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Abstract

We propose training fitted Q-iteration with log-

loss (FQI-LOG) for batch reinforcement learn-

ing (RL). We show that the number of samples

needed to learn a near-optimal policy with FQI-

LOG scales with the accumulated cost of the op-

timal policy, which is zero in problems where

acting optimally achieves the goal and incurs no

cost. In doing so, we provide a general frame-

work for proving small-cost bounds, i.e. bounds

that scale with the optimal achievable cost, in

batch RL. Moreover, we empirically verify that

FQI-LOG uses fewer samples than FQI trained

with squared loss on problems where the optimal

policy reliably achieves the goal.

1. Introduction

In batch reinforcement learning (RL), also known as offline

RL, the goal is to learn a good policy from a fixed dataset. A

standard approach in this setting is fitted Q-iteration (FQI)

(Ernst et al., 2005), which iteratively obtains a sequence

of value functions by fitting the next value function to a

target that is based on the data and the previously obtained

value function. In this work we propose a simple and princi-

pled improvement to FQI, using log-loss (FQI-LOG), which

is applicable when the returns along trajectories lie in a

bounded interval. We prove that the number of samples the

new method requires to learn a near-optimal policy scales

with the cost of the optimal policy, leading to a so-called

small-cost bound, the RL analogue of a small-loss bound in

supervised learning. Such bounds predict improved sample

efficiency in goal oriented RL tasks where the goal is reli-

ably achievable and the cost is set up to penalize failure in

achieving the goal; a prediction we validate empirically. We

highlight that FQI-LOG is the first computationally efficient

batch RL algorithm to achieve a small-cost bound, provided
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that a regression oracle is available; a condition that can be

met, e.g., when logit models are used in FQI-LOG.

Most earlier works in batch RL focused on algorithms that

achieve the optimal worse-case dependence on the number

of samples required to learn a near-optimal policy (Munos,

2003; Antos et al., 2007; Chen & Jiang, 2019; Xie & Jiang,

2021). The only work prior to ours that is known to adap-

tively improve sample efficiency when facing a task with

near-zero optimal cost is due to Wang et al. (2023), who

obtain small-cost bounds for finite-horizon batch RL prob-

lems but using the so-called “distributional RL” approach.

In this approach, one solves the regression problems arising

when estimating the distribution of a policy’s accumlated

cost. The inspiration for our work comes from this work,

combined with the insights of Abeille et al. (2021); Foster

& Krishnamurthy (2021) who showed that, in the simpler

bandit problems, log-loss alone is sufficient for obtaining

small-cost bounds.

Why log-loss gives a small-cost advantage is subtle. When

used with an unrestricted model class (think: finite state-

action space, “tabular learning”), both log- and squared

losses achieve small cost bounds because they share the

same minimizers, which predict the empirical mean of re-

sponses for all inputs. However, when the model class is

restricted (the only practical case for large problems), log-

loss and squared loss will trade off errors at the various

inputs differently. Specifically, with log-loss, the penalty

for predicting a value far from an observed mean increases

rapidly as the observed mean gets close to the boundary of

its range, an effect that is absent with squared loss. Conse-

quently, log-loss will favor predictors that fit well to those

observed values that are near the boundary of the range, mak-

ing the learning process disregard large variance observed

values, stabilizing learning, a property not shared when a

squared loss is used. As a result, as we show, under suit-

able additional technical assumptions, log-loss based FQI

achieves small-cost bounds, a property that is not shared

when squared loss is used with FQI.

The main contributions of this work can be summarized as:

(i) We propose training FQI with log-loss and prove it en-

joys a small-cost bound. This is the first efficient batch RL

algorithm that achieves a small-cost bound. When showing
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this result, we make two technical contributions that may be

of independent interest: (ii) We show that the Bellman opti-

mality operator is a contraction with respect to the Hellinger

distance, a result; (iii) We present a general result that de-

composes the suboptimality gap of the value of a greedy

policy induced by some value function, f , into the product

of a small-cost term and the pointwise triangular deviation

of f from q⋆, the value function of the optimal policy.

2. Preliminaries

In this section we review some definitions and concepts of

Markov Decision Processes (MDPs) and define the notation

used. Readers unfamiliar with the basic theory of MDPs

are recommended to consult the book of Bertsekas (2019),

or that of Szepesvári (2010). All results mentioned in this

section can be found in these works.

An infinite-horizon discounted Markov Decision Process

(MDP) is given by a tuple M = (S,A, P, c, γ), where S
is the state space, A is the action space, P is a transition

function, c : S ×A → R is a cost function and γ ∈ [0, 1) is

a discount factor. We only consider MDPs with finite action

spaces. Furthermore, for simplicity, we assume that the state

space is finite. Among other things,1 this allows writing the

transition function as P : S ×A →M1(S), whereM1(S)
denotes the set of probability distributions over S. Since

the set S is finite, any element ofM1(S) can and will be

identified with its probability mass function. The notation

M1(X ) will be used in the same way to denote the set of

probability distributions over an arbitrary finite set X and

we will perform the same identification.

A (general) policy π = (πh)
∞
h=1 is a sequence of functions

πh : (S × A)h−1 × S → M1(A). Fixing the start state

s, a policy π induces a distribution Pπ,s over trajectories

S1, A1, C1, S2, A2, C2, . . . , where S1 = s, A1 ∼ π1(S1),
C1 = c(S1, A1), S2 ∼ P (S1, A1), A2 ∼ π2(S1, A1, S2):
the policy is used to govern the selection of actions, while

the transition dynamics of the MDP governs the evolution

of the states in response to the chosen actions. We will

also need stationary Markov policies, where the choice of

the action in any timestep h only depends on the last state

visited. Thus, such policies can be identified with a map

π : S → M1(A), an identification which we will employ

in what follows.

The expected total discounted cost over trajectories start-

ing in s quantifies the policy’s performance when initial-

ized in state s. We collect these expectations in the state-

value function of π, vπ : S → R, which is defined by

1We assume that the state space S is finite solely for exposition.
This allows us to simplify the presentation of our analysis and focus
on the most salient details of the proof, avoiding the cumbersome
measure-theoretic notation required to reason about infinite sets.

vπ(s) = Eπ,s[
∑∞

h=1 γ
h−1Ch], where Eπ,s is the expec-

tation operator corresponding to Pπ,s. For convenience,

throughout this paper we assume that costs are normalized

so that the sum of discounted costs along any trajectory

satisfies

0 ≤
∞∑

h=1

γh−1Ch ≤ 1 . (1)

By appropriately rescaling the costs, this constraint can

always be satisfied (when the state space is not finite, one

needs that the above infinite sums are uniformly bounded to

be able to do this).

The action-value function of π, qπ : S ×A → R, is defined

as

qπ(s, a) = c(s, a) + γ
∑

s′∈S
P (s′|s, a)vπ(s′) ,

where (s, a) ∈ S × A and, by abusing notation, we use

P (s′|s, a) to denote the probability of landing in state s′

when action a is taken in state s. For a stationary Markov

policy π, the state- and action-value functions are related by

the identity vπ(s) =
∑

a∈A π(a|s)qπ(s, a). Here, and in

what follows, abusing notation once again, π(a|s) denotes

the probability that is assigned by π(s) to action a ∈ A.

The optimal policy is defined as any policy π⋆ that satisfies

vπ
⋆

(s) = minπ v
π(s) simultaneously for all s ∈ S . Such a

policy exists in our case. We define the optimal state-value

function as v⋆ = vπ
⋆

and the optimal action-value function

as q⋆ = qπ
⋆

. Any policy that is greedy with respect to q⋆,

i.e., at state s selects only actions a that minimize q⋆(s, ·), is

guaranteed to be optimal. Furthermore, the optimal action-

value function q⋆ satisfies the Bellman optimality equation

q⋆ = T q⋆, where T : RS×A → R
S×A is the Bellman opti-

mality operator, defined via

(T f)(s, a) = c(s, a) + γ
∑

s′∈S

P (s′|s, a) min
a′∈A

f(s′, a′),

(2)

for f : S ×A → R and (s, a) ∈ S ×A.

We will find it helpful to use a shorthand for the function

s 7→ mina∈A f(s, a) appearing above. For f : S ×A → R,

define f∧ : S → R by

f∧(s) = min
a∈A

f(s, a) , s ∈ S .

With this notation, we have that for (s, a) ∈ S ×A

(T f)(s, a) = c(s, a) + γ
∑

s′∈S

P (s′|s, a)f∧(s′) .

Finally, we use πf to denote a greedy policy induced by

f : πf (s) = argmina∈A f(s, a). When there are multiple

such policies, we choose one in an arbitrary (systematic)

manner to make πf well-defined.
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3. Problem Definition: Batch RL

In this work, we consider batch reinforcement learning

problems, where a learner is given a sequence of data

points Dn = {(Si, Ai, Ci, S
′
i)}ni=1 such that Si, S

′
i ∈ S,

Ai ∈ A. and Ci ∈ R. Importantly, the learner has no

access to P or c. The learner’s goal is to find a policy π
such that executing the policy π from an initial state S1

drawn randomly from some distribution η1 ∈ M1(S) re-

sults in an expected total discounted cost exceeding the

smallest possible such value with as little as possible. For-

mally, the learner is evaluated by comparing the value

v̄π = 〈η1, vπ〉 =
∑

s∈S η1(s)v
π(s), where 〈·, ·〉 denotes

the standard inner product, of the policy π that it returns

with the smallest possible such value v̄⋆, which, thanks to

our earlier definitions is easily seen to satisfy v̄⋆ = 〈η1, v⋆〉.
Our algorithm does not need to know η1.

