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Abstract

In this paper, we prove that Distributional Re-
inforcement Learning (DistRL), which learns
the return distribution, can obtain second-order
bounds in both online and offline RL in general
settings with function approximation. Second-
order bounds are instance-dependent bounds that
scale with the variance of return, which we prove
are tighter than the previously known small-loss
bounds of distributional RL. To the best of our
knowledge, our results are the first second-order
bounds for low-rank MDPs and for offline RL.
When specializing to contextual bandits (one-step
RL problem), we show that a distributional learn-
ing based optimism algorithm achieves a second-
order worst-case regret bound, and a second-order
gap dependent bound, simultaneously. We also
empirically demonstrate the benefit of DistRL in
contextual bandits on real-world datasets. We
highlight that our analysis with DistRL is rela-
tively simple, follows the general framework of
optimism in the face of uncertainty and does not
require weighted regression. Our results suggest
that DistRL is a promising framework for obtain-
ing second-order bounds in general RL settings,
thus further reinforcing the benefits of DistRL.

1. Introduction

The aim of reinforcement learning (RL) is to learn a pol-
icy that minimizes the expected cumulative cost along its
trajectory. Typically, squared loss is used in standard RL
algorithms (Mnih et al., 2015; Haarnoja et al., 2018) for
learning the value function, the expected cost-to-go from
a given state. As an alternative to squared loss, Bellemare
et al. (2017) proposed to learn the whole conditional distri-
bution of cost-to-go with distributional loss functions such
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as the negative log-likelihood or the pinball loss (Dabney
et al., 2018a). This paradigm is aptly called Distributional
RL (DistRL) and has since been empirically validated in
numerous real-world tasks (Bellemare et al., 2020; Bodnar
et al., 2020; Fawzi et al., 2022; Dabney et al., 2018b), as
well as in benchmarks for both online (Yang et al., 2019)
and offline RL (Ma et al., 2021). However, there is a lack of
understanding for why DistRL often attains stronger perfor-
mance and sample efficiency (Lyle et al., 2019).

This raises a natural theoretical question: when and why
is DistRL better than standard RL? Wang et al. (2023b) re-
cently proved that DistRL based on maximum likelihood
estimation (MLE) results in small-loss bounds, which are
instance-dependent bounds that scale with the minimum pos-
sible expected cumulative cost V'* for the task at hand. If the
optimal policy makes few blunders on average, i.e., V* =~ 0,
then small-loss bounds converge at the fast O(1/N) rate,
while standard RL bounds converge at a O(1/v/N) rate
which is worst-case in nature.

In this paper, we refine the analyses of Wang et al. (2023b)
and prove that DistRL actually attains tighter second-order
bounds in both online and offline settings. Instead of scaling
with V* as in small-loss bounds, our second-order bounds
scale with the variance of the policy’s cumulative cost. In of-
fline RL, it is the optimal policy’s variance, whilst in online
RL, it is the variance of policies played by the algorithm. In
both cases, our second-order result is strictly tighter than
the previously known small-loss bounds (a.k.a. first-order
bounds), i.e., second-order implies first-order bounds. In
particular, our second-order bounds yield fast O(1/N) rates
in near-deterministic tasks where V* may still be far from
zero. Our theory applies at the same generality as Wang
et al. (2023b). Moreover, in contextual bandits (one-step
RL), we prove a novel first and second-order gap-dependent
bound that incorporates V* and variance into the gap defi-
nition. Finally, in contextual bandits, we empirically show
that our distributionally optimistic algorithm is efficiently
implementable with neural networks via width computation
(Feng et al., 2021) and outperforms the same optimistic
algorithm with squared loss (Foster et al., 2018).
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Our contributions are summarized as follows:

1. For online RL, we show that DistRL enjoys second-
order bounds in MDPs with low /¢;-distributional
eluder dimension (Wang et al., 2023b). These are the
first second-order bounds in MDPs with function ap-
proximation, e.g., low-rank MDPs (Section 5).

2. For offline RL, we show that DistRL enjoys second-
order bounds with single-policy coverage, the first of
such bounds to our knowledge (Section 6).

3. For contextual bandits, our online algorithm further
achieves a novel first/second-order gap-dependent
bound (Section 4.2). Finally, we empirically evaluate
our distributional contextual bandit algorithm and show
it outperforms the squared loss baseline (Section 7).!

2. Related Works

Theory of DistRL. Rowland et al. (2018; 2023a) showed
that DistRL algorithms such as C51 and QR-DQN converges
asymptotically with a tabular representation. This unfor-
tunately does not imply finite-sample statistical improve-
ments over standard RL, which is our focus. Recently, Row-
land et al. (2023b) showed that quantile temporal-difference
(QTD) learning may have smaller bounded variance in each
update step than temporal-difference (TD) learning, which
may have unbounded variance. While this finding may ex-
plain improved training stability, it does not affirmatively
imply that QTD obtains better finite-sample regret, which
is our focus. For off-policy evaluation (OPE), Wu et al.
(2023) showed that fitted likelihood estimation can learn
the true return distribution up to errors in total variation and
Wasserstein distance. We focus on online and offline RL
rather than OPE.

Small-loss Bounds from DistRL. The closest work to
ours is Wang et al. (2023b) which showed that MLE-based
DistRL can achieve small-loss bounds in online RL and of-
fline RL under distributional Bellman completeness, build-
ing on the earlier contextual bandit results of Foster & Kr-
ishnamurthy (2021). While Wang et al. (2023b) gave the
first small-loss bounds in low-rank MDPs and in offline RL,
we prove that their DistRL algorithms can actually achieve
tighter, second-order bounds under identical assumptions.
Our bounds are strictly more general than small-loss (a.k.a.
first-order) bounds as shown by the following theorem.

Theorem 2.1 (Informal). In online and offline RL, a second-
order bound implies a first-order bound (with a worse uni-
versal constant). This is formalized in Theorem D.2.

!Code is available at
Cornell-RL/DistUCB

https://github.com/

Other second-order bounds. Variance-dependent (a.k.a.
second-order bounds) are known in tabular MDPs (Zanette
& Brunskill, 2019; Zhou et al., 2023; Zhang et al., 2023),
linear mixture MDPs (Zhao et al., 2023), and linear con-
textual bandits (Ito et al., 2020; Olkhovskaya et al., 2023).
These prior works mainly use variance weighted regression,
and their analysis does not easily extend beyond linear func-
tion approximation. Surprisingly, we show that by simply
learning the return distribution with MLE, one can obtain
general variance-dependent bounds, by leveraging the tool
of triangular discrimination that was first leveraged in Fos-
ter & Krishnamurthy (2021). In other words, DistRL is
an attractive alternative to variance weighted regression for
obtaining sharp second-order bounds in RL.

3. Preliminaries

Contextual Bandits (CB). We first consider CBs with
context space X, finite action space A of size A and nor-
malized conditional costs C' : X x A — A([0, 1]), where
A([0, 1]) is the set of all distributions on [0, 1] that are abso-
lutely continuous with respect to some dominating measure
A, e.g., Lebesgue for continuous or counting for discrete.
We identify such a distribution via its density with respect
to A, hence we write (C(z,a))(y) or C(y | x,a) for the
density of C(x, a) at y. The CB proceeds over K episodes
as follows: at episode k € [K] = {1,..., K}, the learner
observes a context x;, € X, takes an action a;, ~ A, and
receives a cost ¢ ~ C(xk,ax). We do not require that
contexts are sampled from a fixed distribution; they may be
arbitrarily chosen by an adaptive adversary. The goal is to
minimize the regret, defined as

K
RegCB(K) = ;é(xk7ak) - géiﬁé(xkaa’)a

vghere the bar denotes the mean of the distribution, i.e.,
[ = [yf(y)d\(y) for any f € A([0,1]). We'll also use

Var(f) = [(y — f)*f(y)dA(y) to denote the variance.

Reinforcement Learning (RL). We now consider a
Markov Decision Process (MDP) with observation space X,
finite action space A of size A, horizon H, transition kernels
Py : X x A — A(X), and normalized cost distributions
Ch : X x A — A([0,1]) at each step h € [H]. Given a pol-
icy m: X — A(A) and an initial state x; ~ X, the “roll in”
process occurs as follows: for each step h = 1,2,..., H,
the policy 7 samples an action a;, based on the current
state x,, incurs a cost ¢, from the cost distribution, and
transitions to the next state ;1. The return is the cumu-
lative cost from this random process Z™ (z1) := Zthl Ch-
The value is the expected return V7 (z1) := E[Z7(z1)].
We use subscript h to denote cost-to-go from a particular
step: Z7 (xp,) = Zflzh ¢ and V™ (z,) = E[Z] (z1,)]. We
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use Z*, V* to denote these quantities for the optimal, min-
cost policy 7*. We use Z] (xp, ap) to denote the random
cost-to-go conditioned on rolling in 7 from xy,, ay,, and so
Q% (zn,an) == E[Z] (zh, ap)]. Without loss of generality,
we assume cumulative costs Zthl cp, are normalized in
[0, 1] almost surely, to avoid artificial scaling in H (Jiang &
Agarwal, 2018).

