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ABSTRACT

When primary objectives are insensitive or delayed, experimenters

may instead focus on proxy metrics derived from secondary out-

comes. For example, technology companies often infer the long-

term impacts of product interventions from their effects on short-

term user engagement signals. We consider the meta-analysis of

many historical experiments to learn the covariance of treatment ef-

fects on these outcomes, which can support the construction of such

proxies. Even when experiments are plentiful, if treatment effects

are weak, the covariance of estimated treatment effects across ex-

periments can be highly biased. We overcome this with techniques

inspired by weak instrumental variable analysis. We show that Lim-

ited Information Maximum Likelihood (LIML) learns a parameter

equivalent to fitting total least squares to a transformation of the

scatterplot of treatment effects, and that Jackknife Instrumental

Variables Estimation (JIVE) learns another parameter computable

from the average of Jackknifed covariance matrices across experi-

ments. We also present a total covariance estimator for the latter

estimand under homoskedasticity, which is equivalent to a :-class

estimator. We show how these parameters can be used to construct

unbiased proxy metrics under various structural models. Lastly, we

discuss the real-world application of our methods at Netflix.

CCS CONCEPTS

• Computing methodologies → Learning linear models; •

Mathematics of computing → Multivariate statistics.
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1 INTRODUCTION

Projecting long-term treatment effects from short-term metrics is

a ubiquitous problem in experimentation. For example, technol-

ogy companies seek to optimize insensitive primary metrics (such

as habitual usage, subscriber retention, and long-term revenue),

but are unable or unwilling to measure treatment effects on these

metrics precisely.1 To address this issue, they optimize a suite of

secondary metrics that are associated with the primary metrics, but

more sensitive in terms of signal-to-noise and easier to measure in

short-term experiments. Under certain assumptions, the treatment

effect on a “surrogate index” of multiple secondary metrics yields a

precise estimate of the long-term treatment effect [4, 17].

A class of statistical parameters that intuitively relates to the

problem of constructing proxy metrics for a primary metric is

the covariance matrix of true average treatment effects (ATEs)

on primary and secondary metrics in previous experiments, and

functions thereof. For example, when constructing weighted indices

of secondary outcomes, it is intuitive to consider the Ordinary (OLS)

and Total Least Squares (TLS) regression of true ATEs on a primary

outcome on true ATEs on the secondary outcomes in the scatterplot

of true ATEs over available historical experiments. Here, by true

ATE, we mean the unobserved mean on the population, in contrast

to the estimated ATE actually observed on the experimental sample.

How these statistical parameters actually connect to the question

of proxy metrics or surrogates is the first question we investigate

in this paper. In Section 3, we demonstrate that statistical features

of the covariance matrix of true ATEs have causal interpretations

under different causal models. For instance, under these models,

they can support inference on effects of novel treatments on long-

term outcomes based on short-term observations.

The second question we study is the estimation of the covariance

matrix of the true ATEs when the signal-to-noise ratio is small in

each experiment, as is often the case in digital experimentation

[8, 16, 20]. The statistical challenges are analogous to the many

weak instrumental variables (IVs) setting. One question of interest

in the weak instrument literature is whether allowing the number

of instruments to diverge while holding their strength fixed yields

consistent estimates [15]. Analogously, we show that increasing

1For example, they may be interested in the effect of digital platform design on long-
term user retention [12], but unwilling to run a sufficiently large experiment for a long
time to measure treatment effects on long-term retention.
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the number of experiments, even if each maintains a low signal-to-

noise ratio, enables consistent estimation of the covariance matrix

of true treatment effects. In fact, each of the three methods we study

has a weak-instrument estimator counterpart.

Our results demonstrate that we can reliably estimate the co-

variance matrix of true treatment effects as a parameter at the

meta-analytic level, that is, from experiment-level aggregates. In

this way, we contribute to an emerging literature on meta-analytic

approaches to surrogacy [7, 9, 18], which is particularly relevant

given the large number of experiments conducted on modern on-

line experimentation platforms. The sheer volume of historical data

from these platforms often makes unit-level analysis computation-

ally challenging, if not prohibitive [19]. Therefore, our methods

are not only statistically robust, but also operationally feasible for

large-scale experimentation.

The paper is organized as follows:

• In Section 2, we present the data collection process and the

statistical parameters.

• In Section 3, we discuss the relationship of the statistical

parameters to causal parameters and the construction of

proxy metrics.