The data is assumed to satisfy the following assumption:

Assumption 3.1 (Data/MDP properties). We have that

Dn = {(Si, Ai, Ci, S
′
i)}ni=1 is a sequence of indepen-

dent, identically distributed random variables such that

(Si, Ai) ∼ µ, Ci = c(Si, Ai) and S′
i ∼ P (Si, Ai). Further-

more, Equation (1) holds and c is a nonnegative function.

In this assumption the constraints on Ci and S′
i will help

the learner to discover some information about the costs and

the transition structure of the MDP. The independence as-

sumption is made to simplify the analysis. The distribution

µ will be further restricted to be “sufficiently exploratory”.

To state this assumption, the following definition will be

useful:

Definition 3.1 (Admissible distribution). We say a dis-

tribution ν ∈ M1(S × A) is admissible in MDP M if

there exists h ≥ 1 and a nonstationary policy π such that

ν(s, a) = P π,η1
(Sh = s,Ah = a).

Note that what constitutes an admissible distribution de-

pends on η1. With this, the assumption that constrains µ is

as follows:

Assumption 3.2 (Finite concentrability coefficient). There

exists C <∞ such that for all admissible distributions ν of

M , it holds that

max
(s,a)∈S×A

ν(s, a)

µ(s, a)
≤ C . (3)

Note that if µ is positive over S × A, the assumption is

satisfied. By only considering admissible distributions, we

allow µ to be “concentrated” on states that are “relevant” in

the sense that they are visited by some policy in some time

step with a large probability when starting from η1.

In addition to having access to the data, we will also assume

that the learner is given access to a set of functions, F

that map state-action pairs to reals: F ⊂ R
S×A. Ideally,

the set F allows the learner to reason about the optimal

action-value function. To make this possible, the following

assumptions are made on F :

Assumption 3.3 (Realizability). q⋆ ∈ F .

Assumption 3.4 (Completeness). For all f ∈ F we have

that T f ∈ F .

Assumptions 3.1 to 3.4 are commonly made, in various

forms, when analyzing fitted Q-iteration (Farahmand, 2011;

Pires & Szepesvári, 2012; Chen & Jiang, 2019). Assump-

tion 3.2 ensures that all admissible distributions are covered

by the exploratory distribution µ, i.e., that “µ is sufficiently

exploratory”. Assumption 3.3 (“realizability”) guarantees

that the optimal action-value function, our ultimate target,

lies in our function class. Assumption 3.4 states that the

function class F is closed under the Bellman optimality

operator T . When F is closed, completeness is easily seen

to imply realizibility (see also footnote 10 of Chen & Jiang

(2019)). Note that Assumption 3.4 is necessary, this is due

to a result by Foster et al. (2021) which states that assuming

both a finite concentrability coefficient and a realizable func-

tion class are not sufficient for sample efficient batch value

function approximation. For a more detailed discussion of

the last three assumptions, we refer the reader to Sections 4

and 5 of Chen & Jiang (2019).

Research question As is well known, under the above

assumptions, and assuming that a regression oracle is avail-

able to find the empirical minimizer of regression problems

defined over F with the squared loss, the so-called fitted

Q-iteration (FQI) algorithm (Ernst et al., 2005; Riedmiller,

2005; Antos et al., 2007) produces a policy such that with

high probability v̄π ≤ v̄⋆ + Õ(
√

CN/n), where N is a

measure that characterizes the “richness” of F and Õ hides

logarithmic factors (Antos et al., 2007). The main ques-

tion investigated in this paper is whether this result can be

improved to v̄π ≤ v̄⋆+ Õ(
√

CNv̄⋆/n)+O(1/n). The sig-

nificance of such small cost results is that the same data can

produce a significantly better policy when v̄⋆ is near zero

(note that v̄⋆ ≥ 0). Alternatively, the number of samples

required to achieve a given level of suboptimality can be

significantly smaller if an algorithm satisfies a small-cost

bound.

Additional notation For n ∈ N, let [n] denote the set

{1, 2, . . . , n}. Let Pπ,η1
denote the distribution induced

over random trajectories by following policy π after an

initial state is sampled from η1. For h ∈ N, we let ηπh(s) be

the probability that state s is observed at timestep h under

P π,η1
, such that ηπh(s) = P π,η1

(Sh = s). We also define

η⋆h(s) = ηπ
⋆

h (s). For g : X → R, ν ∈ M1(X ), and p ≥
1, we define the semi-norm ‖·‖p,ν via ‖g‖pp,ν =

∫
|g|pdν.

We adopt standard big-oh notation and write f = Õ(g)
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to denotes that f dominates g up to polylog factors, i.e.,

f = O(gmax{1, polylog(g)}). Finally, we use f ∧ g to

denote min{f, g}.

4. FQI-LOG: Fitted Q-Iteration with log-loss

The proposed algorithm, FQI-LOG, which is described in

Algorithm 1, is based on the earlier mentioned fitted Q-

iteration algorithm (FQI) (Ernst et al., 2005; Riedmiller,

2005; Antos et al., 2007). Given a batch dataset, FQI itera-

tively produces a sequence of k approximations f1, . . . , fk
to the action-value function q⋆. At iteration j ∈ [k], the al-

gorithm computes fj by minimizing the empirical loss using

targets computed with the help of fj−1, the estimate pro-

duced in the previous iteration. The targets are constructed

such that the regression function for a fixed estimate f ∈ F
is T f . The main difference between the proposed method

and the most common variant of FQI is our use of log-loss,

ℓlog(y, ỹ) = ỹ log
1

y
+ (1− ỹ) log

1

1− y
, (4)

to measure the deviation between a prediction (y ∈ [0, 1])
and a target (ỹ ∈ [0, 1]), where to allow y, ỹ ∈ {0, 1}, we

use 0 · log 0 = 0. The restriction that ỹ ∈ [0, 1] means that

ℓlog(·, ỹ) is convex. In our algorithm the first argument of

ℓlog is a predicted value f(Si, Ai) with f ∈ F . Since this

needs to also belong to [0, 1], running FQI-LOG requires the

range of all functions in F to lie in [0, 1].

Note that previous work on FQI employed the squared loss

ℓsq : R× R→ R, defined as ℓsq(y, ỹ) = (y − ỹ)2, instead

of the log-loss ℓlog. Both squared loss and log-loss have the

property that for a random variable X taking values in [0, 1]
with probability one, E [X] = argminm∈R

E [ℓ(m,X)],
where ℓ is either ℓlog or ℓsq. In particular, if F = [0, 1]S×A,

both log-loss and squared loss will give rise to the same

sequence f1, . . . , fk.

The differences between log-loss and squared loss are made

apparent when F 6= [0, 1]S×A. In this case, when ỹ is near

0 or 1, ℓlog(·, ỹ) increases rapidly as y deviates from ỹ. As

such, when errors need to be traded off at different inputs,

log-loss will end up favoring predictors that predict values

closer to observed targets when the targets are near 0 (or 1),

and will put less weight on observed targets in the middle

of the [0, 1] range. When a true value lies near 0 (or 1), the

observed value (bound to the range [0, 1]) must be closer

to the true value, which means that the observed value is

also close to 0 (or 1). While it may happen that an observed

value is close to 0 (or 1) while its mean is far from it, this

is rare: For this to happen, the observed value has to have a

large variance. As such, favoring to predict observed values

near the 0 or 1 as opposed to paying equal attention to all

datapoints (which is what the squared loss based predictors

do) is beneficial, and, in particular it pays off when some of

Algorithm 1 FQI-LOG

Input: A dataset Dn = {(Si, Ai, Ci, S
′
i)}i∈[n], a func-

tion class F ⊆ [0, 1]S×A and k ∈ N.

Pick f0 arbitrarily from F
for j = 1 to k do

fj ← argmin
f∈F

∑n
i=1 ℓlog

(
f(Si, Ai), Ci + γf∧

j−1(S
′
i)
)

end for

Return: πfk .

the true targets are near 0 (or 1): The situation that arises

when the optimal cost is near zero.

The motivation to switch to log-loss is due to Foster & Kr-

ishnamurthy (2021) who studied the problem of learning a

near-optimal policy in contextual bandits, both in the batch

and the online settings. They noticed that switching to log-

loss from squared loss allows bounding the suboptimality

of the policy found, say in the batch setting after seeing n
contexts, via a term that scales with

√

v̄⋆/n + 1/n. This

is an improvement from the usual
√

1/n bound derived

when analyzing squared loss, which is worst-case in nature.

For log-loss, a significant speedup to 1/n-type convergence

is achieved when v̄⋆, the expected cost of using the opti-

mal policy, is small (cf. Section 3.1 of their paper). They

complemented the theory with convincing empirical demon-

strations. Our results take a similar form. While we reuse

some of their results and techniques, our analysis deviates

significantly from theirs. In particular, our analysis must be

adapted to handle the multistage structure present in RL and

to avoid an unnecessary dependence on the actions.

The astute reader may wonder whether switching to log-

loss is really necessary for achieving small-cost bounds. As

it turns out, the switch is necessary, as attested to by an

example constructed by Foster & Krishnamurthy (2021). In

this example, in contrast to log-loss, squared loss is shown

to be unable to take advantage of small optimal costs (cf.

