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Abstract

We study inference on the long-term causal effect

of a continual exposure to a novel intervention,

which we term a long-term treatment, based on

an experiment involving only short-term observa-

tions. Key examples include the long-term health

effects of regularly-taken medicine or of environ-

mental hazards and the long-term effects on users

of changes to an online platform. This stands

in contrast to short-term treatments or “shocks,”

whose long-term effect can reasonably be me-

diated by short-term observations, enabling the

use of surrogate methods. Long-term treatments

by definition have direct effects on long-term

outcomes via continual exposure, so surrogacy

conditions cannot reasonably hold. We connect

the problem with offline reinforcement learning,

leveraging doubly-robust estimators to estimate

long-term causal effects for long-term treatments

and construct confidence intervals.

1. Introduction

Long-term effects of interventions are often of primary im-

portance yet their direct measurement is hampered by the

difficulty of performing long-term randomized control tri-

als. For example, both medical and policy trials are often

interested in long-term health or welfare impact, but fol-

lowing subjects for prolonged periods is difficult. Similarly,

businesses in digital settings, constrained by operational con-

siderations and motivated by fast-paced innovation, often

use short-run A/B tests to inform decisions that ultimately

aim to improve long-term outcomes.

Surrogate methods offer a route to connect short term tests

to their longer term outcomes (Athey et al., 2019; Prentice,

1989). These methods rely on the existence of intermediate-
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term surrogate variables and/or an observational dataset that

associates surrogate variables with their eventual long-term

outcomes. The key requirements are that the surrogate(s)

fully mediate the effect of the treatment on the outcome of

interest and that we can identify the effect of the surrogates.

However, the treatment of interest may be explicitly long-

term, that is, involving a continuous exposure to a novel in-

tervention that extends beyond the length of the experiment.

For example, persistent environmental hazards, regular med-

ication, or a change to the user experience in a digital setting.

This stands in contrast to short-term treatments, such as a

training course or a pharmacological regimen confined in

time, whose consequences could reasonably be captured

within a short time frame. For long-term treatments, unless

the experiment itself (or the measurement of the surrogates)

is long-term, surrogate methods are incapable of reliably

capturing their effect.

In this paper, we develop a method that is capable of esti-

mating the long-term effects of long-term treatments from

short-term experiments, provided the short-term observa-

tions sufficiently characterize the long-term trajectory, even

if they do not mediate the effect on it. The method learns

long-term temporal dynamics directly from the short-run

experimental dataset, which eliminates the need both for

the surrogate assumption and for an observational dataset

linking surrogates to long-term outcomes. Provided these

dynamics persist, this enables the estimation of long-term

effects of arbitrary-length treatments, both short and long.

In contrast, we show that surrogate methods, even when

their assumptions hold, implicitly estimate a truncated ef-

fect in our setting, that of a treatment that persists up to the

point that surrogates are measured.

In place of the two the key assumptions of surrogate meth-

ods (perfect mediation and identification of mediated effect),

we make two novel assumptions which connect the prob-

lem of estimating long-term effects from experiments with

offline reinforcement learning (ORL), which broadly con-

siders the problem of evaluating “policies” on their expected

cumulative reward, with evaluation policies potentially dif-

fering from the policy generating the data. We make use of

the connection with ORL by leveraging recent literature that

develops efficient doubly-robust estimators for off-policy
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evaluation. In particular, we show how long-term causal

effects can be estimated from the outcomes of two types of

policies: a null treatment policy and a set of policies indexed

by T , where T denotes the duration of treatment.

The paper is organized as follows. The next section sets up

the methodology and provides conditions for identification.

Section 3 introduces the estimator and conditions for root-

N consistency and asymptotic normality. Section 4 uses

simulated data to evaluate our method against a range of

alternatives, as well as exploring robustness to real world

complications. We conclude in Section 5.

1.1. Related Literature

There exist a long history in Biostatistics of using the re-

sponse of short-term proxy variables to interventions to infer

longer-term effects on a primary outcome of interest. These

short-term proxies are referred to as surrogate endpoints

and their validity relies on various surrogacy assumptions

that share the requirement that the surrogate mediates the

treatment effect (Prentice, 1989; VanderWeele, 2013).