The Online RL problem proceeds over K episodes: at
episode k € [K], the learner executes a policy 7% : X —
A(A) from an initial state 1 . We do not require that 1
are sampled from a fixed distribution; they may be chosen
by an adaptive adversary. The goal is to minimize regret,

Regp (K V*(z1,k)-

K
E xlk

In Offline RL, the learner is directly given i.i.d. samples of
transitions drawn from unknown distributions v+, ..., vy,
and the goal is to learn a policy with a lower cost than any
other policy whose behavior is covered by the dataset, simi-
lar to prior best-effort guarantees in offline RL (Liu et al.,
2020; Xie et al., 2021). Concretely, the learner receives a
dataset D = (D1, Ds, . .., Dy ), where each Dy, contains N
i.i.d. samples (Tp i, Gh iy Chis x;”) such that (xp, ;, an ;) ~
Vh, Chyi ™~ Ch (xh,h ah’i), LL‘;L,Z» ~ Py ({L‘h’i, ah,i). Unlike the
online setting where initial states can be adversarial, we
assume for offline RL that initial states are sampled from a
fixed and known distribution d; .

Distributional RL. The Bellman operator acts on a func-
tion f : X x A — [0,1] as follows: 7, f(z,a) =
Ch(x,a) + By oy (2,0),0'~w(z) [ f (2", a")]. Analogously,
the distributional Bellman operator (Bellemare et al., 2017)
acts on a conditional distribution d : X x A — A([0,1])
as follows: 7,7 d(x, a) Z Ch(z,a) x d(x',a’), where
2’ ~ Py(x,a),a’ ~ w(z') and * denotes convolution.
Another sampling view of the distributional Bellman op-
erator is that z ~ ’T}:T’Dd(x,a) is equivalent to: ¢ ~
Cu(z,a),2' ~ Py(x,a),a ~ w(z'),y ~ d(z',a’) and
z = c + y. Also recall the optimality operator 7,
and its distributional variant 7;" D are defined as follows:
E*f(‘rv a) = Ch(xa a) + EI’NP;L(I,CL) [minaeA f(a:',a')]
and 7,"Pd(z, a) 2 Cp(z,a) + d(z’',a’) where 2/ ~
Py(x,a),a’ = argmin, d(z',a).

Triangular Discrimination. For any distributions f, g €
L?()\), their triangular discrimination (Topsoe, 2000) is
defined as Do (f || g) = f%dx( ), which is
equivalent to the squared Hellinger distance up to universal

constants. Please see Table 2 for an index of notations.

Algorithm 1 DiISTUCB (O-DISCO at H = 1)
1: Input: no. episodes K, distribution class F
2: Init Dy + (Z)and}'o «~— F.

3: for episode k = 1,2,..., K do

4: Observe context xj.

5: Play a), = argmin, . 4 miner, , f(2k,a).

6: Observe cost ¢, ~ C(xy, a).

7: Dy + Di_1 U{(mk,ak,ck)},fk (—CSCB(Dk).
8: end for

4. Warmup: Second-Order Bounds for CBs

As a warmup, we consider contextual bandits and prove that
distributional UCB (DISTUCB) attains second-order regret.
The distributional confidence set is the main construct that
is optimized over to ensure optimism. To construct it, we
need a dataset of state, action, costs, D = {x;, a;, ¢; }ic[n]s
a threshold 3 to be specified later, as well as a function class
F C X x A — A([0,1]) containing the true conditional
cost distribution C(- | z, a). Then, the confidence set is

CSc(D) = {f € F:Lea(f,D)> glefgﬁcs(g,D)—ﬁ},

where Lcg(f, D) = Zi\illog flei | x4, a;) is the log-
likelihood of f on D. In words, CScg(F, D) contains all
functions f € F that are 3-near-optimal according to the
log-likelihood. Then, DISTUCB simply selects the action
with the minimum lower confidence bound (LCB) induced
by the current confidence set.

Theorem 4.1. Suppose C € F (realizability). For any
5 € (0,1), wp. atleast 1 — 0, running DISTUCB with
B = log(K|F|/d) enjoys the regret bound,

K
Regretgg(K) < (5( degf3 - ZVar(C’(xk, ar)) + dCBB),

where dcg is the {1-eluder dimension (Liu et al., 2022)
of {(z,a) — Da(f(z,a) || C(z,a)): f € F} at thresh-
old K=1. This is a special case of the distributional eluder
dimension (Definition 5.2) where ® = {5, : z € X x A}.

The dominant term scales with \/ Zszl Var(C(xk, ax))

which is sharper than the v/K bound of RegCB (Foster
et al., 2018), the squared loss variant of DISTUCB. For
example, in deterministic settings, our variance-dependent
regret scales as O(dcg), which is tight in K up to log factors.
Nonetheless, confidence-set based strategies like DISTUCB
and RegCB are not minimax-optimal as the eluder dimen-
sion may scale linearly in F (Foster et al., 2018, Proposition
1). It would be interesting to derive second-order regret with
inverse-gap weighting (Foster & Rakhlin, 2020).
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Practical considerations. We note that DISTUCB is
amenable to practical implementation since conditional on
x1 and a, the LCB can be computed efficiently via binary
search (Foster & Rakhlin, 2020) or disagreement computa-
tion (Feng et al., 2021). We include implementation pseudo-
code and empirical results in Section 7 and the Appendix.

4.1. Proof of Theorem 4.1

Our first step is to bound the difference of means by vari-
ances multiplied by the triangular discrimination.

Lemma 4.2. For f,g € L*>(\) s.t. DA(f || g) <

_2)

|7~ g < 2/(Var(f) + Var(@))Da(f | 9). (1)
This lemma tightens Eq.(A1) of Wang et al. (2023b) so
that variances of f and g appear in the RHS instead of the
means. Note that Eq.(A;) of Wang et al. (2023b) holds
unconditionally, while our lemma requires DA (f || g) < %
which is absorbed in the lower order term of the next lemma.
This lower order term is a key reason we need the bounded
eluder dimension assumption.

Lemma 4.3. Forany f,g € L*(\), we have

|F — 3 <4/Var(NDa(f | 9) +5Da(f | 9) @)

‘We now bound the regret in a standard way with optimism,
ie., whp. fi(zp,ar) < min, C(xy,a), which is en-
sured by optimizing the confidence set. Let dy(x,a) :=
Da(fx(z,a) || C(z,a)). Then,

Oz, ar) —

M=

min C(zy, a)

El
Il
i

IA

\TMN M=

C(wr, ar) — fr(wr, ar) (optimism)

<

4+/Var(C

(zk,ax))0k (xk, ar) + 50k (2K, ar) (Eq. (2))

(Cauchy-Schwarz)

<4J2Var (zk,ar))A + BA,

where A = Ele 0 (xk, ar ). Finally, using MLE general-
ization bound and the fact that f € Fj_1, with probability
atleast 1 — ¢, we have for all k € [K]: Zf_l Or(xi,a;) <
log(]F|K/d) (Wang et al., 2023b, Lemma E.3). Thus, ap-
plying pigeon-hole argument of eluder dimension gives
A < 4dgg(1/K)log(|F|K/d)log(K) (Liu et al., 2022,
Proposition 21). This concludes the proof.

4.2. First and Second-Order Gap-Dependent Bounds

While it is known that UCB attains gap-dependent bounds,
here we prove first and second-order gap-dependent bounds

which are novel to the best of our knowledge. Recall that
the gap at context « and action a is defined as Gap(z, a) =
C(z,a) —ming«¢c 4 C(z,a*). We define our novel first and
second-order min-gaps as follows:

Gap(z,a)
Gapc» = min min _—
r€X acA:Gap(z, a)>0 ming» C(J?,a*)
Amingx C(z,a*)>0
Gap(z,a)

Gapyy = min —_—
Pvar = Var(C(z,a))

min
r€X a€A:Gap(z,a)>0
A Var(C(z,a))>0

The inner min is taken to be oo if the condition is empty.

Theorem 4.4. Assume the premise of Theorem 4.1. If
max(Gapyg, Gapes ) > \/% then

Regretog(K) < (dCBﬂ + dcgBmin{Gapy,,, Gapc: }).

