Hyperparameter of Conservative Q-Learning (CQL).

Hyperparameter Value

Actor learning rate 3 × 10−4

Critic learning rate 3 × 10−4

Learning rate for temperature parameter of SAC 1 × 10−4

Learning rate for alpha 1 × 10−4

Batch size 256
N-step TD calculation 1
Discount factor 0.99
Target network synchronization coefficiency 0.005
The number of Q functions for ensemble 2
Initial temperature value 1.0
Initial alpha value 1.0
Threshold value 10.0
Constant weight to scale conservative loss 5.0
The number of sampled actions to compute 10

RLJ | RLC 2024

J.1.4 DQN

Table 12: Hyperparameter of DQN.

Hyperparameter Value

Learning rate 6.25e-4
Batch size 32
target_update_interval 8000

J.1.5 Double DQN

Table 13: Hyperparameter of DDQN.

Hyperparameter Value

Learning rate 6.25e-4
Batch size 32
target_update_interval 8000