However, surrogate assumptions are unlikely to hold for a

single surrogate and can potentially lead to sign-reversing

bias (Chen et al., 2007). The surrogate index literature

extends the surrogate method to allow for multiple surrogate

variables and the use of observational datasets to infer the

relationship between short term surrogates and longer term

outcomes (Athey et al., 2019). Further extensions to this

line of work include learning optimal policies (Yang et al.,

2023), and combining long and short-term data to tackle

confounding (Imbens et al., 2023; Athey et al., 2020) and

improve efficiency (Kallus & Mao, 2020).

The most related extension similarly focuses on inferring the

effects of long-term treatments with short-term experimen-

tal measurements (Huang et al., 2023). The approach uses

a discrete-time sequential environment with an underlying

surrogate-space. To overcome the curse of dimensional-

ity, (Huang et al., 2023) assume linearity in both surrogate

transitions and surrogate-reward mappings.

The dynamic treatment effects literature similarly seeks

to estimate effects for a sequence of treatments (Murphy,

2003; Lewis & Syrgkanis, 2021; Chernozhukov et al., 2023).

However, the key difference in our setting is that we aim

to estimate treatment effects that extrapolate beyond the

horizon of the observed short experiment, whereas dynamic

treatment effects methods estimate effects for a horizon that

matches the observed data. A related literature exists which

aims to undo confounding in a dynamic setting (Battocchi

et al., 2021; Bica et al., 2020). Here, confounding is not

a concern since our data come from an experiment where

treatment is at worst randomly assigned conditional on the

initial state (see Assumption 2).

We lean heavily on the reinforcement learning literature,

which estimates long-term outcomes from the perspective of

quantifying the value of different “policies” (Sutton & Barto,

1998). We make direct use of an estimator from (Kallus &

Uehara, 2022) that combines two functions: the Q function,

which has a long history in reinforcement learning and the

density ratio function (Liu et al., 2018; Uehara et al., 2020).

2. Methodology

Let Y denote the long-term outcome of interest and define

a treatment policy, πT , as a sequence of treatments for T

periods and null treatment thereafter.1 For example, the

control policy is π0 and a permanent treatment policy is

π∞. The potential long-term outcome associated with a

particular treatment policy, π, is denoted as Y (π).

Our estimand of interest is the average treatment effect of a

particular treatment policy: the expected difference in po-

tential long-term outcomes between a T -duration treatment

policy and the control policy.

ϕT = E
[

Y (πT )− Y (π0)
]

(2.1)

We assume that we can decompose long-term outcomes

into the discounted sum of per period outcomes, normalized

so that Y can be interpreted as the weighted average per

period potential outcome, weighted towards the present.

Let γ denote the discount rate, Yt the per period outcome

and Yt(a) with a ∈ A = {0, 1} the per period potential

outcome.

Assumption 1 (Additive rewards).

Y (πT ) ≡ (1− γ)

∞
∑

t=0

γtYt(1t<T ) (2.2)

The experiment that generates our data is described in Fig-

ure 1. There exists an initial distribution of “states”, pb,

from which initial states, S0, are drawn and in turn which

treatment, A0 is assigned. We observe an outcome for the

first period, Y0, which depends on both the initial state and

treatment assignment. Finally, we observe a transition to a

subsequent state, S1, which similarly depends both on the

initial state and treatment assignment.

We want to evaluate the ATE with a different treatment

policy and potentially a different distribution of initial states,

pe, than the experimental distribution. Figure 2 depicts

the treatment policy and outcomes that we are interested

in estimating. Figure 1 depicts the short experiment we

observe, where treatment is assigned potentially depending

1The more general case of non-contiguous treatment policies
easily fits within our framework, with the addition of more complex
notation and a less elegant mapping to stationary state-independent
treatment policies (see Section 2.1.1).
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A0

S0 S1Y0

Figure 1. DAG of Observed Experiment

A0 A1

S0 S1Y0 Y1 S2

Figure 2. DAG of Treatment Policy of Interest

on the initial state. In contrast, Figure 2 depicts the target

policy we want to evaluate where treatment is assigned

according to our target policy.