As usual, we have a Gap '-type bound that implies
O(dcp log K) regret when the gap is large. Our key innova-
tion lies in the definition of Gap« and Gapyy,,, which are
inversely weighted by the optimal mean cost or variance of
each context. Our weighted min-gaps are always larger than
the standard min-gap (since C(z, a), Var(C(x,a)) < 1) but
they can be much larger in small-loss or near-deterministic
regimes. We note that DISTUCB s regret is simultaneously
bounded by both Theorem 4.4 and Theorem 4.1 under the
same hyperparameters.

5. Second-Order Bounds for Online DistRL

In this section, we show that the optimistic DistRL algo-
rithm of Wang et al. (2023b) actually enjoys second-order
regret and PAC guarantees, which are strictly tighter than
the previously known first-order bounds. We first recall the
MLE-confidence set for DistRL which generalizes CScg
from the warmup. Let F be a set of conditional distributions,
ie, (fi,...,fuy) € F where f, : X x A — A([0,1]),
which are candidate functions to fit Z* or Z™ (depend-
ing on the type of Bellman operator used) with MLE.
Given a dataset of state, action, cost, next state tuples,
D = {xpi,ani, Chi, T}, ; fhe(m),ic(v]> and a distributional
Bellman operator TP, the MLE-confidence set is defined as

CSRL(D; TP) = {f € F :VYhelH],
Lr.(f,D) > max LrL(g9, D) — ﬂ}7

where Lp (f,D) = Zfil log fh(zi;i | Zh,an,;) and
z,{l ~ TP frni1(zh i, ani). In words, CSp(D; TP) con-
tains all functions f € F such that for all h € [H], f is (-
near-optimal w.r.t. the MLE loss for solving fy, ~ T,” fr41.
Since this construction happens in a TD fashion, a standard
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Algorithm 2 O-DISCO (Wang et al., 2023b)
1: Input: no. episodes K, distribution class F, UAE flag.
2: Init Dy, o < O for all h € [H] and Fy « F.
3: for episode £ =1,2,..., K do

4: Observe init state 1 . -

5: Set f*) « arg minge z, , ming f1 (1, a).

6: For each h, set 7% () = arg min, ;gk)(:z:, a).

7: if not UAE then

8: Run 7% from =, and get trajectory

X1,k,A1,k;Cl,ky -y TH ky QH ky CH k- Then, Vh,
Dhke = Dhi—1 U{(@h ks Oh ks Chks Tht1 k) }-
9: else
10: For each h € [H], roll in 7% from w7
for h steps and take a random action, i.e.,
Thk d’,:k, Qp k.~ Unif(.A), Chk ~~
Ch(@nk,ank)s T ~ Pn(®h g, any). Then,

Dhy = Dp -1 U {(’Ih,k, Qb k> Ch ks ﬂfﬁlk)}
11: end if
12: Update Fj, < CSRL(('Dh,k)hE[H];T*’D).
13: end for
14: Output: 7 = unif (715).

condition called distributional Bellman Completeness (BC)
is needed to guarantee that MLE succeeds for all h € [H|
(Wu et al., 2023; Wang et al., 2023b).

Assumption 5.1 (Bellman Completeness). For all 7, h €
D
[H], frt1 € Farr = T fot1 € Fa

BC is a standard assumption in model-free online and of-
fline RL; without it, TD and fitted-Q can diverge or converge
to bad fixed points (Tsitsiklis & Van Roy, 1996; Munos &
Szepesvari, 2008; Kolter, 2011). As discussed in (Jin et al.,
2021a; Wang et al., 2023b), the BC condition can be relaxed
to “generalized completeness”, i.e., there exist function
classes G, such that f, 11 € Frp1 — 7?’th+1 € Gy.

Then, the O-DISCO algorithm of Wang et al. (2023b) pro-
ceeds by selecting the optimistic f(*) in the confidence set
Fy at each round and playing the greedy policy 7% w.r.t. f,
where the “playing” can be done with uniform action explo-
ration (UAE). If UAE=TRUE, then for each h, ¥ is rolled
in for h timesteps and takes a uniform action before the tran-
sition tuple is added to the dataset. Note that this requires H
rollouts per round but is necessary to capture general MDPs
such as low-rank MDPs (Agarwal et al., 2020).

Finally, we adopt the ¢;-distributional eluder dimension
(dimyg, pg) defined as follows (Wang et al., 2023b).

Definition 5.2 (¢, -distributional eluder dimension). Let S
be any set, ¥ be a set of functions of type S — R, and
D is a set of distributions over S. For any g € R, the
¢,-distributional eluder dimension (dim,, pe(¥,D, o)) is
the length L of the longest sequence d(V), .., dF) C D s.t.

Je > €o,Vt € [L],3f € ¥ where |E ) f| > ¢ and also
it [Eaw fIP < eP.

We work with the same eluder dimensions for RL as in
Wang et al. (2023b) which employs the following:

Uy, = {(z,a) = Da(fu(z,a) | 7" fusi(z,0)), f € F},
D = {(z,a) — dj(x,a) : T € IT}.

Then, the Q-type RL dimension is

drL(e) := max dimy, pe(¥p, D, €).

The V-type dimension dpiy is analogous with Wy ;, =
{2 = Eomvnitt)[Da(fu(z,a) | TP fria(z,a)] : f €
F}. As with dcg (from the CB warmup), the threshold ¢ is
taken as 1/ K if none is provided. We are now ready to state
our online RL result.

Theorem 5.3 (Second-order bounds for Online RL). Under
Assumption 5.1, for any 6 € (0,1), w.p. at least 1 — 0, run-
ning O-DISCO with § = log(H K|F|/6) has Regg (K)
at most,

K
10) (H\j Z Var(Z™ (z1,%)) - drB + H2'5dRL5> .

k=1

If UAE=TRUE, then the learned mixture policy T enjoys
the PAC bound: w.p. at least 1 — §, K(V™ — V*) is at most,

K
10} (HJ A ZVar(Z”k (x1,8))dRLVE + AH2'5dR|_,vﬁ> .

k=1

Compared to prior worst-case bounds for GOLF (Jin et al.,
2021a) and small-loss bounds for O-DISCO (Wang et al.,
2023b), our new bound has one key improvement: the lead-
ing VK terms are replaced by the square root of the sum
of return variances ) , Var(Z w* (21,%)). The function class
complexity measure log |F| can be generalized to brack-
eting entropy as in Wang et al. (2023b). As Theorem 2.1
shows, our second-order bounds are more general than the
first-order bounds of Wang et al. (2023b). For example,
in deterministic MDPs where Vagiance is zero, our second-
order bound converges at a fast O(1/K) rate which is tight
up to log K factors (Wen & Van Roy, 2017). In contrast,
V* may be non-zero in which case the first-order bound
converges at a slow Q(1/vK) rate.

It may be surprising that DistRL actually helps for near-
deterministic systems. This is because the agent does not a
priori know that the system is deterministic but a DistRL
agent can quickly learn and adapt to this fact, while standard
squared loss agents learn to adapt at a slower rate. We
highlight that our second-order bound comes easily from
DA generalization bounds of MLE; we do not need any
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variance weighted regression which almost all prior works
to obtain second-order bounds and is hard to extend beyond
linear function approximation.

Compared to variance weighted regression, one drawback
of our DistRL approach (and other TD-style DistRL algo-
rithms (Wu et al., 2023)) is the requirement of a stronger,
distributional completeness assumption (Assumption 5.1),
as well as a higher statistical complexity of F (it is a class
of conditional distributions rather than functions). Nev-
ertheless, the empirical success of DistRL suggest these
stronger conditions are likely satisfied in practice and the
faster second-order rates may indeed offset the increased
function class complexity.

5.1. On low-rank MDPs.

Low-rank MDPs (Agarwal et al., 2020) are the standard
model for non-linear representation learning in RL (Uehara
et al., 2021; Zhang et al., 2022; Ren et al., 2023; Chang
et al., 2022), and are defined as follow.

