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Abstract

In this paper, we prove that Distributional Re-

inforcement Learning (DistRL), which learns

the return distribution, can obtain second-order

bounds in both online and offline RL in general

settings with function approximation. Second-

order bounds are instance-dependent bounds that

scale with the variance of return, which we prove

are tighter than the previously known small-loss

bounds of distributional RL. To the best of our

knowledge, our results are the first second-order

bounds for low-rank MDPs and for offline RL.

When specializing to contextual bandits (one-step

RL problem), we show that a distributional learn-

ing based optimism algorithm achieves a second-

order worst-case regret bound, and a second-order

gap dependent bound, simultaneously. We also

empirically demonstrate the benefit of DistRL in

contextual bandits on real-world datasets. We

highlight that our analysis with DistRL is rela-

tively simple, follows the general framework of

optimism in the face of uncertainty and does not

require weighted regression. Our results suggest

that DistRL is a promising framework for obtain-

ing second-order bounds in general RL settings,

thus further reinforcing the benefits of DistRL.

1. Introduction

The aim of reinforcement learning (RL) is to learn a pol-

icy that minimizes the expected cumulative cost along its

trajectory. Typically, squared loss is used in standard RL

algorithms (Mnih et al., 2015; Haarnoja et al., 2018) for

learning the value function, the expected cost-to-go from

a given state. As an alternative to squared loss, Bellemare

et al. (2017) proposed to learn the whole conditional distri-

bution of cost-to-go with distributional loss functions such
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as the negative log-likelihood or the pinball loss (Dabney

et al., 2018a). This paradigm is aptly called Distributional

RL (DistRL) and has since been empirically validated in

numerous real-world tasks (Bellemare et al., 2020; Bodnar

et al., 2020; Fawzi et al., 2022; Dabney et al., 2018b), as

well as in benchmarks for both online (Yang et al., 2019)

and offline RL (Ma et al., 2021). However, there is a lack of

understanding for why DistRL often attains stronger perfor-

mance and sample efficiency (Lyle et al., 2019).

This raises a natural theoretical question: when and why

is DistRL better than standard RL? Wang et al. (2023b) re-

cently proved that DistRL based on maximum likelihood

estimation (MLE) results in small-loss bounds, which are

instance-dependent bounds that scale with the minimum pos-

sible expected cumulative cost V ⋆ for the task at hand. If the

optimal policy makes few blunders on average, i.e., V ⋆ ≈ 0,

then small-loss bounds converge at the fast O(1/N) rate,

while standard RL bounds converge at a O(1/
√
N) rate

which is worst-case in nature.

In this paper, we refine the analyses of Wang et al. (2023b)

and prove that DistRL actually attains tighter second-order

bounds in both online and offline settings. Instead of scaling

with V ⋆ as in small-loss bounds, our second-order bounds

scale with the variance of the policy’s cumulative cost. In of-

fline RL, it is the optimal policy’s variance, whilst in online

RL, it is the variance of policies played by the algorithm. In

both cases, our second-order result is strictly tighter than

the previously known small-loss bounds (a.k.a. first-order

bounds), i.e., second-order implies first-order bounds. In

particular, our second-order bounds yield fastO(1/N) rates

in near-deterministic tasks where V ⋆ may still be far from

zero. Our theory applies at the same generality as Wang

et al. (2023b). Moreover, in contextual bandits (one-step

RL), we prove a novel first and second-order gap-dependent

bound that incorporates V ⋆ and variance into the gap defi-

nition. Finally, in contextual bandits, we empirically show

that our distributionally optimistic algorithm is efficiently

implementable with neural networks via width computation

(Feng et al., 2021) and outperforms the same optimistic

algorithm with squared loss (Foster et al., 2018).
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Our contributions are summarized as follows:

1. For online RL, we show that DistRL enjoys second-

order bounds in MDPs with low ℓ1-distributional

eluder dimension (Wang et al., 2023b). These are the

first second-order bounds in MDPs with function ap-

proximation, e.g., low-rank MDPs (Section 5).

2. For offline RL, we show that DistRL enjoys second-

order bounds with single-policy coverage, the first of

such bounds to our knowledge (Section 6).

3. For contextual bandits, our online algorithm further

achieves a novel first/second-order gap-dependent

bound (Section 4.2). Finally, we empirically evaluate

our distributional contextual bandit algorithm and show

it outperforms the squared loss baseline (Section 7).1

2. Related Works

Theory of DistRL. Rowland et al. (2018; 2023a) showed

that DistRL algorithms such as C51 and QR-DQN converges

asymptotically with a tabular representation. This unfor-

tunately does not imply finite-sample statistical improve-

ments over standard RL, which is our focus. Recently, Row-

land et al. (2023b) showed that quantile temporal-difference

(QTD) learning may have smaller bounded variance in each

update step than temporal-difference (TD) learning, which

may have unbounded variance. While this finding may ex-

plain improved training stability, it does not affirmatively

imply that QTD obtains better finite-sample regret, which

is our focus. For off-policy evaluation (OPE), Wu et al.

(2023) showed that fitted likelihood estimation can learn

the true return distribution up to errors in total variation and

Wasserstein distance. We focus on online and offline RL

rather than OPE.

Small-loss Bounds from DistRL. The closest work to

ours is Wang et al. (2023b) which showed that MLE-based

DistRL can achieve small-loss bounds in online RL and of-

fline RL under distributional Bellman completeness, build-

ing on the earlier contextual bandit results of Foster & Kr-

ishnamurthy (2021). While Wang et al. (2023b) gave the

first small-loss bounds in low-rank MDPs and in offline RL,

we prove that their DistRL algorithms can actually achieve

tighter, second-order bounds under identical assumptions.

Our bounds are strictly more general than small-loss (a.k.a.

first-order) bounds as shown by the following theorem.

Theorem 2.1 (Informal). In online and offline RL, a second-

order bound implies a first-order bound (with a worse uni-

versal constant). This is formalized in Theorem D.2.

1Code is available at https://github.com/

Cornell-RL/DistUCB

Other second-order bounds. Variance-dependent (a.k.a.

second-order bounds) are known in tabular MDPs (Zanette

& Brunskill, 2019; Zhou et al., 2023; Zhang et al., 2023),

linear mixture MDPs (Zhao et al., 2023), and linear con-

textual bandits (Ito et al., 2020; Olkhovskaya et al., 2023).

These prior works mainly use variance weighted regression,

and their analysis does not easily extend beyond linear func-

tion approximation. Surprisingly, we show that by simply

learning the return distribution with MLE, one can obtain

general variance-dependent bounds, by leveraging the tool

of triangular discrimination that was first leveraged in Fos-

ter & Krishnamurthy (2021). In other words, DistRL is

an attractive alternative to variance weighted regression for

obtaining sharp second-order bounds in RL.

3. Preliminaries

Contextual Bandits (CB). We first consider CBs with

context space X , finite action space A of size A and nor-

malized conditional costs C : X × A → ∆([0, 1]), where

∆([0, 1]) is the set of all distributions on [0, 1] that are abso-

lutely continuous with respect to some dominating measure

λ, e.g., Lebesgue for continuous or counting for discrete.

We identify such a distribution via its density with respect

to λ, hence we write (C(x, a))(y) or C(y | x, a) for the

density of C(x, a) at y. The CB proceeds over K episodes

as follows: at episode k ∈ [K] = {1, . . . ,K}, the learner

observes a context xk ∈ X , takes an action ak ∼ A, and

receives a cost ck ∼ C(xk, ak). We do not require that

contexts are sampled from a fixed distribution; they may be

arbitrarily chosen by an adaptive adversary. The goal is to

minimize the regret, defined as

RegCB(K) :=

K∑

k=1

C̄(xk, ak)−min
a∈A

C̄(xk, a),

where the bar denotes the mean of the distribution, i.e.,

f̄ =
∫
yf(y)dλ(y) for any f ∈ ∆([0, 1]). We’ll also use

Var(f) =
∫
(y − f̄)2f(y)dλ(y) to denote the variance.

Reinforcement Learning (RL). We now consider a

Markov Decision Process (MDP) with observation space X ,

finite action spaceA of size A, horizon H , transition kernels

Ph : X × A → ∆(X ), and normalized cost distributions

Ch : X ×A → ∆([0, 1]) at each step h ∈ [H]. Given a pol-

icy π : X → ∆(A) and an initial state x1 ∼ X , the “roll in”

process occurs as follows: for each step h = 1, 2, . . . , H ,

the policy π samples an action ah based on the current

state xh, incurs a cost ch from the cost distribution, and

transitions to the next state xh+1. The return is the cumu-

lative cost from this random process Zπ(x1) :=
∑H

h=1 ch.

The value is the expected return V π(x1) := E[Zπ(x1)].
We use subscript h to denote cost-to-go from a particular

step: Zπ
h (xh) =

∑H

t=h ct and V π
h (xh) = E[Zπ

h (xh)]. We
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use Z⋆, V ⋆ to denote these quantities for the optimal, min-

cost policy π⋆. We use Zπ
h (xh, ah) to denote the random

cost-to-go conditioned on rolling in π from xh, ah, and so

Qπ
h(xh, ah) := E[Zπ

h (xh, ah)]. Without loss of generality,

we assume cumulative costs
∑H

h=1 ch are normalized in

[0, 1] almost surely, to avoid artificial scaling in H (Jiang &

Agarwal, 2018).

