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Causal representation learning has emerged as the center of action in causal machine learning research.
In particular, multi-domain datasets present a natural opportunity for showcasing the advantages
of causal representation learning over standard unsupervised representation learning. While recent
works have taken crucial steps towards learning causal representations, they often lack applicability
to multi-domain datasets due to over-simplifying assumptions about the data; e.g. each domain
comes from a different single-node perfect intervention. In this work, we relax these assumptions
and capitalize on the following observation: there often exists a subset of latents whose certain
distributional properties (e.g., support, variance) remain stable across domains; this property holds
when, for example, each domain comes from a multi-node imperfect intervention. Leveraging this
observation, we show that autoencoders that incorporate such invariances can provably identify the
stable set of latents from the rest across different settings.
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1 Introduction

Despite the incredible success of modern Al systems, they possess limited reasoning and planning skills
(Bubeck et al., 2023) and often lack controllability (Leivada et al., 2023). Towards alleviating these concerns,
causal representation learning (Scholkopf et al., 2021) aims to build models with a better causal understanding
of the world.

The theory of causal representation learning to date has largely focused on developing algorithms that are
capable of identifying the underlying causal structure of the data-generating process under minimal supervision.
This capability is enabled by endowing these learners with inductive biases that capture natural properties of
the data (Locatello et al., 2020; Brehmer et al., 2022). Despite the advances, existing causal representation
learners remain far from readily applicable to the increasingly prevalent multi-domain datasets in practice
(Gulrajani and Lopez-Paz, 2020; Koh et al.; 2021). One wonders why? An important reason is that existing
approaches rely on strong assumptions about the data-generating process. For example, many assume that
the data in different domains is gathered under perfect interventions. Moreover, many also require that the
relationships between the latents can be described by the same fixed directed acyclic graph (DAG) across all
data points. This assumption is often violated: e.g. the causal relationships between the latents can have
different causal directions in two images, where a cat chases a dog in one image and the dog chases the cat in
the other. In this work, we relax these assumptions, making progress towards causal representation learning
for complex multi-domain datasets.

Contributions. The invariance principle considered in this paper is reminiscent of the invariance principle in
Peters et al. (2016); Arjovsky et al. (2019), though we focus on unlabelled multi-domain data. At a high-level,
the principle requires that a fixed subset of latents is not intervened across domains, and their distributions
remain invariant. We study different forms of distributional invariance, ranging from weak invariance on the
support to strong invariance on the marginal distribution of the latents. We divide our analysis into two
parts. We first focus on standard settings where the latents in the entire data are governed by a fixed acyclic
structural causal model; we then relax this assumption. We also consider different assumptions on the mixing
function that generates the observations. In our theoretical and empirical analysis, the identification results
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take the form “latents with invariant distributional properties can be disentangled from the rest.”

2 Related Works

The field of causal representation learning bears a deep connection to the field of independent component
analysis (ICA) (Hyvarinen et al., 2023). The seminal work of Comon (1994) on linear independent component
analysis studied linear mixing of independent non-Gaussian latents and proposed a method that identifies the
true latents up to permutation and scaling. Since then, much progress has taken place. Existing works in the
area of representation identification can be categorized into the following categories based on the assumptions:
i) assumptions on the distribution of latent factors, and ii) assumptions on the mixing functions. In the
pivotal work of Khemakhem et al. (2020a), the authors studied general diffeomorphisms mixing but made
additional assumptions such as the availability of auxiliary information that renders latents conditionally
independent. Recently, Kivva et al. (2022) considered a setup similar to Khemakhem et al. (2020a); they
relaxed the crucial assumption that auxiliary information is observed but restricted the family of mixing
maps to piecewise linear diffeomorphisms, in order to obtain a similar level of identification as Khemakhem
et al. (2020a). The recent work of Liang et al. (2023) takes the connection between causal representation
learning and ICA one step further. They study the question of identifiability under the supposition that the
underlying causal graph is known, much in the same spirit that ICA supposes the graph is known and all
latent variables are independent.

More recently, the problem of interventional causal representation learning has come to attention in Ahuja
et al. (2022b); Seigal et al. (2022); Varici et al. (2023). Ahuja et al. (2022b) study a) polynomial mixing with
interventions that induce independent support; b) general diffeomorphisms with hard do interventions. Seigal
et al. (2022) study linear mixing with perfect interventions, and Varici et al. (2023) study linear mixing with
perfect and imperfect interventions. The relatively recent work of von Kiigelgen et al. (2023) studied general
diffeomorphism mixing with perfect interventions, and Buchholz et al. (2023) studied general diffeomorphisms
with latents that follow linear Gaussian structural causal model (SCM) under both perfect and imperfect
interventions. The different identification guarantees in these works are summarized in Table 1, where we
also contrast our results. There are a few aspects that separate us from existing works. Firstly, these works
study single-node interventions and we study multi-node imperfect interventions. We also study the setting
where a fixed DAG does not explain the relationships between the latents for the entire observational dataset.
Another close line of work focuses on the intermediate goal of learning the underlying latent causal graph.
Some examples in this line of work include Cai et al. (2019); Xie et al. (2020); Jiang and Aragam (2023) and
a concurrent work (Zhang et al., 2023).

Aside from the above works, other causal representation learning settings that have been studied include
settings where the learner has access to i) paired observations (e.g., data generated pre- and post-intervention)
(Locatello et al., 2020; Lachapelle et al., 2022; Ahuja et al., 2022a; Lippe et al., 2022b,a; Von Kiigelgen et al.,
2021), ii) temporal data (Hyvarinen et al., 2019; Yao et al., 2022; Lachapelle and Lacoste-Julien, 2022; Ahuja
et al., 2021), iii) multi-view data (Gresele et al., 2020) iv) other forms of auxiliary information (Khemakhem
et al., 2020a,b; Hyvarinen et al., 2019), v) object-centric inductive biases (Mansouri et al., 2022; Lachapelle
et al., 2023; Brady et al., 2023). These settings are qualitatively different from ours.

Lastly, the distributional invariances used in our work may remind the readers of the seminal works of Ganin
et al. (2016); Muandet et al. (2013). There are a few notable differences: i) these works focus on domain
generalization in the presence of labeled data, while we focus on the unsupervised setting, ii) these works
enforce invariance of the joint distribution of all the latents, while we enforce a weaker invariance on a subset
of the latents.

3 Unsupervised Multi-Domain Causal Representation Learning

Problem statement. We are given unlabelled data— a set of x’s (e.g., images)—from multiple domains.
Consider a domain j € [k], where k is the number of domains, [k] is shorthand for {1,---,k}. The latent
variables z € R? in domain j are sampled from a distribution p(Zj) whose support is denoted as Z(). These
sampled latents z are then rendered by an injective mixing function ¢ : R* — R” to generate 2 € R™. The



Table 1 Our results compared with related works. Existing works assume that the relationship between latents can be
described by a fixed DAG across domains. We relax this assumption to work with general multi-domain settings.

Input data Assm. on py Assm. on g Identi[Jcation

Observational z; L zj|u, u aux info. Diffeomorphism  Perm & scale (Khemakhem et al.)
Multi do intvn/node Non-parametric Diffeomorphism  ~ Comp-wise (Ahuja et al.)
Perfect (1-node) Linear Linear Comp-wise (Seigal et al.)

Perfect (1-node) Non-parametric Polynomial Comp-wise (Ahuja et al.)

Perfect (1-node)

Non-parametric

Diffeomorphism

Comp-wise (Kugelgen et al.)

Imperfect (1-node)
Imperfect (1-node)
Imperfect (1-node)

Non-parametric Linear Mix consistency (Varici et al.)
Non-parametric + ind support  Polynomial Block affine (Ahuja et al.)

Linear Gaussian Diffeomorphism  Affine (Buchholz et al.)

Imperfect (multi-node)  Non-linear Polynomial Block affine (Theorem 3)
General multi-domain Non-param, sup inv S Polynomial Block affine (Theorem 4)
General multi-domain Non-param, sup inv S Diffeomorphism  I'“ identification (Theorem 5)

Counterfactual Non-parametric Diffeomorphism  Comp-wise (Brehmer et al.)

support of the corresponding z’s in domain j is denoted as XU). Define the union of the support of the
latents across domains as Z = Uje[k]Z(j) and correspondingly for the observations z’s as X = Ujci & @),
The data-generating process (DGP) is formally stated below. In each domain j € [k],

z~py), 1 g(2) (1)
The goal of causal representation learning is provable representation identification, i.e. to learn an encoder
function that can take in the observation x and provably output its underlying true latent z (or its desirable
approximation). In practice, such an encoder is often learned via solving a reconstruction identity, h o f(x) =
x,Yr € X, where f : R” — R% and h : R — R” are a pair of encoder and decoder that jointly satisfy the
reconstruction identity. The pair (f, h) together is referred to as the autoencoder. Given the learned encoder
f, the resulting representation is 2 £ f(z), which holds the encoder’s estimate of the latents. A common goal
in causal representation learning is to achieve component-wise disentanglement, i.e., each 2; is a scalar and
invertible function of some z;, where Z; and z; are it" and ;' components of 2 and z.

Invariance principle for causal representations. The invariance principle we consider here is inspired by the
folklore cow-on-the-beach example (Beery et al., 2018). The distributional properties of a certain set of latents
(e.g., the alphabets across domains as shown in Figure 1, or the cow characteristics across domains) are stable.
In contrast, the distribution properties of the other latents (e.g. color characteristics in Figure 1) are unstable;
they vary across domains. More concretely, we divide the different components of latent z into two sets, S
and U, where S corresponds to the stable set of latents and U corresponds to the unstable set of latents,
and without loss of generality we write z = [zs, 2z1]. We require that some aspect of the joint distribution of
S—denoted as pgj ) does not vary across domains. Formally, there exists a functional F' such that F' [pgjs)] is
invariant across j. If F[-] is the identity functional, then the distribution itself is invariant. Other examples
of F[-] include the support of the latents’ distributions, the mean of the latents, the variance of the latents,
etc. To realize this invariance principle in causal representation learning, we study autoencoders that enforce
similar invariance on a certain subset & C [d] of its estimated latents 2:

hof(x)=z, Vel )
PP =Fp®],  Vp#aq.p.q< k. (3)

In what follows, we will show how autoencoders equipped with this class of invariance constraints can learn
to disentangle the stable latents from the unstable latents: they return representations % that can provably
satisfy Zs = u(zs), where u(-) is an injective map. For some choice of S, a solution to the reconstruction
identity under invariance constraint may not exist. The learner can select S as follows. It can start with the
largest possible S, i.e. aset of size d. It reduces the size of the set by one until a solution to the reconstruction
identity under invariance constraint is found, which is guaranteed to occur when |S| = |S].