Theorem 2 of Foster & Krishnamurthy (2021)).

5. Theoretical Results

In this section, we present our main theoretical contribution,

the first small-cost bound for an efficient algorithm in batch

RL.

Theorem 5.1. Given a dataset Dn = {(Si, Ai, Ci, S
′
i)}ni=1

with n ∈ N and a finite function class F ⊆ [0, 1]S×A that

satisfy Assumptions 3.1 to 3.4, it holds with probability 1−δ
that the suboptimality gap g = v̄πk− v̄⋆ of the output policy

of FQI-LOG after k iterations, πk = πfk , satisfies

g ≤ Õ
(

1

(1− γ)2

(√

v̄⋆CN

n
+

CN

(1− γ)2n
+ γk

))

,

4



Switching the Loss Reduces the Cost in Batch Reinforcement Learning

where N = log(|F|/δ) and C is defined in Assumption 3.2.

The full statement of Theorem 5.1, including lower or-

der terms, can be found in Appendix B along with its

proof. Compared to prior error bounds for FQI (Antos

et al., 2007; 2008; Munos & Szepesvári, 2008; Farahmand,

2011; Lazaric et al., 2012; Chen & Jiang, 2019), to the best

of our knowledge, Theorem 5.1 is the first that contains

the instance-dependent optimal cost v̄⋆. This makes Theo-

rem 5.1 a small-cost bound, also referred to as a first-order

(Freund & Schapire, 1997; Neu, 2015) or small-loss (Lyk-

ouris et al., 2022; Wang et al., 2023) bound in the learning

theory literature. All previous results for FQI obtain an error

bound independent of v̄⋆, and cannot be made to scale with

v̄⋆ due to their use of squared loss (see Theorem 2 of Foster

& Krishnamurthy (2021), mentioned earlier). Finally, we

highlight that Theorem 5.1 is the first small-cost bound for

a batch RL algorithm that is computationally efficient when

efficient regression oracles are available, as is the case when

F is the set of logit models with weights bounded in 2-norm.

While technically this is outside of the scope of Theorem 5.1

(since in its current form this result covers only finite model

classes), with some extra work and with appropriate modi-

fications one can show that Theorem 5.1 continues to hold

for infinite model classes, such as the mentioned logit class.

5.1. Proof Sketch

The purpose of this section is to give a sketch of the proof of

Theorem 5.1. For the full proof, see Appendix B. We start

by defining the pointwise triangular deviation of f from q⋆,

∆2
f (s, a) =

(f(s, a)− q⋆(s, a))2

f(s, a) + q⋆(s, a)
,

which is closely related to triangular discrimination (Topsøe,

2000). We can relate ∆2
f to the Hellinger distance via the

following lemma:

Lemma 5.2. For all p, q ∈ [0, 1], we have

1

4

(p− q)2

p+ q
≤ 1

2
(
√
p−√q)2 ≤ h2(p ‖ q) , (5)

where for p = q = 0 we define the left-hand side to be zero

and h2(p ‖ q) = 1
2 (
√
p − √q)2 + 1

2 (
√
1− p − √1− q)2

is the squared Hellinger distance.

The proof of Lemma 5.2 is deferred to Appendix A.1.

The idea to relate the pointwise triangular deviation to the

squared Hellinger distance was first employed by Foster

& Krishnamurthy (2021) in analyzing regret bounds for

contextual bandits. Our proof can be summarized by the

following three main steps, which correspond to the three

terms given in Lemma 5.2.

Step 1: Error decomposition The first step in the proof

is to decompose the error (or suboptimality gap), v̄πk − v̄⋆,

into the product of a small-cost term and the pointwise tri-

angular deviation of f from q⋆. The analysis in this step

is inspired by the proof of Lemma 1 of Foster & Krish-

namurthy (2021). We deviate from their analysis to avoid

introducing an extra |A| factor in the bound. We use the per-

formance difference lemma (Lemma B.4), a multiplicative

Cauchy-Schwarz (Lemma B.5), i.e. for distribution ν

‖x− y‖1,ν ≤ ‖x+ y‖1/21,ν ·
∥
∥
∥
∥

(x− y)2

(x+ y)

∥
∥
∥
∥
2,ν

,

and an implicit inequality (i.e. Lemma B.7, step ⋆ in the

proof of Proposition B.2) to get a small-cost decomposition

of the error:

Proposition 5.3. Let f : S × A → [0,∞) and let π = πf

be a policy that is greedy with respect to f . Define Df =
suph≥1 max(‖∆f‖2,ν1,h

, ‖∆f‖2,ν2,h
). Then, it holds that

v̄π − v̄⋆ ≤ C̃

(

Df

1− γ

√
v̄⋆ +

D2
f

(1− γ)2

)

.

where C̃ > 0 is an absolute constant.

Here ν1,h, ν2,h ∈ M1(S × A) are appropriately defined

distributions, the details of which can be found in Proposi-

tion B.2. In summary, step 1 uses the pointwise triangular

deviation of f from q⋆ to bound the error by the optimal

value function v̄⋆.

Step 2: Contraction The second step in our proof starts

by bounding the pointwise triangular deviation by the

Hellinger distance, i.e.

1√
2
‖∆f‖2,ν ≤

∥
∥
∥

√

f −
√
q⋆
∥
∥
∥
2,ν

where ν ∈ M1(S × A). In Lemma B.13 we next estab-

lish that T is a γ-pseudo-contraction at q⋆ with respect to

Hellinger distances: For any f ≥ 0, ν ∈M1(S ×A),
∥
∥
∥

√

T f −
√

T q⋆
∥
∥
∥
2,ν
≤ γ1/2

∥
∥
∥

√

f −
√
q⋆
∥
∥
∥
2,ν′

,

where ν′ is a distribution over state-action pairs.

Contraction arguments have a long history (Bertsekas, 1995;

Littman, 1996; Antos et al., 2007; Chen & Jiang, 2019)

in the analysis of dynamic programming algorithms that

solve MDPs. The novelty is that we needed to bound the

pointwise triangular deviation, which led to new analysis

with Hellinger distances.

In Lemma B.15, the combination of a standard change of

measure argument (that uses the definition of the concentra-

tion coefficient C) and a standard contraction argument, we

get

∥
∥
∥

√

f −
√
q⋆
∥
∥
∥
2,ν
≤
√
C

1−√γ
∥
∥
∥

√

f −
√

T f
∥
∥
∥
2,µ

, (6)
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where µ is the exploratory distribution in Assumption 3.1. In

batch RL, we often want to learn q⋆, or a policy whose value

is close to q⋆. However, when using function approximation

FQI, the regressor corresponding to the training data is

T f . Therefore, as demonstrated in Equation (6), if we can

show the contraction property then we can bound the error

between f and q⋆ by the error between f and T f . As we

will argue shortly, the error between f and T f goes to zero

as the size of the batch dataset grows.

Step 3: Error control/propagation The third step in our

proof starts by bounding
∥
∥
∥

√

f −
√

T f
∥
∥
∥
2,µ
≤
√
2
∥
∥h2(f ‖ T f)

∥
∥
1/2

1,µ
.

Then by application of Theorem A.3, we have that if f is

the minimizer of ℓlog with respect to the batch dataset Dn,

then √
2
∥
∥h2(f ‖ T f)

∥
∥
1/2

1,µ
.

2√
n
,

where we use . informally to highlight the most salient

elements of the inequality. We then combine all the results to

control the pointwise triangular deviation in Proposition 5.3,

i.e Df ,

v̄πk − v̄⋆ .

√
Cv̄⋆

(1− γ)2
√
n
+

C

(1− γ)4n
.

This provides a sketch for proving Theorem 5.1. In the full

proof we also need to control each iterate of FQI-LOG, i.e.

the fj’s. We fill in the missing details in our appendix.

6. Numerical Experiments

The goal of our experiments is to provide insights into the

benefits of using FQI-LOG for learning a near-optimal policy

in batch reinforcement learning. We run our first set of

experiments in reinforcement learning with logit models, as

this setting allows us to best compare FQI-LOG to FQI-SQ

without other confounding factors. For these experiments,

we used two standard control tasks; “mountain car” and

“inverted pendulum”. The tasks are set up as fixed horizon

episodic problems where at the end of an episode, if the

goal is met no cost is incurred, otherwise a cost of one is

incurred. The two environments differ in that in one of them

the goal region is small, in the other the goal region is large.

In both tasks, some policies can reach the goal, but many

fail. As it is known that the goals in these problems can be

met, we expect FQI-LOG to do better than FQI-SQ on these

environments.

Our second set of experiments aim at verifying whether

the recommendation to switch to log loss transfers to deep

RL (DRL), i.e., to more complex function classes, regres-

sion methods and environments. For these experiments, we

started from the work of Agarwal et al. (2020), who tested

various DRL methods, including C51 of (Bellemare et al.,

2017), a distributional RL algorithm, which was found to

be one of the most capable of the methods tested. As noted

in the introduction, Wang et al. (2023) showed a small-cost

bound for a distributional RL method; hence, our research

question is whether a simpler log-loss based method can

compete with these (more complex) distributional RL al-

gorithms. To create a real challenge, we picked the two

environments (Asterix and Sequest) from Agarwal et al.