• In Section 4, we present weak-IV-inspired estimators of the

covariance matrix of true treatment effects and the OLS and

TLS estimands in the scatterplot of true ATEs.

• In Section 5, we conduct a simulation study to illustrate the

performance of our proposed estimators and provide visual

intuition on the mechanics of some of our estimators.

• Lastly, in Section 6, we describe the real-world application

of our methods to derive a linear surrogate index for experi-

mentation at Netlix.

2 STATISTICAL SETUP AND NOTATION

2.1 Data

We observe # unit-level quadruples $ = (),�, (, . ) where ) ∈

{1, . . . ,  } is the experiment index, � ∈ {0, 1} is the treatment arm

index, ( is a (� − 1)-dimensional vector of secondary metrics, and

. is the primary metric of interest. We observe # =  = units di-

vided between  experiments, each of which has two arms with

= units.2 Units in different experiments may be drawn from dif-

ferent superpopulations, but are assigned uniformly completely

at random to cells. The observations $1, . . . ,$# ∼ $ are each

identically distributed. They may not be independent due to the re-

striction of having exactly = units in each experiment. Conditional

on)1, . . . ,)# and�1, . . . , �# , any two observations are nonetheless

independent.

2.2 Treatment-effect Covariance Matrix

For any C = 1, . . . ,  , let g( (C) = � [( | � = 1,) = C] − � [( | � =

0,) = C] and g. (C) = � [. | � = 1,) = C] − � [. | � = 0,) = C] be

the true ATEs in experiment C on the vector ( and on the scalar . ,

2While our results extend to the more realistic setting of multiple treatment arms of
varying size per experiment, we focus on the two-arm, constant sample size case for
ease of exposition.
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That is,Λ is the covariance matrix of true ATEs across the primary

metric and secondary metrics over the population of experiments.

We assume throughout that Λ((, is positive definite, meaning all

its eigenvalues are strictly positive. Note that this requires at least

 ≥ � − 1 tests.

2.3 Statistical Parameters

We consider two statistical parameters. Our first parameter is

\1 (Λ ) = Λ
−1
((, Λ(., .

This is the OLS in the scatterplot of the  true treatment effects.

While we discuss the exact causal interpretation of this parameter

(which requires structural assumptions) in the next section, intu-

itively the OLS measures the statistical relationship between the

surrogate metrics and the long-term metric [18].

Our second parameter is more complex:

\2,Ψ (Λ ) = −WΨ,( (Λ )/WΨ,. (Λ ),

where [WΨ,. (Λ ), WΨ,( (Λ )
) ]) is a generalized eigenvector solv-

ing (Λ − ^Ψ)W = 0 for the smallest possible ^ ≥ 0 for which a

solution exists, where Ψ is a given positive definite matrix. The pa-

rameter \2,Ψ (Λ ) is the TLS on the Ψ−1/2-transformed scatterplot

of true treatment effects. While this parameter is less intuitive, we

show below that it coincides with \1 (Λ ) under certain structural

assumptions.

We emphasize that these OLS and TLS parameters are defined

in terms of only  points in a �-dimensional scatterplot. The lo-

cation of these points themselves (the true ATEs) are, nonetheless,

unknown population quantities. Therefore, \1 (Λ ) is a popula-

tion quantity, meaning it is a function of the unknown population

distribution of the data $ (that is, of infinite draws of $).

3 CAUSAL MODELS AND RELATIONSHIP TO

PROXIES

We now consider various causal models and examine how the sta-

tistical parameters \1 (Λ ) and \2 (Λ ) relate to causal parameters

in these models. Equivalently, this section derives the structural

assumptions under which these statistical parameters can be given

a causal interpretation in terms of the effect of ( on . and thereby

used to construct proxy metrics for . .
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3.1 Linear Structural Model without Direct

Effects

Consider the following linear structural model with experiment-

level fixed-effects and unmeasured confounding* between ( and

. :

( = `( () ) + c( () )� + W* + [

. = `. () ) + (V + X* + n.

Here, c( () ) is the (� − 1) × 1 vector of first-stage effects in ex-

periment ) (that is, the ATEs on the � − 1 secondary metrics ( of

the intervention trialed in experiment ) ), `( () ) is a (� − 1) × 1

vector of per-experiment fixed effects on ( , and `. () ) is a scalar

per-experiment fixed effect on . .