Domain 1 Domain 2

Figure1 The distribution of the alphabet styles is stable across the domains but the distribution of color is unstable.

3.1 Acyclic Structural Causal Models p,

We start with the setting where the distribution of the latents p, comes from an acyclic causal model. To
identify the stable latents, we first leverage previous results to achieve affine identification of all latents. We
then use distributional invariance to achieve the identification of the stable latents. Let us now revisit a result
from Ahuja et al. (2022b) for affine identification under a polynomial mixing g.

Assumption 1. (Polynomial mixzing) The interior of the support of z, denoted as Z, is a non-empty subset
of R, The mizing map g is a polynomial of finite degree p whose corresponding coefficient matriz G has full
column rank. Specifically, g is determined by the coefficient matriz G as follows,

g(z)=G[1,z,z®z,7z®®zT VZERd,

p times

where ® represents the Kronecker product with all distinct entries; for example, if z = [z1, 2], then 2Qz =
[22, 2129, 23].

Constraint 1. (Polynomial decoder) The learned decoder h is a polynomial of degree p that is determined by
its corresponding coefficient matriz H as follows,

h(Z):H[l,Z,Z®Z,7z®®ZT VZERd.

p times

Moreover, the interior of the image of the encoder f(X) is a non-empty subset of R%.

Theorem 1 (Ahuja et al. (2022b)). Suppose the multi-domain data is gathered from the DGP in equation (1)
under Assumptions 1. Then the autoencoder that solves the reconstruction identity (equation (2)) under
Constraint 1 achieves affine identification, i.e., Vz € Z,2 = Az + ¢, where % is the encoder f’s output, z is the
true latent, A € R%*? is invertible and c € RY.

We now strengthen the above affine identification by using the distributional invariance of the stable set of
latents. In what follows, we focus on the latents p, that follow an acyclic structural causal model as follows.
In each domain j € [k],

Zi(j) g (Zl(:Q(i)> + ng)a Zl(:Q(i) 1 Qz('j)aVi € [d]§ (4)

x <+ g(2),

()

where ¢;(-) refers to the map that generates z;”’, namely the it" component of z(7); Pa(i) is the set of parents

of zgj ); QZ(-] ) is noise in domain j. Each sampled latent is mixed by g to generate z. We drop the domain index
j from 2U) in & < g(z) and wherever else it is not needed. We use domain index 1 to denote the observational
dataset. The domains from index 2 and onwards correspond to interventional datasets. The interventions
considered in this section correspond to imperfect interventions, where the mapping ¢;(-) remains unchanged
but the distribution of the noise variables changes across domains. We assume that the nodes in ¢ undergo

imperfect interventions, but the nodes in & are never intervened.



Assumption 2 (Single-node imperfect interventions). In interventional domain j (j > 2), exactly one node
i U undergoes an itmperfect intervention on the noise term. Moreover, across all domains, each node in U
undergoes intervention at least once. Further, the children of any node in U must also belong to U.

Assumption 2 implies that the distribution of zs remains invariant across domains. To identify zs, we thus
impose the following invariance constraint: the marginal distribution of components in subset S C [d] of the
estimated latents must remain invariant across domains.

Constraint 2. (Marginal invariance) For each i € S, Py») =Ps0, VD # ¢,p,q € [k].

Theorem 2 (Single-node imperfect interventions). Suppose the multi-domain data is gathered from the DGP
in equation (4) under Assumptions 1 and 2. Then the autoencoder that solves the reconstruction identity
(equation (2)) under Constraints 1 and 2 achieves block-affine identification, i.e., Vz € 2,25 = Dzs + e,

where Z is the encoder’s output, z is the true latent, D € R“§|X|S|, and e € RIS,

The proof of Theorem 2 is in the Appendix. Theorem 2 implies that, under single-node imperfect interventions
and polynomial mixing, the invariant latents zgs are disentangled from the rest of the latents. While the SCM
(equation (4)) of the DGP in Theorem 2 does not involve any confounders, we show how this result readily
extends to settings with confounders in the Appendix.

We next study multi-domain data coming from multi-node imperfect interventions. For ease of exposition,
we begin with two-node imperfect interventions and assume that the noise distributions are Gaussian. We
discuss how to relax these assumptions in the Appendix. Below we describe the key assumptions we make
about the mechanisms underlying the interventions.

Assumption 3. (Multi-node imperfect interventions) (1) The children of any node in U must also belong to
U and the underlying DAG must have at least two terminal nodes. Further, the noise o's in (4) are zero-mean
Gaussians with variances for observational data (domain 1) sampled i.i.d. from a non-atomic density pe,.

(2) Interventional data in each domain j > 2 is generated as follows. For each i € U, select a random node j
from U\ {i} uniformly. The noise variance for those two nodes (i,j) are two independent draws from density
Do, Repeat this procedure t times for each node i € U.

Theorem 3 (Multi-node imperfect interventions). Suppose the multi-domain data is gathered from the DGP
in equation (4) under Assumptions 1 and 3. If the number of multi-node interventions t impacting each node

s more than %, then, with probability 1 — §, the autoencoder that solves the reconstruction identity

(equation (2)) under Constraints 1 and 2 achieves block-affine identification, i.e., Vz € 2,25 = Dzs + e,
where % is the encoder’s output, z is the true latent, D € RISIXISI ¢ e RISI

The proof of Theorem 3 is in the Appendix. Theorem 3 established that, given sufficiently many random
multi-node interventions, we can block identify the stable latents zs. Moreover, the required number of

domains scales as d(%). Before closing this section, we remark that the crucial assumptions that

make these results possible involve diversity of interventions and using the structure of the causal model.
While we study some relaxations, we believe these results can inspire a lot of exciting future work.

3.2 General Distributions p,

In the previous section, we made the standard assumption that the relationships between the latents z
generating the data x are described by a fixed DAG. In this section, we study a relaxation that is suited to
more complex multi-domain datasets, where a fixed DAG is insufficient to capture the complexities of the
entire data. For example, in the cow-on-the-beach example, the relationship of the cow to its surroundings
changes across samples (Beery et al., 2018). We consider a weaker invariance than one considered in the
previous section, i.e., the support of each latent in the target set S is invariant. Under these relaxations, we
prove that one can still identify the stable latents, except that the number of required domains is much larger.

We will also discuss how additional assumptions can help reduce this number in the Appendix. Below we

)

begin by stating the invariance condition. The support of z; in domain p is denoted as Zi(p and the support

of estimate Z; in domain p is denoted as E:’i(p ),
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Figure 2 z; satisfies support invariance (Assumption 4). [z1, z2] satisfies support variability (Assumption 5). In panel
a), we show that if 21 linearly depends on both z; and z, then it achieves a different maximum value across the two
domains. Thus, support invariance (Constraint 3) is not satisfied by such functions that depend on both z; and z2. In
contrast, the function in panel b), which only depends on z1, achieves the same maximum across domains and satisfies
support invariance.

Assumption 4. (Marginal support invariance.)

For eachi e S

min z= min 7z, max z= max, Vp,q€ [kl
2ez® ze2{® zeZ{P 2ez@

We now state a key assumption for the next result: there exists a pair of domains whose supports are
sufficiently different. We make this notion mathematically precise below.

Assumptlon 5 (Support varlablhty) There exists two domains Dq € [k] such that for each z € Z®) | there
exists a z € Z9D such that 2 = z, namely each component ofz s greater thcm or equal to z, i.e., z >z
Further, we require that the inequality is strict for unstable components j € U, zj > zj.

We illustrate the above assumption using an example in Figure 2. The two domains shown in Figure 2 satisfy
Assumption 4, 5. The latent z; in Domains 1 and 2 satisfies support invariance (Assumption 4). The latents
z = [z1, 22] in Domains 1 and 2 satisfy Assumption 5. We now state the invariance constraint that enforces
that the latents in subset & have the same minimum and maximum across domains.

Constraint 3. (Marginal support invariance)

For each i € S,

min z= min z, max z = max, Vp,q € [k].
zeZP) 2€ 2D 2€ZP z€2{

Next, we use the above assumptions to provably identify the stable latents up to block affine transformations
under polynomial mixing.

Theorem 4. Suppose the multi-domain data is generated from equation 1 and satisfies Assumptions 1, /, 5.
Then the autoencoder that solves the reconstruction identity in equation 2 under Constraints 1 and 3 achieves
the following identification guarantees: Each latent component i € S satisfies 2; = A z + ¢;, where, among
all the vectors A; = 0, the ones that are feasible under the assumptions and constraints in this theorem must
satisfy Ay =0 for allr € U.

The proof of Theorem 4 is in the Appendix.

Eaxtending Theorem J beyond the positive orthant. Theorem 4 leveraged the invariance assumption (Assump-
tion 4) to show that 2; only depends on the set of invariant latents in &, provided that A;’s are from the
positive orthant, i.e., A; = 0. We next extend this argument to other orthants. Consider A;’s from a different
orthant with sign vector s, where each component of s corresponds to the sign of the corresponding component
of A;. We multiply z element-wise with s and denote it as Z = z - s and define the set of transformed latents



of domain ¢ as 29 = {z-s,z € Z(Q)}. If we modify Assumption 5 with set Z(9) instead of Z(@, then the
condition in Theorem 4 extends to all vectors A; in orthant with sign vector s. Given this assumption, we
require a pair of domains that satisfy a condition analogous to the one in Assumption 5 for each orthant. Since
the total number of orthants is 2%, the total number of domains required grows as 2¢t1. In Appendix A.2, we
show that the number of domains required can be reduced to d under some additional structural assumptions,
e.g. the support is a polytope.

In Theorem 4, we relied on the assumption that g is a polynomial. We next relax this assumption. For ease of
exposition, we consider the two-variable case and present the general case in the Appendix.