Definition 5.4 (Low-Rank MDP). An MDP is has rank d if
each step’s transition has a low-rank decomposition P(x’ |
z,a) = ¢% (v, a) " u} (') where ¢ (z,a), uj (z') € RY are
unknown features that satisfy sup, , [|¢7 (2, a)|[2 < 1 and
| f g (")) < llglleoVd forall g : ¥ — R

Our Theorem 5.3 (with UAE) applies to low-rank MDPs the
same way as Wang et al. (2023b, Theorem 5.5). In particular,
Wang et al. (2023b) showed three important facts for rank-
d MDPs: (i) the V-type eluder is controlled dp yv(s) <
O(dlog(d/e)), (ii) given a realizable ® class, the linear
function class 71" = [], Fi defined as

Fir={fG]z.0) = ¢(x,a) w(z) g € @,
w: [0,1] — RY, s.t.,mzax||w(z)||2 < \/a}

satisfies distributional BC (Assumption 5.1), and (iii) if costs
are discrete in a uniform grid of M points, the bracketing
entropy of F" is O(dM + log |®|). Combining these facts
with Theorem 5.3 implies a second-order PAC bound for
low-rank MDPs:

Corollary 5.5 (Second-Order PAC Bound for Low-Rank
MDPs). Suppose the MDP has rank d, assume ¢* € ® and
costs are discrete in a uniform grid of M points, then, w.h.p.,
0-DISCO with UAE, F = F'" and 3 = dM +log(|®|/6)
outputs a policy T that satisfies,

- ~ Var.x - Ad3 ~ AdH?*5p3
T <
V V<O H\/ % + I ,

k

where Vari.x = - Zszl Var(Z™ (z1,))-

To the best of our knowledge, this is the first variance-
dependent bound in RL beyond linear function approxi-
mation, which is a significant statistical benefit of DistRL.

5.2. Proof Sketch for Theorem 5.3

The new RL tool we’ll employ is the following change-of-
measure lemma for variance.

Lemma 5.6 (Change of Variance). Forany f : X x A —
A([0,1]), m and x1, we have

Er 2, [Var(fa(zn, an))] < 2e Var(Z™ (z1)) +
12H B, | Son, Do (s a) | TP fura (e a)]. )

For each episode k, by optimism of fl(k), performance
difference lemma and the fact 7;fk f,&?l(mh,ah) =

T f,gli)l(xh, ay), we have

k * 71')C . r
VT (x16) = Vi(x16) VT (218) — min fi(z1k,a)

H
= ZEﬂk,zl,k T £ (an, an) — 7;(Lk>($h»ah)]

h=1

Let 0 i (2, a) := Da(fL7 (z,a) | TP 1) (2, a)).

H
& ok =(k
ZE"kvgfl,k 7;L kf}(L+>1(wh7ah) - }<L )(wh7ah):|

h=1
H

< 24\/}Eﬁk,zl,k[\/ar( W (@n, an))] Bk oy [Onk(Th, an)]
h=1

+ 5K .«

[0n,k(n, an)] (Eq. (2))

»T1,k

H
<3 4\/(26 Var(Z7(z1.4)) + 12H2A8) - Epr,, (00, x(2n,an))]

h=1

+ 5Ek oy, [0k (zh, an)] (Eq. 3)

<4+/(2e Var(Z7(z1,)) + 12H2A) - HAR 4+ 5HA,
(Cauchy-Schwarz)

where Ay := ZthlEﬁk’xlyk[éh’k(:ﬂh,ah)]. Finally, we
can sum over all episodes and use the fact that > e Ar <
Hdlog K w.p. 1 — §, where d is the appropriate distribu-
tional eluder dimension depending on UAE. This last step
is true due to MLE’s generalization bound and standard
eluder-type arguments from Wang et al. (2023b).

6. Second-Order Bounds for Offline DistRL

We now turn to offline RL and prove that pessimism in the
face of uncertainty with MLE-confidence sets enjoys second-
order PAC bounds under single-policy coverage. The algo-
rithm we study is P-DISCO (Wang et al., 2023b), which
adapts the pessimism-over-confidence-set approach from
BCP (Xie et al., 2021) with the DistRL confidence set. As
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Algorithm 3 P-DISCO (Wang et al., 2023b)
., Dy, distribution class F, pol-

1: Input: datasets D1, ..
icy class II.

2: VYV €11, set Fp CSRL((Dh)he[H]§ Tw’lz).

Vr € IL, set 7« argmax e r By na, [f1(71, 7))

4: Output: 7 = argmin_cy Ey, wq, [T (21, 7))

ol

shown in Algorithm 3, P-DISCO returns the best policy
with respect to its pessimistic value estimate, induced by
the distributional confidence set constructed with the given
data.

Following recent advancements in offline RL (Xie et al.,
2021; Uehara & Sun, 2022; Jin et al., 2021b), we prove
best-effort guarantees that aim to compete with any covered
comparator policy 7 and that only requires weak single-
policy coverage. In particular, we do not suffer the strong
all-policy coverage condition used in (Chen & Jiang, 2019).
Recall the single-policy concentrability w.r.t. the compara-
tor policy 7 is defined as C™ := max;, ||dd} /dvy || oo. We
now state our main result for offline RL.

Theorem 6.1 (Second-order bounds for Offline RL). Under
Assumption 5.1, for any § € (0,1), w.p. at least 1 — 6,
running P-DISCO with 8 = log(H |I1||F|/0) learns a pol-
icy T that enjoys the following bound: for any comparator
7 € II (not necessarily the optimal 7 ), we have

- = Var(Z7)CT3  H*5C™p
— < .
Vi —-vT < O(H N + N

Here, the leading term scales with the variance of the com-
parator policy’s returns Var(Z7). Since the variance is
bounded by the first moment, this bound immediately im-
proves the small-loss PAC bound of Wang et al. (2023b). In
near-deterministic settings, our second-order bound guar-
antees a fast 1/ rate and is tight up to log factors, which
is not necessarily the case for small-loss bounds. In partic-
ular, our result shows that DistRL is even more robust to
poor coverage than as shown in Wang et al. (2023b); that is,
P-DISCO can strongly compete with a comparator policy
7 if one of the following is true: (i) v has good coverage
over 7, so the \/1/N term has a small constant; or (ii) v
has bad (but finite) coverage and 7 has small variance, in
which case we can still obtain a fast 1 /N rate (with constant
scaling with coverage). To the best of our knowledge, this
is the first second-order bound for offline RL.

Variance of Z(7*) vs. Z(7*). Inonline RL, Theorem 5.3
and Corollary 5.5 has the average variance of the played
policies Z(7*), while in offline RL, Theorem 6.1 has the
variance of the optimal policy Z(7*) (if comparing with op-
timal policy). From a technical perspective, this dichotomy

arises from the fact that in offline RL, single-policy con-
centrability allows us to change measure to 7*, while in
online RL, we cannot perform the switch and instead rely
on eluder-type arguments. The variances of Z(7*) and
Z(m*) are in general incomparable. Nonetheless, both state-
ments are sharper than the small-loss bound as shown by
Theorem D.2. Both are also tight in deterministic settings.

Computational Efficiency. Both O-DISCO and P-
DISCO optimize over the confidence set to ensure opti-
mism and pessimism, respectively, but this step is known
to be computationally hard even in tabular MDPs (Dann
et al., 2018). This is also an issue for other version space
algorithms: OLIVE (Jiang et al., 2017), GOLF (Jin et al.,
2021a), and BCP (Xie et al., 2021). However, the confi-
dence set is needed for the purpose of deep exploration and
can be replaced by myopic strategies such as e-greedy that
are computationally cheap (Dann et al., 2022). Finally, in
the sequel, we show that in the case of CBs (H = 1), O-
DISCO can be efficiently implemented with neural nets via
disagreement computation (Feng et al., 2021).

7. Contextual Bandit Experiments

We empirically validate our stronger theory in the contex-
tual bandit setting where our algorithm DISTUCB can be
efficiently implemented. We demonstrate that learning the
cost distribution (as in DISTUCB) consistently improves
performance of the baseline algorithm RegCB (Foster et al.,
2018) which uses the squared loss instead of log-likelihood.
It’s worth noting that cost distribution learning has been
shown to be effective in inverse-gap weighted (IGW) al-
gorithms (Wang et al., 2023b); however, our focus here is
on optimistic algorithms such as DISTUCB and RegCB.
We now describe our efficient implementation with neural
networks as function approximators via computing width
with the log-likelihood loss.

Efficient Implementation by Computing Width. We
group incoming contexts into batches B, C X to use GPU
parallelism for neural networks. Let Dj_; denote the his-
tory so far. Then, recall that DISTUCB aims to compute
optimistic actions a; = argmin, minscz, , f(zx,a) for
each context x; € By, where Fj_; is the subset of -
optimal functions w.r.t. the log-likelihood on the history
Lcs(f, Dk—1), where (3 is a hyperparameter. We consider
inducing optimism by subtracting the width of Fj,_;, de-
fined as

/ /
wi(z,a) = j?%)&{f(z’a) f (as,a)} sit. f,f € Fr_1.
Then, given the MLE g;, = arg max, » Lcg(g, Di—1) we
can set fr := (gr — wy) which satisfies optimism, i.e.,
fr(zk,a) < C(zk,a), for all a. Thus, the goal now is to
compute wg,(xy, a) for each 25, € By, and a € A.
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We modify the width computation strategy of Feng et al.
(2021) to deal with the log-likelihood loss. In particular,
given the current MLE g, parameterized by a neural net,
we create a copy ¢’ and train ¢’ for a few steps of gradient
ascent on the disagreement objective (gy, is fixed):

> Y A

— Gi(z, a))? /| Byl

ac A xpE€By

— Y (@ @0) - g @) D)
(z,a)EDK—1

_Z Z )\1 xkv gk(‘rkva’))/‘Bk‘
acAx,€By

where, the last term of the maximization objective is to avoid
a zero gradient when g, = ¢’. Due to memory constraints,
we approximate the second term with a subset of the history.
Then, we denote Wy (x, a) = | (x,a)—g (x, a)| and set the

bonus to be the normalized width Ay - — efki':a)@k T
acA.ceB,, O,

A, A1, A2 are hyperparameters.