(2020) where C51 significantly outperformed DQN-SQ, the

DRL version of FQI and copied their setting.

6.1. Aiming for a Goal: Mountain Car

We first evaluate FQI-LOG and FQI-SQ on an episodic sparse

cost variant of mountain car with episodes lasting for 800
steps. (While we showed our results for the discounted set-

ting, they are expected to hold in episodic problems as well,

with small modifications.) Following Moore (1990), this

environment consists of a 2-dimensional continuous state

space of [−1.2, 0.6]× [−0.07, 0.07] and 3 discrete actions;

the states represent a position and velocity of an underpow-

ered car that can be accelerated left, right, or not accelerated,

until the top of a hill is reached when the dynamics is turned

on, and the car remains in place regardless of the actions.

The cost is 0 at all timesteps except the last, when a cost

of 1 is received if the learner has not reached the hilltop.

We consider the undiscounted version of the problem (i.e.,

γ = 1). An optimal policy for this setting reaches zero

cost if it reliably reaches the top of the hill in 800 steps or

less, regardless of the exact time. For η1, the initial state

distribution, we use a Dirac that outs the car at the bottom

of the hill with zero velocity with probability one.

The feature vectors assigned to states are 16 dimensional and

come from a Fourier basis of order 4, following Konidaris

et al. (2011) and Chapter 9 of Sutton & Barto (2018).

With this, for time step h ∈ [800], the estimator uses

θh = (θha)a∈A ∈ R
48 to produce the estimate fh(s, a) =

σ(
〈
φ(s), θha , )

〉
, where σ(x) = (1+ exp(−x))−1 is the sig-

moid function. This variant of FQI-LOG with sigmoid func-

tions is closely related to the logistic temporal-difference

learning algorithm proposed in Appendix A of the PhD

thesis of Silver (2009). We employ the BFGS method, a

quasi-Newton method with no learning rate, to find the

minimizer of the losses. For strongly-convex functions,

BFGS is known to converge to the global minimum su-

perlinearly (Dennis & Moré, 1974). Finally, each batch

dataset is constructed from a set of trajectories collected

by running the uniform random policy from the initial

state 30, 000 times. We use rejection sampling in order

to guarantee each dataset has i trajectories that reach the

top of the hill with i ∈ {1, 5, 30}. We train both FQI-

LOG and FQI-SQ on the same batch datasets with the first

6
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6.3. Asterix and Seaquest

As described earlier, we evaluate the deep RL variants of

FQI-LOG and FQI-SQ on the Atari 2600 games Asterix and

Seaquest (Bellemare et al., 2013), and use the distributional

RL algorithm C51 as an additional baseline. We adopt the

data and experimental setup of Agarwal et al. (2020). The

data consist of five batch datasets for each game, which were

collected from independent training runs of a DQN learner

(Mnih et al., 2015). Specifically, each batch dataset contains

every fourth frame from 200 million frames of training; a

frame skip of four and sticky actions (Machado et al., 2018)

were used, whereby all actions were repeated four times

consecutively and a learner randomly repeated its previous

action with probability 0.25.

When the function class F of FQI-SQ is given by a deep

neural network, the algorithm is called DQN. To adapt FQI-

LOG to the deep RL setting, we must switch the training

loss from ℓsq to ℓlog, and add a sigmoid activation layer to

squash the output range to [0, 1]. We henceforth refer to

these algorithms as DQN-SQ and DQN-LOG, respectively.

The first algorithm to implement a variant of a DQN trained

with a form of log-loss is the distributional RL algorithm

C51, i.e. categorical DQN (Bellemare et al., 2017). C51

minimizes the categorical log-loss across N categories:

ℓlog,N (y; ỹ) =

N∑

i=1

ℓlog(yi; ỹi) ,

for y, ỹ ∈ [0, 1]N . C51 modifies DQN-SQ in the following

five ways:

S.1 C51 categorizes the return, i.e. sum of discounted

rewards, into 51 “bins”, and predicts the probability

that the outcome of a state-action pair will fall into

each bin, whereas DQN-SQ regresses directly on the

returns.

S.2 C51 applies a softmax activation to its output, to nor-

malize the values into a probability distribution over

bins, as necessitated by Item S.1.

S.3 C51 exchanges ℓsq for ℓlog,N as the training loss.

S.4 C51 “clips” the targets to the finite interval

[vmin, vmax], to enable mapping them into a finite set

of bins.

S.5 C51 replaces the Bellman optimality operator T with

a modified “distributional Bellman operator”.

For our experiments we clip the targets of DQN-LOG by set-

ting vmin = 0 and vmax = 10. Since the sigmoid activation

of DQN-LOG is a specialization of the softmax activation

to the binary case, DQN-LOG implements the changes S.3,

S.2, and S.4 to the standard form of DQN-SQ. Clipping the

targets introduces a bias which we correct for by similarly

clipping the targets of DQN-SQ. Thus our benchmark results

for DQN-SQ include the change S.4. Clipping the targets of

DQN-SQ is novel to this work and improves performance,

yielding a stronger baseline. We include a comparison with

the traditional unclipped version of DQN-SQ in Appendix C.

In our implementations of DQN-LOG and DQN-SQ, we use

the same hyperparameters reported by Agarwal et al. (2020).

Figure 3 shows the undiscounted return as a function of

the number of training epochs. On Seaquest, DQN-LOG

outperforms DQN-SQ and matches the performance of C51.

In Asterix, DQN-LOG performs similarly to DQN-SQ and

both get lower return than C51. Overall, our results are

inconclusive in this setting in regards to whether switching

to log-losses suffices to reproduce the success of C51. How-

ever, the experiments confirm that switching to log-loss can

be beneficial, as compared to using the squared loss and

sometimes this switch alone is sufficient to compete with

the more complex C51 algorithm.

7. Related Works

First-order bounds in RL Wang et al. (2023) obtain

small-cost bounds for finite-horizon batch RL problems

under the distributional Bellman completeness assumption,

which is more restrictive than our analogue, Assumption 3.4.

Wang et al. (2024) refines the bounds of Wang et al. (2023),

showing second-order bounds (which depends on the vari-

ance) for the same algorithm. They attribute their small-cost

bound to the use of the distributional Bellman operator

(Bellemare et al., 2023). However, their proof techniques

only make use of pessimism (Buckman et al., 2021; Jin et al.,

2021) and log-loss in achieving their small-cost bound. The

use of pessimism is necessary for their proof in order to

control the errors accumulated by use of the distribution

Bellman operator during value iteration. We improve upon

their work by proposing an efficient algorithm for batch

RL that enjoys a similar small-cost bound without using

the distributional Bellman operator or pessimism under a

weaker completeness assumption.

Jin et al. (2020a) and Wagenmaker et al. (2022) obtain regret

bounds that scale with the value of the optimal policy. How-

ever in their setting, the goal is to maximize reward. There-

fore, their bounds only improve upon previous bounds (e.g.,

Azar et al. 2017; Yang & Wang 2019; Jin et al. 2020b) when

the optimal policy accumulates very little reward. These

bounds are somewhat vacuous as they only imply that regret

is low when the value of the initial policy is already close to

the value of the optimal policy, both of which are close to

zero. Small-cost bounds give the same rates as small-return

bounds, however, they are more attractive as the cost of

the initial policy can be high while the cost of the optimal
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A. Preliminary results

In this section we introduce and prove some elementary inequalities that connect useful metrics on function spaces, and then

state a concentration result of Foster & Krishnamurthy (2021) for the log-loss estimator. The concentration result gives a

high probability upper bound on the error of the log-loss estimator, as measured by the integrated binary Hellinger loss

(defined below). This result is central to our analysis. The elementary inequalities connect the integrated binary Hellinger

loss to both the Hellinger distance and the triangular discrimination, and will reduce the analysis of our algorithm to studying

the approximation error of its value function estimates {fj}kj=1.

The analysis of FQI-LOG revolves around controlling the Hellinger distance, which is a distance between nonnegative

integrable functions. In particular, for λ-integrable functions f, g ≥ 0, the Hellinger distance between f and g is defined as

H(f, g) =
1√
2

∥
∥
∥

√

f −√g
∥
∥
∥
2,λ

.

A.1. Some basic inequalities

Given real numbers p, q ∈ [0, 1], we define the binary Hellinger loss of p and q as

h2(p, q) =
1

2
(
√
p−√q)2 + 1

2

(√

1− p−
√

1− q
)2

, (7)

and immediately observe that 0 ≤ h2(p, q) ≤ 1. Note that the Hellinger distance between two distributions P and Q over a

common domain is defined as 1√
2

∥
∥
√
p−√q

∥
∥
2,λ

, where p = dP/dλ and q = dQ/dλ are the densities of P and Q with

respect to a dominating distribution λ. Thus the binary Hellinger loss between p and q, h2(p, q), is the squared Hellinger

distance between Bernoulli distributions with means p and q.

Lemma A.1. For all p, q ∈ [0, 1], we have

1

4

(p− q)2

p+ q
≤ 1

2
(
√
p−√q)2 ≤ h2(p, q) , (8)

where for p = q = 0 we define the left-hand side to be zero.

Proof. If p = q = 0 then equality holds trivially, and otherwise (
√
p+
√
q)2 ≤ 2(p+ q) implies

(p− q)2

4(p+ q)
≤ (p− q)2

2(
√
p+
√
q)2

=
1

2
(
√
p−√q)2 ≤ 1

2
(
√
p−√q)2 + 1

2

(√

1− p−
√

1− q
)2

= h2(p, q) .