Two-variable case. Consider two-dimensional z’s, i.e., z = [21, z2]. We assume that the support of the first
component z; is invariant across domains and the support of zo varies across domains. For the rest of this
section, we assume that z; and z5 are bounded between 0 and 1 across all domains. Specifically, the support of

2z satisfies Assumption 4 and is set to the entire interval [0, 1] across domains. Recall that the support of the

first component of the encoder in domain p is él(p ). Under the support invariance constraint (Constraint 3),

we require that ZA’l(p) does not vary with p. Recall Z = f(x) = a(z), where a = f o g. The first component of 2

thus satisfies 21 = a1(z), where a; is the first component of the map a. Under this notation, we define a large
class of functions I' and show that, if the supports are sufficiently diverse, then a; cannot be an element of I,
provided that the Constraint 3 is enforced — we call this I'® identification. The larger the set I' is, the more
likely a;(+) is equal to a map that only depends on 21, which is the ideal situation. In contrast, if Constrain 3
is not enforced, then all the invertible maps a(-) will be allowed under reconstruction identity in equation (2).
Below we state the result formally.

Definition 1. Fiz some constants n >0, € >0, and ¢ > 0. We then define a set of functions I' as follows.
FEach function v : [0,1] x [0,1] — R in T' satisfies i) it is parameterized by 6 € ©, where O is a bounded subset
of R®,ii) the minima of vy over [0,1] x [0, 1] lie in the € interior of the set, i.e., in [e,1 —¢] X [e,1 — €], and
i) there exists an interval [, BT] of width at least 1 such that

. ’ B i ) Z . 5
26[0{111]13[071] 70(z1,22) ze[oﬁlxl%nmﬂe(zl )| Zn (5)

For each (z1,22) € [0,1] x [0,1], g is Lipschitz continuous in 8 € © with Lipschitz constant L.

In simple words, T" consists of functions 7y whose minima over the entire support [0,1] x [0,1] is i better
than any other minima obtained by constraining zs to some interval. In particular, the functions that only
depend on z; do not belong to I' because the minima of such a map do not depend on zo. A simple illustrative
example of the function class I is as follows: g : [0,1] x [0,1] = R, vg(21,22) = (21 — 3)* + (22 — 0)2, where
0 € [3e,1— 3¢]. This function has its minima over [0,1] x [0,1] at (3,6). The function is Lipschitz continuous
in 0 for all (21, 22) € [0,1] x [0,1]. Set n = % and af = 6+ £ and BT = 6 + 2¢; then the conditions in
Definition 1 are satisfied. This example illustrates how these conditions are satisfied when -y has one unique
global minima over the region [0, 1] x [0,1]. We now state an assumption that requires that the domains are

drawn at random and their supports satisfy a certain variability condition.

Assumption 6 (Support variability). The support of z1 does not vary across domains and is fized to be [0, 1].
The support of zo satisfies P(Zép) Clo,B]) = al(B—a)|" and IP(ZQ(p) D [k, 1 —K]) > caK", where | and r are
some integers, c1, ca are some constants and o, 3,k € [0,1].

The first condition on z5 in Assumption 6 states that the probability of the support of z5 in a randomly
drawn domain being contained in the interval [a, 8] grows faster than a polynomial in (|8 — «|). The second
condition states that the support of zo captures the set [, 1 — k] with probability at least cox”. Below we give
an example where these conditions are satisfied: suppose the support of zo is sampled as follows. Sample two
random variables A and B independently from the uniform distribution over the interval [0, 1]. Define the
upper and lower limit of the supports as max{A, B} and min{ A, B} respectively. In this case, the probabilities
in Assumption 6 are given as (3 — a)? and 2x2.

The next result builds on the following insight. If we sample sufficiently many diverse domains, then it is likely
that, for each map vy € I', we encounter two domains such that the values at the minima are at least n apart



as in Definition 1. Thus, 2; constructed from any member of I' violates the support invariance constraint and
thus aq is not in I'.

S

— 2N, 1 1 : _ [ 2maxsco [10]lVs —
Define N(d,e,m,t) = N, log( 5 )<log ((1,ile)) + on ((176125”)) with N, ( 5 ) ,and p = 7&.
Theorem 5. If we gather data generated from equation (1), where the support of zo for each domain is
sampled i.i.d. from Assumption 6 and support of z1 is fized to [0,1]. Further, suppose the number of domains
satisfies k > N(6,e,m,¢). Then the set of maps ay(-) that relate 21 to [z1, 23] does not contain any function from
T and thus achieves T'° identification, where £ is obtained by solving the reconstruction identity (equation 2)
under support invariance constraint (Constraint 3) on 2.

The proof of Theorem 5 is in the Appendix. The results studied in this section relied on support variability
assumptions. While we study some variations in the Appendix, we believe there is room for new results on multi-
domain datasets that are beyond one DAG explaining the entire observational data assumption. In the previous
two sections, we saw two types of mixing — a) polynomial mixing (Theorem 3,4), b) general diffeomorphisms
(Theorem 5). The results in a) rely on affine identification guarantees afforded by the polynomial mixing.
Under different assumptions on g that afford affine identification, the results in Theorem 3,4 can be extended.
The seminal result in Donoho and Grimes (2003) established affine identification for locally isometric g.

4 Learning Invariance-Constrained Representations

In this section, we describe practical criteria to learn autoencoders described in equation (2) under invariance
constraints from equation (3). We will learn in two stages. In the first stage, we learn an autoencoder
(f,h) that minimizes the reconstruction error — E[[|ho f(x) — «|[?], where the expectation is taken over the
distribution of the raw input data z. In Stage 2, we use the output of the encoder from Stage 1 denoted as
T as inputs. In many cases, this output may have an affine relationship or a more structured relationship
with the true latents than the raw inputs. In Stage 2, we learn an autoencoder (f*,h*) that is constrained to
satisfy certain invariances described in the previous section. We enforce these constraints by adding a penalty
to the standard reconstruction error in autoencoders, i.e., the learning objective takes the form

E[|ho f(Z) — &[|*] + A - penalty, (6)

where the expectation is taken over the distribution of the outputs of the encoder from Stage 1, . In
Constraint 3, we require that the smallest and the largest values to satisfy invariance. The penalty corresponding
to this constraint is stated as

ZZ(( min z — min z)2+( max z — max 2)2), (7)

P ics zeZP zeZ(D zeZ® zeZ®

where Z,;i(p ) corresponds to the support of the i*" component of f*(#) in domain p. We now describe a stronger
form of invariance. We can enforce the joint distribution of all components in S to be invariant, which if

enforced perfectly would satisfy both Constraint 2 and 3. The penalty described below measures the maximum
mean discrepancy (MMD) distance between the joint distributions Zg across all the domains:

>, MMD(p(g? ; p({‘ﬁ )- (8)
pFq

5 Empirical Findings

We carry out experiments to evaluate the invariance-constrained autoencoders in a host of settings that
capture varying complexity of g and varying complexity of the distribution p,. We study four different types
of mixing maps g — i) linear mixing, ii) polynomial mixing, iii) image rendering of balls, iv) unlabeled colored
MNIST data. We follow Ahuja et al. (2022b) in the creation of datasets for both polynomial mixing and image
rendering of balls. Unlabeled colored MNIST is inspired from labeled colored MNIST used in Arjovsky et al.
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Figure 3 (a) Illustration of an image in balls image dataset. (b,c) The SCM dictating the relationship between the
latents varies across data points. (b) For some samples, the coordinates of one ball depend on the other one. (c¢) For
some samples, all causal variables are independent.

(2019); note that the challenge posed by this version is significant as we do not use labels of the digits or colors
while training to achieve block identification. Our multi-domain datasets respect the following invariance —
the distribution of a subset S of latents does not change across domains. On the other hand, the distributions
of latents in U undergo change across domains. We particularly induce change by changing the support of
latents in ¢. For each domain j with distribution pij ), we study two types of distributions — i) independent
latents, ii) dependent latents. In the dependent latents data, the latents in ¢ and S depend on each other.
Further, for the dependent latents, the SCM for the latents is not fixed and it varies across data points and
thus we call this setup as dynamic SCM (D-SCM). (Further details about data generation are deferred to the
Appendix).

Algorithmically, we employ the two-stage procedure described in the previous section. For the linear dataset,
we straight carry out Stage 2 directly, because the raw inputs are already linearly related to the true latents.
However, for the polynomial and image datasets, we carry out the entire two-stage procedure. For the
polynomial dataset, we carry out Stage 1 experiments with an MLP encoder and a polynomial decoder as
prescribed in Ahuja et al. (2022b). For the image dataset, we carry out the Stage 1 experiment with a
ResNet-based encoder and a simple ConvNet-based decoder. For both the polynomial and the image dataset,
we use an MLP encoder-decoder for Stage 2. We train the Stage 2 autoencoder under three different variations
of the penalty described in the previous section — i) support invariance penalty from (7) (denoted Min-Max),
ii) distribution invariance penalty using MMD distance from (8) (denoted MMD), iii) combination of both
support invariance and MMD based invariance (denoted MMD + Min-Max). Other experimental details can
be found in the Appendix.

Pz Penalty (R%, RY)
Independent Min-Max (0.90 £ 0.01,0.10 £ 0.01)
Independent MMD (0.92 £+ 0.00,0.16 + 0.01)
Independent MMD + Min-Max  (0.94 £ 0.01,0.07 £ 0.01)

D-SCM Min-Max (0.90 4 0.01, 0.10 & 0.01)
D-SCM MMD (0.92 £+ 0.00,0.16 + 0.01)
D-SCM MMD + Min-Max  (0.97 + 0.00, 0.04 £ 0.00)

Table 2 Comparisons for linear mixing (latent dimension d = 32, number of domains k = 16)

We evaluate the block affine identification of the models as follows. We predict zs from Zg using a linear
model and compute the R?, which we denote as R?S. We also predict z from Zg using a linear model and
compute the coefficient of determination RZ?, which is denoted as RZ,. Here S and U are the set of latents on
which invariance constraints are enforced and the set of latents on which no such constraints are enforced.
High R% and low R? indicates block identification of the latents. For the unlabeled colored MNIST dataset,



Pz Penalty (R%, R%)
Independent Min-Max (0.91 £+ 0.01,0.02 + 0.00)
Independent MMD (0.93 £ 0.01,0.02 £ 0.00)
Independent MMD + Min-Max  (0.93 £+ 0.01,0.02 £ 0.00)

D-SCM Min-Max (0.93 £ 0.00,0.01 + 0.00)
D-SCM MMD (0.95 £+ 0.00,0.02 £ 0.00)
D-SCM MMD + Min-Max  (0.95 + 0.00,0.01 £ 0.00)

Table 3 Comparisons for polynomial mixing (latent dimension d = 14, polynomial degree 3, number of domains k = 16).

pz Penalty (R%, R%)
Independent Min-Max (0.65 +0.01,0.19 £ 0.01)
Independent MMD (0.63 £ 0.04,0.27 £+ 0.05)
Independent MMD + Min-Max  (0.81 £ 0.04,0.18 £ 0.02)

D-SCM Min-Max (0.61 £+ 0.03,0.22 + 0.01)
D-SCM MMD (0.55 £ 0.12,0.15 £+ 0.04)
D-SCM MMD + Min-Max  (0.82 £ 0.02,0.20 £ 0.04)

Table 4 Comparisons for ball-images dataset (number of domains k = 16).