We note that an alternative poly-time algorithm is to binary
search for a Lagrange multiplier as in RegCB (Foster et al.,
2018), which we also tried. However, the binary search
approach requires an optimization oracle at every binary
search depth, for every action, whereas disagreement com-
putation only needs one optimization oracle per batch of
contexts. Binary searching is thus much more computa-
tionally costly and we did not observe any improvement in
performance to justify the increased computation. Hence,
we use disagreement-based width computation for inducing
optimism for all DISTUCB and RegCB experiments.

CB Tasks. We now compare DISTUCB and RegCB on
the three real-world CB tasks: King County Housing (Van-
schoren et al., 2013), Prudential Life Insurance (Montoya
etal.,2015), and CIFAR-100 (Krizhevsky, 2009). The Hous-
ing and Prudential tasks are derived from risk prediction
tasks, where a fixed max cost is incurred for over-predicting
risk and a low cost is incurred for under-predicting risk
(Farsang et al., 2022). The CIFAR-100 task is derived from
the image classification task, where 0 cost is given for the
correct label, 0.5 cost is given for an almost correct label
(i.e., correct superclass), and 1 cost is given otherwise (for
wrong superclass). All tasks were rolled out for 5000 steps
in batches of 32 examples.

Function Approximators. We use neural networks for
squared loss regression in RegCB and maximum likelihood
estimation in DISTUCB. For the King County Housing
dataset and the Prudential Life Insurance dataset, we used 2
hidden-layer MLPs, while for CIFAR-100, we used ResNet-
18 (He et al., 2016). This is the same setup as in Wang et al.
(2023b, Appendix K).

Algorithm: RegCB DistUCB (Ours)
King County Housing (Vanschoren et al., 2013)
All episodes 708 (.051) .683 (.057)
Last 100 ep. .676 (.038) .640 (.037)
Prudential Life Insurance (Montoya et al., 2015)
All episodes 287 (.058) .248 (.061)
Last 100 ep. .278 (.055) 236 (.054)
CIFAR-100 (Krizhevsky, 2009)

All episodes .890 (.053) 862 (.058)
Last 100 ep. .854 (.053) .823 (.060)

Table 1. Average cost over all episodes and last 100 episodes
(lower is better). We report ‘mean (sem)’ over 3 seeds.

Housing Dataset - Cost
0.85 -
—— DistUCB
—— RegCB

Cost

0 1000 2000 3000 4000 5000
Epochs

Figure 1. Cost curves for the Housing task (lower is better).

Results. Table 7 shows that cost distribution learning in
D1STUCB consistently improves the costs and regret com-
pared to the baseline squared loss method RegCB. Also,
Fig. 1 shows that DISTUCB converges to a smaller cost
much faster than RegCB. This reinforces that our stronger
theory for MLE-based distribution learning indeed trans-
lates to more effective algorithms than standard squared loss
regression. We note that in the Housing and Prudential tasks,
our costs are actually lower and better than the previously
reported numbers by IGW algorithms (Wang et al., 2023b).
However, it is worth noting that optimistic algorithms based
on width computation is still more computationally costly
than IGW algorithms, and a carefully tuned IGW can likely
perform just as well in practice.

8. Conclusion

We proved that MLE-based DistRL attains second-order
bounds in both online and offline RL, significantly sharpen-
ing the previous results of Wang et al. (2023b) and further
showing the finite-sample statistical benefits of DistRL. In
the CB case, we also proved a novel first and second-order
gap-dependent bound and implemented the algorithm, show-
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ing it outperforms the previous squared loss method. An
interesting direction is to show whether DistRL can obtain
even higher-order bounds than second-order.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendices
A. Notations

Table 2. List of Notations

S, A A State and action spaces, and A = | A|.
A(S) The set of distributions supported by set S.
d The expectation of any real-valued distribution d, i.e., d = [ yd(y)dA(y)
Var(d) The variance of any real-valued distribution d, i.e., Var(d) = [(y — d)?d(y)d\(y).
[N] {1,2,...,N} forany N € N.
Z7 (z,a) Distribution of Zflzh ¢t given xj, = x, ap, = a rolling in from 7.
Q7 (,0). Vi () | Qf(2.a) = Z§(2.) and V7 = By [QF (@, ).
Zr, Q5 Vir Z5, Qn, V¥ with m = 7*, the optimal policy.
T The Bellman operators that act on functions.
7;"’D, 7;L*’D The distributional Bellman operators that act on conditional distributions.
VmZm V725 | VT =V (x1), Z™ = ZT(x1). V*, Z* are defined similarly with 7*.
d7 (x,a) The probability of 7 visiting (z, a) at time h.
C™ Coverage coefficient maxy, Hddff/duh -
DaA(f |l 9) Triangular discrimination between f, g.
H(f| g) Hellinger distance between f, g.

A.1. Statistical Distances

Let f, g be distributions over ). Then,

(fy) — g(y))?
2= ; Fw) +9(y)

S (Vi) - V)

Y

l\)\»—t

H*(f |l g) =

Lemma A.1. For any distributions f, g, we have 2H?(f || g) < Da(f || g) < 4H2(f || 9).

2
Proof. Recall that D = [ | L@=s®) )  Appl 1 < 1 < V2
roof. Recall that D (/| 9) fy(\/f(y)ﬂv(y) PPY ro+ve®m = Vimta® — VIm+J/ew)

12
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B. Proofs for CB Lemmas
Lemma 4.2. For f,g € L>(\) s.t. DA(f || g) <

1
2

|7 — 3] < 2/(Var(f) + Var(9))Da(/ | ). n

Proof. For any constant ¢ and random variable X, recall that E(X — ¢)? = Var(X) + (EX — ¢)2. Thus,

F=9=) (z=(f(z) — 9(2)

\/ Z z—c)? )+ g(z \/ Z z) J z) (Cauchy-Schwartz)

_\/Var f) + Var(g) + (f — ¢)? \/DAng

To minimize the bound, set ¢ = % to get,

|~ gl < \/Var(f) + Var(g) + (F — 9)2/2\/Da(/ Il 9)

< \J(Var(f) + Var(@)Da(f Il 9) + | F — g/ Da(f 1l 9)/2.

Rearranging and using the fact that DA (f || g) < 2,

f- (Var(f) + Var(g))Da(f |l 9)-
=gl < -V DA (f 19/ \/
Finally, use the facts that -~ < 2fore € [0, 3] and \/Da(f | g)/2 < 3 by the premise. O

Lemma B.1. Forany f,g € A([0, 1]), we have

|Var(f) — Var(g)| < 4\/(Var(f) +Da(f 119)Da(f 1 9) ()

Proof. Recallthat Var(f) = 3E. .o r[(z—2")%]. Soif f’ is the distribution of 3 (z—2")? where 2, 2’ ~ f, then Var(f) =
f'. Since (z — 2')? € [0, 1], we can use Eq.(Az) of (Wang et al., 2023b) to get | f — g| < \/(4f—|— DA(f 1 9)DA(f 1] 9)-
Thus, |Var f — Var g| < /(4 Var; +Da(f' [ 9)Da(f [ 9).

Now it suffices to bound DA (f' || ¢') by 4DA(f || g), which we do by data processing inequality and tensorization of
Hellinger. In particular, the tensorization of H? is given by H?(f @ f || g® g) =2 —2(1 — H?(f || g)/2)? (Polyanskiy &
Wu, 2023, Eqn. 7.26) and using 1 — (1 — 2/2)? < x implies that H*(f ® f || g ® g) < 2H?*(f || g). Thus,

DA(f Il 9)<Da(f@fllg®g) (data processing ineq.)
<4H*(fe fllg®yg) (Da < 4H?)

<8H*(f | g9) (tensorization of H?)