Suppose that � is randomized, and that the errors are such that

� [[ | (,* ,�] = 0 and � [n | (,* ,�] = 0. Then the statistical

estimands g( (C) and g. (C) identify the causal parameters c( (C) and

c( (C)V . It is straightforward to check that under the data-generating

process induced by this structural model,

V = \1 (Λ ) = \2,Ψ (Λ )

for any positive definite Ψ. The equality of the two statistical param-

eters can be understood as follows. Under the DGP induced by the

above structural model, in which ( fully mediates the effect of � on

. , g. (C) = g( (C)V for every C ∈ [ ]. This implies that [1,−V]) is an

eigenvector associated with eigenvalue 0, which must be the small-

est as Λ is positive semi-definite. Therefore, the TLS estimand is

also the OLS estimand.

Relationship to proxies. Now consider a new experiment) =  +1,

in which we also randomize units equiprobably between treatment

(� = 1) and control (� = 0). Denoting ( (C, 0), . (C, 0) the potential

outcomes generated by the structural model (that is, the random

variables obtained by setting values ) = C and � = 0 and sampling

* and the error terms in the above equations), the ATE on . is

related to the difference in arm-specific means on ( as follows:

� [. ( + 1, 1) − . ( + 1, 0)]

= � [( ( + 1, 1) − ( ( + 1, 0)]V

= (� [( | ) =  + 1, � = 1] − � [( | ) =  + 1, � = 0])\8 (Λ ),

where 8 = 1 or 8 = (2,Ψ). In words, given the data-generating

distribution in  historical experiments in which we observe .

and ( , and the data-generating distribution in an experiment in

which we observe only the short-term outcome ( , we can estimate

the ATE on the long-term outcome. That is, ℎ(() = \8 (Λ )( is an

unbiased surrogate index for . , meaning that ATEs on ℎ(() equal

ATEs on . .

3.2 Linear Structural Model with

INSIDE-consistent Direct Effects

We now enrich the above linear structural model with direct effects

c. () ) on . that are not mediated by ( :

( = `( () ) + c( () )� + W* + [

. = `. () ) + c. () )� + (V + X* + n.

It is generally impossible to disentangle the direct (c. () )) and

indirect/mediated (c( () )V) effects. Still, it is possible to estimate

meaningful causal parameters under the assumption of INstrument

Strength Independent of Direct Effect (INSIDE) from the Mendelian

randomization literature [5], which states that the first-stage effects

of � on ( are independent of the direct effects of � on . . In par-

ticular, INSIDE requires that the vector 0. = [c. (1), . . . , c. ( )]
⊤

of direct effects is orthogonal to the columns of the matrix �( =

[c( (1)
⊤, . . . , c( ( )

) ]⊤ of first-stage effects on ( , that is, 0)
.
�( =

0.

Under the data-generating distribution induced by randomized

treatment assignment and the INSIDE-consistent causal model, the

covariance matrix Λ of true treatment effects is

Λ =

[
V)Λ((, V (Λ((, V)

⊤

Λ((, V Λ((, 

]
+

[
c⊤
.
c.

 
−

(c⊤
.
1)2

 2 0

0 0,

]

with Λ((, =
Π
⊤
(
Π(

 
−

1
⊤
Π(Π

⊤
(
1

 2 .

As can be seen from the above matrix expression, \1 (Λ ) = V

identifies the structural parameter V . However, with direct effects,

it is no longer the case in general that [1,−V]⊤ is an eigenvector of

Λ and therefore the TLS estimand \2,Ψ (Λ ) diverges in general

from V .

(-mediated ATE. In the presence of direct effects, it is no longer

the case that ATEs on . are given by ATEs on ( times V , as (

no longer mediates the effect of the treatment fully. Still, V , which

coincideswith the OLS estimand\1 (Λ ), has a causal interpretation

under the linear structural model. Let us introduce the potential

outcomes ( (C, 0) and . (C, 0, B) generated by the structural model

(that is, the random variables obtained by setting) = C, � = 0, ( = B

in the above equations and independently sampling* and the error

terms). It holds that the natural indirect effect on . through ( is

given by

� [. ( + 1, 0, ( ( + 1, 1)) − . ( + 1, 0, ( ( + 1, 0)]

= � [( ( + 1, 1) − ( ( + 1, 0)]V

= (� [( | ) =  + 1, � = 1] − � [( | ) =  + 1, � = 0])\1 (Λ ),

for either 0 ∈ {0, 1}. That is, we can identify from the population

distribution of historical experiments a proxy ℎ(() = \1 (Λ )( such

that in a new experiment, the ATE on ℎ(() equals the part of the

effect of the intervention on . that is mediated by ( .