Pz Penalty (Accaigits, Rolor)
Independent Min-Max (0.66 + 0.01,0.49 £ 0.02)
Independent MMD (0.73 £ 0.01,0.63 + 0.02)
Independent MMD + Min-Max  (0.74 £0.01,0.28 £ 0.01)

D-SCM Min-Max (0.53 +0.01,0.43 + 0.02)
D-SCM MMD (0.75 £ 0.01,0.65 £ 0.02)
D-SCM  MMD + Min-Max  (0.72 % 0.02,0.31 = 0.03)

Table 5 Comparisons for unlabeled colored MNIST dataset (number of domains k = 16).

g Domains (R%, R%)
Linear 2 (0.33 +0.01,0.46 + 0.03)
Linear 16 (0.97 £ 0.00, 0.04 + 0.00)
Polynomial 2 (0.58 £0.02,0.07 £ 0.01)
Polynomial 16 (0.95 = 0.00, 0.01 = 0.00)
Ball-images 2 (0.73+0.01,0.35 £ 0.02)
Ball-images 16 (0.82 4+ 0.02,0.20 £ 0.04)

Table 6 Results under varying number of domains.

g Domains (Accdigits, R2o10r)
Unlabeled colored MNIST 2 (0.73 £0.02,0.73 £ 0.02)
Unlabeled colored MNIST 16 (0.74 +£0.01,0.28 £ 0.02)

Table 7 Results under varying number of domains.

we do not have access to the z corresponding to the digits. However, we have access to the labels of the digits
for evaluation purposes. On this dataset, we predict the digit from Z¢ and predict the color from Zs. We

denote the accuracy of digit prediction as Accaigits and R? for predicting color as Rfolor.

In Tables 2 to 4, we show the results (averaged over five seeds) for independent latents and correlated

10



latents (D-SCM) under linear mixing, polynomial mixing, and ball image rendering. For both linear and
polynomial mixing, we find that all three types of penalties work well, i.e., the learned Z¢ achieves block affine
disentanglement. For the ball-images dataset, we find that the combination of the MMD + Min-Max penalty
works the best. In Table 5, we show the results for unlabeled colored MNIST dataset. Here we can see that
the combination of the two penalties works much better as well. One important fact to underscore here is that
unlabeled colored MNIST is more challenging than balls dataset and separation of color and digit attributes
is even more non-trivial. Our approach achieves a noticeable degree of disentanglement in this setting without
any supervision, which is quite remarkable given the challenge posed by this setting. In addition, Tables 6
and 7 illustrate the role of the number of domains in identification. We find that increasing the number of
domains helps achieve better identification; the number of required domains to achieve useful identification is
less than the worst-case requirements in the theorems.

6 Conclusions

In this work, we advance the theory of multi-domain causal representation learning, making it applicable to
multi-domain datasets from complex domain shifts (including multi-node imperfect interventions and beyond).
We consider a simple invariance principle, namely certain distributional properties of the target latents remain
invariant across domains. Following this invariance principle, we propose a class of autoencoders that enforce
such weak distributional invariances. We establish identification guarantees of the stable latents for different
invariances, ranging from weak invariance of the support to the stronger invariance on the marginal.
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Appendix

A Theorems and Proofs

Theorem 2 (Single-node imperfect interventions). Suppose the multi-domain data is gathered from the DGP
in equation (4) under Assumptions 1 and 2. Then the autoencoder that solves the reconstruction identity
(equation (2)) under Constraints 1 and 2 achieves block-affine identification, i.e., Vz € 2,25 = Dzs + e,

where Z is the encoder’s output, z is the true latent, D € R‘SMS', and e € RISI.

Proof. We begin by first checking that the solution to reconstruction identity under the above-said constraints
exists. Set f = ¢ ! and h = g and S = S. Firstly, the reconstruction identity is easily satisfied. Also, the
Constraint 2 is satisfied as Assumption 2 holds.

We construct a proof based on the principle of induction. We sort the vertices in U in the reverse topological
order based on the DAG to obtain a list «/*. We use the principle of induction on this sorted list. Due to
Assumption 2, it follows that the first node in the sorted list has to be a terminal node, say this node is
j. Consider a component Z; of Zg. From affine identification (follows from Theorem 1), we already know
that Z; = A;'— z + ¢;. Suppose j undergoes an imperfect intervention in domain p. We write the invariance
constraint condition equating the distribution of Z; between domain 1 and domain p as

50 250
AT 24 4T, (9)
AT[ (1)] AT[ (P) (P)]

7*]

Recall zJ( - =g, (zl(;i)m) (q) ,Vq € [k]. For all ¢ € [k], define w(®) = AT (Q) + Aijq; (zl(aa)( )), where A; _; is
the vector of components in A; other than A; ; and z(_j is the vector of all components of z(9) except z§q).

Define v(?) = A ]QJQ) Vq € [k]. Substitute these in the above to obtain

w® oM L@ 4 ) (10)

We make some important observations now. Observe that v L w® and v® L w(®) . Also, since the
intervention only changes the noise distribution of j and leaves all rest nodes in the graph unaltered
w® £ @) We now write the moment generating function (MGF) of w™) +v(Y) and equate it to MGF of
w® 4+ v®) as follows.

M0 (1) My (t) = My (£) My (1) (11)

Since w1 £ w® | the MGFs are equal. As a result, the MGFs of v and v(®) are equal as well. If the MGFs

are equal, then v(*) LN ; Aij # 0, then this implies o 4 o), which is a contradiction. Therefore,
A;; = 0. This establishes the base case for the induction.

21_(1) a %'(S)v
A;rz(l) 4 A;rz(s), (12)
AT[ (1)] d AT[ (s) Z(S)]

In domain s, where node j above is intervened, the only nodes that are impacted are j and its descendants. In
w@ = AT 29 4 Aijq; (zpa( )) the distribution of second term A;;q; (zg;)(j)) is determinded by distribution

—jF—j
(q)

;#—; comprises of both the descendants of j

of parents of j, which are not impacted. The first term Al _
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and other non-descendants. Observe that all the descendants of j precede it in the list U*. As a result, all
the coefficients in A; _; corresponding to the descendants of j are zero. Therefore, the distribution of the

first term A;':_jz(_‘q} is same as distribution of A;-':_jz(_lj?. On the whole, the distribution of w®) is same as
distribution of w. Also, since the contribution of descendants of j in w(? is zero, we can conclude that
v(@ 1 w(@, We now repeat the same argument as before. We now write the moment generating function

(MGF) of w) + v and equate it to MGF of w®) + v(*) as follows.
My (8) My () = Moy (£) My (1) (13)

Since w1 £ w®), the MGFs are equal. As a result, the MGFs of v(!) and v(®) are equal as well. If the MGFs
are equal, then v(*) L e, 1f Aij # 0, then this implies o 4 0, which is a contradiction. Therefore,
A;j = 0. This completes the proof.

O

Extension of Theorem 2 The DGP considered above has the form zj(»q) =g, (zl(fa)(j)) + QE-Q). Alternatively, if
(q) (9)

we consider a new DGP that involves confounder z;" = g, (21(32(3')7 ugza)( j)) + Q‘g‘q), where Upy,j) are confounders
that impact at least two latents but are not input to the mixing map g, i.e., x + g(z). The exact proof
steps can be repeated for this more general data generation process provided the additive noise variable

is independent of the parent variables, i.e., QE-Q) 1 (zl(fa)(j), ug]a)(j)). Observe that we have the following the

crucial steps: i) affine identification, i) v L w®, v®) 1 w® and w® L @), iii) product of MGFs based
separation in equation (11), are not impacted by this change and as a result the proof of this extension goes
through.

log (d/5)
log (1/(1-1/2d))
node w and if the variance of both the intervened nodes increases or decreases in comparison to observational
data, then s undergoes a good intervention.

Define u(d) = . We characterize good interventions next. If a node s is paired with terminal

Lemma 1. Consider the random intervention mechanism described in Assumption 3. If t > u(9), then with
probability 1 — § each node in U is involved in a good intervention with one of the terminal nodes.

Proof. Select one of the terminal nodes w. Consider all other nodes in &\ {w}. The mechanism of interventions
described in Assumption 3 goes over the nodes in U iteratively. In iteration corresponding to interventions for
node s, each node in U \ {s} is equally likely to be selected for concurrent intervention. Define an event O,
which is true if under the intervention the variance of both intervened nodes is increased in comparison to
observational data (Domain 1) or if under the intervention variance of intervened is decreased in comparison to
observational data. Due to symmetry and non-atomic density p,,, the probability of this event is % Therefore,
the probability p that in iteration for node s it undergoes a good intervention is p = m

Define an event S such that S occurs if in all of (|U/| — 1)t interventions each node in U \ {w} undergoes a good
intervention, i.e., it is paired with the terminal node w at least once and for each of these interventions event
O occurs for the paired nodes. Consider a node s € U \ {w}. Define event E,, where F, occurs if none of the
t interventions conducted in the iteration concerning s are good interventions. This probability evaluates to
P(Es) = (1 — p)t. The probability that at least one of Ey is true is bounded above using union bound as
follows: P(User fw)Es) < (|U]—1)(1—p)’. The probability P(S) = 1—P(Usern fw} Es) > 1—(JU|—1)(1—p)".
Observe that if ¢ > u(d), then P(S) > 1 — 4.

O

Theorem 3 (Multi-node imperfect interventions). Suppose the multi-domain data is gathered from the DGP

in equation (4) under Assumptions 1 and 3. If the number of multi-node interventions t impacting each node
s more than %, then, with probability 1 — §, the autoencoder that solves the reconstruction identity
(equation (2)) under Constraints 1 and 2 achieves block-affine identification, i.e., Vz € 2,25 = Dzs + e,

where Z is the encoder’s output, z is the true latent, D € R“';'X'S',e c RISI,
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Proof. We begin by first checking that the solution to reconstruction identity under the above-said constraints
exists. Set f =g~ ! and h = g and S = S. Firstly, the reconstruction identity is easily satisfied. Also, the
Constraint 2 is satisfied as Assumption 3 holds.