The next result holds for an extended definition of h2 that replaces the inputs p, q ∈ [0, 1] with functions f, g : X → [0, 1].
Given such functions, we define h2(f, g) : X → [0, 1] by

(h2(f, g))(x) = h2(f(x), g(x)) , x ∈ X .

With this definition in hand, the following is a straightforward corollary of Lemma A.1.

Corollary A.2. For any distribution ν over the set X and any measurable functions f, g : X → [0, 1],
∥
∥
∥
∥

f − g√
f + g

∥
∥
∥
∥
2,ν

≤
√
2
∥
∥
∥

√

f −√g
∥
∥
∥
2,ν
≤ 2

∥
∥h2(f, g)

∥
∥
1/2

1,ν
,

where for f(x) = g(x) = 0 we define
f(x)−g(x)√
f(x)+g(x)

= 0.

We call the quantity
∥
∥h2(f, g)

∥
∥
1,ν

, which appears on the right hand side above, the integrated binary Hellinger loss between

f and g. Squaring all quantities and dividing through by 4 yields the equivalent inequalities

1

4

∥
∥
∥
∥

f − g√
f + g

∥
∥
∥
∥

2

2,ν

≤ 1

2

∥
∥
∥

√

f −√g
∥
∥
∥

2

2,ν
≤
∥
∥h2(f, g)

∥
∥
1,ν

.
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In words, the integrated binary Hellinger loss between f and g is lower bounded by their squared Hellinger distance, which

itself is lower bounded by one quarter of the triangular discrimination between them. The latter is essentially the squared

distance between f and g, but rescaled pointwise by 1/
√
f + g. Because |a− b|/

√
a+ b ≤ ε implies |a− b| ≤ ε

√
a+ b,

we see that a bound on the rescaled distance between two values tightens the bound between them whenever
√
a+ b < 1.

Exploiting this property is key to our later analysis.

Proof of Corollary A.2. Apply Lemma A.1 pointwise and then integrate both sides of the inequalities over ν, before taking

square roots and multiplying by 2 to simplify the constants.

A.2. Concentration for the log-loss estimator

Fix a set X , which, for the sake of avoiding measurability issues, is assumed to be finite. Let (X1, Y1), . . . , (Xn, Yn)
be independent, identically distributed random elements taking values in X × [0, 1]. Let f⋆ be the regression function

underlying ν: f⋆(x) = E [Y1 |X1 = x]. Let F ⊆ [0, 1]X be a finite set of [0, 1]-valued functions with domain X . Recall

the log-loss estimator:

f̂log = argmin
f∈F

n∑

i=1

ℓlog(f(Xi); Yi),

where, for y, y′ ∈ [0, 1],

ℓlog(y; y
′) = y′ log

1

y
+ (1− y′) log

1

1− y
,

where we define 0 log∞ = limx→0 x log 1/x = 0. Foster & Krishnamurthy (2021) show the following concentration result

for f̂log, which we will need:

Theorem A.3. Suppose f⋆ ∈ F . Let Dn = {(Xi, Yi)}ni=1. Then, for any δ ∈ (0, 1), with probability at least 1− δ, we have

‖ h2(f̂log, f⋆)‖1,ν ≤
2 log(|F|/δ)

n
,

where ν denotes the common distribution of X1, . . . , Xn.

Proof. The result follows from the last equation on page 24 of the arXiv version of the paper by Foster & Krishnamurthy

(2021) with A = 1.

B. Proof of Theorem 5.1

In this section we give the main steps of the proof of Theorem 5.1. For the benefit of the reader, we first reproduce the text

of the theorem.

Theorem B.1. Given a dataset Dn = {(Si, Ai, Ci, S
′
i)}ni=1 with n ∈ N and a finite function class F ⊆ [0, 1]S×A that

satisfy Assumptions 3.1, 3.2 and 3.4, it holds with probability 1− δ that the output policy of FQI-LOG after k iterations,

πk = πfk , satisfies

v̄πk − v̄⋆ ≤ C̃

(

1

(1− γ)2

√

v̄⋆C log (|F|2/δ)
n

+
C log

(
|F|2/δ

)

(1− γ)4n
+

γ
k
2

1− γ
+

γk

(1− γ)2

)

.

where C̃ > 0 is an absolute constant.

The proof is reduced to two propositions and some extra calculations. We start by stating the two propositions first. The

proofs of these propositions require more steps and will be developed in their own sections, following the proof of the main

result, which ends this section.

The first proposition shows that the error of a policy that is greedy with respect to an action-value function f : S×A → [0,∞)
can be bounded by the triangular discrimination between the action-value function and q⋆, the optimal action-value function
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in our MDP. To state this proposition, for f as above, we define ∆f : S ×A → [0,∞), the pointwise triangular deviation of

f from q⋆:

∆f (s, a) =
f(s, a)− q⋆(s, a)
√

f(s, a) + q⋆(s, a)
, (s, a) ∈ S ×A .

To state the proposition, recall that for a distribution η over the states and a stationary policy π, we let η × π denote the joint

probability distribution over the state-action pairs resulting from first sampling a state S ∼ η and then an action A ∼ π(S).
With this, the first proposition is as follows:

Proposition B.2. Let f : S × A → [0,∞) and let π = πf be a policy that is greedy with respect to f . Define

Df = suph≥1 max(‖∆f‖2,ηπ
h
×π , ‖∆f‖2,ηπ

h
×π⋆). Then, it holds that

v̄π − v̄⋆ ≤ 22Df

1− γ

√
2v̄⋆ +

512D2
f

(1− γ)2
.

Recall that above ηπh is the distribution induced over the states in step h when π is followed from the start state distribution

η1. As expected, the proof uses the performance difference lemma, followed by arguments that relate the stage-wise expected

error that arises from the performance difference lemma to the “size” of ∆f .

When the above proposition is applied to f = fk, the action-value function obtained in the kth iteration of our algorithm, we

see that it remains to bound Dfk . The bound will be based on the second proposition:

Proposition B.3. For any admissible distribution ν over S ×A that may also depend on the data Dn, for any δ ∈ (0, 1),
k ≥ 1, with probability 1− δ,

‖∆fk‖2,ν ≤
√

32C log (|F|2/δ)
(1− γ)2n

+
√
2γ

k
2 , (9)

where fk denotes the value function computed by FQI, Algorithm 1, in step k based on the data Dn.

The proof of this proposition uses (i) showing that T enjoys some contraction properties with respect to appropriately

chosen Hellinger distances; (ii) using these contraction properties to show that the Hellinger distance between fk and q⋆ is

controlled by the Hellinger distances between fk and T fk, and then using the results of the previous section to show that

these are controlled by the algorithm.

With these two statements in place, the proof the main theorem is as follows:

Proof of Theorem B.1. Fix k ≥ 1. For h ≥ 1, let ηkh = ηπk

h , Dfk = suph≥1 max(‖∆fk‖2,ηk
h
×πk

, ‖∆fk‖2,ηk
h
×π⋆). Since,

by definition, πk is greedy with respect to fk, we can use Proposition B.2 to get

v̄πk − v̄⋆ ≤ 22
√
2Dfk

1− γ

√
v̄⋆ +

512D2
fk

(1− γ)2
. (10)

It remains to bound Dfk . An application of Proposition B.3 gives that for any 0 < δ < 1, with probability 1− δ,

S := sup
ν admissible

‖Dfk‖2,ν ≤
√

32C log (|F|2/δ)
(1− γ)2n

+
√
2γ

k
2 . (11)

Since ηkh × πk and ηkh × π⋆ are admissible, as can be easily seen with an argument similar to that used in the proof of

Lemma B.16, it follows that with probability 1− δ,

Dfk ≤ S ≤
√

32C log (|F|2/δ)
(1− γ)2n

+
√
2γ

k
2 . (12)

Squaring both sides and using the inequality (a+ b)2 ≤ 2a2 + 2b2, we get that the inequality

D2
fk
≤ 64C log

(
|F|2/δ

)

(1− γ)2n
+ 4γk

15
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also holds, on the same event when Equation (12) holds. Plugging these bounds into Equation (10), we get that with

probability at least 1− δ,

v̄πk − v̄⋆ ≤ 22
√
2Dfk

1− γ

√
v̄⋆ +

512D2
fk

(1− γ)2

≤ 176

(1− γ)2

√

v̄⋆C log (|F|2/δ)
n

+
32768C log

(
|F|2/δ

)

(1− γ)4n
+

44γ
k
2

1− γ
+

2048γk

(1− γ)2
.

B.1. An error bound for greedy policies: Proof of Proposition B.2

The analysis in this section is inspired by the proof of Lemma 1 of Foster & Krishnamurthy (2021). We deviate from their

analysis to avoid introducing an extra |A| factor in the bounds.

Additional Notations For any function g : S × A → R and policy π, define g(s, π) =
∑

a∈A π(a|s)g(s, a). For any

ν ∈M1(S×A) which is an |S×A| dimensional row vector, define νP ∈M1(S) as the distribution obtained over the states

by first sampling a state-action pair from ν and then following P . That is, νP is the distribution of S′ ∼ P (·|S,A) where

(S,A) ∼ ν. We can think of νP as the distribution we get when P is composed with ν. For any function f : S×A → [0,∞),
in addition to ∆f , we also define ξf : S ×A → R as

ξf (s, a) = f(s, a) + q⋆(s, a) , (s, a) ∈ S ×A . (13)

Recall that F contains [0, 1]-valued functions with domain S ×A and as such for any f ∈ F , ∆f and ξf are well-defined.