<ADA(f | 9)- (2H? < Dp)

O

Lemma 4.3. For any f,g € L?()\), we have

|7~ g < 4\/Nar(H)Da(f || 9) +5Da(f | 9). @)

13
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Proof. 1f DA(f || g) > 4. then we trivially have |f — g| <1 < 2Da(f || g) since f, g € [0,1]. Thus, we can assume
Da(fllg) <3 Startmg from Eq. (1), we can bound the sum of two variances as follows,
Var(f) + Var(g) = 2 Var(f) + Var(g) — Var(f)
< 2Var(f) + 4/ (Var(f) + Da(f [| 9)Da(f | 9) (Eq. (4))
< 2Var(f) + 4y/Var()Da(f || 9) +4Da(f | 9)
<4Var(f)+6Da(f || 9)- (AM-GM)

Hence, we have

| = gl < 2/ (Var(f) + Vax(9)) D (f || 9)
< 2\/(4 Var(f) +6Da(f || 9))Da(f 1l 9) (above inequality)

< 4\/Var(f)DA(f I 9)+5DA(f || 9).

This finishes the proof. O

C. Proof for Gap-dependent Bounds for CB

Define dgg(e) = dimg,g({(z,a) — Da(f(z,a) || C(z,a)) : f € F},e) is the £1-eluder dimension at threshold e (Liu
et al., 2022).

Theorem 4.4. Assume the premise of Theorem 4.1. If max(Gapyy,, Gape.) > then

1
VK’
Regreteg(K) < (5(dCBB + dcgf min{Gaanlr, Gapal }) .

Proof of Theorem 4.4. Define 0(x,a) := Da(fe(z,a) | C(z,a)) and A = >, 6x(xk, ar), the same notation as in
Section 4.1. We partition episodes into burn-in and stable episodes, where stable episodes are those that satisfy: 0y (zx, ax) <

Var(C(zg, ar)). Let £ denote the set of stable episodes and —€ are the burn-in episodes.

Step 1: burn-in episodes have O(A) regret.

Z C(zg,ar) — min C(zy,a) < Z C(zr,ar) — fr(zy, ax) (optimism)
ke&iney ‘ ke&nES
< Z 4/ Var(C(xk, ar))o (zk, ar) + 50k (zk, ax) (Eq. (2))
kE:‘:lﬂEC
< > Adk(wk, ak) + 5Ok (wk, ax) (=€)
ke&ineS
K
< Z95k(xk,ak) = 9A.
k=1

This implies that Zkgg O(2k, ar) — ming C(x, a) < 9A.

Step 2: stable episodes have gap-dependent regret. We now argue those episodes in & have large gap. For each
k, optimism implies that fx(xx,ar) < min, C(zx,a) = C(xk,ar) — Gap(wg, ax). This implies that Gap(zy, ax) <
C(zg,ar) — fr(zk, ar). By £, we have 4\/Var(C(:ck,ak))5k(xk,ak) + 50k (zg, a) < 9\/Var(C’(:ck,ak))5k(zk,ak),
and hence the previous display implies

C_'(xk,ak) — fk(xk,ak) < 9\/Var(C(xk,ak))ék(sck,ak).

14
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If this is zero, then the regret for the episode is zero. If this is non-zero, we have Gap(xy, ax) > 0 and Var(C(zk, ax)) > 0,
which implies that
Gap(z, ak)

Var(C(xg, ax))

Ok (Tr, ar) > > Gapyg, -

Now we will invoke the standard peeling technique (Lemma C.2) on 91/0y (zk, ax ). For any ¢ > 0, we have

K
D L6k (@, ax) > (] < 4do(¢)Blog(K)¢ ™, )
k=1

because 1[0y (zk,ar) > ¢] < ('Ok(zk,ar) and the summation of dy(xx,ax) is bounded by the eluder dimension
with log factors (Wang et al., 2023b, Theorem 5.3). This indeed satisfies the assumption of Lemma C.2 with
C = 4dcg(Gapiy,,)Blog(K). Thus, we can bound the stable episode regret as follows:

Z C(zk,ar) — min C(x, a)

ke&E1NEs

< Z 9\/Var (zk, ar))ok(zk, ak) (same steps as before and &)
ke&iN&y

< D 9Vor(ak, ar) (C(xk, ax) € [0,1])
ke&E1NEa

< 18 - 16dcp(Gapyy,) 8 log(K) Gapy,. - (9/ 0 (K, ar) < 18 and Lemma C.2)

In the last inequality, note that we invoke Lemma C.2 directly on v/d;. Thus, we have shown the Gapy,,-dependent regret:

dCB(Gap\Q/ar)B log(K) '

Regretog(K) < 11 - 4dcg(K ~1)Blog(K) + 288
Gapyg,

Following the same steps, and using Lemma C.1, we can prove the same result for Gap.. Therefore, we have shown that

~ . dCB(Gap\zlar) dCB(Gap%‘*) })
Regreteg(K) < Of deg + mm{ , .
greteg (K) < CB Gapyar Gape.

Finally, notice that if Gapy,, > \/%, deg(Gapyy) < deg(1/K) = dcg by monotonicity of the eluder dimension. If

Gapyy < # then 1/ Gapy,, > VK anyways, and so this small-gap regime results in a O(v/K) bound; in this case, we
already have a better second-order bound in Theorem 4.1. This finishes the proof for Theorem 4.4. O

Lemma C.1. For each episode k, we have

C(xy,ar) — rrgné(xk,a) < 3\/mgnCV(9:k,a) <Ok (xg, ag) + 60k (zg, ag).

Proof. By optimism and Wang et al. (2023b, Equation A5), we have

C(xk,ar) — Irgné(fk7a) < C(xk,ar) — fr(@p, ar) < 2\/C($k,ak)5k($k,ak) + 6r(k, ax).

Using AM-GM, this can be further bounded by 1C(zy, ak) + 30k (zk, ax). Rearranging, this implies C(2x, ay) <
2min, C(xg, a) + 60k (xk, ar ). Therefore, plugging this back into above,

C’(xk, ag) — Hgné(xk,a) < 2\/(2 ngné(xk,a) + 60k (2, ar)) 0k (2K, ar) + Ok (Tk, ar)

< 3\/mgnék(xk,a) <Ok (xk, ag) + 60k (zg, ag).

15
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Lemma C.2 (Peeling Lemma). Suppose g1,9a2,...,9x : 2 — [0,1] and z1, 2o, ..., 2K € Z satisfy gr(z) > Gap for all
k. Moreover, suppose there exists C' > 0 such that for any ( > Gap, we have 3., 1(gi(z1,) > (] < CC™2. Then,

K
ng(zk) <4C Gap™'.

k=1

Proof. Divide [Gap,1] into N = [log(1/Gap)] intervals, where the i € [N]-th interval is [27! Gap, 2° Gap).
Then, we bound the sum via a standard peeling argument: note that gj(zx)I [gr(2k) € [27! Gap, 2" Gap)] <
20 Gap1 [gr(z1) = 27! Gap|. Therefore,

ng(zk Zzgk 211 [gr(2x) € € [2°7! Gap, 2° Gap)]
k

k i=1

N
< Z Z 2! Gapl [gk(zk) > i1 Gap]

k i=1

N
< Z 2! Gap -C2~ %2 Gap 2 (premise)
i=1

N
=4CGap™ 'Y 27 <4CGap ™',

i=1
O
D. RL Lemmas
Lemma D.1 (Performance Difference). Forany f: (X x A — R)H, policy 7 and x1, we have
H
V(1) = file, m(@1)) = Y B (T fasr — fr)(@n, an)].
h=1
Proof. See Wang et al. (2023b, Lemma H.2). O

Theorem D.2 (Second-order implies Small-loss). For online RL, suppose we have a second-order bound:
ZkK:1 v (x15) = V*(x18) < \/c Zf \Var(Z7 (z1,)) + ¢, for some ¢ € Ry. Then, we also have a small-loss

(first-order) bound: Zszl yr (x1,6) — V*(z1k) \/26 Zk L V*(x1k) + 3e.

For offline RL, suppose we have a second-order bound w.r.t. comparator policy ﬂcomp: VT Y reom < \/ w + cﬁ/
Then, we also have a small-loss (first-order) bound: V= — V™eom < /€ ,V”mmp + &

Proof. The offline RL claim follows from Var(Z (meomp)) < V™™ because returns are bounded between [0, 1] and variance
is bounded by second moment, which is bounded by first moment. So, we will focus on the online RL claim for the
remainder of the proof.