We construct a proof based on the principle of induction.

Consider a component 2; of Z¢. From affine identification (follows from Theorem 1), we already know that
Z; = AiTz + ¢;. We sort the vertices in U in the reverse topological order to obtain a list U*. We use the
principle of induction on this sorted list. Due to Assumption 3, it follows that the first two nodes in the sorted
list have to be a terminal node, which we denote as {j,1}. Suppose these nodes are intervened in domain p.
Observe that since t > u(d) both of these nodes are intervened with probability 1 — §. From the invariance
constraint on distribution Z; in domain 1 and p it follows

21(1) i 2(13)
ATz L AT @) (14)
AZT[ZJ(_l (1)’ a ] AT[ (P), (])l]_

Recall z](»q) = gj (zl(;;)(])) + Q(Q) Vg € [k]. For all ¢ € [k], define w® = ATr (q)l + A g5 (ZPa)(j)) +

J
Auq (zg;)(l)),Vq € [k], where A; _j; is the vector of components in A; other than A j and A;;, and z( )l is

the vector of all components of z(9) except z]( 9 and zl(q). Define v(@) = Ayj ,Q;- 9 + Allgl(q)7 Vq € [k]. Substitute
these in the above to obtain

w® 4o L) 4 ) (15)

We make some important observations now. Observe that vV L w®) and v® L w®)  This is true since v(?
is determined by the noise variables at the terminal nodes. Also, since the intervention only changes the
noise distribution of j and [/, which are terminal nodes, leaving the rest of the nodes unaltered. Therefore,

w® L (@), We now write the moment generating function (MGF) of w® + v() and equate it to MGF of
w® 4 P as follows
My (£) My (1) = My () My (£). (16)

Since w® £ w®) the MGFs are equal. As a result, the MGFs of v and v® are equal as well. If
the MGFs are equal, then v £ @), TIf A;; # 0 and A; = 0, then this implies g§1) (5), which
is a contradiction. Similarly, A; # 0 and A;; = 0 is not possible either. The last case is A;; # 0
and All # 0. From v 4,0 — Aij g;l) + Aj g(l) 4 A”g(p) + Allg(p). This can only be true if
Ajo? e + Alla (1) = A}0? e + Azla - Due to Lemma 1, the selected domain p is such that the two terminal

nodes undergo a good 1ntervent10n and as a result, the variance in LHS is strictly less or strictly greater than
the RHS, which makes the equality impossible. Therefore, A;; = 0 and A;; = 0.

This establishes the base case for the induction.

Consider an arbitrary vertex say s € U*. Suppose A, = 0 for all that preceded s in U*. Further, suppose that
this node s undergoes an imperfect intervention along with terminal node [ in domain u. Note here again
since t > u(d), such a domain exists with probability 1 — 4. From the invariance condition between domain 1
and domain wu, it follows

AT 2D L AT (), (17)

AT, A 2L = AT, 2, 2)

9 ) sl
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Consider domain u, where node s and [ above are intervened simultaneously. Recall w(® = Al 7512(21 +

Aisqs (zg)(s)) + Auq (zl(fa)(l)),Vq € [k]. We already showed that A;; = 0 so the third term is zero. Further, in
A; _g the terms corresponding to the descendants of s are zero due to supposition in induction principle that
Ay = 0 for all that preceded s in U*. Hence, no descendant of s contributes to the expression w(?). The
term v(@ = Aisggq) + Ailgl(q), which again simplifies to v(@) = Aisggq). Since w? does not involve s or its

descendants, we can conclude that w(® L v(® Vg € [k] and w( L,

The above expressions in equation (17) can be stated as
w® 4 Ly (1) 4 (M) (18)

Since w@ 1 v(@ and w® < w | it follows that v(®) 4,0, 1 A;s # 0, then this implies qu) 4 ggl), which

leads to a contradiction. Hence, A;s = 0. This completes the proof.

O

Eaxtension of Theorem 3 In Theorem 3, we considered two-node interventions. Let us ask what happens if
m-interventions occur at the same time. If we extend the Assumption 2 to require m terminal nodes, the rest
of the argument extends to this case too. Firstly, in Lemma 1 we showed that if the minimum number of
interventions ¢ that each node is involved is sufficiently large, then all the nodes end up being paired with one
of the terminal nodes. The extension of Lemma 1 reads: if the minimum number of interventions ¢ that each
node is involved is sufficiently large, then all the nodes end up being paired with m — 1 terminal nodes under
a good intervention. In the proof of Theorem 3, in the base case, we showed that the A;; and A; are zero
where {j,1} are two terminal nodes involved in the intervention. In the extension, we consider the domain in
which m terminal nodes are involved in the intervention and the coeflicient A;,. is zero for all r corresponding
to indices of the terminal nodes intervened in that domain. The rest of the argument from the principle of
induction is identical.

Theorem 4. Suppose the multi-domain data is generated from equation 1 and satisfies Assumptions 1, /, 5.
Then the autoencoder that solves the reconstruction identity in equation 2 under Constraints 1 and 3 achieves
the following identification guarantees: Each latent component i € S satisfies 2; = A z + ¢;, where, among
all the vectors A; %= 0, the ones that are feasible under the assumptions and constraints in this theorem must
satisfy Ay =0 for allr € U.

Proof. We begin by first checking that the solution to reconstruction identity under the above-said constraints
exists. Set f = ¢! and h = g and S = S. Firstly, the reconstruction identity is easily satisfied. Also, the
Constraint 3 is satisfied as Assumption 4 holds.

From the Assumptions 1 and Constraint 1 we know that 2 = Az + ¢ (follows from Theorem 1). Let us consider
i € S. We know that 2; = A 2 + ¢;. Suppose A; = 0, where each component of A; is non-negative.

Let us consider the domains p, g, from Assumption 5. We compute the maximum value of Z; in domain p and
q below.

MNP — arg max A, z 4 ¢ (19)
z€Z(P)

2N — arg max A} 2z 4 ¢ (20)
z€2(@)

From Constraint 3, A 2P = AT ;ma%4 Quppose A;; > 0 for some k € U. From Assumption 5, it follows
that there exists a z € Z(@ such that z = 2™ and z; > 2" for all j € U. Therefore, A]z > AJ zmxP,

This contradicts A z™a%P = AT zma%.4 Therefore, A;; = 0. O
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Figure 4 The minima of a candidate function g over [0, 1] x [0, 1] is attained at points shown in stars. Support of
Domain 1 and Domain 2 are shown in light and dark grey. The minimum value of vy over Domain 1 is not the same as
the minimum over Domain 2. Therefore, ai(-) relating the first component of the autoencoder, which satisfies support
invariance constraint, to the true latent cannot be equal to the candidate function ~s.

Remark on De[]nition 1 We illustrate the type of functions captured by Definition 1 in Figure 4. In Figure 4,
we show that a function vy has three minima (shown as stars) over [0,1] x [0, 1]. We illustrate two domains
in panels a) and b). For Domain 1 in panel a), the minima over Domain 1 coincides with minima over
[0,1] x [0,1] but for Domain 2 that is not the case. The figure lays down the examples idea behind the proof
we are about to present next. Under sufficiently many diverse interventions, it can be guaranteed that we
obtain one domain that is similar to Domain 1 (capturing the minima over [0, 1] x [0,1]) in Figure 4 and
another domain that is similar to Domain 2 (not capturing the minima over [0, 1] x [0,1]) in Figure 4.

Theorem 5. If we gather data generated from equation (1), where the support of zs for each domain is
sampled i.i.d. from Assumption 6 and support of z1 is fized to [0,1]. Further, suppose the number of domains
satisfies k > N(d,e,m,1). Then the set of maps a1(-) that relate Z, to [z1, z2] does not contain any function from
T and thus achieves T'° identification, where 2 is obtained by solving the reconstruction identity (equation 2)
under support invariance constraint (Constraint 3) on Z1.

Proof. Consider the set © of parameters, which characterize all the functions in I'. Let us construct a p-cover

for the set © with p = 7&, where n and L are constants from Definition 1. We define the set of functions in

the cover as ', = {v1,--+ ,vn.}, where N, is the size of the cover and N, = <2m’(9€;’|0|\/§) (follows from
(Shalev-Shwartz and Ben-David, 2014)).

Consider a v; € I'. with parameters §;. From Definition 1, there exists an interval [af, BT] with width at least
¢ such that the minimum value in [0, 1] x [af, 37] is at least 7 more than the minimum value over the entire
set [0, 1] x [0, 1]. Since the support to zo is sampled randomly, we compute the probability that one of the
sampled domain’s support is contained in [af, 3T]. The probability of first success (where success is the event
that support of 2 is a subset of [af, 31]) in one of the ¢ trials is 1 — (1 — p,)t. We want
. ) 0 ' 2
L= (p) 21§ = g2 (-p) — log (5 ) /los(1/1 - p) < ¢

[\

We plug p, = ¢! following Assumption 6. If we set ¢ > tL. = log(%)/ log(1/(1 —c;14')), then with probability

1 — /2 at least for one of the domains indexed from 1 to tL;, the minimum value of v; in [0, 1] x [af, 8T] is g
larger than the minimum value in [0, 1] x [0, 1].

Next, we show that if the number of domains is sufficiently large, then the probability that one of the domains
support contains [e,1 — €] is sufficiently high. The probability of first success (where success is the event that
the intervention support contains [g,1 — ¢]). In this case, we follow the same calculations as above. It follows
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that if ¢ > ¢2; =log(%)/log(1/(1 — cze™)), then with probability 1 — §/2 the support of z; in at least one of

the domains indexed from 1. +1 to t1. + 2. contains [, 1 — ¢] the global minimum of 7; with probability

at least 1 — /2. Hence, we can conclude that with probability 1 — ¢ both the success events described above
happen. In the case of this event, the function v; cannot satisfy the support invariance constraint.