The following two assumptions are assumptions on the ex-

perimental design. They are standard assumptions in the

causal inference literature and allow us to “fill in” the miss-

ing counterfactual outcomes with observed outcomes.

Assumption 2 (Unconfoundedness).

(Yt(0), Yt(1)) ⊥⊥ A0 | S0

Given a set of initial states S0, we assume treatment assign-

ment in the experiment is independent of potential outcomes

conditional on the initial state, which should be satisfied

with experimental data.

Assumption 3 (Overlap).

∀s ∈ S, a ∈ A : 0 < pb(s, a) < 1

Note that our overlap condition is stronger than in traditional

causal inference settings since it technically applies to the

entire state-space and not just the initial states. For instance,

it requires that treatment is rolled out to all types of users as

opposed to being rolled out only to new users.

The next two assumptions depart from existing methods and

allow us to extrapolate beyond the short term, using only

data from the experiment. The states are assumed to satisfy

the Markov property. The Markov assumption is implicitly

a requirement that the state-space is sufficiently rich.

Assumption 4 (Markov property in states and actions).

∀s ∈ St, a ∈ At−1 :

p (st|st−1, at−1, . . . s0, a0) = p (st|st−1, at−1)

Define p(y, s|πT ; t) as the marginal distribution of the states

s and outcomes y “induced” by projecting the transition

probabilities t periods from the initial distribution of states,

p0(s0), under the policy πT .

p(y, s|πT ; t) =

∫

s0,...,st−1

p0(s0)

t
∏

k=1

p(sk|sk−1,1k−1<T )

× p(y|s,1t<T ) (2.3)

Assumption 5 (Stationarity).

∀t, y, s, πT :

pt(y, s|πT )− pt(y, s|π0) = p(y, s|πT ; t)− p(y, s|π0; t)

Stationarity assumes that the difference in the marginal dis-

tributions of s and y with respect to any treatment policy πT

and the control policy π0 at each period match those induced

by the Markov transition probabilities. The assumption al-

lows levels of these distributions to change, as long as the

changes apply equally to treatment and control populations.

2.1. Identification

A necessary step in estimating the average treatment effect

of a treatment policy depicted in Figure 2 is to express the

estimand as a function of observable data available from an

experiment. In particular, we assume the observable data

consists of N i.i.d. tuples (a, s, y, s′) generated from the

process illustrated in Figure 1.

To do so, we will exploit the fact that the environment and

assumptions above describe a Markov Decision Problem

(MDP). Our setup is an MDP with a binary action space, A,

state-space S , expected reward emission function, p(y|s, a),
state-transition kernel p(s′|s, a) and a non-stationary policy,

πT
t : A× S × N

+ → [0, 1].

Leaning on the framing as a MDP, we can summarize the

cumulative discounted outcomes recursively using the state-

action value function (the Q function) defined as follows.

q
T

t (s, a) ≡ Ey [y|s, a] + γEs′∼p(·|s,a)

[

qTt+1(s
′,1t+1<T )

]

(2.4)

The superscript of the Q function denotes the associated

policy is the T -duration treatment policy πT and the sub-

script denotes the dependence on time. The Q function as

described in (2.4) is non-stationary because the T -duration

treatment policy is non-stationary. Note that for fixed poli-

cies, either persistent treatment or control, the Q function is

stationary since the underlying policy is constant over time.

3



Long-Term Causal Effects of Long-Term Treatments

Theorem 1 (Identification by Q function with non-station-

ary policy). Suppose Assumptions 1-4 hold. Then the av-

erage treatment effect of a T -duration treatment policy is

composed of the following function of observable data.

ϕT = (1− γ)Es∼p0(·)

[

qT0 (s,10<T )− q0(s, 0)
]

(2.5)

Theorem 1 transforms the complex task of estimating in-

finite horizon per-period outcomes into a straightforward

computation of the Q function, weighted appropriately and

evaluated at the initial state and action. The proof is pro-

vided in the Appendix in Section A.1.