3.3 Nonparametric IV Model

Relaxing the assumption of linearity, we now consider the following

nonparametric IV model:

( = `( () ) + c( () )� + [

. = `. () ) + ℎ(() + n,

where � [[ | �,) ] = 0 and � [n | �,) ] = 0. We now show that,

under some assumptions, \1 identifies a functional of ℎ.

Assumption 1 (Small effects). ‖c( (C)‖∞ ≤ n for every C ∈ [ ]

for some n > 0.

We will think of n as a small quantity, which is often reasonable

in digital experiments.

Assumption 2 (Bounded Hessian). ℎ is twice-differentiable and

∇2ℎ


 ≤ " for some" > 0, where the norm is the nuclear norm.
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Proposition 1. Suppose that Assumptions 1-2 hold. Then,

\1 (Λ ) =

(
 ∑

C=1

c( (C)c( (C)
⊤

)−1  ∑

C=1

c( (C)c( (C)
⊤� [∇ℎ(( (C, 0))]

+$ ("n),

where ( (C, 0) is the potential outcome generated by the structural

model under the control treatment in experiment C .

Proof. By definition of \1 (Λ ), the randomization of �, and

from a second-order Taylor expansion,

\1 (Λ )

=

(
 ∑

C=1

g( (C)g( (C)
⊤

)−1  ∑

C=1

c( (C)� [ℎ(( (C, 0) + c( (C)) − ℎ(( (C, 0))]

=

(
 ∑

C=1

c( (C)c( (C)
⊤

)−1  ∑

C=1

c( (C)c( (C)
⊤� [∇ℎ(( (C, 0))]

+

(
 ∑

C=1

c( (C)c( (C)
⊤

)−1  ∑

C=1

c( (C)c( (C)
⊤� [∇2ℎ((̃ (C, 0))g( (C)],

for some (̃ (C, 0) on the segment [( (C, 0), ( (C, 0) + g( (C)]. Assump-

tions 1 and 2 then yield that the second term above is $ ("n). �

In words, Proposition 1 above tells us that under the NPIV

model above, the OLS statistical estimand identifies an instrument-

strength-weighted average of the expected gradient of the structural

function ℎ.

4 ESTIMATING TREATMENT EFFECT

COVARIANCES

In what follows, we will concatenate the variables ( and . in the

vector � = [., (] and also write g (C) = [g. (C), g( (C)].

4.1 A Naive Estimator

A naive estimator for the covariance matrix Λ of true treatment

effects is simply the empirical covariancematrix Σ̂ of the estimated

ATEs ĝ( (C) and ĝ. (C):

Σ̂ =
1

 

 ∑

C=1

ĝ (C)ĝ (C)⊤ −

(
1

 

 ∑

C=1

ĝ (C)

) (
1

 

 ∑

C=1

ĝ (C)

)⊤
,

with ĝ (C) = 1
=/2

∑
8=1:�8=1,)8=C �8 −

1
=/2

∑
8=1:�8=0,)8=C �8 .

What is the target estimand of Σ̂ ? The total variance formula

yields that:

�Σ̂ = Λ +
4

=
Ω̄ ,

where

Ω̄ =
1

 

 ∑

C=1

ΩC,1 + ΩC,0

2

and ΩC,0 = Cov(� | ) = C, � = 0) is the within-cell covariance

matrix of � . In other words, 4Ω̄ /= is the covariance of the unit-

level sampling variance, or “noise.”

In industrial (especially digital) experimentation, ATEs typically

exhibit a low signal-to-noise ratio. This implies that the term 4Ω̄ /=

is often significant relative to Λ [7, 16]. As a result, under our

first or second structural model, the estimate of V based on the

empirical covariance matrix, V̂ = Σ̂
−1
((, 

Σ̂(., , is biased and remains

inconsistent for V even as we increase the number of experiments

(that is, as  → ∞). Since the two-stage least squares estimator

under a categorical instrument equals OLS on the group means, it

holds that V̂ is 2SLS with

• dependent variable (2� − 1). ,

• endogenous variable (2� − 1)( ,

• instrument ) .