Let us consider all the elements in I'. together now. We now derive a bound on the number of domains such
that none of the elements in I'. satisfy the support invariance constraint. We divide the total & domains into
blocks of equal length. The first block is chosen to be sufficiently large to ensure that with probability 1 — Nic,
the first element of ', i.e., 7; does not satisfy support invariance constraints. Similarly, the second block
is chosen to be sufficiently large such that -, cannot satisfy support invariance constraints and so on. The
minimum size of each block is computed by substituting § with §/N. in the expression for L. +¢2. derived

min
above. The final expression for N(d,¢e,7,t) is given as

N, <log <26M)/10g (1/(1 — cld)> + log <26M)/10g (1/(1 - Cer)>>

S
where N, = (W) and p = 7&.
Observe that since the probability of success is bounded below by 1 — N%7 the overall probability is bounded
by at least 1 — 4. So far, we have shown that none of the elements in the cover of O, i.e., I, satisfy support
invariance constraints.

Let us now consider a 5 € I'. The nearest neighbor of this 4 in the cover is say 7;. Suppose the parameter
associated with ~y; is 6;. Therefore, v; = vp,. Since 0; is an element of p—cover, the separation between their
corresponding parameters is ||§; — 8| < p. Since the number of domains is larger than N(d,¢,7,t) we can
state the following. With probability 1 — 6/N,, there exists a pair of domains whose supports say Z and Z,
where 7p,’s minimum value on the former is at least 7 higher than the minimum value on Z. Let us now
compute a lower bound on the minimum value of v on Z. For all z € Z

6(2) =76, (2)| < L0 = 05| < Lp = 76(2) = 76,(2) — Lp

In the first inequality, we rely on Lipschitz continuity of g in 6 (from Assumption 6). From the above, it
follows that

i > min~yg, (2) — L 21
min () = min v, (2) - Lp (21)

Next, we compute an upper bound on the minimum value of gy on Z

[70(2) — 70, (2)| < L[| — 0;]| < Lp = 70(2) < v0,(2) + Lp

From the above, it follows that

min y(z) < min~g, (2) + Lp (22)
z€EZ z2€EZ

We now take the difference of the bounds in equation (21) and (22) above to arrive at the following.

. . . . Ui
_ > (2) — (2)—2Lp>n—2Lp= 2
min Yo (2) Igggw(Z) > gggwj(Z) iy, (2) p>n pP=5

where we set p = /4L in the last inequality. Therefore, vy does not satisfy support invariance. We require
the above argument to hold for all 5 € I'. Here we exploit the fact that with probability 1 — ¢ all elements in
the cover I', do not satisfy the support invariance constraint. Therefore, we can pick any vy € I, select the
corresponding nearest neighbor in the cover, and apply the argument stated above. This completes the proof.

O
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A.1 Beyond the Two Variable Case

In this section, we aim to generalize the results presented in the previous section to more than two variables.
We first adapt the Definition 1.

Definition 2. Fix some constants n > 0, € > 0 and ¢ > 0. Given these constants, we define a set of functions
[ as follows. Each function g : [0,1]% — R in T i) is parameterized by 6 € ©, where © is a bounded subset of
R?,ii) the minima of g over the entire set [0,1]? lie in the € interior of the set, i.e., in [e,1 — €], and i)
there exists a hypercube L of volume at least v such that

min y(z) — min (z)

> .
2€[0,1]4 z€[0,1]x L K

For each z € [0,1]%, g is Lipschitz continuous in the parameter 6 € © with Lipschitz constant L.

Next, we adapt Assumption 6.

Assumption 7. We assume that the domains are drawn at random and the support of latents in U satisfy
P Zb(lp) C lag, B1] % --~[au7ﬁ|u|]) > clvoll[[ahﬁﬂ X oy Buy]] and ]P’(Zl(f) 2 [k, 11— n]q> > ok,

where | and v are some integers and c1, ca some constants.

Define
Nc<log (26N6)/log <1/(1 — cld)> + log (26N6)/log <1/(1 — CQsdT)>>

s
where Nc _ <2maxee;—) |9||\/§> and p= ﬁ

N(d,e,m,1)

Theorem 6. If we gather data generated from equation (1), where the support of zo for each domain is
sampled i.i.d. from Assumption 7. Further, if the number of domains k > 1\7(5,6,77, L), then the maps a1(-),
which are obtained from autoencoders that solve the reconstruction identity in equation (2) under support
invariance constraint (Constraint 3) on 21, do not contain function from T.

Proof. We will follow the same line of reasoning as in the proof of the two-variable case. Consider the set
O characterizing the functions v. Let us construct a p-cover for the set ©. The cover consists of functions
in the set I'c = {y1,---,vn.}, where N, is the size of the cover. Consider «; € I'. with parameters 6,.
From Assumption 7, there exists a hypercube £ with volume at least ¢ such that the minimum value in that
hypercube is 7 more than the global minimum on the set [0, 1]%. The probability that one of the domain’s
support is contained in the hypercube L is calculated as follows. The probability of first success (where success
is the event that intervention support is a subset of £) in one of the ¢ trials is 1 — (1 — p,)!. We want

1—(1—p5)t21—g = gZ(l—ps)t = log<§>/log(l/(1—ps))§t

Finally we have t > ¢}, =log (2)/log(1/(1 — c1¢!)). Therefore, with probability 1 — §/2 at least one of the

min
domains s indexed from 1 to ¢! . achieves a minima 7 larger than the global minimum of Vi

min
Next, we derive the probability that one of the domain’s support contains [¢,1 — ¢]?. The probability
of first success (where success is the event that the domain contains [¢,1 — £]?). In this case, we have
t > 12, =log(3)/log(1/(1 — c2e™)). Therefore, with probability 1 — §/2 at least one of the domains indexed

min
from t1; +1totl, +t2. achieves the global minimum of v; with probability at least 1 — §/2. Hence, we

min

can conclude that with probability 1 — ¢ both the success events described above happen. In the case of this
event, the function ; cannot satisfy the invariance constraint.

Let us consider all the elements in I'. together now. We would require the total interventions to be divided
into blocks of equal length. The first block is chosen to be sufficiently large to ensure that with probability
1— Ni, ~1 cannot satisfy support invariance constraints. Similarly, the second block is chosen to be sufficiently
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large such that v cannot satisfy support invariance constraints and so on. Due to symmetry, the minimum
size of each block is computed by substituting § with /N, in the expression for t;, +t2;, derived above.
The final expression for N(4,¢,7,¢) is given as

N, <1og (25N0>/10g (1/(1 — 01LZ)> +log (25NC>/10g (1/(1 — cdi’“)>>

where N, = (W) and p = 7&. Observe that since the probability of success is bounded below by

1- Ni, the overall probability is bounded by at least 1 — §. So far we have shown that none of the elements
in the cover of O, i.e., ', satisfy support invariance constraints.

Let us now consider a v € ©. The nearest neighbor of this v in the cover is say «;. Suppose the parameter
of 7; is 0. Therefore, 7; = v9,. The separation between their corresponding parameters is [|6; — 6| < p.
We know that with probability 1 — §, 7; does not satisfy the support invariance constraint. There exist
interventional distributions whose supports say Z and Z, where v;’s minimum value on the former is at least
n higher than the minimum value on Z. Let us now compute a lower bound on the minimum value of v on Z.

[76(2) — 70, (2)| < L[| — 0;]] < Lp = 70(2) > v9,(2) — Lp

From the above, it follows that

i > min "y, (2) — L
min ye(2) 2 min~, (2) - Lp

Next, we compute an upper bound on the minimum value of + on zZ

[70(2) =0, (2)| < L|I0 — 051 < Lp = ~o(2) <70,(2) + Lp

From the above, it follows that

min yp(z) < minvy, (z) + Lp
z€EZ z2€EZ

We now take the difference of the bounds above to arrive at the following.

. . . . n
- > () — (2)—2Lp>n—2Lp= 1
min 76 (2) — minyp(2) > min v, (2) min 7y, (2) p=n P=5

where we set p = 1/4L in the last inequality. Therefore, v does not satisfy support invariance. Note that the
above argument is general and applies to every v € © since we can pick the corresponding nearest neighbor in
the cover.

This completes the proof. O

A.2 Polytope Support

In this section, we assume that the support of latents in each domain is characterized by bounded polytopes —
the convex hull of a finite number of vertices, where each vertex has a bounded norm. Under the assumptions
and the constraint (Assumption 1 and Constraint 1) we know that 2 is an affine function of z. If the support
of z is a bounded polytope, then evaluating the maximum and minimum value that each component of 2
depends only on the vertices of the polytope following the fundamental theorem of linear programming. This
allows us to provide identification guarantees by placing assumptions on the diversity of these polytopes, i.e.,
on these vertices, observed across domains. .

Following Constraint 3, we equate the maximum value of components in S across domains. Suppose we
equate the maximum of Z; across domain p and q. We obtain A;'— (zmaxP — pmax,q) — () where zMa%P  zmaxq
correspond to the vertex of the support polytope in domain p, g respectively. Observe how the expression
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depends on the difference of vertices from different polytopes. We define a set of matrices M formed by
taking the difference of vertices from the different polytopes as follows. Firstly, we fix the first domain as the
reference domain and we define difference vectors with respect to the vertices in this domain. We also fix
some arbitrary ordering of vertices in the polytope; say they are in the increasing order of the first coordinate.
We start with the first vertex in the first domain. Next, pick the second domain and pick its first vertex.
Take the difference of the two selected vectors, this difference vector forms the first row of one of the matrices.
Pick the third domain, take its first vertex, and again take the difference to get the second row of the matrix.
Repeat this process for all the domains. As a result, we get a matrix with £ — 1 rows and d columns. To
summarize, the set of matrices M consists of £ — 1 x d matrices that satisfy the following condition. For each
matrix M € M, the 7" row of the matrix is defined as the difference between some vertex from (r + 1)t
domain and another vertex from the first domain.

Assumption 8. e The support of latents in each domain p € [k], i.e., Z®) is a bounded polytope; the
number of domains k > d+ 1. Each matrix M € M has a rank equal to the number of non-zero columns.

e For each component j € U, there exists a domain p € [k] such that the following condition holds. We
denote the value assumed by z; in ZW) on vertex v as v". We assume that there exists another domain
p with support Z®) such that z; does not take the same value as v" at any verter of Z®),

The first part of the above assumption states a simple regularity condition on matrix M. The second part of
the above assumption is also a simple regularity condition on components in /. The condition only requires
that the value attained at some vertex is not attained at any other vertex for some other domain.