We start with the performance difference lemma, which is stated without a proof:

Lemma B.4 (Performance Difference Lemma of Kakade & Langford). For policies π, π̄ : S →M1(A), we have

v̄π − v̄π̄ =

∞∑

h=1

γh−1
〈
ηπh , q

π̄(·, π)− vπ̄
〉
. (14)

Proof. See Lemma 6.1 by Kakade & Langford (2002).

The next lemma upper bounds the one-norm distance between a nonnegative-valued function f : S ×A → [0,∞) and q⋆ in

terms of appropriate norms of ∆f and ξf .

Lemma B.5. For any function f : S ×A → [0,∞) and distribution ν ∈M1(S ×A), we have

‖f − q⋆‖1,ν ≤ ‖ξf‖1/21,ν · ‖∆f‖2,ν . (15)

Proof. We have

‖f − q⋆‖1,ν =

∥
∥
∥
∥

√

f + q⋆ · f − q⋆√
f + q⋆

∥
∥
∥
∥
1,ν

(16)

≤ ‖f + q⋆‖1/21,ν ·
∥
∥
∥
∥

(f − q⋆)2

f + q⋆

∥
∥
∥
∥

1/2

1,ν

(Cauchy-Schwarz)

= ‖ξf‖1/21,ν · ‖∆f‖2,ν .

Lemma B.6. Let f : S ×A→ [0,∞) and let π = πf be a policy that is greedy with respect to f and h be a nonnegative

integer. Then it holds that

〈ηπh , q⋆(·, π)− v⋆〉 ≤
(

‖ξf‖1/21,ηπ
h
×π + ‖ξf‖1/21,ηπ

h
×π⋆

)(

‖∆f‖2,ηπ
h
×π + ‖∆f‖2,ηπ

h
×π⋆

)

.

16
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Proof. We have

〈ηπh , q⋆(·, π)− v⋆〉 = 〈ηπh , q⋆(·, π)− q⋆(·, π⋆)〉 (Defn of v⋆)

≤ 〈ηπh , q⋆(·, π)− f(·, π) + f(·, π⋆)− q⋆(·, π⋆)〉 (f(·, π) ≤ f(·, π⋆) by defn of π)

≤ ‖q⋆ − f‖1,ηπ
h
×π + ‖f − q⋆‖1,ηπ

h
×π⋆ . (triangle inequality)

Now,

‖q⋆ − f‖1,ηπ̃
h
×π̃ + ‖f − q⋆‖1,ηπ̃

h
×π⋆

≤ ‖ξf‖1/21,ηπ̃
h
×π̃
· ‖∆f‖2,ηπ̃

h
×π̃ + ‖ξf‖1/21,ηπ̃

h
×π⋆ · ‖∆f‖2,ηπ̃

h
×π⋆ (Lemma B.5)

≤
(

‖ξf‖1/21,ηπ̃
h
×π̃

+ ‖ξf‖1/21,ηπ̃
h
×π⋆

)(

‖∆f‖2,ηπ̃
h
×π̃ + ‖∆f‖2,ηπ̃

h
×π⋆

)

.

Lemma B.7. For any function f : S ×A → [0,∞) and distribution ν ∈M1(S ×A), it holds that

‖f + q⋆‖1,ν ≤ 4 ‖q⋆‖1,ν + ‖∆f‖22,ν . (17)

Proof. Let f ∈ F be fixed, we have

‖f + q⋆‖1,ν = ‖f − q⋆ + q⋆ + q⋆‖1,ν
≤ 2 ‖q⋆‖1,ν + ‖f − q⋆‖1,ν (triangle inequality)

= 2 ‖q⋆‖1,ν +

∥
∥
∥
∥

√

f + q⋆
f − q⋆√
f + q⋆

∥
∥
∥
∥
1,ν

≤ 2 ‖q⋆‖1,ν +
1

2

∥
∥
∥
∥
f + q⋆ +

(f − q⋆)2

f + q⋆

∥
∥
∥
∥
1,ν

(ab ≤ a2+b2

2 for a, b nonnegative reals)

≤ 2 ‖q⋆‖1,ν +
1

2
‖f + q⋆‖1,ν +

1

2
‖∆f‖22,ν . (triangle inequality)

Rearranging and multiplying through by two gives the statement.

Lemma B.8. Let f : S × A → [0,∞) and let π = πf be a policy that is greedy with respect to f . Define Df =
suph≥1 max(‖∆f‖2,ηπ

h
×π , ‖∆f‖2,ηπ

h
×π⋆). Then, it holds that

v̄π − v̄⋆ ≤ 11Df

∞∑

h=1

γh−1 ‖v⋆‖1/2
1,ηk

h

+
28D2

f

1− γ
.

Proof. Recall that by the performance difference lemma, Lemma B.4, it holds that

v̄π − v̄⋆ =

∞∑

h=1

γh−1〈ηπh , q⋆(·, π)− v⋆〉 . (18)

For the remainder of this proof we fix h ≥ 1. For the hth term from the above display, we have

〈ηπh , q⋆(·, π)− v⋆〉 ≤
(

‖ξf‖1/21,ηπ
h
×π + ‖ξf‖1/21,ηπ

h
×π⋆

)(

‖∆f‖2,ηπ
h
×π + ‖∆f‖2,ηπ

h
×π⋆

)

(Lemma B.6)

≤
(√

4 ‖q⋆‖1,ηπ
h
×π + ‖∆f‖22,ηπ

h
×π +

√

4 ‖q⋆‖1,ηπ
h
×π⋆ + ‖∆f‖22,ηπ

h
×π⋆

)(

‖∆f‖2,ηπ
h
×π + ‖∆f‖2,ηπ

h
×π⋆

)

.

(Lemma B.7)

Now recall that by definition

max
{

‖∆f‖2,ηπ
h
×π , ‖∆f‖2,ηπ

h
×π⋆

}

≤ Df .

17
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Hence,

〈ηπh , q⋆(·, π)− v⋆〉

≤ 2Df

(√

4 ‖q⋆‖1,ηπ
h
×π +D2

f +
√

4 ‖q⋆‖1,ηπ
h
×π⋆ +D2

f

)

(19)

≤ 2Df

(

2Df +
√

4 ‖q⋆‖1,ηπ
h
×π +

√

4 ‖q⋆‖1,ηπ
h
×π⋆

)

(
√
a+ b ≤ √a+

√
b)

= 4D2
f + 4Df ‖q⋆‖1/21,ηπ

h
×π + 4Df ‖q⋆‖1/21,ηπ

h
×π⋆

≤ 20D2
f +
‖q⋆‖1,ηπ

h
×π + ‖q⋆‖1,ηπ

h
×π⋆

2
. (ab ≤ a2+b2

2 for a, b nonnegative reals, twice with a = 4Df )

Using that v⋆, q⋆ are nonnegative valued and that v⋆(·) = q⋆(·, π⋆), we calculate 〈ηπh , v⋆〉 = ‖v⋆‖1,ηπ
h
= ‖q⋆‖1,ηπ

h
×π⋆ .

Thus, by the previous display, after rearranging, we get

‖q⋆‖1,ηπ
h
×π = 〈ηπh , q⋆(·, π)〉 ≤ 40D2

f + 3 ‖q⋆‖1,ηπ
h
×π⋆ ,

where the equality used the non-negativity of q⋆. Plugging this back into the inequality in Equation (19) gives

〈ηπh , q⋆(·, π)− v⋆〉 ≤ 2Df

(√

4 ‖q⋆‖1,ηπ
h
×π⋆ +D2

f +
√

4 ‖q⋆‖1,ηπ
h
×π +D2

f

)

(restating Equation (19))

≤ 2Df

(√

4 ‖q⋆‖1,ηπ
h
×π⋆ +D2

f +
√

160D2
f + 12 ‖q⋆‖1,ηπ

h
×π⋆ +D2

f

)

≤ 2Df

(

2 ‖q⋆‖1/21,ηπ
h
×π⋆ +Df +

√
161Df +

√
12 ‖q⋆‖1/21,ηπ

h
×π⋆

)

(
√
a+ b ≤ √a+

√
b)

≤ 11Df ‖q⋆‖1/21,ηπ
h
×π⋆ + 28D2

f .

Combining this with Equation (18) gives the desired inequality.

Lemma B.9. For any policy π : S →M1(A) we have

∞∑

h=1

γh−1
√

〈ηπh , vπ〉 ≤
2
√
v̄π

1− γ
. (20)

Proof. Notice that

v̄π = 〈η1, vπ〉
= 〈ηπ1 , c(·, π)〉+ γ 〈ηπ2 , c(·, π)〉+ γ2 〈ηπ3 , c(·, π)〉+ · · ·+ γh−1 〈ηπh , vπ〉
≥ γh−1 〈ηπh , vπ〉

where the inequality follows from the non-negativity of the costs. Simple rearrangement gives

〈ηπh , vπ〉 ≤
v̄π

γh−1
.