The Online RL problem proceeds over K episodes: at

episode k ∈ [K], the learner executes a policy πk : X →
∆(A) from an initial state x1,k. We do not require that x1,k

are sampled from a fixed distribution; they may be chosen

by an adaptive adversary. The goal is to minimize regret,

RegRL(K) :=

K∑

k=1

V πk

(x1,k)− V ⋆(x1,k).

In Offline RL, the learner is directly given i.i.d. samples of

transitions drawn from unknown distributions ν1, . . . , νH ,

and the goal is to learn a policy with a lower cost than any

other policy whose behavior is covered by the dataset, simi-

lar to prior best-effort guarantees in offline RL (Liu et al.,

2020; Xie et al., 2021). Concretely, the learner receives a

datasetD = (D1,D2, . . . ,DH), where eachDh contains N
i.i.d. samples (xh,i, ah,i, ch,i, x

′
h,i) such that (xh,i, ah,i) ∼

νh, ch,i ∼ Ch(xh,i, ah,i), x
′
h,i ∼ Ph(xh,i, ah,i). Unlike the

online setting where initial states can be adversarial, we

assume for offline RL that initial states are sampled from a

fixed and known distribution d1.

Distributional RL. The Bellman operator acts on a func-

tion f : X × A → [0, 1] as follows: T π
h f(x, a) =

C̄h(x, a) + Ex′∼Ph(x,a),a′∼π(x′)[f(x
′, a′)]. Analogously,

the distributional Bellman operator (Bellemare et al., 2017)

acts on a conditional distribution d : X × A → ∆([0, 1])

as follows: T π,D
h d(x, a)

D
= Ch(x, a) ∗ d(x′, a′), where

x′ ∼ Ph(x, a), a
′ ∼ π(x′) and ∗ denotes convolution.

Another sampling view of the distributional Bellman op-

erator is that z ∼ T π,D
h d(x, a) is equivalent to: c ∼

Ch(x, a), x
′ ∼ Ph(x, a), a

′ ∼ π(x′), y ∼ d(x′, a′) and

z := c + y. Also recall the optimality operator T ⋆
h

and its distributional variant T ⋆,D
h are defined as follows:

T ⋆
h f(x, a) = C̄h(x, a) + Ex′∼Ph(x,a)[mina∈A f(x′, a′)]

and T ⋆,D
h d(x, a)

D
= Ch(x, a) + d(x′, a′) where x′ ∼

Ph(x, a), a
′ = argmina d̄(x

′, a).

Triangular Discrimination. For any distributions f, g ∈
L2(λ), their triangular discrimination (Topsoe, 2000) is

defined as D△(f ‖ g) :=
∫ (f(y)−g(y))2

f(y)+g(y) dλ(y), which is

equivalent to the squared Hellinger distance up to universal

constants. Please see Table 2 for an index of notations.

Algorithm 1 DISTUCB (O-DISCO at H = 1)

1: Input: no. episodes K, distribution class F
2: Init D0 ← ∅ and F0 ← F .

3: for episode k = 1, 2, . . . ,K do

4: Observe context xk.

5: Play ak = argmina∈A minf∈Fk−1
f̄(xk, a).

6: Observe cost ck ∼ C(xk, ak).
7: Dk ← Dk−1 ∪ {(xk, ak, ck)}, Fk ← CSCB(Dk).
8: end for

4. Warmup: Second-Order Bounds for CBs

As a warmup, we consider contextual bandits and prove that

distributional UCB (DISTUCB) attains second-order regret.

The distributional confidence set is the main construct that

is optimized over to ensure optimism. To construct it, we

need a dataset of state, action, costs, D = {xi, ai, ci}i∈[N ],

a threshold β to be specified later, as well as a function class

F ⊂ X × A → ∆([0, 1]) containing the true conditional

cost distribution C(· | x, a). Then, the confidence set is

CSCB(D) =
{
f ∈ F : LCB(f,D) ≥ max

g∈F
LCB(g,D)−β

}
,

where LCB(f,D) :=
∑N

i=1 log f(ci | xi, ai) is the log-

likelihood of f on D. In words, CSCB(F , D) contains all

functions f ∈ F that are β-near-optimal according to the

log-likelihood. Then, DISTUCB simply selects the action

with the minimum lower confidence bound (LCB) induced

by the current confidence set.

Theorem 4.1. Suppose C ∈ F (realizability). For any

δ ∈ (0, 1), w.p. at least 1 − δ, running DISTUCB with

β = log(K|F|/δ) enjoys the regret bound,

RegretCB(K) ≤ Õ
(
√√√√dCBβ ·

K∑

k=1

Var(C(xk, ak)) + dCBβ
)
,

where dCB is the ℓ1-eluder dimension (Liu et al., 2022)

of {(x, a) 7→ D△(f(x, a) ‖ C(x, a)) : f ∈ F} at thresh-

old K−1. This is a special case of the distributional eluder

dimension (Definition 5.2) where D = {δz : z ∈ X ×A}.

The dominant term scales with

√∑K

k=1 Var(C(xk, ak))

which is sharper than the
√
K bound of RegCB (Foster

et al., 2018), the squared loss variant of DISTUCB. For

example, in deterministic settings, our variance-dependent

regret scales as Õ(dCB), which is tight in K up to log factors.

Nonetheless, confidence-set based strategies like DISTUCB

and RegCB are not minimax-optimal as the eluder dimen-

sion may scale linearly in F (Foster et al., 2018, Proposition

1). It would be interesting to derive second-order regret with

inverse-gap weighting (Foster & Rakhlin, 2020).
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Practical considerations. We note that DISTUCB is

amenable to practical implementation since conditional on

xk and a, the LCB can be computed efficiently via binary

search (Foster & Rakhlin, 2020) or disagreement computa-

tion (Feng et al., 2021). We include implementation pseudo-

code and empirical results in Section 7 and the Appendix.

4.1. Proof of Theorem 4.1

Our first step is to bound the difference of means by vari-

ances multiplied by the triangular discrimination.

Lemma 4.2. For f, g ∈ L2(λ) s.t. D△(f ‖ g) ≤ 1
2 ,

∣∣f̄ − ḡ
∣∣ ≤ 2

√
(Var(f) + Var(g))D△(f ‖ g). (1)

This lemma tightens Eq.(∆1) of Wang et al. (2023b) so

that variances of f and g appear in the RHS instead of the

means. Note that Eq.(∆1) of Wang et al. (2023b) holds

unconditionally, while our lemma requires D△(f ‖ g) ≤ 1
2

which is absorbed in the lower order term of the next lemma.

This lower order term is a key reason we need the bounded

eluder dimension assumption.

Lemma 4.3. For any f, g ∈ L2(λ), we have

∣∣f̄ − ḡ
∣∣ ≤ 4

√
Var(f)D△(f ‖ g) + 5D△(f ‖ g). (2)

We now bound the regret in a standard way with optimism,

i.e., w.h.p. f̄k(xk, ak) ≤ mina C̄(xk, a), which is en-
sured by optimizing the confidence set. Let δk(x, a) :=
D△(fk(x, a) ‖ C(x, a)). Then,

K∑

k=1

C̄(xk, ak)−min
a

C̄(xk, a)

≤

K∑

k=1

C̄(xk, ak)− f̄k(xk, ak) (optimism)

≤

K∑

k=1

4
√

Var(C(xk, ak))δk(xk, ak) + 5δk(xk, ak) (Eq. (2))

≤4

√√√√
K∑

k=1

Var(C(xk, ak))∆ + 5∆, (Cauchy-Schwarz)

where ∆ =
∑K

k=1 δk(xk, ak). Finally, using MLE general-

ization bound and the fact that fk ∈ Fk−1, with probability

at least 1− δ, we have for all k ∈ [K]:
∑k−1

i=1 δk(xi, ai) ≤
log(|F|K/δ) (Wang et al., 2023b, Lemma E.3). Thus, ap-

plying pigeon-hole argument of eluder dimension gives

∆ ≤ 4dCB(1/K) log(|F|K/δ) log(K) (Liu et al., 2022,

Proposition 21). This concludes the proof.

4.2. First and Second-Order Gap-Dependent Bounds

While it is known that UCB attains gap-dependent bounds,

here we prove first and second-order gap-dependent bounds

which are novel to the best of our knowledge. Recall that

the gap at context x and action a is defined as Gap(x, a) :=
C̄(x, a)−mina⋆∈A C̄(x, a⋆). We define our novel first and

second-order min-gaps as follows:

GapC⋆ = min
x∈X

min
a∈A:Gap(x,a)>0

∧mina⋆ C̄(x,a⋆)>0

Gap(x, a)

mina⋆ C̄(x, a⋆)
,

GapVar = min
x∈X

min
a∈A:Gap(x,a)>0
∧Var(C(x,a))>0

Gap(x, a)√
Var(C(x, a))

.

The inner min is taken to be∞ if the condition is empty.

Theorem 4.4. Assume the premise of Theorem 4.1. If

max(GapVar,GapC⋆) ≥ 1√
K

, then

RegretCB(K) ≤ Õ
(
dCBβ + dCBβmin

{
Gap−1

Var
,Gap−1

C⋆

})
.

As usual, we have a Gap−1-type bound that implies

O(dCB logK) regret when the gap is large. Our key innova-

tion lies in the definition of GapC⋆ and GapVar, which are

inversely weighted by the optimal mean cost or variance of

each context. Our weighted min-gaps are always larger than

the standard min-gap (since C̄(x, a),Var(C(x, a)) ≤ 1) but

they can be much larger in small-loss or near-deterministic

regimes. We note that DISTUCB’s regret is simultaneously

bounded by both Theorem 4.4 and Theorem 4.1 under the

same hyperparameters.