K K
Z “(w14) = V(rp) < ¢y Var(Z™ (z1x)) + ¢ (premise)
= k=1
K
<\ eX V(@) +e ©)
\'i=
1 1
< = Z AM-GM
_2c+2k2:jlv (1) + (AM-GM)
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which implies

K K
STV @) <23 V(@) + 3.

k=1 k=1
Plugging this back into Eq. (6) gives
K K
k
ZV” (x1,6) =V (z1) < 2cZV*(z17k) +3c% + ¢,
k=1 k=1
which finishes the proof. O

D.1. Variance Change of Measure

Lemma 5.6 (Change of Variance). Forany f : X x A — A([0,1]), 7 and 1, we have

Er o, [Var(fa(zn, an))] < 2e Var(Z™ (z1)) +

12HEr sy | ¥, Da(fillwsan) | TP fria (@i a0)) . ®
Proof. Apply law of total variance to the variance term of Theorem D.3, i.e.,

Er o, [Var(fn(zn, an) | Tn, an, z1) | 1] + Varg o, (E[fu(2n, an) | zn, an, v1] | 21)
> By o [Var(fu(zh, an) | zn, an, 1) | 21].

O

Theorem D.3. Fixany f : X x A — A([0, 1]) and any policy . Define §,(x,a) := Da(fr(x,a) || 7;"’th+1($, a)) and
Ap(xh,ap) == ZtH:h Er 2y an [0t(ze, ai)]. Then, for all h € [H], zp,, an, we have

Var(fn(zh, an)) < 2e Var(Zy (zh, an)) + 12H(H — h + 1) Ap(zn, an). @)
Therefore, for any x4,

Er o [Var(fo(zh, ar))] < 2e Var(Z7 (z1)) + IZHZIEW,QC1 [Ap(zh,an)]. )

Proof. The main technical lemma is Lemma D.4, which is proven with induction. Given this lemma, use the fact that
1+ H )" <etoget

H
Var(fn(zn, an)) Z e(Er oy an [2Vare, o, (¢t + Vi (weg1) | 2, a0) + 12H A (24, a4)] ).
t=h

Recall that Var(Z] (xp, an)) = ZfI w B wnan [Vare, o (e + V&1 (2141) | 24, aq)], by the law of total variance. Also
forany ¢t > h, we have Er 5, o, A¢(2¢, at) < Ap(xp,ap). Thus,

Var(fn(zn,arn)) < 2e Var(Zp (zp,apn)) + 12H(H — h+ 1)Ap(zp, ap),
which proves the claim. O

Lemma D.4. Forall h € [H], zp, an, we have

H
Var(fn(zn, an)) Z 1+ H ) "N (Er iz an [2 Vare, oy, (e + Vi (1) | 2, a0) + 12HA (24, 04)]). 9)
t=h

17
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Proof. First observe that
Var(fu(zn,an)) < (1+ H™Y) \/'ar(7;’r’th+1(:rh7 ap)) + 12H 6y (zp, ap), (10)
because by Eq. (4) and AM-GM, we have

Var(fu(zn, an)) — Var(T;7" fag1(zn, an)) < 4\/(Vaf(7f’th+1($ha an)) + 0n(n, an))on(xn, an)

< 4 /Var(T? fuss (s an))on (@ns an) + 405 (21, an)
< H 2 Var(T,7" fugr (zn, an)) + SHO, (xh, an) + 463 (zh, ap).

We now proceed to show Eq. (9) by induction. The base case h = H is true since Var(ﬁi"’D fas1(xm,am)) =
Var(Cy(xpm,an)) = Var(cyg + Vi (xr41) | 2m,am).

We now prove the induction step: suppose the Eq. (9) is true for h + 1; we want to show the h case is true. By the law of
total conditional variance, we have that Var(TZ’D frt1(zp,ap)) is equal to:
E[Var(ch + fry1(The1, T(The1)) | Thots Chy Thy an) | Thy an)
+ Var(E[cp, + frni1(@hi1, m(xne1)) | That, cny Ths, an) | 2n, an)
= E[Var(fus1(@nt1, T(@h41)) | Tha1) | 2o an] + Vare, o Po(anan) (€0 + Fre1 (Zhgr, 7(2h41))).
The first term is controlled by the induction hypothesis. The second term is handled by Lemma D.5. Therefore,
Var(T,"P fria(zn, an))

H

S Ew,wh,ah Z (1 + H_l)t_h <2E7r,wh+1,ah+1 [Varct,a:t+1 (Ct + ‘/;:11 ($t+1) ‘ Tty at) + 12HAt(-'L't; at)])
t=h+1

T
+2Vare, 4, ~Ch Py (enan) (ch + Vh+1(xh+1)) +4HEx 2, 0, Ant1(Tht1, Gng1)-

Thus, by Eq. (10), we have

Var(fu(zn,an))
H

< Eﬂ,wh,ah Z (1 + H_l)t_h+1 (2E7T,$h+1,ah+1 [Varct,m’wrl (Ct + ‘/;:11($t+1) | T, a’t) + 12HAt(mt’ at)])
t=h+1

+ (14 H 1) (2Vare, o i~Cn,Pu(anan) (€h + Vil (@h41)) + 4HE o, 0, Any1(Thi1, angr)) + 12H6, (@, an)

H
S Z (1 + H_l)t_h+1 (2E7r,xh,ah [VaI‘ChIHrl (Ct + Vyjrl(xpr]) | T, Cbt) + 12HAt(.’13t, at)])
t=h+1

+ (1 + H_l) (2 Varch,,zh,+1~chyph,(1h,,ah,) (Ch + VhﬂJrl ($h+1)) + 12HAh(xh’ ah))
H

= (1 + H_l)t_h+1 (QEW,mh,ah [\/al‘ct,wtJrl (Ct + ‘/tr-;-l ($t+1) ‘ T, at) + 12HAt($t, Clt)]),
t=h

which finishes the induction. O

Lemma D.5.

Varch,aih+1~ch,Ph(wh7ah) (Ch + fh+1 (xh-i-l’ 7T(.73h+1)))

<2Vare, o ~Co Puenan) (€ Vg1 (@h41)) +4(H = h)Er 2 0 Ans1(Thir, anyr)-
roof. Recall that Var + < ar + ar and hence,
P Recall that Var(X +Y) < 2 Var(X 2Var(Y d h

VarC;L733;L+1NCh,Ph(x}“ah) (Ch + .}Fh+1 (xh+lv 7T(xh+1)))

< 2Vare, a, i~ Co Pr(an,an) (Ch + Vitp1 (Then)) + 2 Vate, | py, (eran) (Fort (@nsns 7(@n41)) = Vil (2h41)
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For the second term, we first bound the envelope of fy, 41 (1, T(The1)) — Vil 1 (zhq1) as follows:

H

| frs1(@ns1, m(@na1)) — Vil (2ng1)] < Z Brans [| e (@, ar) = T frar (e, ar)|] (PDL)
t=h+1
H

<y IEW,ath[ 25t(xt,at)} (Eq.(A1) of Wang et al. (2023b))
t=h+1

This enables us to bound the variance,

Varg, , Py (enan) (ot (@hs 1, T(@hg1)) — Vil (2n4))

< Egpyi~Py(zn,an) [(fh+1($h+1»77($h+1)> = Vi (hg1)) }

H 2
SEmh+1~Ph(wh,ah) < Z EW,$}L+1|: 25t(xt7at)]>

t=h+1
H 2
<(H - h)EJJ}L+1NP}L(7J}L7‘1}L) [ Z <E”»zh+l [ 25t(xt’at)}> ‘|
t=h+1
H
< (H=h)Eqg, Py (an,an) [ Z E”v$h+1[25f(xt’at)]]’
t=h+1
as desired. O
E. Proofs for Online RL

Theorem 5.3 (Second-order bounds for Online RL). Under Assumption 5.1, for any § € (0,1), w.p. at least 1 — §, running
O-DISCO with 8 = log(HK|F|/0) has Regg (K) at most,

K
0] (H\j > Var(z7 (1,4)) - d B + H2‘5dRL5> :
k=1

If UAE=TRUE, then the learned mixture policy T enjoys the PAC bound: w.p. at least 1 — §, K(V™ — V*) is at most,

K
6 (HJ A Z\/ZLI“(ZTF,C (1‘1’k))dRquﬂ + AH2'5dRL,Vﬁ> .

k=1

Proof of Theorem 5.3. As noted by (Wang et al., 2023b, Proof of Theorem 5.5), the confidence set construction guarantees
two facts w.p. 1 — ¢: for all k € [K],

(i) Optimism: min, fl(k) (x1,6,0) < V*(x1) (since Z™ (1) € Fi); and
(i) Small-generalization error: for all h, we have

If UAE=FALSE. Zi<k E,: [6h7k(5h7 CLh)] < cf;
If UAE=TRUE. Zi<k Eﬂ-i [Ea’wunif(A) [5h,k(5ha ah)H < Cﬂ,

for some universal constant c.
Let 0y, ,(x,a) := DA(f,(Lk) (x,a) || H’Dfélfl(x,a)) and Ay := Zthl Ert 20, [0k (h, an)]. We now decompose the
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regret into two parts.