The fact that V̂ is biased when noise is non-negligible reflects the

well-established fact that 2SLS is inconsistent under weak instru-

ments [2]. This suggests that insights from the weak instrumental

variable literature could improve the estimation of Λ . In the next

sections, we will consider three different methods inspired by weak

IV estimators: (1) the Jackknife Instrumental Variable estimator

(JIVE), (2) the Limited Information Maximum Likelihood (LIML)

estimator, and (3) the general form of :-class estimators.

4.2 Jackknifed Covariance Matrix of Treatment

Effects

We propose an estimator of Λ inspired by the JIVE estimator [2].

Consider the transformed vector �̃ = 2(2� − 1)� . Observe that

� [�̃ | ) = C] = g (C) = � [� | ) = C, � = 1] − � [� | ) = C, � = 0].

For any C, 0, 8 , let

ĝ (C) =
1

=

∑

8:)8=C

�̃8 and ĝ−8 (C) =
1

= − 1

∑

9≠8
)9=C

�̃ 9

be the estimated ATE on � in experiment C , and its counterpart

that leaves out observation 8 . Let

Λ̂2 (C) =
1

=

∑

8:)8=C

ĝ−8 (C)�̃
⊤
8

be the Jackknifed second-order moments matrix in experiment C ,

and let

Λ̂
JK
 

=
1

 

 ∑

C=1

Λ̂2 (C) −

(
1

 

 ∑

C=1

ĝ (C)

) (
1

 

 ∑

C=1

ĝ (C)

)⊤

be the Jackknifed covariance matrix. The Jackknife construction

ensures that only the common source of variation between units in

the same experiments is captured: the variation due to the treatment

assignment, as opposed to unit-level noise. It is immediate that the

Jackknifed second-order moment matrix is an unbiased estimate of

the second-order moment matrix of the true treatment effects. It

can also readily be checked that under mild conditions the second

order term has bias $ (# −1); in other words, the bias scales with

the total number of units in all experiments as opposed to the

number of observations per experiment. We state this formally in

the following proposition:

Proposition 2. Suppose that maxC,0


ΩC,0



 ≤ " for some" > 0,

where the norm is any matrix norm. Then � [Λ̂
JK
 
] = Λ +$ ("/# ).
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Proof. As the second-order moment Jackknifed matrix  −1
∑ 
C=1 Λ̂2 (C) is an unbiased estimate of  −1 ∑

C=1 g (C)g (C)
⊤, the bias

reduces to that of the second term, which we rewrite as # −1/#/
⊤
#
,

where /# = # −1/2 ∑
8=1 �̃8 − � [�̃8 ]. The (sequence of) random

variables /# can be controlled under various set of conditions.

For example, suppose 0 ≤ < 4 ΩC,0 4 " < ∞ for every C, 0,

and suppose that  −1 ∑
C ΩC,1 + ΩC,0 → Ω in probability for some

Ω. Then, under a Lyapunov condition, a standard central limit

theorem guarantees that /#  / where / ∼ N(0,Ω). Then

� [(/#/
⊤
#
)] → � [//⊤)] 4 "�� , which implies the result. �

As a corollary, if it admits a probability limit, the plug-in estima-

tor \8 (Λ̂
JK
 
) for either 8 = 1 or 8 = (2,Ψ) is a consistent estimator of

the parameter \8 (Λ ) as the number of experiments grows, → ∞,

even as the size of each experiment remains fixed. The former is

equivalent to the JIVE estimator, while the latter is equivalent to

the estimator proposed in [11].

Note that the Jackknifed covariance matrix estimator does not

require homoskedasticity of the unit-level noise — that is, it does

not require Ω0,C = Ω for all C, 0 — for consistency. However, it

does require us to Jackknife the unit-level data in every experiment,

which can be computationally prohibitive when = and  are large.

In the next two sections, we therefore consider howwe can leverage

homoskedasticity when it is a reasonable assumption.

4.3 Estimating Treatment Effect Covariances by

Isotropizing Noise

In this section and the next, we assume a common noise covariance

matrix Ω across all experiments and treatment arms, that is, ΩC,0 =

Ω for every C, 0. We will further assume that we know Ω to a

high relative precision. These are often reasonable assumptions in

digital experiments: while treatment effects are small, correlations

across metrics tend to be (1) stable across experiments, and (2) non-

negligible, and thus easy to estimate with a high signal-to-noise

ratio by leveraging populations across multiple experiments (e.g.,

the entire user base). Furthermore, considering metrics that are

sufficiently nonredundant ensures that Ω is well-conditioned.

Under the homoskedasticity assumption, the total covariance

formula yields that

�Σ̂ = Λ +
4

=
Ω.