5. Second-Order Bounds for Online DistRL

In this section, we show that the optimistic DistRL algo-

rithm of Wang et al. (2023b) actually enjoys second-order

regret and PAC guarantees, which are strictly tighter than

the previously known first-order bounds. We first recall the

MLE-confidence set for DistRL which generalizes CSCB

from the warmup. LetF be a set of conditional distributions,

i.e., (f1, . . . , fH) ∈ F where fh : X × A → ∆([0, 1]),
which are candidate functions to fit Z⋆ or Zπ (depend-

ing on the type of Bellman operator used) with MLE.

Given a dataset of state, action, cost, next state tuples,

D = {xh,i, ah,i, ch,i, x
′
h,i}h∈[H],i∈[N ], and a distributional

Bellman operator T D, the MLE-confidence set is defined as

CSRL(D; T D) =

{
f ∈ F : ∀h ∈ [H],

LRL(f,D) ≥ max
g∈Fh

LRL(g,D)− β

}
,

where LRL(f,D) :=
∑N

i=1 log fh(z
f
h,i | xh,i, ah,i) and

zfh,i ∼ T D
h fh+1(xh,i, ah,i). In words, CSRL(D; T D) con-

tains all functions f ∈ F such that for all h ∈ [H], f is β-

near-optimal w.r.t. the MLE loss for solving fh ≈ T D
h fh+1.

Since this construction happens in a TD fashion, a standard
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Algorithm 2 O-DISCO (Wang et al., 2023b)

1: Input: no. episodes K, distribution class F , UAE flag.

2: Init Dh,0 ← ∅ for all h ∈ [H] and F0 ← F .

3: for episode k = 1, 2, . . . ,K do

4: Observe init state x1,k.

5: Set f (k) ← argminf∈Fk−1
mina f̄1(x1,k, a).

6: For each h, set πk
h(x) = argmina f̄

(k)
h (x, a).

7: if not UAE then

8: Run πk from x1,k and get trajectory

x1,k, a1,k, c1,k, .., xH,k, aH,k, cH,k. Then, ∀h,

Dh,k = Dh,k−1 ∪ {(xh,k, ah,k, ch,k, xh+1,k)}.
9: else

10: For each h ∈ [H], roll in πk from x1,k

for h steps and take a random action, i.e.,

xh,k ∼ dπ
k

h , ah,k ∼ Unif(A), ch,k ∼
Ch(xh,k, ah,k), x

′
h,k ∼ Ph(xh,k, ah,k). Then,

Dh,k = Dh,k−1 ∪
{
(xh,k, ah,k, ch,k, x

′
h,k)

}
.

11: end if

12: Update Fk ← CSRL((Dh,k)h∈[H]; T ⋆,D).
13: end for

14: Output: π̄ = unif(π1:K).

condition called distributional Bellman Completeness (BC)

is needed to guarantee that MLE succeeds for all h ∈ [H]
(Wu et al., 2023; Wang et al., 2023b).

Assumption 5.1 (Bellman Completeness). For all π, h ∈
[H], fh+1 ∈ Fh+1 =⇒ T π,D

h fh+1 ∈ Fh.

BC is a standard assumption in model-free online and of-

fline RL; without it, TD and fitted-Q can diverge or converge

to bad fixed points (Tsitsiklis & Van Roy, 1996; Munos &

Szepesvári, 2008; Kolter, 2011). As discussed in (Jin et al.,

2021a; Wang et al., 2023b), the BC condition can be relaxed

to “generalized completeness”, i.e., there exist function

classes Gh such that fh+1 ∈ Fh+1 =⇒ T π,D
h fh+1 ∈ Gh.

Then, the O-DISCO algorithm of Wang et al. (2023b) pro-

ceeds by selecting the optimistic f (k) in the confidence set

Fk at each round and playing the greedy policy πk w.r.t. f ,

where the “playing” can be done with uniform action explo-

ration (UAE). If UAE=TRUE, then for each h, πk is rolled

in for h timesteps and takes a uniform action before the tran-

sition tuple is added to the dataset. Note that this requires H
rollouts per round but is necessary to capture general MDPs

such as low-rank MDPs (Agarwal et al., 2020).

Finally, we adopt the ℓ1-distributional eluder dimension

(dimℓ1DE) defined as follows (Wang et al., 2023b).

Definition 5.2 (ℓp-distributional eluder dimension). Let S
be any set, Ψ be a set of functions of type S → R, and

D is a set of distributions over S. For any ε0 ∈ R+, the

ℓp-distributional eluder dimension (dimℓp,DE(Ψ,D, ε0)) is

the length L of the longest sequence d(1), .., d(L) ⊂ D s.t.

∃ε ≥ ε0, ∀t ∈ [L], ∃f ∈ Ψ where |Ed(t)f | > ε and also∑t−1
i=1|Ed(i)f |p ≤ εp.

We work with the same eluder dimensions for RL as in

Wang et al. (2023b) which employs the following:

Ψh = {(x, a) 7→ D△(fh(x, a) ‖ T ⋆,D
h fh+1(x, a)), f ∈ F},

Dh = {(x, a) 7→ dπh(x, a) : π ∈ Π}.

Then, the Q-type RL dimension is

dRL(ε) := max
h

dimℓ1DE(Ψh,Dh, ε).

The V-type dimension dRL,V is analogous with ΨV,h =

{x 7→ Ea∼Unif(A)[D△(fh(x, a) ‖ T ⋆,D
h fh+1(x, a))] : f ∈

F}. As with dCB (from the CB warmup), the threshold ε is

taken as 1/K if none is provided. We are now ready to state

our online RL result.

Theorem 5.3 (Second-order bounds for Online RL). Under
Assumption 5.1, for any δ ∈ (0, 1), w.p. at least 1− δ, run-
ning O-DISCO with β = log(HK|F|/δ) has RegRL(K)
at most,

Õ


H

√√√√
K∑

k=1

Var(Zπk (x1,k)) · dRLβ +H
2.5

dRLβ


.

If UAE=TRUE, then the learned mixture policy π̄ enjoys
the PAC bound: w.p. at least 1− δ, K(V π̄ −V ⋆) is at most,

Õ

(
H

√√√√A

K∑

k=1

Var(Zπk (x1,k))dRL,Vβ +AH
2.5

dRL,Vβ

)
.

Compared to prior worst-case bounds for GOLF (Jin et al.,

2021a) and small-loss bounds for O-DISCO (Wang et al.,

2023b), our new bound has one key improvement: the lead-

ing
√
K terms are replaced by the square root of the sum

of return variances
∑

k Var(Z
πk

(x1,k)). The function class

complexity measure log |F| can be generalized to brack-

eting entropy as in Wang et al. (2023b). As Theorem 2.1

shows, our second-order bounds are more general than the

first-order bounds of Wang et al. (2023b). For example,

in deterministic MDPs where variance is zero, our second-

order bound converges at a fast Õ(1/K) rate which is tight

up to logK factors (Wen & Van Roy, 2017). In contrast,

V ⋆ may be non-zero in which case the first-order bound

converges at a slow Ω̃(1/
√
K) rate.

It may be surprising that DistRL actually helps for near-

deterministic systems. This is because the agent does not a

priori know that the system is deterministic but a DistRL

agent can quickly learn and adapt to this fact, while standard

squared loss agents learn to adapt at a slower rate. We

highlight that our second-order bound comes easily from

D△ generalization bounds of MLE; we do not need any

5
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variance weighted regression which almost all prior works

to obtain second-order bounds and is hard to extend beyond

linear function approximation.

Compared to variance weighted regression, one drawback

of our DistRL approach (and other TD-style DistRL algo-

rithms (Wu et al., 2023)) is the requirement of a stronger,

distributional completeness assumption (Assumption 5.1),

as well as a higher statistical complexity of F (it is a class

of conditional distributions rather than functions). Nev-

ertheless, the empirical success of DistRL suggest these

stronger conditions are likely satisfied in practice and the

faster second-order rates may indeed offset the increased

function class complexity.

5.1. On low-rank MDPs.

Low-rank MDPs (Agarwal et al., 2020) are the standard

model for non-linear representation learning in RL (Uehara

et al., 2021; Zhang et al., 2022; Ren et al., 2023; Chang

et al., 2022), and are defined as follow.

Definition 5.4 (Low-Rank MDP). An MDP is has rank d if

each step’s transition has a low-rank decomposition P (x′ |
x, a) = φ⋆

h(x, a)
⊤µ⋆

h(x
′) where φ⋆

h(x, a), µ
⋆
h(x

′) ∈ R
d are

unknown features that satisfy supx,a ‖φ⋆
h(x, a)‖2 ≤ 1 and

‖
∫
gdµ⋆

h(s
′)‖ ≤ ‖g‖∞

√
d for all g : X → R.