2.1.1. STATIONARY POLICIES

Theorem 1 is challenging to use directly since the Q function

in Equation (2.5) is difficult to estimate due to it inheriting

non-stationarity from the underlying T -duration treatment

policy.2 Instead, we prove the existence of an equivalent

stationary stochastic policy and construct a computationally

efficient approximation. With such a stationary policy, we

construct a practical version of Theorem 2 in Corollary

4 which uses a stationary policy making the Q function

tractable.

A key concept we need is that of an occupancy measure, the

discounted fraction of time an agent spends in state s and

action a.

ρπ,γ(s, a) ≡ (1− γ)

∞
∑

t=0

γtρπ,t(s, a) (2.6)

Similarly, there exists the state occupancy measure which

is Equation (2.6) marginalizing out actions. The occu-

pancy measures provide a way to express the cumulative

discounted outcomes, a summation across time, instead as a

single point-in-time weighted average of outcomes.

(1− γ)Ep0,π

[

∞
∑

t=0

γtyt

]

= Es,a∼ρπ,γ(·),y∼p(·|s,a) [y]

(2.7)

An implication of Equation (2.7) is that two policies that

lead to the same occupancy measures will have the same

cumulative discounted rewards.

Lemma 2 (Stationary equivalents of non-stationary poli-

cies). For any non-stationary policy π = π0, π1, . . ., there

exists a stationary policy π̄ that generates the same occu-

pancy measure. In particular construct a stationary policy

as follows:

π̄(a|s) = ρπ,γ(s, a)

ρπ,γ(s)
, (2.8)

2For our specific form of non-stationarity, one would need to
first estimate the Q function at T under the deterministic con-
trol policy, then the T − 1, . . . , 0 Q functions in order under the
deterministic treatment policy.

then

ρπ,γ = ρπ̄,γ . (2.9)

See (Bertsekas, 2001) for a proof.

Theorem 3 (Stationary T-Duration Treatments). For a non-

stationary policy πT that sets a = 1 for T periods and a = 0
thereafter, (i) there exists an equivalent stationary stochastic

policy π̄T that yields the same cumulative discounted reward

and (ii) the average of that stationary stochastic policy

across states is 1− γT .

Proof. Let πT be an arbitrary non-stationary policy. That

non-stationary policy leads to associated occupancy mea-

sures, ρπT ,γ . Construct a candidate stationary policy:

π̄T (s, a) =
ρπT ,γ(s, a)

ρπT ,γ(s)
(2.10)

Lemma 2 shows that π̄T leads to an equivalent occupancy

measure, and hence will result in the same expected cumu-

lative discounted reward as under πT .

For (ii), the weighted average treatment policy across states

is:

∫

s
π̄T (a|s)ρπ̄T ,γ(s)ds =

∫

s
ρπT ,γ(s, a)ds

=
∫

s
(1− γ)

∑∞
t=0 γ

tρπT ,t(s, a)ds

= (1− γ)
∑∞

t=0 γ
t
∫

s
ρπT ,t(s, a)ds

= (1− γ)
∑T

t=0 γ
t = 1− γT .

Intuitively, a stationary policy with a constant treatment

probability of 0 corresponds to a control policy indexed by

T = 0. As T increases, so does this probability, and as

T →∞, it approaches 1. In general, constructing the exact

state-dependent equivalent stationary policy is intractable

since it requires estimating the occupancy measures under

the T -duration treatment policy. Instead, we suggest using

the state-independent policy, ∀s : π̄T (a|s) = 1−γT , which

offers a practical and computationally efficient approxima-

tion.

Constructing a stationary policy from a T -duration policy

via Equation (2.10) leads to a stationary Q function, equiva-

lent in occupancy measures and expected outcomes to the

non-stationary Q function in Equation (2.4), when starting

from the same initial distribution of states.

q
T

(s, a) ≡ Ey [y|s, a]+γEs′∼p(·|s,a),a′∼π̄T (·|s′)

[

qT (s′, a′)
]

(2.11)

Hence we can state a stationary version of Theorem 1, with

a stationary and hence learnable Q function.