Using this inequality, we get

∞∑

h=1

γh−1
√

〈ηπh , vπ〉 ≤
∞∑

h=1

γh−1

√
v̄π

γh−1
=

∞∑

h=1

√

γh−1v̄π ≤ 2
√
v̄π

1− γ
,

where for the last inequality we used that 1/(1−√γ) ≤ 2/(1− γ).

With this we are ready to prove Proposition B.2:

18
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Proof of Proposition B.2. For h ≥ 1, let ηh = ηπh . Starting from Lemma B.8, we bound v̄π − v̄⋆ as follows:

v̄π − v̄⋆ ≤ 11Df

∞∑

h=1

γh−1 ‖v⋆‖1/21,ηh
+ 28D2

f

∞∑

h=1

γh−1 (Lemma B.8)

= 11Df

∞∑

h=1

γh−1
√

〈ηh, v⋆〉+
28D2

f

1− γ

≤ 11Df

∞∑

h=1

γh−1
√

〈ηh, vπ〉+
28D2

f

1− γ
(Defn of v⋆)

≤ 22Df

√
v̄π

1− γ
+

28D2
f

1− γ
(Lemma B.9, (⋆))

≤
222D2

f

2(1− γ)2
+

v̄π

2
+

28D2
f

1− γ
. (ab ≤ (a2 + b2)/2, a, b ≥ 0)

Rearranging the last inequality obtained, we get

v̄π ≤ 2v̄⋆ +
222D2

f

(1− γ)2
+

56D2
f

1− γ
.

Plugging this bound into (⋆), we get

v̄π − v̄⋆ ≤ 22Df

1− γ

√

2v̄⋆ +
222D2

f

(1− γ)2
+

56D2
f

1− γ
+

28D2
f

1− γ

≤ 22
√
2Df

1− γ

√
v̄⋆ +

222D2
f

(1− γ)2
+

165D2
f

(1− γ)3/2
+

28D2
f

1− γ
(
√
a+ b ≤ √a+

√
b, a, b ≥ 0 twice)

≤ 22
√
2Df

1− γ

√
v̄⋆ +

512D2
f

(1− γ)2
.

B.2. Bounding the triangular deviation between fk and q⋆: Proof of Proposition B.3

As explained earlier, the analysis in this section uses contraction arguments that have a long history in the analysis of

dynamic programming algorithms in the context of MDPs. The novelty is that we need to bound the triangular deviation to

q⋆. As this has been shown to be upper bounded by the Hellinger distance (Corollary A.2), we switch to Hellinger distances

and establishes contraction properties of T with respect to such distances. This required new proofs. The change of measure

arguments used in the “error propagation analysis” are standard.

The following lemma, at a high level, establishes that the map f 7→ f∧ (“min-operator”) is a non-expansion over the set of

nonnegative functions with domain S ×A and S , respectively, when these function spaces are equipped with appropriate

norms:

Lemma B.10. Define the policy πf,g(s) = argmina∈A min{f(s, a), g(s, a)} and assume that f, g : S × A → [0,∞).
Then, for any distribution η ∈M1(S), we have that

∥
∥
∥

√

f∧ −
√

g∧
∥
∥
∥
2,η
≤
∥
∥
∥

√

f −√g
∥
∥
∥
2,η×πf,f′

. (21)

Proof. Notice that for two finite sets of reals, U = {u1, . . . , un}, V = {v1, . . . , vm}, with u1 = minU , vj = minV ,

u1 ≤ vj , j ∈ [m], we have |minU − minV | = vj − u1 ≤ v1 − u1 ≤ |u1 − v1|. By taking the square root of all the

elements in both U and V , assuming these are nonnegative, we also get that

|
√
minU −

√
minV | ≤ √v1 −

√
u1 ≤ |

√
u1 −

√
v1| . (22)
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Hence,

∥
∥
∥

√

f∧ −
√

g∧
∥
∥
∥

2

2,η
=
∑

s∈S

η(s)

(
√

min
a∈A

f(s, a)−
√

min
a∈A

g(s, a)

)2

=
∑

s∈S

η(s)

(√

f (s, πf (s))−
√

g (s, πg(s))

)2

≤
∑

s∈S

η(s)

(√

f(s, πf,g(s))−
√

g(s, πf,g(s))

)2

(by Equation (22))

=
∑

s∈S

η(s)
∑

a∈A

I {a = πf,g(s)}
(√

f(s, a)−
√

g(s, a)
)2

=
∥
∥
∥

√

f −√g
∥
∥
∥

2

2,η×πf,g

where the inequality used the definition of πf,g(s).

We need two more auxiliary lemmas before we can show the desired contraction result for T . The first is an elementary

result that shows that for x ≥ 0, over the nonnegative reals the map u 7→
√
x+ u is a nonexpansion:

Lemma B.11. For any x, a, b ≥ 0, we have

∣
∣
√
x+ a−

√
x+ b

∣
∣ ≤

∣
∣
√
a−
√
b
∣
∣ . (23)

Proof. For x ≥ 0, let f(x) =
∣
∣
√
x+ a −

√
x+ b

∣
∣. Note that the desired inequality is equivalent to that for any x ≥ 0,

f(x) ≤ f(0). This, it suffices to show that f is a decreasing function over its domain.

Without loss of generality we may assume that a > b (when a = b, the inequality trivially holds, and if a < b, just relabel

a to b and b to a). Hence, f(x) =
√
x+ a−

√
x+ b for any x ≥ 0 by the monotonicity of the square root function. For

x > 0, f is differentiable. Here, we get

f ′(x) =
∂

∂x

(√
x+ a−

√
x+ b

)

= −
(√

x+ a−
√
x+ b

)2

2
√
x+ a

√
x+ b

(√
x+ a−

√
x+ b

) ≤ 0 . (24)

Now, since f is continuous over its domain, by the mean-value theorem, f is decreasing over [0,∞).

The next result shows that for any probability distribution λ over some set X , the map g 7→
√

〈λ, g〉 is a nonexpansion from

H2(X , λ) to the reals, where H2(X , λ) is the space of nonnegative valued functions over X equipped with the Hellinger

distance d(g, h) := ‖g1/2 − h1/2‖2,λ.

Lemma B.12. Given a random element X taking values in X and nonnegative-valued functions g, g′ : X → [0,∞) such

that g(X) and g′(X) are integrable, we have

(√

E g(X)−
√

E g′(X)
)2

≤ E

(√

g(X)−
√

g′(X)
)2

<∞ . (25)

Proof. The result follows by some calculation:

(√

E g(X)−
√

E g′(X)
)2

= E g(X)− 2
√

E g(X)
√

E g′(X) + E g′(X)

≤ E g(X)− 2E
√

g(X)g′(X) + E g′(X) (Cauchy-Schwarz)

= E

[

g(X)− 2
√

g(X)g′(X) + g′(X)
]

= E

(√

g(X)−
√

g′(X)
)2

,
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where the Cauchy-Schwarz step uses that g and g′ are nonnegative. Finally, that E

(√

g(X)−
√

g′(X)
)2

< ∞
follows because, from (a + b)2 ≤ 2(a2 + b2), and hence since g(X) and g′(X) are assumed to be integrable,

E

(√

g(X)−
√

g′(X)
)2

≤ 2E g(X) + 2E g′(X) <∞

With this we are ready to prove that the Bellman optimality operator is a contraction when used over nonnegative functions

equipped with Hellinger distances defined with respect to appropriate measures:

Lemma B.13. For any distribution ν ∈M1(S ×A), and functions f, g : S ×A → [0,∞) we have
∥
∥
∥

√

T f −
√

T g
∥
∥
∥
2,ν
≤ γ1/2

∥
∥
∥

√

f −√g
∥
∥
∥
2,νP×πf,g

.

Proof. By the definition of T , we have T f = c + γPf∧. Here, P is viewed as an SA × S matrix, while c and f∧ are

viewed as S-dimensional vectors where S and A denote the cardinalities of S and A respectively. Also recalling that we use√
f to denote the elementwise square root of f for f a vector/function, we have

∥
∥
∥

√

T f −
√

T g
∥
∥
∥

2

2,ν
=
∥
∥
∥

√

c+ γ Pf∧ −
√

c+ γ Pg∧
∥
∥
∥

2

2,ν

≤
∥
∥
∥

√

γ Pf∧ −
√

γ Pg∧
∥
∥
∥

2

2,ν
(Lemma B.11 and the defn. of ‖·‖2,ν)

= γ
∥
∥
∥

√

Pf∧ −
√

Pg∧
∥
∥
∥

2

2,ν

≤ γ
∥
∥
∥

√

f∧ −
√

g∧
∥
∥
∥

2

2,νP
(Lemma B.12)

≤ γ
∥
∥
∥

√

f −√g
∥
∥
∥

2

2,νP×πf,g

, (Lemma B.10)

thus finishing the proof.

The next result is a simple change-of-measure argument:

Lemma B.14. Let µ, ν be any distributions over S × A and assume that ν is admissible. Then for p ≥ 1 we have

‖·‖p,ν ≤ C1/p‖·‖p,µ.

Proof. For any function g : S ×A → R, we have

‖g‖p,ν =




∑

(s,a)∈S×A

|g(s, a)|pν(s, a)





1/p

≤




∑

(s,a)∈S×A

|g(s, a)|pCµ(s, a)





1/p

(Assumption 3.2)

= C1/p




∑

(s,a)∈S×A

|g(s, a)|pµ(s, a)





1/p

= C1/p‖g‖p,µ .