Our Theorem 5.3 (with UAE) applies to low-rank MDPs the

same way as Wang et al. (2023b, Theorem 5.5). In particular,

Wang et al. (2023b) showed three important facts for rank-

d MDPs: (i) the V-type eluder is controlled dRL,V(ε) ≤
O(d log(d/ε)), (ii) given a realizable Φ class, the linear

function class F lin =
∏

h F lin
h defined as

F lin
h =

{
f(z | x, a) = φ(x, a)⊤w(z) : φ ∈ Φ ,

w : [0, 1]→ R
d, s.t.,max

z
‖w(z)‖2 ≤

√
d
}

satisfies distributional BC (Assumption 5.1), and (iii) if costs

are discrete in a uniform grid of M points, the bracketing

entropy of F lin is Õ(dM + log |Φ|). Combining these facts

with Theorem 5.3 implies a second-order PAC bound for

low-rank MDPs:

Corollary 5.5 (Second-Order PAC Bound for Low-Rank

MDPs). Suppose the MDP has rank d, assume φ⋆ ∈ Φ and

costs are discrete in a uniform grid of M points, then, w.h.p.,

O-DISCO with UAE, F = F lin and β = dM+log(|Φ|/δ)
outputs a policy π̄ that satisfies,

V π̄ − V ⋆ ≤ Õ


H

√
Var1:K ·Adβ

K
+

AdH2.5β

K


,

where Var1:K = 1
K

∑K

k=1 Var(Z
πk

(x1,k)).

To the best of our knowledge, this is the first variance-

dependent bound in RL beyond linear function approxi-

mation, which is a significant statistical benefit of DistRL.

5.2. Proof Sketch for Theorem 5.3

The new RL tool we’ll employ is the following change-of-

measure lemma for variance.

Lemma 5.6 (Change of Variance). For any f : X ×A →
∆([0, 1]), π and x1, we have

Eπ,x1 [Var(fh(xh, ah))] ≤ 2eVar(Zπ(x1))+

12H2
Eπ,x1

[∑
t≥h

D△(ft(xt, at) ‖ T π,D
t ft+1(xt, at))

]
. (3)

For each episode k, by optimism of f̄
(k)
1 , performance

difference lemma and the fact T πk

h f̄
(k)
h+1(xh, ah) =

T πk

h f
(k)
h+1(xh, ah), we have

V
πk

(x1,k)− V
⋆(x1,k) ≤ V

πk

(x1,k)−min
a

f̄1(x1,k, a)

=

H∑

h=1

Eπk,x1,k

[
T πk

h f
(k)
h+1(xh, ah)− f̄

(k)
h (xh, ah)

]
.

Let δh,k(x, a) := D△(f
(k)
h (x, a) ‖ T ⋆,D

h f
(k)
h+1(x, a)).

H∑

h=1

Eπk,x1,k

[
T πk

h f
(k)
h+1(xh, ah)− f̄

(k)
h (xh, ah)

]

≤

H∑

h=1

4
√

Eπk,x1,k
[Var(f

(k)
h (xh, ah))] · Eπk,x1,k

[δh,k(xh, ah)]

+ 5Eπk,x1,k
[δh,k(xh, ah)] (Eq. (2))

≤

H∑

h=1

4
√

(2eVar(Zπ(x1,k)) + 12H2∆k) · Eπk,x1,k
[δh,k(xh, ah)]

+ 5Eπk,x1,k
[δh,k(xh, ah)] (Eq. (3))

≤4
√

(2eVar(Zπ(x1,k)) + 12H2∆k) ·H∆k + 5H∆k,
(Cauchy-Schwarz)

where ∆k :=
∑H

h=1 Eπk,x1,k
[δh,k(xh, ah)]. Finally, we

can sum over all episodes and use the fact that
∑

k ∆k ≤
Hd logK w.p. 1 − δ, where d is the appropriate distribu-

tional eluder dimension depending on UAE. This last step

is true due to MLE’s generalization bound and standard

eluder-type arguments from Wang et al. (2023b).

6. Second-Order Bounds for Offline DistRL

We now turn to offline RL and prove that pessimism in the

face of uncertainty with MLE-confidence sets enjoys second-

order PAC bounds under single-policy coverage. The algo-

rithm we study is P-DISCO (Wang et al., 2023b), which

adapts the pessimism-over-confidence-set approach from

BCP (Xie et al., 2021) with the DistRL confidence set. As

6
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Algorithm 3 P-DISCO (Wang et al., 2023b)

1: Input: datasets D1, . . . ,DH , distribution class F , pol-

icy class Π.

2: ∀π ∈ Π, set Fπ ← CSRL((Dh)h∈[H]; T π,D).
3: ∀π ∈ Π, set fπ ← argmaxf∈Fπ

Ex1∼d1
[f̄1(x1, π)].

4: Output: π̂ = argminπ∈Π Ex1∼d1
[f̄π

1 (x1, π)].

shown in Algorithm 3, P-DISCO returns the best policy

with respect to its pessimistic value estimate, induced by

the distributional confidence set constructed with the given

data.

Following recent advancements in offline RL (Xie et al.,

2021; Uehara & Sun, 2022; Jin et al., 2021b), we prove

best-effort guarantees that aim to compete with any covered

comparator policy π̃ and that only requires weak single-

policy coverage. In particular, we do not suffer the strong

all-policy coverage condition used in (Chen & Jiang, 2019).

Recall the single-policy concentrability w.r.t. the compara-

tor policy π̃ is defined as C π̃ := maxh ‖ddπ̃h/dνh‖∞. We

now state our main result for offline RL.

Theorem 6.1 (Second-order bounds for Offline RL). Under

Assumption 5.1, for any δ ∈ (0, 1), w.p. at least 1 − δ,

running P-DISCO with β = log(H|Π||F|/δ) learns a pol-

icy π̂ that enjoys the following bound: for any comparator

π̃ ∈ Π (not necessarily the optimal π⋆), we have

V π̂ − V π̃ ≤ O
(
H

√
Var(Z π̃)C π̃β

N
+

H2.5C π̃β

N

)
.

Here, the leading term scales with the variance of the com-

parator policy’s returns Var(Z π̃). Since the variance is

bounded by the first moment, this bound immediately im-

proves the small-loss PAC bound of Wang et al. (2023b). In

near-deterministic settings, our second-order bound guar-

antees a fast 1/N rate and is tight up to log factors, which

is not necessarily the case for small-loss bounds. In partic-

ular, our result shows that DistRL is even more robust to

poor coverage than as shown in Wang et al. (2023b); that is,

P-DISCO can strongly compete with a comparator policy

π̃ if one of the following is true: (i) ν has good coverage

over π̃, so the
√

1/N term has a small constant; or (ii) ν
has bad (but finite) coverage and π̃ has small variance, in

which case we can still obtain a fast 1/N rate (with constant

scaling with coverage). To the best of our knowledge, this

is the first second-order bound for offline RL.

Variance of Z(πk) vs. Z(π⋆). In online RL, Theorem 5.3

and Corollary 5.5 has the average variance of the played

policies Z(πk), while in offline RL, Theorem 6.1 has the

variance of the optimal policy Z(π⋆) (if comparing with op-

timal policy). From a technical perspective, this dichotomy

arises from the fact that in offline RL, single-policy con-

centrability allows us to change measure to π⋆, while in

online RL, we cannot perform the switch and instead rely

on eluder-type arguments. The variances of Z(πk) and

Z(π⋆) are in general incomparable. Nonetheless, both state-

ments are sharper than the small-loss bound as shown by

Theorem D.2. Both are also tight in deterministic settings.

Computational Efficiency. Both O-DISCO and P-

DISCO optimize over the confidence set to ensure opti-

mism and pessimism, respectively, but this step is known

to be computationally hard even in tabular MDPs (Dann

et al., 2018). This is also an issue for other version space

algorithms: OLIVE (Jiang et al., 2017), GOLF (Jin et al.,

2021a), and BCP (Xie et al., 2021). However, the confi-

dence set is needed for the purpose of deep exploration and

can be replaced by myopic strategies such as ε-greedy that

are computationally cheap (Dann et al., 2022). Finally, in

the sequel, we show that in the case of CBs (H = 1), O-

DISCO can be efficiently implemented with neural nets via

disagreement computation (Feng et al., 2021).

7. Contextual Bandit Experiments

We empirically validate our stronger theory in the contex-

tual bandit setting where our algorithm DISTUCB can be

efficiently implemented. We demonstrate that learning the

cost distribution (as in DISTUCB) consistently improves

performance of the baseline algorithm RegCB (Foster et al.,

2018) which uses the squared loss instead of log-likelihood.

It’s worth noting that cost distribution learning has been

shown to be effective in inverse-gap weighted (IGW) al-

gorithms (Wang et al., 2023b); however, our focus here is

on optimistic algorithms such as DISTUCB and RegCB.

We now describe our efficient implementation with neural

networks as function approximators via computing width

with the log-likelihood loss.

Efficient Implementation by Computing Width. We

group incoming contexts into batches Bk ⊂ X to use GPU

parallelism for neural networks. Let Dk−1 denote the his-

tory so far. Then, recall that DISTUCB aims to compute

optimistic actions ak = argmina minf∈Fk−1
f̄(xk, a) for

each context xk ∈ Bk, where Fk−1 is the subset of β-

optimal functions w.r.t. the log-likelihood on the history

LCB(f,Dk−1), where β is a hyperparameter. We consider

inducing optimism by subtracting the width of Fk−1, de-

fined as

wk(x, a) = max
f,f ′∈F

{
f̄(x, a)− f̄ ′(x, a)

}
s.t. f, f ′ ∈ Fk−1.