Under known Ω, we can multiply Σ̂ on both sides by Ω
−1/2 to

obtain a transformed Λ plus isotropic noise:

�Ω−1/2
Σ̂ Ω

−1/2
= Ω

−1/2
Λ Ω

−1/2 +
4

=
�� .

Because adding a multiple of the identity to a matrix does not affect

its eigenvectors nor the rank of their corresponding eigenvalues,

the smallest eigenvector of Ω−1/2
Λ Ω

−1/2 is the smallest eigen-

vector of �Ω−1/2
Σ̂ Ω

−1/2 (where by smallest eigenvector we mean

an eigenvector assoicated with the smallest eigenvalue). Denote

this eigenvector by W̃ . Because Λ and Ω both have non-negative

eigenvalues, applying the transformation Ω
−1/2 also does not affect

the ordering of their eigenvectors, so we can recover the smallest

eigenvector ofΛ by applying Ω−1/2 to W̃ . Denote by Ŵ the result

of this procedure applied to the estimate Σ̂ itself (that is, rather

than its unknown expectation), and let \̂!�"! = −Ŵ ,(/Ŵ ,. . Un-

der the existence of the appropriate probability limits, \̂!�"! is a

consistent estimate of \2,Ω (Λ ).

As our notation suggests, \̂!�"! is equal to the LIMLK (LIML

with Known noise covariance matrix) estimate with dependent

variable .̃ = 2(2� − 1). , endogenous predictors (̃ = 2(2� − 1)( ,

and instrument) . (This can be observed directly from the definition

of LIMLK [1].)

As the smallest eigenvector of the covariance matrix of obser-

vations is the statistical target of Total Least Squares (TLS), the

procedure we just described, and thus LIMLK, can be implemented

by: (1) transforming the observations by applying Ω
−1/2, (2) run-

ning TLS in the transformed space, and (3) transforming the smallest

eigenvector obtained from TLS by applying Ω
−1/2. We illustrate

this procedure visually in Section 5.

A causal inference implication of this method is that, under the

linear structural model presented in subsection 3.1, the structural

coefficient V equals \2,Ω (Λ ), which we can estimate consistently

with \̂!�"! . However, under the presence of direct effects, as men-

tioned in Section 3.2, \2,Ω (Λ ) no longer equals V , and therefore

treatment effects on \2,Ω (Λ )( cannot be interpreted as the part

of the treatment effect of � on . that is mediated by ( .

4.4 Estimating Treatment Effect Covariances by

Subtracting Noise

In the previous subsection, we leveraged only the direction of the

known Ω but not its scale, allowing us to make a connection to

LIMLK. (Note that the above procedure would give the same result

if we used dΩ for d > 0 instead of Ω.) Under known Ω, there

is a perhaps more straightforward estimation procedure for Λ :

subtract (4/=)Ω from Σ̂ . Formally, letting Λ̂
TC
 

= Σ̂ − (4/=)Ω

(where TC stands for Total Covariance), we have that

�Λ̂TC
 

= Λ ,

and therefore, under the existence of the appropriate probability

limits, the plug-in estimator \8 (Λ̂
TC
 

), for either 8 = 1 or 8 = (2,Ψ),

provides a consistent estimator for \8 (Λ ). In particular, when

either ( fullymediates the effect of� on. (no direct effects) or when

direct effects follow the INSIDE assumption, we can consistently

estimate the structural parameter V with \1 (Λ̂
TC
 

).

Connection with IV-estimators. Defining the matrix of centered

observations �̃0
= [.̃ 0, (̃0] as �̃0

= � (� − # −1
11

⊤)�̃ , and using

the empirical within-experiment covariance for Ω, we can readily

check that

\1 (Λ̂
TC
 

) =
((̃0)⊤ (� − (1 + 4/=)") ).̃

0

((̃0)⊤ (� − (1 + 4/=)") )(̃0
, (1)

with ") = � − %) , %) = )̃ ()̃⊤)̃ )−1)̃⊤, and )̃ is the # ×  matrix

of one-hot encodings of experiment membership ) (that is )̃8,C =

1{)8 = C}). One might recognize from (1) that \1 (Λ̂
TC
 

) is a so-called

:-class IV estimator, with : = 1 + 4/=.

5 SIMULATION STUDY

To provide insight into our statistical setup and the performance of

our estimators, we conduct a simulation study. The parameters of
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