Corollary 4 (Identification by Stationary-policy Q). Sup-

pose Assumptions 1-4 hold. Then the expected average

treatment effect of a T -duration treatment policy is equal to
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expectation over the difference of Q functions, associated

with the equivalent stationary policy, π̄T and the control

policy.

ϕT = (1− γ)Es∼p0(·),a∼π̄T (·|s)

[

qT (s, a)− q0(s, 0)
]

(2.12)

2.2. Comparison to Surrogate Index Method

Within the current environment, it is instructive to pinpoint

the key difference between our method and the surrogate

index method (Athey et al., 2019). Assume the setup above

where we observe everything up to some period t, where we

observe only the transition to the tth period state. In other

words, we observe N tuples of (s0, y0, a0, . . . , st).

We focus on the difference in outcomes for a permanent

treatment policy for periods past t since the covariate ad-

justed difference in means will recover the treatment effect

prior to t. Following the assumptions in Section 2.1, the

true potential outcome for period t + k where k > 0, can

be expressed as

E [Yt+k(1)] =

∫

st,s,y

yp(y | s, a = 1)

× p(s | st, a = 1; k)pt(st | a = 1). (2.13)

where p(s′|s, a; k) is the transition kernel projected k peri-

ods ahead starting from s.

A surrogate method that relies on an observational dataset

will instead calculate the expectation of the t + k period

outcome conditional on the distribution of st from the ex-

periment but also in part on a probability model, po learned

from an observational dataset.

E [Yt+k(1)]]← Est [E
o
Y [Yt+k|st, a = 0] |a = 1]

=

∫

st,yt+k

yt+kp
o(yt+k | st, a = 0)pt(st|a = 1)

=

∫

st,st+k,yt+k

yt+kp
o(yt+k | st+k, a = 0)

× po(st+k|st, a = 0)pt(st|a = 1) (2.14)

Note that when the observational model is used, it conditions

on null treatment since our novel treatment doesn’t exist in

the observational dataset. The comparability assumption

ensures that the observational and experimental probabilities

are equal, po = p.

Equation (2.14) makes it clear that the surrogate estimate

only captures the partial treatment effect that is mediated

through the surrogate, st. For periods beyond the mea-

surement period of the surrogate, it misses that permanent

interventions may alter (i) state transitions and hence af-

fect the distribution of future states, p(st+k|st, a = 1) 6=

p(st+k|st, a = 0) and (ii) the contemporaneous relationship

between state and outcome, p(y|s, a = 1) 6= p(y|s, a =
0).3

Hence surrogate index methods capture long-term effects,

but only for treatment durations up to the time when the

surrogate is measured. The effects captured are indirect

long-term effects due to the persistence of initial treatment

effects. We verify this experimentally in Section 4.

3. Estimation

We want to estimate the long-term average treatment effect

via the Q function in Equation (2.12). With discrete states,

we can solve for Q exactly via dynamic programming meth-

ods subject to computational constraints (Sutton & Barto,

1998). But when the state-space is large or continuous, we

need to rely on machine learning techniques to approximate

the Q function.

It is well known that relying on ML-based estimators in a

statistical estimand may lead to bias due to overfitting and

regularization techniques used in training (Chernozhukov

et al., 2018). Hence we develop a double ML based estima-

tor centered around the efficient influence function (Kallus

& Uehara, 2022). The estimator is N− 1
2 consistent and

doubly robust with respect to ML-learned Q and density

ratio functions, which are only required to converge at slow

rates.

3.1. Efficient Influence Function Based Estimator

The estimator we propose is the naive plug-in estimator

with a bias correction term based on the efficient influence

function. The efficient influence function for one half of

the estimand (the potential outcome under the policy π) is

a function of the observed tuple (s, a, y, s′), a stationary

policy π and the nuisance functions q and w, representing

the Q and density ratio functions.

φπ(s, a, y, s′; q, w) = −ϕπ + (1− γ)Es∼p0(·) [q
π(s, a)]

+
π(a|s)
pb(a|s)

w(s)

(

y + γ
∑

a′∈A

π(a′|s′)qπ(s′, a′)− qπ(s, a)

)

(3.15)

The efficient influence function for the estimand is simply

the difference of the respective efficient influence functions

for treatment and control.