Further remarks on Assumption 8. Next, we illustrate that the Assumption 8 holds rather easily in many
settings. Consider a setting where z = [21, 22| and both 21, 22 take values between 0 and 1. We consider the
setting where the support of z forms a polytope. For each domain p, the polytope is sampled as follows. Each
polytope consists of M vertices and we sample M values for zo uniformly at random [0, 1]. For z;, we sample
M — 2 vertices uniformly at random from the interval [0, 1]. For the remaining 2 vertices, we fix z; to take
value 0 on one of them and 1 on the other. We generate k polytopes following the above process and check if
the rank constraint in the first part of Assumption 8 is satisfied. We repeat this process over ten thousand
trials and find that the assumption always holds for different values of M and k. The second part of the
assumption holds trivially in the above case as two uniform random variables sampled independently from
[0, 1] are not equal to probability one.

In what follows, we use the notation ap to denote a vector formed by components of a whose indices in a are
from the set B.

Theorem 7. Suppose the data is generated from different domains following equation (1) such that Assumptions
1, 4, 8 are satisfied. The autoencoder that solves the reconstruction identity in equation (2) under Constraint 1,
3 satisfies

ZAJS =Dzs+e
where D € R|‘§|X|s‘, e € RISI,
Proof. We begin by first checking that the solution to reconstruction identity under the above-said constraints

exists. Set f = g~! and h = g and § = S. The reconstruction identity and Constraint 3 is satisfied as
Assumption 4 holds.

Consider a component m € S. From Constraint 3, we know that the support of Z,, does not change. From

Theorem 1, we also know that there is an affine relationship between Z and z. Therefore, we can write

S = Al 2+ e (23)
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The support of 2, is determined by the maximum and minimum of A z + ¢,, computed on the respective
domains. Let us compute the maximum and minimum of Z,, in domain p as follows.

2MX(A, L p) = arg max Az 4 ¢, (24)
z€Z(P)

min A — . AT

2™ (A, p) argzrenég) mZ+em (25)

We define a vector AY that contains components of A,, whose indices in A,, form the set /. We now show
that support invariance constraints in Constraint 3 implies that A% = 0. Suppose AY # 0 (at least one
element of this vector is non-zero). In this case, we write the maximum value of the objective as

Z AlemaX(Amap)
l

Due to the support invariance constraint we get

ZAlelma my P ZA lzlmax )
l
ZAml max map) - ZlmaX(Ama 1)) =0

Zdit (Am, D) Am = 0

zdie (Am, p) is the difference vector formed by taking the difference 2"**(A,,,p) — 2m*(A,,,1). Construct a
matrix Zgig(A,,) € RF71X! by stacking the difference vectors 2 i (Am,p) for all p in {2,--- , k}

Let us consider the largest submatrix of Zgi(A,,) with no zero columns and denote it as Z 515(Am)- Following
Assumption 8, Z5,4(A.,) has a full column rank. Therefore, a non-trivial solution to Z354(A.,)v = 0 does
not exist and thus v = 0. Consider an element j € Y. Due to Assumption 8, the column in Zgig(A4,,)
corresponding to j is non-zero. Therefore, for each element j € U the corresponding columns in Zgi(A,,) are
non-zero. The columns of Z5;4(A,,) contain all coefficients in ¢/, which implies A% = 0. This completes the
proof.

O

B Experiments

In this section, we provide additional experimental results and other additional details for the experiments.

B.1 Linear Mixing
B.1.1 Data Generation and Model Architecture

For both linear and polynomial g(-) we sample z = (zs,24)" as follows (zs,2y € R¥?). We sample
2s ~ Uniform[0, 1] across all domains. For domain i € [k] we sample z; ~ Uniform[l?, h?], where I*, h? ~
Uniform[—5,5]. Then for the Independent SCM setting, we obtain the observational data via x = Az, where
A € R™*% is a full-rank random matrix whose entries are drawn from Uniform|0, 1] We obtain a Dynamic
SCM by altering the above z as follows. For each sample, z/, will be offset by the z% with probability p and
remain unchanged otherwise. In our experiments we set p to 0.5. We generate 10000 samples for the training
split and 2000 for the validation split. The test and validation sets are the same, since we do not search over
hyperparameters (see Section B.5).

For Linear mixing ¢(-), stages 1, 2 are carried out simultaneously by a linear autoencoder that is jointly
optimized with reconstruction objective and invariance penalty.
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B.1.2 Results

In Table 8, 9 we provide additional results when z’s follow an independent and dynamic SCM as described in
the main body respectively. We conducted experiments for different values of the dimension of the underlying
latents d and for a varying number of domains k. We divide the table into three sections with top block
corresponding to Min-Max penalty, the middle block corresponding to the MMD penalty and the bottom
block corresponding to the combination of the two denoted Min-Max + MMD. Across the different settings,
we observe that as the number of domains increase we achieve high R% and low R.

Table 8 Linear Mixing Dataset R? scores, Independent SCM DGP. The results are averaged over 5 seeds. 2,z € R? and
zs,2u € RY? and x = g(z) € R*%. The three sections from top to bottom correspond to Min-Max, MMD, and the
combination.

RZ Ry,
d k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
§  0.45£0.02 0994000 0.93£0.04 0.98£0.01 0.3020.03 0.01£0.00 0.08£0.04 0.030.01
16 0404001 0.81£0.02 0.9520.02 0.91£0.03 0.30£0.03 0.10£0.02 0.03£0.01 0.1140.03
32 0.35£0.00 0.5140.03 0.80£0.01 0.88£0.01 0.45+0.05 0.24:£0.02 0.13£0.02 0.1240.02
64 0.324£0.00 0.3520.00 0.63+£0.01 0.80£0.00 0.52+0.04 0.35£0.01 0.1940.00 0.15:£0.00

8 0.64£0.05 0.944+0.03 1.00£0.00 0.99+0.00 0.1940.01 0.03£0.01 0.01+0.00 0.0140.00
16 0.51£0.04 0.77£0.01 0.924+0.01 0.97£0.01 0.09£0.04 0.10£0.02 0.09£0.04 0.06+0.01
32 0.384+0.02 0.60£0.01 0.75£0.03 0.90+0.01 0.34+£0.04 0.17£0.00 0.12+0.02 0.07£0.01
64 0.30+£0.01 0.34£0.01 0.57£0.02 0.75+0.00 0.44£0.02 0.27+0.01 0.194+0.01 0.12£0.00

8 0.63£0.06 0.99+0.00 0.99+0.00 0.994+0.00 0.194£0.01 0.01£0.00 0.02+0.00 0.02+0.00
16 0.53£0.02 0.82+0.01 0.93£0.02 0.97£0.00 0.244+0.04 0.10£0.02 0.06+0.02 0.0440.00
32 0.39+0.02 0.64+0.04 0.81+£0.01 0.91+0.01 0.38+£0.06 0.17£0.03 0.11+0.00 0.08+0.01
64 0.33+£0.00 0.39£0.00 0.64+£0.01 0.80+0.00 0.44£0.03 0.30£0.02 0.16+0.01 0.12£0.01

Table 9 Linear Mixing Dataset R? scores, Dynamic SCM DGP. The results are averaged over 5 seeds. 2,z € R? and
zs,2u € RY? and @ = g(2) € R?*. The three sections from top to bottom correspond to Min-Max, MMD, and the
combination.

RZ Ry
d k=2 k=4 k=8 k=16 k=2 k=4 k=38 k=16
§ 0482001 0982000 0972001 0.9520.01 0.30£0.02 0.02£0.00 0.03£0.01 0.03%0.01
16 0.43+£0.04 0.73£0.02 0.93£0.02 0.98£0.00 0.33+£0.05 0.14-£0.01 0.06£0.00 0.03:0.00

32 0.35+0.00 0.51£0.02 0.81£0.00 0.894+0.00 0.38%£0.05 0.24+0.01 0.144+0.01 0.11£0.00
64 0.27+£0.01 0.34£0.00 0.63£0.01 0.80£0.00 0.55+0.02 0.33£0.01 0.194+0.00 0.14+0.01

8 0.60£0.06 0.92+0.03 0.99£0.00 0.99£0.00 0.254+0.04 0.05£0.01 0.02+0.00 0.0240.00
16 0.46%£0.03 0.74+0.01 0.924+0.02 0.98+£0.01 0.29+0.04 0.13£0.02 0.04£0.00 0.0440.01
32 0.35+0.02 0.56+£0.01 0.74£0.03 0.91+0.01 0.37£0.04 0.20+0.01 0.114+0.01 0.08+0.02
64 0.2840.00 0.31£0.01 0.53£0.01 0.72+0.00 0.47£0.02 0.30+0.01 0.204£0.00 0.16£0.00

8 0.61£0.05 0.9840.00 0.99£0.00 0.99+0.00 0.214£0.01 0.02£0.00 0.02+0.00 0.0240.00
16 0.51£0.01 0.80+0.02 0.96+£0.01 0.984+0.01 0.28+0.05 0.104+0.02 0.04£0.00 0.04£0.00
32 0.36+0.02 0.65+£0.03 0.82+£0.01 0.91+0.00 0.35£0.05 0.18+0.02 0.094+0.01 0.09£0.00
64 0.31+£0.00 0.38+£0.00 0.64£0.01 0.81+0.00 0.48£0.03 0.31+£0.01 0.1840.00 0.11£0.00

B.2 Polynomial Mixing
B.2.1 Data Generation and Model Architecture

The latents z are sampled identical to the procedure for linear mixing dataset and the details of the polynomial
mixing function g(-) are found in Assumption 1. For stage 1, we use a polynomial autoencoder as follows. The
encoder architecture is given in Table 12 where n, d denote the dimensions of x, z, respectively. For decoding
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Table 10 S3-VAE - Linear Mixing Dataset R? scores, Independent SCM DGP. The results are averaged over 5 seeds.
Each set of 4 rows correspond to a specific d and from top to bottom denote the R? scores before training 3-VAE, and
after training with 8 € [0.1,1.0,10.0]. 2,z € R? and zs, 2y € RY? and = = g(z) € R*.