Then, given the MLE gk = argmaxg∈F LCB(g,Dk−1) we

can set fk := (ḡk − wk) which satisfies optimism, i.e.,

fk(xk, a) ≤ C̄(xk, a), for all a. Thus, the goal now is to

compute wk(xk, a) for each xk ∈ Bk and a ∈ A.
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ing it outperforms the previous squared loss method. An

interesting direction is to show whether DistRL can obtain

even higher-order bounds than second-order.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be

specifically highlighted here.
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Appendices

A. Notations

Table 2. List of Notations

S,A, A State and action spaces, and A = |A|.
∆(S) The set of distributions supported by set S.

d̄ The expectation of any real-valued distribution d, i.e., d̄ =
∫
yd(y)dλ(y).

Var(d) The variance of any real-valued distribution d, i.e., Var(d) =
∫
(y − d̄)2d(y)dλ(y).

[N ] {1, 2, . . . , N} for any N ∈ N.

Zπ
h (x, a) Distribution of

∑H

t=h ct given xh = x, ah = a rolling in from π.

Qπ
h(x, a), V

π
h (x) Qπ

h(x, a) = Z̄π
h (x, a) and V π

h = Ea∼π(x)[Q
π
h(x, a)].

Z⋆
h, Q

⋆
h, V

⋆
h Zπ

h , Q
π
h, V

π
h with π = π⋆, the optimal policy.

T π
h , T ⋆

h The Bellman operators that act on functions.

T π,D
h , T ⋆,D

h The distributional Bellman operators that act on conditional distributions.

V π, Zπ, V ⋆, Z⋆ V π = V π
1 (x1), Z

π = Zπ
1 (x1). V

⋆, Z⋆ are defined similarly with π⋆.

dπh(x, a) The probability of π visiting (x, a) at time h.

C π̃ Coverage coefficient maxh
∥∥ddπ̃

h/dνh

∥∥
∞.

D△(f ‖ g) Triangular discrimination between f, g.

H(f ‖ g) Hellinger distance between f, g.

A.1. Statistical Distances

Let f, g be distributions over Y . Then,

D△(f ‖ g) =
∑

y

(f(y)− g(y))
2

f(y) + g(y)
,

H2(f ‖ g) = 1

2

∑

y

(√
f(y)−

√
g(y)

)2
.

Lemma A.1. For any distributions f, g, we have 2H2(f ‖ g) ≤ D△(f ‖ g) ≤ 4H2(f ‖ g).

Proof. Recall that D△(f ‖ g) =
∫
y

(
f(y)−g(y)√
f(y)+g(y)

)2

. Apply 1√
f(y)+

√
g(y)
≤ 1√

f(y)+g(y)
≤

√
2√

f(y)+
√

g(y)
.

12
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B. Proofs for CB Lemmas

Lemma 4.2. For f, g ∈ L2(λ) s.t. D△(f ‖ g) ≤ 1
2 ,

∣∣f̄ − ḡ
∣∣ ≤ 2

√
(Var(f) + Var(g))D△(f ‖ g). (1)

Proof. For any constant c and random variable X , recall that E(X − c)2 = Var(X) + (EX − c)2. Thus,

f̄ − ḡ =
∑

z

(z − c)(f(z)− g(z))

≤
√∑

z

(z − c)2(f(z) + g(z)) ·
√∑

z

(f(z)− g(z))2

f(z) + g(z)
(Cauchy-Schwartz)

=
√

Var(f) + Var(g) + (f̄ − c)2 + (ḡ − c)2 ·
√

D△(f ‖ g).

To minimize the bound, set c = f̄+ḡ
2 to get,

∣∣f̄ − ḡ
∣∣ ≤

√
Var(f) + Var(g) + (f̄ − ḡ)2/2 ·

√
D△(f ‖ g)

≤
√

(Var(f) + Var(g))D△(f ‖ g) +
∣∣f̄ − ḡ

∣∣
√
D△(f ‖ g)/2.

Rearranging and using the fact that D△(f ‖ g) < 2,

∣∣f̄ − ḡ
∣∣ ≤ 1

1−
√
D△(f ‖ g)/2

√
(Var(f) + Var(g))D△(f ‖ g).

Finally, use the facts that 1
1−ε
≤ 2 for ε ∈ [0, 1

2 ] and
√

D△(f ‖ g)/2 ≤ 1
2 by the premise.

Lemma B.1. For any f, g ∈ ∆([0, 1]), we have

|Var(f)−Var(g)| ≤ 4
√

(Var(f) +D△(f ‖ g))D△(f ‖ g) (4)

Proof. Recall that Var(f) = 1
2Ez,z′∼f⊗f [(z−z′)2]. So if f ′ is the distribution of 1

2 (z−z′)2 where z, z′ ∼ f , then Var(f) =

f̄ ′. Since (z − z′)2 ∈ [0, 1], we can use Eq.(∆2) of (Wang et al., 2023b) to get
∣∣f̄ − ḡ

∣∣ ≤
√

(4f̄ +D△(f ‖ g))D△(f ‖ g).
Thus, |Var f −Var g| ≤

√
(4Varf +D△(f ′ ‖ g′))D△(f ′ ‖ g′).

Now it suffices to bound D△(f ′ ‖ g′) by 4D△(f ‖ g), which we do by data processing inequality and tensorization of

Hellinger. In particular, the tensorization of H2 is given by H2(f ⊗ f ‖ g ⊗ g) = 2− 2(1−H2(f ‖ g)/2)2 (Polyanskiy &

Wu, 2023, Eqn. 7.26) and using 1− (1− x/2)2 ≤ x implies that H2(f ⊗ f ‖ g ⊗ g) ≤ 2H2(f ‖ g). Thus,

D△(f ′ ‖ g′) ≤ D△(f ⊗ f ‖ g ⊗ g) (data processing ineq.)

≤ 4H2(f ⊗ f ‖ g ⊗ g) (D△ ≤ 4H2)

≤ 8H2(f ‖ g) (tensorization of H2)

≤ 4D△(f ‖ g). (2H2 ≤ D△)

Lemma 4.3. For any f, g ∈ L2(λ), we have

∣∣f̄ − ḡ
∣∣ ≤ 4

√
Var(f)D△(f ‖ g) + 5D△(f ‖ g). (2)

13



Second-Order Bounds for Distributional Reinforcement Learning

Proof. If D△(f ‖ g) > 1
2 , then we trivially have

∣∣f̄ − ḡ
∣∣ ≤ 1 ≤ 2D△(f ‖ g) since f̄ , ḡ ∈ [0, 1]. Thus, we can assume

D△(f ‖ g) ≤ 1
2 . Starting from Eq. (1), we can bound the sum of two variances as follows,

Var(f) + Var(g) = 2Var(f) + Var(g)−Var(f)

≤ 2Var(f) + 4
√
(Var(f) +D△(f ‖ g))D△(f ‖ g) (Eq. (4))

≤ 2Var(f) + 4
√
Var(f)D△(f ‖ g) + 4D△(f ‖ g)

≤ 4Var(f) + 6D△(f ‖ g). (AM-GM)

Hence, we have

∣∣f̄ − ḡ
∣∣ ≤ 2

√
(Var(f) + Var(g))D△(f ‖ g)

≤ 2
√
(4Var(f) + 6D△(f ‖ g))D△(f ‖ g) (above inequality)

≤ 4
√
Var(f)D△(f ‖ g) + 5D△(f ‖ g).

This finishes the proof.

C. Proof for Gap-dependent Bounds for CB

Define dCB(ε) = dimℓ1E({(x, a) 7→ D△(f(x, a) ‖ C(x, a)) : f ∈ F}, ε) is the ℓ1-eluder dimension at threshold ε (Liu

et al., 2022).

Theorem 4.4. Assume the premise of Theorem 4.1. If max(GapVar,GapC⋆) ≥ 1√
K

, then

RegretCB(K) ≤ Õ
(
dCBβ + dCBβmin

{
Gap−1

Var
,Gap−1

C⋆

})
.

Proof of Theorem 4.4. Define δk(x, a) := D△(fk(x, a) ‖ C(x, a)) and ∆ =
∑

k δk(xk, ak), the same notation as in

Section 4.1. We partition episodes into burn-in and stable episodes, where stable episodes are those that satisfy: δk(xk, ak) ≤
Var(C(xk, ak)). Let E denote the set of stable episodes and ¬E are the burn-in episodes.

Step 1: burn-in episodes have O(∆) regret.

∑

k∈E1∩EC
2

C̄(xk, ak)−min
a

C̄(xk, a) ≤
∑

k∈E1∩EC
2

C̄(xk, ak)− f̄k(xk, ak) (optimism)

≤
∑

k∈E1∩EC
2

4
√

Var(C(xk, ak))δk(xk, ak) + 5δk(xk, ak) (Eq. (2))

≤
∑

k∈E1∩EC
2

4δk(xk, ak) + 5δk(xk, ak) (¬E)

≤
K∑

k=1

9δk(xk, ak) = 9∆.

This implies that
∑

k 6∈E C̄(xk, ak)−mina C̄(xk, a) ≤ 9∆.

Step 2: stable episodes have gap-dependent regret. We now argue those episodes in E have large gap. For each

k, optimism implies that f̄k(xk, ak) ≤ mina C̄(xk, a) = C̄(xk, ak) − Gap(xk, ak). This implies that Gap(xk, ak) ≤
C̄(xk, ak) − f̄k(xk, ak). By E , we have 4

√
Var(C(xk, ak))δk(xk, ak) + 5δk(xk, ak) ≤ 9

√
Var(C(xk, ak))δk(xk, ak),

and hence the previous display implies

C̄(xk, ak)− f̄k(xk, ak) ≤ 9
√
Var(C(xk, ak))δk(xk, ak).
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If this is zero, then the regret for the episode is zero. If this is non-zero, we have Gap(xk, ak) > 0 and Var(C(xk, ak)) > 0,

which implies that

9
√
δk(xk, ak) ≥

Gap(xk, ak)√
Var(C(xk, ak))

≥ GapVar .