φ(s, a, y, s′; q, w, π, π0) = φπ(s, a, y, s′; q, w)

− φπ0

(s, a, y, s′; q, w) (3.16)

3Of course, these effects diminish as the period of surrogate
measurement increases. But this point is moot as the problem at
hand is to estimate long-term effects on short term experimental
measurements.
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The density ratio function is defined as

w(s) ≡ ρπ,γ(s)

pb(s)
. (3.17)

An intuitive description of the density ratio function is the

occupancy measure under the policy relative to the proba-

bility density function under the experiment.

The bias-corrected estimator is

ϕπ
BC ≡ (1− γ)Es∼p0(·),a∼π(·|s)

[

qπ(s, a)− qπ
0

(s, 0)
]

+ E
[

φ(s, a, y, s′; q, w, π, π0)
]

(3.18)

where the final term is a bias correction term that undoes

any asymptotic bias from using ML-based estimators of the

nuisance and value functions (Kennedy, 2023).

3.2. Asymptotic Properties

By design, we specified the ATE as a function of a well

studied objective in reinforcement learning: the normalized

discounted outcomes associated with a policy. Hence we

can make use of results from (Kallus & Uehara, 2022) who

propose efficient, doubly robust estimators for off-policy

evaluation using semiparametric methods. This section sum-

marizes the relevant results.

The difference between the bias-corrected estimator and the

true estimand can be decomposed into three components: a

central limit theorem term, an empirical process term and a

second order remainder term. The key is to show that the

empirical process term and the second order remainder term

converge to zero faster than the central limit theorem term.

The empirical process term is op(N
− 1

2 ) if we use cross

fitting in estimation. Cross fitting involves splitting the data

into K partitions, estimating nuisance functions on the K−1
held out partitions, evaluating the estimator for each single

partition and finally averaging over the K estimators to get

the final estimate.

For brevity, we refer to (Kallus & Uehara, 2022) for details

on controlling the second order remainder term.

Theorem 5 (Double Robustness). If either one of ‖q̂ −
q‖2 = op(1) or ‖ŵ−w‖2 = op(1) holds, then ϕ̂BC −ϕ =
op(1).

Double robustness implies that we only need to “correctly”

estimate one of either the Q or the density ratio functions to

ensure our bias corrected estimator is consistent.

Theorem 6 (Asymptotic Normality and Efficiency). Sup-

pose that (i) q̂ and ŵ converge to q and w in probability at

rates such that the product of those rates is op(N
− 1

2 ) and

(ii) the propensity score p0(a|x) is known. Then the bias-

corrected estimator is asymptotically normal and efficient.

√
N (ϕ̂π

BC − ϕπ)
d−→ N

(

0, φ2
)

Crucially, the convergence rate requirements on the Q and

density ratio function estimates are each slower than square-

root which enables the use of a range of ML algorithms

along with techniques such as regularization. If the propen-

sity score needs to be estimated, then the rate requirement

on the density ratio function instead applies to the product

of the density ratio function and the propensity score.

3.3. Q Function Estimation

If states are finite, then dynamic programming techniques

can solve for the Q function exactly given the availability of

transition probabilities. However, since we potentially have

continuous states or a large state space which is subject to

the curse of dimensionality, we need to use ML techniques

that parameterize the Q function.

An obvious choice is the family of Temporal Difference

(TD) algorithms used for policy evaluation. TD algorithms

estimate the Q function on a dataset of state transitions,

actions and rewards, as available in an experiment. In

particular, it requires a dataset of (si, ai, yi, s
′
i) tuples for

i = 1, . . . , N units and parameterizes the Q function with a

vector of parameters, θq . Hence

qπ(s, a; θq) ≈ qπ(s, a).

Using the definition of the Q function from Equation (2.11),

we can form the TD error term

LQ(s, a, y, s
′) = y+γEa′∼π(·|s′ [q

π(s′, a′; θq]−qπ(s, a; θq)
(3.19)

whose expectation is zero for the true Q function.