STV @) - V(@)

k
<>V (1) — min i ((@1,4), ) (Optimism)
k
H . N
=S B [T A ) = P (s an)| (PDL)
k h=1
H _
k p(k r(k
=> > Enay, [7737 A @nyan) = 7 )(xh»ah)]
k h=1
< ZM/EM,%,C[VM(JC;(LM (@hyan))] - EBrr oy [0nk(@hs an)] + 5Erk o), [0n,k(Th, an)] (Eq. (2))
h,k
S 24\/(\/2}1‘(27"}C (Il,k)) + 12H2Ak) . Eﬂ.kﬂ.lyk [5h,k($ha ah)] + 5]Eﬂ.k7ka [6h,k($ha ah)] (Eq (3))
h,k
< 34/ (26 Var(Z7" (21 1)) + 12H?Ar) - HA, + 504 (Cauchy-Schwarz)
k

< 3 4y/2e Var(Z7 (@1 ) HAL + (4VI2 4 5)H'A,
k

< 4\/2@2Var(27”“ (Cﬂlk))HZ Ap + (4124 5)H'® Z Ap.
k k k

The final step is to bound Zk Ay, which is the same as in (Wang et al., 2023b). In particular, if UAE=FALSE, then
>k Ar < cHdimy, pp(1/K)Blog(K). If UAE=TRUE, then ), A, < cAH dimy, pg(1/K)Blog(K). This concludes
the proof. O

E.1. Bounding Q-type distributional Eluder in Linear MDPs

Recall the Linear MDP definition (Jin et al., 2020).

Definition E.1 (Linear and Low-Rank MDP). A transition model P, : X x A — A(X) has rank d if there exist
features ¢5 : X x A — R4, ur + X — R? such that Py(2' | x,a) = ¢} (z,a) " uj(2') for all z,a,2’. Also, assume
max, , |05 (z,a)|ls < 1and || [ gduf|l2 < ||gllooV/d for all functions g : X — R. The MDP is called low-rank if P, is
low-rank for all b € [H]. The MDP is called linear if {#7 } () is known.

Consider the following linear function class:

Flin — {f(z | 2,0) = (¢"(x,a),w(2)) st w: [0,1] = RY max w(2)||2 < avd and max (¢"(z,a), w(z)) < a},
(11)

Wang et al. (2023b) showed two nice facts about F'", First, it satisfies Bellman Completeness (Assumption 5.1). Moreover,
under the assumption that costs are discretized into a uniform grid of M points, this class’s bracketing entropy is O(dM ).
Note that discretization is necessary to bound the statistical complexity of F'" and is also common in practice, e.g., C51
(Bellemare et al., 2017) and Rainbow (Hessel et al., 2018) both set M = 51, which works well in Atari; also the optimal
policy’s performance in the discretized MDP can also be bounded by the discretization error (Wang et al., 2023a).

We now show a new fact about F'". If we further assume that per-step cost and cost-to-go distributions have minimum mass
Tmin > 0 on each element of its support, then we can bound the appropriate Q-type distributional eluder dimension for
linear MDPs as O(dn,{, log(1/¢)). This is formalized in the following assumption.

Assumption E.2. Forall f € F'™ and h € [H], if fu(z | ,a) = T;"" fui1(2 | 2, a), then fu(z | z,a) + T, fuia(2 |
€, a) Z Thmin-
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If cost-to-go and per-step cost distributions have a minimum mass, then this assumption is satisfied.
Theorem E.3. Suppose the MDP is a linear MDP and Assumption E.2. Fix any h € [H] and define

¥y, = {(%a) = Da(fulz,a) | TP fapa(z,a) : f € ]:}Lin},
Dy, = {(z,a) — df(z,a) : T € II}.
Then, dimg, pe(¥h, Dh, €) < O(dilpiy 10g(dM/ (min€)).
Proof. Fix any h. Suppose (d*), f(")); o7 is any sequence such that for all k € [T], d¥) € Dy, f*) € ¥}, and (d®), f*))

is (e, £1)-independent of its predecessors. By definition, the largest possible 7" is the eluder dimension of interest, so we
now proceed to bound 7'.

For any k, since f(*) € W, there exists w®, v(¥) : [0,1] — R¢ satisfying normalization constraints of Eq. (11) such that
f®)(z,a) = Da(z = ¢f(z,a0) Tw®(2) || 2 = ¢%(z,a) To®)(2)). Note that v(*) exists by Bellman completeness of
]:lm.

Now we simplify the D term with the assumption: for any k,

(z | z,a) = TP 17 (2 | 2,a))?
E (k)DA(f(k)(l"aa) |7, f(k) =E )
d h h h+1 d ; (k) (2| z,a) _,_72* f}(ﬁ-)l(z | 2,a)

< Dot Eace) Z or(z,a)T (wh (2) — P (2)))? (Assumption E.2)
< N Baw |07, (@, a) 150 D 1™ (2) = oW ()13, (€S)
where Xy =3, Ego [0}, (xh, an) ) (zh, an) '] + M and A > 0 will be set soon. For the second factor,

S () - v O @, = 303 Eao (¢ )" (0 (2) - o9 () + ard

z i<k

<2Ed<>< |67 (2,0)T () (2) - v“”(Z))‘) + M

i<k
< > Ego Dalfi @ a) | T 5 (2,0)) + Mad (D}y < Da)
i<k
<e+ MM ((e, £1)-independent sequence)
= 2e. (set A =¢/(dM))
Thus, we have shown that
() () g
Te < ZEd(k)DA(fh (z,a) | 77 foyi(z,a)) ((¢, £1)-independent sequence)
k

< Monin ) Baoo 97,2, 0) |51 - 2¢
k

< 277;3115 -dlog(1 +TM/e?)
where we used elliptical potential in the last step (Uehara et al., 2021, Lemma 19 & 20), which is applicable since
Eqw | 65 (x, a)H o o= Ed(k)qi)h(x,a)TE,:qu;(x,a) = Tr(E [(bfl(m,a)qS;(x,a)T]E;l). Thus, (Uehara et al., 2021,

Lemma 19 & 20) 1mphes that
T < 2} dlog(1 + TM/e?),

which finally implies,
T < 1204, d1og(1 + 20,5, dM/<?),

by (Wang et al., 2023b, Lemma G.5).
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F. Proofs for Offline RL

Theorem 6.1 (Second-order bounds for Offline RL). Under Assumption 5.1, for any § € (0, 1), w.p. at least 1 — §, running
P-DISCO with 8 = log(H|II||F|/6) learns a policy T that enjoys the following bound: for any comparator 7 € 1I (not
necessarily the optimal *), we have

~ ~ Var(Z*)C’*ﬁ H2.50%B
T_VT< H .
14 VT < (’)( N + N

Proof of Theorem 6.1. As noted by (Wang et al., 2023b, Proof of Theorem 6.1), the confidence set construction guarantees
two facts w.p. 1 — d:

(i) Pessimism: for all 7, V™ < f7(zy,7) (since Z™ € Fy); and

(ii) Small-generalization error: for all = and h, E,, [DA(ff(z,a) | 7?’Df,f+1(x, a))] < ¢BN~! for some universal

constant c.

Let 0] (z,a) := DaA(f](x,a) | 7;”’Df§+1(x,a)) and A™ := Zle Ex [0} (zn,an)]. We now bound the performance
difference between 7 and 7:

VE_VT < iz, 7) = VT (Pessimism)
< iz, 7) = VT (Defn of 7)
H
_ ZE%[(JT —E%ﬁi_l)(xh,ah)} (PDL Lemma D.1)
h=1
H —~ ~ ~
< Z 4\/E; [Var(f,’[ (l‘h, ah))] -Ex [5;{ (l‘h, ah)] + 5 [(52 (.”L’h, ah)] (Eq. (2))
h=1
H ~
<> 4\/(26 Var(Z7) 4+ 12H2A7) - Bz [67 (x4, an)] + SEz [0}, (zn, an)] (Eq. (3))
h=1
< 44/(2e Var(Z7) + 12H2AT) - HAT 4+ 5AT (Cauchy-Schwarz)

44/2e Var(ZF)HAT + (412 + 5)H S AT,

Finally, bound A™ by change of measure and the generalization bound of MLE (fact (ii)):

IN

H
AT < CTY Ry, [0 (zh,an)] < CTH - SN

Therefore,

~ - C%Var(Z%)ﬂ H2.SC%5
< <H S(Z)5 | X )
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