Now we will invoke the standard peeling technique (Lemma C.2) on 9
√
δk(xk, ak). For any ζ > 0, we have

K∑

k=1

I [δk(xk, ak) ≥ ζ] ≤ 4dCB(ζ)β log(K)ζ−1, (5)

because I [δk(xk, ak) ≥ ζ] ≤ ζ−1δk(xk, ak) and the summation of δk(xk, ak) is bounded by the eluder dimension

with log factors (Wang et al., 2023b, Theorem 5.3). This indeed satisfies the assumption of Lemma C.2 with

C = 4dCB(Gap2Var)β log(K). Thus, we can bound the stable episode regret as follows:

∑

k∈E1∩E2

C̄(xk, ak)−min
a

C̄(xk, a)

≤
∑

k∈E1∩E2

9
√

Var(C(xk, ak))δk(xk, ak) (same steps as before and E)

≤
∑

k∈E1∩E2

9
√

δk(xk, ak) (C(xk, ak) ∈ [0, 1])

≤ 18 · 16dCB(Gap2Var)β log(K)Gap−1
Var

. (9
√

δk(xk, ak) ≤ 18 and Lemma C.2)

In the last inequality, note that we invoke Lemma C.2 directly on
√
δk. Thus, we have shown the GapVar-dependent regret:

RegretCB(K) ≤ 11 · 4dCB(K
−1)β log(K) + 288

dCB(Gap2Var)β log(K)

GapVar

.

Following the same steps, and using Lemma C.1, we can prove the same result for GapC⋆ . Therefore, we have shown that

RegretCB(K) ≤ Õ
(
dCB +min

{
dCB(Gap2Var)

GapVar

,
dCB(Gap2C⋆)

GapC⋆

})
.

Finally, notice that if GapVar ≥ 1√
K

, dCB(Gap2Var) ≤ dCB(1/K) = dCB by monotonicity of the eluder dimension. If

GapVar <
1√
K

then 1/GapVar ≥
√
K anyways, and so this small-gap regime results in a O(

√
K) bound; in this case, we

already have a better second-order bound in Theorem 4.1. This finishes the proof for Theorem 4.4.

Lemma C.1. For each episode k, we have

C̄(xk, ak)−min
a

C̄(xk, a) ≤ 3
√

min
a

C̄(xk, a) · δk(xk, ak) + 6δk(xk, ak).

Proof. By optimism and Wang et al. (2023b, Equation ∆2), we have

C̄(xk, ak)−min
a

C̄(xk, a) ≤ C̄(xk, ak)− f̄k(xk, ak) ≤ 2
√
C̄(xk, ak)δk(xk, ak) + δk(xk, ak).

Using AM-GM, this can be further bounded by 1
2 C̄(xk, ak) + 3δk(xk, ak). Rearranging, this implies C̄(xk, ak) ≤

2mina C̄(xk, a) + 6δk(xk, ak). Therefore, plugging this back into above,

C̄(xk, ak)−min
a

C̄(xk, a) ≤ 2
√

(2min
a

C̄(xk, a) + 6δk(xk, ak))δk(xk, ak) + δk(xk, ak)

≤ 3
√
min
a

C̄k(xk, a) · δk(xk, ak) + 6δk(xk, ak).
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Lemma C.2 (Peeling Lemma). Suppose g1, g2, . . . , gK : Z → [0, 1] and z1, z2, . . . , zK ∈ Z satisfy gk(zk) ≥ Gap for all

k. Moreover, suppose there exists C > 0 such that for any ζ ≥ Gap, we have
∑

k I [gk(zk) ≥ ζ] ≤ Cζ−2. Then,

K∑

k=1

gk(zk) ≤ 4C Gap−1 .

Proof. Divide [Gap, 1] into N = ⌈log(1/Gap)⌉ intervals, where the i ∈ [N ]-th interval is [2i−1 Gap, 2i Gap).
Then, we bound the sum via a standard peeling argument: note that gk(zk)I

[
gk(zk) ∈ [2i−1 Gap, 2i Gap)

]
≤

2i Gap I
[
gk(zk) ≥ 2i−1 Gap

]
. Therefore,

∑

k

gk(zk) =
∑

k

N∑

i=1

gk(zk)I
[
gk(zk) ∈ [2i−1 Gap, 2i Gap)

]

≤
∑

k

N∑

i=1

2i Gap I
[
gk(zk) ≥ 2i−1 Gap

]

≤
N∑

i=1

2i Gap ·C2−2i+2 Gap−2 (premise)

= 4C Gap−1
N∑

i=1

2−i ≤ 4C Gap−1 .

D. RL Lemmas

Lemma D.1 (Performance Difference). For any f : (X ×A → R)H , policy π and x1, we have

V π(x1)− f1(x1, π(x1)) =

H∑

h=1

Eπ,x1
[(T π

h fh+1 − fh)(xh, ah)].

Proof. See Wang et al. (2023b, Lemma H.2).

Theorem D.2 (Second-order implies Small-loss). For online RL, suppose we have a second-order bound:
∑K

k=1 V
πk

(x1,k) − V ⋆(x1,k) ≤
√
c
∑K

k=1 Var(Z
πk(x1,k)) + c, for some c ∈ R+. Then, we also have a small-loss

(first-order) bound:
∑K

k=1 V
πk

(x1,k)− V ⋆(x1,k) ≤
√

2c
∑K

k=1 V
⋆(x1,k) + 3c.

For offline RL, suppose we have a second-order bound w.r.t. comparator policy πcomp: V π̂−V πcomp ≤
√

c′ Var(Z(πcomp))
N

+ c′

N
.

Then, we also have a small-loss (first-order) bound: V π̂ − V πcomp ≤
√

c′V πcomp

N
+ c′

N
.

Proof. The offline RL claim follows from Var(Z(πcomp)) ≤ V πcomp because returns are bounded between [0, 1] and variance

is bounded by second moment, which is bounded by first moment. So, we will focus on the online RL claim for the

remainder of the proof.

K∑

k=1

V πk

(x1,k)− V ⋆(x1,k) ≤

√√√√c

K∑

k=1

Var(Zπk(x1,k)) + c (premise)

≤

√√√√c

K∑

k=1

V πk(x1,k) + c (6)

≤ 1

2
c+

1

2

K∑

k=1

V πk

(x1,k) + c, (AM-GM)
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which implies
K∑

k=1

V πk

(x1,k) ≤ 2

K∑

k=1

V ⋆(x1,k) + 3c.

Plugging this back into Eq. (6) gives

K∑

k=1

V πk

(x1,k)− V ⋆(x1,k) ≤

√√√√2c
K∑

k=1

V ⋆(x1,k) + 3c2 + c,

which finishes the proof.

D.1. Variance Change of Measure

Lemma 5.6 (Change of Variance). For any f : X ×A → ∆([0, 1]), π and x1, we have

Eπ,x1 [Var(fh(xh, ah))] ≤ 2eVar(Zπ(x1))+

12H2
Eπ,x1

[∑
t≥h

D△(ft(xt, at) ‖ T π,D
t ft+1(xt, at))

]
. (3)

Proof. Apply law of total variance to the variance term of Theorem D.3, i.e.,

Var(Zπ
1 (x1)) = Eπ,x1

[Var(fh(xh, ah) | xh, ah, x1) | x1] + Varπ,x1
(E[fh(xh, ah) | xh, ah, x1] | x1)

≥ Eπ,x1
[Var(fh(xh, ah) | xh, ah, x1) | x1].

Theorem D.3. Fix any f : X ×A → ∆([0, 1]) and any policy π. Define δh(x, a) := D△(fh(x, a) ‖ T π,D
h fh+1(x, a)) and

∆h(xh, ah) :=
∑H

t=h Eπ,xh,ah
[δt(xt, at)]. Then, for all h ∈ [H], xh, ah, we have

Var(fh(xh, ah)) ≤ 2eVar(Zπ
h (xh, ah)) + 12H(H − h+ 1)∆h(xh, ah). (7)

Therefore, for any x1,

Eπ,x1 [Var(fh(xh, ah))] ≤ 2eVar(Zπ
1 (x1)) + 12H2

Eπ,x1
[∆h(xh, ah)]. (8)

Proof. The main technical lemma is Lemma D.4, which is proven with induction. Given this lemma, use the fact that

(1 +H−1)H ≤ e to get

Var(fh(xh, ah)) ≤
H∑

t=h

e
(
Eπ,xh,ah

[
2Varct,xt+1(ct + V π

t+1(xt+1) | xt, at) + 12H∆t(xt, at)
])
.

Recall that Var(Zπ
h (xh, ah)) =

∑H

t=h Eπ,xh,ah

[
Varct,xt+1

(ct + V π
t+1(xt+1) | xt, at)

]
, by the law of total variance. Also

for any t ≥ h, we have Eπ,xh,ah
∆t(xt, at) ≤ ∆h(xh, ah). Thus,

Var(fh(xh, ah)) ≤ 2eVar(Zπ
h (xh, ah)) + 12H(H − h+ 1)∆h(xh, ah),

which proves the claim.