Lemma B.15. Let µ, ν be any distributions over S×A and assume that ν is admissible. Then, for any f, f ′ : S×A→ [0,∞)
we have

∥
∥
∥

√

f −
√
q⋆
∥
∥
∥
2,ν
≤
√
C
∥
∥
∥

√

f −
√

T f ′
∥
∥
∥
2,µ

+
√
γ
∥
∥
∥

√

f ′ −
√
q⋆
∥
∥
∥
2,νP×πf′,q⋆

.

and
∥
∥
√
f −√q⋆

∥
∥
2,ν
≤

√
C

1−√
γ

∥
∥
√
f −√q⋆

∥
∥
2,µ

.
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Proof. We have

∥
∥
∥

√

f −
√
q⋆
∥
∥
∥
2,ν

=
∥
∥
∥

√

f −
√

T f ′ +
√

T f ′ −
√

T q⋆
∥
∥
∥
2,ν

(q⋆ = T q⋆)

≤
∥
∥
∥

√

f −
√

T f ′
∥
∥
∥
2,ν

+
∥
∥
∥

√

T f ′ −
√

T q⋆
∥
∥
∥
2,ν

(triangle inequality)

≤
√
C
∥
∥
∥

√

f −
√

T f ′
∥
∥
∥
2,µ

+
√
γ
∥
∥
∥

√

f ′ −
√
q⋆
∥
∥
∥
2,νP×πf′,q⋆

where the last inequality uses Lemmas B.13 and B.14. For the second term let f ′ = f and ν0 = argmaxν
∥
∥
√
f −√q⋆

∥
∥
2,ν

,

then
∥
∥
∥

√

f −
√
q⋆
∥
∥
∥
2,ν0

≤
√
C
∥
∥
∥

√

f −
√
q⋆
∥
∥
∥
2,µ

+ γ1/2
∥
∥
∥

√

f −
√
q⋆
∥
∥
∥
2,ν0P×πf,q⋆

≤
√
C
∥
∥
∥

√

f −
√
q⋆
∥
∥
∥
2,µ

+ γ1/2
∥
∥
∥

√

f −
√
q⋆
∥
∥
∥
2,ν0

.

Therefore,
∥
∥
√
f −√q⋆

∥
∥
2,ν
≤
∥
∥
√
f −√q⋆

∥
∥
2,ν0

≤
√
C

1−√
γ

∥
∥
√
f −√q⋆

∥
∥
2,µ

.

Lemma B.16 (Error propagation). Fix k ≥ 1 and let f0, f1, . . . , fk : S ×A → [0,∞) be arbitrary functions such that f0
takes values in [0, 1], ν, µ distributions over S ×A and assume that ν is an admissible distribution. Then,

∥
∥
∥

√

fk −
√
q⋆
∥
∥
∥
2,ν
≤ γ

k
2 +

2
√
C

1− γ
max
1≤τ≤k

∥
∥
∥

√

fτ −
√

T fτ−1

∥
∥
∥
2,µ

.

Proof. Define (νi)0≤i≤k via νk = ν and for 0 ≤ i < k, let νi = (νi+1P ) × πfi,q⋆ . Note that by assumption, νk is

admissible. It then follows that νi for 0 ≤ i < k is also admissible. Indeed, if for some 0 ≤ i < k, π = (π0, π1, . . . ) is the

nonstationary policy that realizes νi+1 in step s ≥ 0, π′ = (π0, π1, . . . , πs, πfi,q⋆ , πs+1, . . . ) is a policy that realizes νi in

step s+ 1.

Hence,

∥
∥
∥

√

fk −
√
q⋆
∥
∥
∥
2,ν

=
∥
∥
∥

√

fk −
√
q⋆
∥
∥
∥
2,νk

(definition of νk)

≤
√
C
∥
∥
∥

√

fk −
√

T fk−1

∥
∥
∥
2,µ

+
√
γ
∥
∥
∥

√

fk−1 −
√
q⋆
∥
∥
∥
2,νk−1

, (Lemma B.15)

where the second inequality uses Lemma B.15 while setting f, f ′, ν, µ to fk, fk−1, νk and µ (the data generating distribution),

respectively, and noting that, by definition, νP ×πf ′,q⋆ of the Lemma is (νkP )×πfk−1,q⋆ = νk−1, and that, by assumption,

νk = ν is admissible.

Now, we recurse on the second term of the above display using Lemma B.15:

√
γ
∥
∥
∥

√

fk−1 −
√
q⋆
∥
∥
∥
2,νk−1

≤
√

γ C
∥
∥
∥

√

fk−1 −
√

T fk−2

∥
∥
∥
2,µ

+ γ
∥
∥
∥

√

fk−2 −
√
q⋆
∥
∥
∥
2,νk−2

where the inequality uses Lemma B.15 while setting f, f ′, ν, µ to fk−1, fk−2, νk−1 and µ (the data generating distribution),

respectively, and noting that, by definition, νP × πf ′,q⋆ of the Lemma is (νk−1P )× πfk−2,q⋆ = νk−2, and that, as argued

before, νk−1 is admissible.

Continuing this way, and then plugging in back to the first display of the proof, we get

∥
∥
∥

√

fk −
√
q⋆
∥
∥
∥
2,ν
≤
√
C

k∑

j=1

γ
k−j
2

∥
∥
∥

√

fj −
√

T fj−1

∥
∥
∥
2,µ

+ γ
k
2

∥
∥
∥

√

f0 −
√
q⋆
∥
∥
∥
2,ν0

≤
√
C

k∑

j=1

γ
k−j
2

∥
∥
∥

√

fj −
√

T fj−1

∥
∥
∥
2,µ

︸ ︷︷ ︸

S:=

+γ
k
2 ,
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where the second inequality holds because by assumption, f0 takes values in [0, 1] and so does q⋆. Hence, (
√
f0−
√
q⋆)2 ≤ 1

and thus
∥
∥
√
f0 −

√
q⋆
∥
∥
2,ν0

≤ 1.

Now, we bound S defined above:

S ≤ max
τ∈[1,...,k]

∥
∥
∥

√

fτ −
√

T fτ−1

∥
∥
∥
2,µ

k∑

j=1

γ
k−j
2

≤ 2

1− γ
max

τ∈[1,...,k]

∥
∥
∥

√

fτ −
√

T fτ−1

∥
∥
∥
2,µ

. (1/(1−√γ) ≤ 2/(1− γ))

Chaining the inequalities finishes the proof.

Remark B.1. Note that in the proof of the last result it was essential that in the definition of admissibility we allow

nonstationary policies.

With this we are ready to prove Proposition B.3:

Proof of Proposition B.3. For the proof let ft denote the action-value function computed by FQI in step t = 0, 1, . . . , k.

Recall that by construction f0 ∈ F and that by assumption all functions in F take values in [0, 1]. We have

‖∆fk‖2,ν =

∥
∥
∥
∥

fk − q⋆√
fk + q⋆

∥
∥
∥
∥
2,ν

(definition of ∆f )

≤
√
2
∥
∥
∥

√

fk −
√
q⋆
∥
∥
∥
2,ν

(first part of Corollary A.2)

≤
√
2γ

k
2 +

2
√
2
√
C

1− γ
max
1≤τ≤k

∥
∥
∥

√

fτ −
√

T fτ−1

∥
∥
∥
2,µ

(Lemma B.16, 0 ≤ f0 ≤ 1)

≤
√
2γ

k
2 +

4

1− γ
max

τ∈[1,...,k]

∥
∥h2(fτ ‖ T fτ−1)

∥
∥
1/2

1,µ
. (second part of Corollary A.2)

where in the second inequality we used that by assumption ν is admissible.

For g : S ×A → [0, 1], let f̂g be the function learned by regressing on g via log-loss, i.e.,

f̂g = argmin
f∈F

n∑

i=1

ℓlog (f(Si, Ai); Ci + γg∧(S′
i)) .

Note that fτ = f̂fτ−1
. Hence,

∥
∥h2(fτ ‖ T fτ−1)

∥
∥
1,µ

=
∥
∥
∥h2(f̂fτ−1

‖ T fτ−1)
∥
∥
∥
1,µ
≤ max

g∈F

∥
∥
∥h2(f̂g ‖ T g)

∥
∥
∥
1,µ

(because fτ−1 ∈ F)

Since this applies for any 1 ≤ τ ≤ k, all that remains is to bound the right-hand side of the last display. We will

use Theorem A.3 for this purpose. This result can be applied because, on the one hand, by Assumption 3.1, E [Ci +
γg∧(S′

i)|Si, Ai] = T g (Si, Ai), and by Assumption 3.4, T g ∈ F whenever g ∈ F and because, again, by Assumption 3.1,

(Si, Ai, Ci, S
′
i+1) are independent, identically distributed random variables for i = 1, . . . , n. Thus, Theorem A.3 together

with a union bound and recalling that the distribution of (Si, Ai) is µ gives that for any 0 < δ < 1,

max
g∈F

∥
∥
∥h2(f̂g, T g)

∥
∥
∥
1,µ
≤ 2 log(|F|2/δ)

n
.

Putting things together, we get that for any fixed 0 < δ < 1, with probability 1− δ,

‖∆fk‖2,ν ≤
√

32C log (|F|2/δ)
(1− γ)2n

+
√
2γ

k
2 .

23