Within the family of TD methods, various approaches have

been proposed which center on minimizing the TD error

(Sutton & Barto, 1998). Framing the TD error in Equa-

tion 3.19 as an estimating equation, one can use techniques

from M-estimation to derive asymptotic properties such as

asymptotic normality and consistency. For example, (Kallus

& Uehara, 2022) derive the asymptotic lower bound for

an M-estimator that seeks to minimize a weighted form of

Equation (3.19).

3.4. Density Ratio Estimation

The use of density ratio functions in reinforcement learning

is relatively new, finding recent use in methods for efficient

off-policy evaluation (Liu et al., 2018; Uehara et al., 2020;

Kallus & Uehara, 2022). Their estimation has centered on

the following relationship:

LW (f, w) =

Es,a,y,s′∼p0,a′∼π(·|s′) [w(s, a) (γf(s
′, a′)− f(s, a))]

− (1− γ)Es∼p0,a∼π(·|s) [f(s, a)] , (3.20)
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A. Proofs

A.1. Proof of Theorem 1

Since expectations are linear, it suffices to show that each per period outcome of the long-term outcome (each term in

Equation (2.2)) can be expressed as a function of observable data. For periods beyond the first:

E
[

Yt(π
T )|S0, A0

]

= EY

[

Yt(π
T ) | S0, A0

]

= EY

[

Yt(π
T ) | πT , S0, A0

]

= EY

[

Yt | At = 1t<T , π
T , S0, A0

]

= ESt

[

EY [Yt | At = 1t<T , St] |πT , S0, A0

]

= ES

[

EY [Y | A = 1t<T , S] | πT , S0, A0; t
]

(A.26)

The first and fourth equalities rely on the law of iterated expectations, the second is justified via unconfoundedness and the

third uses the definition of a potential outcome. The final equality relies on stationarity where the notation E [·; t] denotes

the expectation induced by projecting t periods ahead under the Markov model. The same derivation can be done for the

first period where the action is A0.

Applying this for all periods

E

[

∑

t

γtYt(π
T )|S0, A0

]

= EY [Y | A0, S0]
∑

t=1

γt
∑

S

EY [Y | A = 1t<T , S] p(S|πT , S0, A0; t). (A.27)

From here, one can use the definition of the Q function and use the standard proof to show the equivalence of expected

discounted rewards from an initial state-action to the Q function (Sutton & Barto, 1998).

B. Details of Experiments

B.1. Q function and density ration model implementation details

The ORL method requires the estimation of two nuisance functions, the Q function and the density ratio functions. For

the Q function, we use a feed-forward neural network parameterized separately for each of treatment and control. Each

network consists of two hidden layers with 128 and 64 features respectively with sigmoid activation functions and a linear

final layer with no activation function. Additionally, we maintain separate “target” networks by freezing the parameters of

each network for 64 epochs, which proved invaluable in stabilizing training (Mnih et al., 2015).

For the density ratio functions, we use the Minimax weight estimator from (Uehara et al., 2020) where we restrict both the

discriminator and density ratio function classes to be linear with the feature maps φ(s, a) =
[

s s2 sa s2 s2a a 1
]

.

B.2. Sepsis simulator model details

As the sepsis simulator relies on discrete states, with enough data, a one-hot encoded representation of the states identifying

each discrete state would recover the ATE exactly. To ensure a realistic setting where the true states are unknown, we keep

states in the original human-interpretable format, with each vital sign and its measurement as a dimension of the state-space.

In addition, the simulator generates trajectories that are episodic since death and discharge are terminal events whereas our

method applies to tasks that are continuing. To handle this, we force outputs from the learned Q function to be zero for

terminal states. Alternatively, we could have introduced another dimension of the state-space to be a boolean terminal state

indicator and added terminal state transitions with zero reward to the training data.
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Table 1. Simulation Parameter Values

Notation Description Value

γ Discount rate 0.9

µ Drift in state transition 0.05

σs Std. dev. in state transition in 5 0.1

σr Std. dev. in state-outcome mapping 0.1

θ Curvature in state-outcome mapping 0.8

τs Treatment effect on state transition 0.05

τy Treatment effect on per-period outcome 0.01
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