Lemma D.4. For all h ∈ [H], xh, ah, we have

Var(fh(xh, ah)) ≤
H∑

t=h

(1 +H−1)t−h+1
(
Eπ,xh,ah

[
2Varct,xt+1(ct + V π

t+1(xt+1) | xt, at) + 12H∆t(xt, at)
])
. (9)
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Proof. First observe that

Var(fh(xh, ah)) ≤ (1 +H−1)Var(T π,D
h fh+1(xh, ah)) + 12Hδh(xh, ah), (10)

because by Eq. (4) and AM-GM, we have

Var(fh(xh, ah))−Var(T π,D
h fh+1(xh, ah)) ≤ 4

√
(Var(T π,D

h fh+1(xh, ah)) + δh(xh, ah))δh(xh, ah)

≤ 4

√
Var(T π,D

h fh+1(xh, ah))δh(xh, ah) + 4δh(xh, ah)

≤ H−1 Var(T π,D
h fh+1(xh, ah)) + 8Hδh(xh, ah) + 4δh(xh, ah).

We now proceed to show Eq. (9) by induction. The base case h = H is true since Var(T π,D
H fH+1(xH , aH)) =

Var(CH(xH , aH)) = Var(cH + V π
H+1(xH+1) | xH , aH).

We now prove the induction step: suppose the Eq. (9) is true for h+ 1; we want to show the h case is true. By the law of

total conditional variance, we have that Var(T π,D
h fh+1(xh, ah)) is equal to:

E[Var(ch + fh+1(xh+1, π(xh+1)) | xh+1, ch, xh, ah) | xh, ah]

+ Var(E[ch + fh+1(xh+1, π(xh+1)) | xh+1, ch, xh, ah] | xh, ah)

= E[Var(fh+1(xh+1, π(xh+1)) | xh+1) | xh, ah] + Varch,xh+1∼Ch,Ph(xh,ah)

(
ch + f̄h+1(xh+1, π(xh+1))

)
.

The first term is controlled by the induction hypothesis. The second term is handled by Lemma D.5. Therefore,

Var(T π,D
h fh+1(xh, ah))

≤ Eπ,xh,ah

H∑

t=h+1

(1 +H−1)t−h
(
2Eπ,xh+1,ah+1

[
Varct,xt+1

(
ct + V π

t+1(xt+1) | xt, at
)
+ 12H∆t(xt, at)

])

+ 2Varch,xh+1∼Ch,Ph(xh,ah)

(
ch + V π

h+1(xh+1)
)
+ 4HEπ,xh,ah

∆h+1(xh+1, ah+1).

Thus, by Eq. (10), we have

Var(fh(xh, ah))

≤ Eπ,xh,ah

H∑

t=h+1

(1 +H−1)t−h+1
(
2Eπ,xh+1,ah+1

[
Varct,xt+1

(
ct + V π

t+1(xt+1) | xt, at
)
+ 12H∆t(xt, at)

])

+ (1 +H−1)
(
2Varch,xh+1∼Ch,Ph(xh,ah)

(
ch + V π

h+1(xh+1)
)
+ 4HEπ,xh,ah

∆h+1(xh+1, ah+1)
)
+ 12Hδh(xh, ah)

≤
H∑

t=h+1

(1 +H−1)t−h+1
(
2Eπ,xh,ah

[
Varct,xt+1

(
ct + V π

t+1(xt+1) | xt, at
)
+ 12H∆t(xt, at)

])

+ (1 +H−1)
(
2Varch,xh+1∼Ch,Ph(xh,ah)

(
ch + V π

h+1(xh+1)
)
+ 12H∆h(xh, ah)

)

=
H∑

t=h

(1 +H−1)t−h+1
(
2Eπ,xh,ah

[
Varct,xt+1

(
ct + V π

t+1(xt+1) | xt, at
)
+ 12H∆t(xt, at)

])
,

which finishes the induction.

Lemma D.5.

Varch,xh+1∼Ch,Ph(xh,ah)

(
ch + f̄h+1(xh+1, π(xh+1))

)

≤ 2Varch,xh+1∼Ch,Ph(xh,ah)

(
ch + V π

h+1(xh+1)
)
+ 4(H − h)Eπ,xh,ah

∆h+1(xh+1, ah+1).

Proof. Recall that Var(X + Y ) ≤ 2Var(X) + 2Var(Y ) and hence,

Varch,xh+1∼Ch,Ph(xh,ah)

(
ch + f̄h+1(xh+1, π(xh+1))

)

≤ 2Varch,xh+1∼Ch,Ph(xh,ah)

(
ch + V π

h+1(xh+1)
)
+ 2Varxh+1∼Ph(xh,ah)

(
f̄h+1(xh+1, π(xh+1))− V π

h+1(xh+1)
)
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For the second term, we first bound the envelope of f̄h+1(xh+1, π(xh+1))− V π
h+1(xh+1) as follows:

∣∣f̄h+1(xh+1, π(xh+1))− V π
h+1(xh+1)

∣∣ ≤
H∑

t=h+1

Eπ,xh+1

[∣∣f̄t(xt, at)− T π
t f̄t+1(xt, at)

∣∣] (PDL)

≤
H∑

t=h+1

Eπ,xh+1

[√
2δt(xt, at)

]
(Eq.(∆1) of Wang et al. (2023b))

This enables us to bound the variance,

Varxh+1∼Ph(xh,ah)

(
f̄h+1(xh+1, π(xh+1))− V π

h+1(xh+1)
)

≤ Exh+1∼Ph(xh,ah)

[(
f̄h+1(xh+1, π(xh+1))− V π

h+1(xh+1)
)2]

≤ Exh+1∼Ph(xh,ah)



(

H∑

t=h+1

Eπ,xh+1

[√
2δt(xt, at)

])2



≤ (H − h)Exh+1∼Ph(xh,ah)

[
H∑

t=h+1

(
Eπ,xh+1

[√
2δt(xt, at)

])2
]

≤ (H − h)Exh+1∼Ph(xh,ah)

[
H∑

t=h+1

Eπ,xh+1
[2δt(xt, at)]

]
,

as desired.

E. Proofs for Online RL

Theorem 5.3 (Second-order bounds for Online RL). Under Assumption 5.1, for any δ ∈ (0, 1), w.p. at least 1− δ, running
O-DISCO with β = log(HK|F|/δ) has RegRL(K) at most,

Õ


H

√√√√
K∑

k=1

Var(Zπk (x1,k)) · dRLβ +H
2.5

dRLβ


.

If UAE=TRUE, then the learned mixture policy π̄ enjoys the PAC bound: w.p. at least 1− δ, K(V π̄ − V ⋆) is at most,

Õ

(
H

√√√√A

K∑

k=1

Var(Zπk (x1,k))dRL,Vβ +AH
2.5

dRL,Vβ

)
.

Proof of Theorem 5.3. As noted by (Wang et al., 2023b, Proof of Theorem 5.5), the confidence set construction guarantees

two facts w.p. 1− δ: for all k ∈ [K],

(i) Optimism: mina f̄
(k)
1 (x1,k, a) ≤ V ⋆(x1,k) (since Zπ(x1,k) ∈ Fk); and

(ii) Small-generalization error: for all h, we have

If UAE=FALSE.
∑

i<k Eπi [δh,k(sh, ah)] ≤ cβ;

If UAE=TRUE.
∑

i<k Eπi

[
Ea′∼unif(A)[δh,k(sh, ah)]

]
≤ cβ,

for some universal constant c.

Let δh,k(x, a) := D△(f
(k)
h (x, a) ‖ T ⋆,D

h f
(k)
h+1(x, a)) and ∆k :=

∑H

h=1 Eπk,x1,k
[δh,k(xh, ah)]. We now decompose the
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regret into two parts.

∑

k

V πk

(x1,k)− V ⋆(x1,k)

≤
∑

k

V πk

(x1,k)−min
a

f̄
(k)
1 ((x1,k), a) (Optimism)

=
∑

k

H∑

h=1

Eπk,x1,k

[
T πk

h f̄
(k)
h+1(xh, ah)− f̄

(k)
h (xh, ah)

]
(PDL)

=
∑

k

H∑

h=1

Eπk,x1,k

[
T πk

h f
(k)
h+1(xh, ah)− f̄

(k)
h (xh, ah)

]

≤
∑

h,k

4

√
Eπk,x1,k

[Var(f
(k)
h (xh, ah))] · Eπk,x1,k

[δh,k(xh, ah)] + 5Eπk,x1,k
[δh,k(xh, ah)] (Eq. (2))

≤
∑

h,k

4
√(

Var(Zπk(x1,k)) + 12H2∆k

)
· Eπk,x1,k

[δh,k(xh, ah)] + 5Eπk,x1,k
[δh,k(xh, ah)] (Eq. (3))

≤
∑

k

4
√(

2eVar(Zπk(x1,k)) + 12H2∆k

)
·H∆k + 5∆k (Cauchy-Schwarz)

≤
∑

k

4
√

2eVar(Zπk(x1,k))H∆k + (4
√
12 + 5)H1.5∆k

≤ 4

√
2e
∑

k

Var(Zπk(x1,k))H
∑

k

∆k + (4
√
12 + 5)H1.5

∑

k

∆k.

The final step is to bound
∑

k ∆k, which is the same as in (Wang et al., 2023b). In particular, if UAE=FALSE, then∑
k ∆k ≤ cH dimℓ1,DE(1/K)β log(K). If UAE=TRUE, then

∑
k ∆k ≤ cAH dimℓ1,DE(1/K)β log(K). This concludes

the proof.

E.1. Bounding Q-type distributional Eluder in Linear MDPs

Recall the Linear MDP definition (Jin et al., 2020).

Definition E.1 (Linear and Low-Rank MDP). A transition model Ph : X × A → ∆(X ) has rank d if there exist

features φ⋆
h : X × A → R

d, µ⋆
h : X → R

d such that Ph(x
′ | x, a) = φ⋆

h(x, a)
⊤µ⋆

h(x
′) for all x, a, x′. Also, assume

maxx,a ‖φ⋆
h(x, a)‖2 ≤ 1 and ‖

∫
gdµ⋆

h‖2 ≤ ‖g‖∞
√
d for all functions g : X → R. The MDP is called low-rank if Ph is

low-rank for all h ∈ [H]. The MDP is called linear if {φ⋆
h}h∈[H] is known.

Consider the following linear function class:

F lin
h =

{
f(z | x, a) =

〈
φ⋆(x, a), w(z)

〉
s.t. w : [0, 1]→ R

d,max
z
‖w(z)‖2 ≤ α

√
d and max

x,a,z

〈
φ⋆(x, a), w(z)

〉
≤ α

}
,

(11)

Wang et al. (2023b) showed two nice facts about F lin. First, it satisfies Bellman Completeness (Assumption 5.1). Moreover,

under the assumption that costs are discretized into a uniform grid of M points, this class’s bracketing entropy is Õ(dM).
Note that discretization is necessary to bound the statistical complexity of F lin and is also common in practice, e.g., C51

(Bellemare et al., 2017) and Rainbow (Hessel et al., 2018) both set M = 51, which works well in Atari; also the optimal

policy’s performance in the discretized MDP can also be bounded by the discretization error (Wang et al., 2023a).

We now show a new fact about F lin. If we further assume that per-step cost and cost-to-go distributions have minimum mass

ηmin > 0 on each element of its support, then we can bound the appropriate Q-type distributional eluder dimension for

linear MDPs as Õ(dη−1
min log(1/ε)). This is formalized in the following assumption.

Assumption E.2. For all f ∈ F lin and h ∈ [H], if fh(z | x, a) = T ⋆,D
h fh+1(z | x, a), then fh(z | x, a) + T ⋆,D

h fh+1(z |
x, a) ≥ ηmin.
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If cost-to-go and per-step cost distributions have a minimum mass, then this assumption is satisfied.

Theorem E.3. Suppose the MDP is a linear MDP and Assumption E.2. Fix any h ∈ [H] and define

Ψh =
{
(x, a) 7→ D△(fh(x, a) ‖ T ⋆,D

h fh+1(x, a)) : f ∈ F lin
h

}
,

Dh = {(x, a) 7→ dπh(x, a) : π ∈ Π}.

Then, dimℓ1DE(Ψh,Dh, ε) ≤ O(dη−1
min log(dM/(ηminε))).

Proof. Fix any h. Suppose (d(k), f (k))k∈[T ] is any sequence such that for all k ∈ [T ], d(k) ∈ Dh, f (k) ∈ Ψh and (d(k), f (k))
is (ε, ℓ1)-independent of its predecessors. By definition, the largest possible T is the eluder dimension of interest, so we

now proceed to bound T .

For any k, since f (k) ∈ Ψh, there exists w(k), v(k) : [0, 1]→ R
d satisfying normalization constraints of Eq. (11) such that

f (k)(x, a) = D△(z 7→ φ⋆
h(x, a)

⊤w(k)(z) ‖ z 7→ φ⋆
h(x, a)

⊤v(k)(z)). Note that v(k) exists by Bellman completeness of

F lin
h .

Now we simplify the D△ term with the assumption: for any k,

Ed(k)D△(f
(k)
h (x, a) ‖ T ⋆,D

h f
(k)
h+1(x, a)) = Ed(k)

∑

z

(f
(k)
h (z | x, a)− T ⋆,D

h f
(k)
h+1(z | x, a))2

f
(k)
h (z | x, a) + T ⋆,D

h f
(k)
h+1(z | x, a)

≤ η−1
minEd(k)

∑

z

(φ⋆
h(x, a)

⊤(w(k)(z)− v(k)(z)))2 (Assumption E.2)

≤ η−1
minEd(k)‖φ⋆

h(x, a)‖2Σ−1
k

·
∑

z

‖w(k)(z)− v(k)(z)‖2Σk
, (CS)

where Σk :=
∑

i<k Ed(i) [φ⋆
h(xh, ah)φ

⋆
h(xh, ah)

⊤] + λI and λ > 0 will be set soon. For the second factor,

∑

z

‖w(k)(z)− v(k)(z)‖2Σk
=
∑

z

∑

i<k

Ed(i)

(
φ⋆
h(x, a)

⊤(w(k)(z)− v(k)(z))
)2

+Mλd

≤
∑

i<k

Ed(i)

(
∑

z

∣∣∣φ⋆
h(x, a)

⊤(w(k)(z)− v(k)(z))
∣∣∣
)2

+Mλd

≤
∑

i<k

Ed(i)D△(f
(k)
h (x, a) ‖ T ⋆,D

h f
(k)
h+1(x, a)) +Mλd (D2

TV ≤ D△)

≤ ε+Mλd ((ε, ℓ1)-independent sequence)

= 2ε. (set λ = ε/(dM))

Thus, we have shown that

Tε <
∑

k

Ed(k)D△(f
(k)
h (x, a) ‖ T ⋆,D

h f
(k)
h+1(x, a)) ((ε, ℓ1)-independent sequence)

≤ η−1
min

∑

k

Ed(k)‖φ⋆
h(x, a)‖2Σ−1

k

· 2ε

≤ 2η−1
minε · d log(1 + TM/ε2),

where we used elliptical potential in the last step (Uehara et al., 2021, Lemma 19 & 20), which is applicable since

Ed(k)‖φ⋆
h(x, a)‖2Σ−1

k

= Ed(k)φ⋆
h(x, a)

⊤Σ−1
k φ⋆

h(x, a) = Tr(Ed(k) [φ⋆
h(x, a)φ

⋆
h(x, a)

⊤]Σ−1
k ). Thus, (Uehara et al., 2021,

Lemma 19 & 20) implies that

T < 2η−1
mind log(1 + TM/ε2),

which finally implies,

T ≤ 12η−1
mind log(1 + 2η−1

mindM/ε2),

by (Wang et al., 2023b, Lemma G.5).
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F. Proofs for Offline RL

Theorem 6.1 (Second-order bounds for Offline RL). Under Assumption 5.1, for any δ ∈ (0, 1), w.p. at least 1− δ, running

P-DISCO with β = log(H|Π||F|/δ) learns a policy π̂ that enjoys the following bound: for any comparator π̃ ∈ Π (not

necessarily the optimal π⋆), we have

V π̂ − V π̃ ≤ O
(
H

√
Var(Z π̃)C π̃β

N
+

H2.5C π̃β

N

)
.

Proof of Theorem 6.1. As noted by (Wang et al., 2023b, Proof of Theorem 6.1), the confidence set construction guarantees

two facts w.p. 1− δ:

(i) Pessimism: for all π, V π ≤ f̄π
1 (x1, π) (since Zπ ∈ Fπ); and

(ii) Small-generalization error: for all π and h, Eνh
[D△(fπ

h (x, a) ‖ T π,D
h fπ

h+1(x, a))] ≤ cβN−1 for some universal

constant c.

Let δπh(x, a) := D△(fπ
h (x, a) ‖ T π,D

h fπ
h+1(x, a)) and ∆π :=

∑H

h=1 Eπ[δ
π
h(xh, ah)]. We now bound the performance

difference between π̂ and π̃:

V π̂ − V π̃ ≤ f̄ π̂
1 (x1, π̂)− V π̃ (Pessimism)

≤ f̄ π̃
1 (x1, π̃)− V π̃ (Defn of π̂)

=

H∑

h=1

Eπ̃

[(
f̄ π̃
h − T π̃

h f̄ π̃
h+1

)
(xh, ah)

]
(PDL Lemma D.1)

≤
H∑

h=1

4
√
Eπ̃[Var(f

π̃
h (xh, ah))] · Eπ̃[δ

π̃
h(xh, ah)] + 5Eπ̃[δ

π̃
h(xh, ah)] (Eq. (2))

≤
H∑

h=1

4
√

(2eVar(Z π̃) + 12H2∆π̃) · Eπ̃[δ
π̃
h(xh, ah)] + 5Eπ̃[δ

π̃
h(xh, ah)] (Eq. (3))

≤ 4
√

(2eVar(Z π̃) + 12H2∆π̃) ·H∆π̃ + 5∆π̃ (Cauchy-Schwarz)

≤ 4
√

2eVar(Z π̃)H∆π̃ + (4
√
12 + 5)H1.5∆π̃.

Finally, bound ∆π̃ by change of measure and the generalization bound of MLE (fact (ii)):

∆π̃ ≤ C π̃

H∑

h=1

Eνh
[δπ̃h(xh, ah)] ≤ C π̃H · cβN−1.

Therefore,

V π̂ − V π̃ ≤ O
(
H

√
C π̃ Var(Z π̃)β

N
+

H2.5C π̃β

N

)
.
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