RZ Ry
d k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
0112008 —021£025 —059+£031 —057%£030 0.69£0.16 081005 078£0.04 0.81£0.03
g 015009 —0504040 —053+041 —031+032 0834008 085£0.04 0.77£0.05 0.8040.06
0.1740.06 —0.86+£040 —084+051 —0.924047 0.87+£0.04 0.86:+£0.03 0.85:+0.03 0.840.03
0.0540.08 —0.56+£030 —095+0.35 —12440.39 081£0.10 0924001 0.85+0.04 0.9020.02
0.42+0.29 —-0.61+0.23 —-1464+0.26 —1.57+0.43 0.31£0.27 0.63+0.04 0.494+0.03 0.51+£0.02
L6 0195003 0.0440.04  —0244£0.26 —049+£042 0.83£007 0.9240.02 0.90+£0.01 0.90+0.00
0194003 —0.03+£022 —042+0.29 —0.60%0.25 0.86£0.05 094£0.02 0.92+£0.01 0.90:£0.00
0154006 —0.19+£030 —0.09%0.07 —05240.29 0.94£0.01 0.96+£0.01 0.94:£0.00 0.94:£0.01
0.35+0.17 —-0.49+0.23 -1.104+048 —-1.24+0.32 0.25+0.17 0.41+0.04 0.354+0.02 0.284+0.01
4o 023H0.01 0104003 0064003  0.01£004  0.91£0.02 0.924000 09240.00 0.92£0.00
0204001  0.12+£0.02  0.06£0.01 0024002  0.94+£0.01 0.95£0.00 0.95:£0.00 0.93:£0.00
0.2240.01  0.13£0.02  0.06£0.03 —01140.17 0.93£0.01 0.94:£0.00 0.95:£0.00 0.94:0.00
0.3040.14 —052+041 —0.72+0.31 —0.85+0.33 0.26+0.09 0.33+0.05 0.27+0.02 0.19+0.01
o 0262001 0184000  0.144001 0104001  0.91£0.01 0.95£000 0.95£0.00 0.95+0.00
0.2440.02  0.184£0.01  0.13£0.02  0.07+0.03  0.91£0.01 0.94:£0.00 0.95:£0.00 0.94:0.00
0274002  023£0.01  016+£001 0112003  0.89+£0.01 0.92+0.00 0.93£0.00 0.92:£0.00

Table 11 B-VAE - Linear Mixing Dataset R? scores, Dynamic SCM DGP. The results are averaged over 5 seeds. Each set
of 4 rows correspond to a specific d and from top to bottom denote the R? scores before training 3-VAE, and after
training with 8 € [0.1,1.0,10.0]. 2,z € R? and zs, 2z € R¥? and z = g(z) € R*.

R Ry

d k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
0.08+0.10 —0.23+£032 —-054£030 -0.51+0.27 0.73+£0.13 0.81+0.05 0.79£0.04 0.814+0.04
8 0.26+0.02 —-044+£039 -035£0.27 -0.22+0.57 0.85+0.05 0.85£0.04 0.77£0.05 0.824+0.06
0.17£0.09 —-0.61+034 —-044=£032 -0.74+0.39 0.88+£0.03 0.87£0.03 0.84+0.02 0.831+0.04
—-0.17+033 -052+£051 -071+£1.07 -1.04+£0.33 0.85+0.04 0.73£0.19 0.89+0.04 0.90£0.03
—0.53+£043 —-056+£0.54 —-1.18+044 -1.23+£0.32 0.33£0.28 0.62+£0.04 0.50+0.03 0.51£0.02
16 0.1940.03 0.04£0.03 —0.15+£0.16 —-0.32+£0.31 0.85£0.05 0.91+0.03 0.90£0.02 0.91+0.01
0.17£0.09 0.00£0.08 —-037+£031 —-0.51+£0.49 0.88+£0.03 0.944+0.01 0.93£0.01 0.92+0.01
0.134£0.08 —-0.13+£032 -0.15£0.16 —0.56=+0.28 0.94+0.01 0.95£0.01 0.93£0.00 0.9340.00
—-033+040 -035+£0.11 -0.79+0.36 —-0.86=+0.21 0.29£0.15 0.41£0.03 0.35+0.02 0.29£0.01
39 0.22+0.01 0.12£0.02 0.05+0.02 —0.01+£0.12 0.91£0.02 0.93£0.00 0.93+0.00 0.92+0.00
0.20£0.01 0.12£0.02 0.07£0.00 —0.04 £0.10 0.93£0.01 0.94£0.00 0.95£0.00 0.93+0.01
0.23+0.01 0.15£0.02 0.10£0.02 0.03£0.04 0.93£0.01 0.93£0.01 0.944+0.00 0.90£0.01
—-0.16+0.11 —-0.31+£0.22 -0474+0.20 -—-0.53£0.16 0.34£0.05 0.35£0.04 0.27+0.02 0.19£0.01
64 0.24+0.01 0.19£0.00 0.15+0.01 0.11£0.01 0.90£0.01 0.95£0.00 0.95+0.00 0.94£0.00
0.20+0.01 0.20£0.01 0.15+0.01 0.10£0.03 0.93£0.01 0.94£0.00 0.944+0.00 0.93£0.00
0.29£0.01 0.23£0.01 0.18%0.01 0.16£0.03 0.88+£0.01 0.92+0.00 0.924+0.00 0.89£0.01
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the outputs of the above encoder Z, we use a polynomial decoder which takes Z and follows the procedure
explained in Assumption 1, where the coefficient matrix G is to be learned and is parameterized by a linear
layer.

Table 12 Polynomial Encoder.

Layer Input Size Output Size Bias Activation
Linear (1) n n/2 False LeakyReLU(0.5)
Linear (2) n/2 n/2 False LeakyReLU(0.5)
Linear (3) n/2 d False -

B.2.2 Results

In Tables 13, 14, 15 and 16, 17, 18 we provide additional results when z’s follow an independent and dynamic
SCM via a polynomial mixing g(-). We conducted experiments for different values of the dimension of the
underlying latents d, different polynomial degrees, and for a varying number of domains k. We divide each
table into two sections with top block corresponding to degree two polynomials with varying d, and the
bottom block corresponding to the degree three polynomials. For each dimension we present two rows, the
top row corresponding to the R? scores after training an autoencoder with reconstruction objective only,
and right before enforcing any distributional invariances. Since we only need an autoencoder that can fully
reconstruct the input, there is no need for training multiple perfect autoencoders, hence there is no standard
error reported for such entries. We then take the perfectly trained autoencoder and enforce the distributional
invariance penalty with 5 seeds, and present the results in the bottom row per each dimension. Across the
different settings, we observe that as the number of domains increase we achieve high R% and low Ra.

B.3 Balls Dataset

B.3.1 Data Generation and Model Architecture

In Tables 23, 24 we provide additional results when 2’s (i.e., balls’ coordinates) follow an independent and
dynamic SCM. As described in the main body, we observe that as the number of domains increase we achieve
high R% and low R, and especially under the combination of Min-Max and MMD penalty. When 2z’s follow
an independent SCM, zg, the invariant block of z corresponds to the coordinates of the ball that is always
sampled in an m X n rectangle that is at a fix location across all domains. The other ball that accounts
for 24 is sampled from an m’ x n’ rectangle whose location varies across the k domains. When 2’s follow a
dynamic SCM, we alter each component of z;; with probability 0.5 by adding or subtracting its counterpart
in zg, subject to the constraints that z;; remains inside the frame, and that the two balls do not overlap
to violate the injectivity assumption. The training and validation splits comprise 50000 and 10000 samples,
respectively. We conducted experiments for a varying number of domains k. We divide the table into three
sections with top block corresponding to Min-Max penalty, the middle block corresponding to the MMD
penalty and the bottom block corresponding to the combination of the two denoted Min-Max + MMD. For
each penalty we present two rows, the top row corresponding to the R? scores after training an autoencoder
with reconstruction objective only, and right before enforcing any distributional invariances. Again, since we
only need an autoencoder that can fully reconstruct the input, there is no need for training multiple perfect
autoencoders, hence there is no standard error reported for such entries. We then take the perfectly trained
autoencoder and enforce the distributional invariance penalty with 5 seeds, and present the results in the
bottom row per each penalty. Our autoencoder architecture comprises a ResNet18 (He et al., 2016) encoder
with standard deconvolutional layers in the decoder. We closely follow the architecture from Ahuja et al.
(2022Dh). In all experiments, the encoder’s output is 128-dimensional, and the invariance penalty is enforced
on the first 64-dimensional block of encoder’s output. For sample reconstructions see Figure 5.
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Table 13 Polynomial Mixing Dataset R? scores, Independent DGP. The results are averaged over 5 seeds. 2,z € R?
and zs, 2y € RY? and z = g(z) € R?%_ Penalty used here is Min-Max. Top section and bottom section correspond
to polynomial degrees of 2 and 3. For each dimension d, the top row corresponds to the scores after training the
autoencoder with reconstruction objective only, and the bottom row denotes the scores after enforcing distributional
invariances in 5 different runs.

RZ Ry
d k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
. 003 0.08 0.09 0.02 0.96 0.83 0.89 0.98
0.4240.04  0.6240.01 0.994£0.00 0.99+0.00 0.01£0.00 0.0140.00 0.0040.00 0.0020.00
o 026 0.15 0.08 0.12 0.80 0.92 0.91 0.95
0.34£0.02  0.99£0.00 0.98£0.01 0.9740.01 0.01£0.00 0.01£0.00 0.0020.00 0.01=0.00
o 02 0.04 0.03 0.05 0.79 0.97 0.98 0.96
0.324£0.03  0.90£0.04 0.94:£0.04 0.9240.04 0.04+£0.00 0.0140.00 0.01£0.00 0.0120.00
007 0.19 0.04 0.17 0.95 0.90 0.98 0.88
0.38£0.03 0.8320.01 0.89£0.00 0.9520.02 0.06£0.02 0.010.00 0.0120.00 0.0120.00
4 012 0.17 0.17 0.1 0.94 0.93 0.86 0.93
0.34:£0.03  0.6740.01 0.95£0.02 0.96£0.02 0.05£0.01 0.04+0.01 0.01£0.00 0.0120.00
;016 0.04 0.05 0.09 0.83 0.96 0.95 0.92
0.334£0.01 0.6240.00 0.80+£0.00 0.9740.01 0.054£0.02 0.0040.00 0.0040.00 0.000.00
o 0.06 0.25 0.23 0.20 0.95 0.87 0.83 0.81
0.454£0.06 0.8420.03 0.93£0.01 0.9240.01 0.06£0.04 0.010.00 0.0120.00 0.0020.00
o 013 0.15 0.11 0.04 0.89 0.80 0.93 0.96
0.484£0.01 0.8340.00 0.87+£0.00 0.9340.01 0.0240.00 0.0140.00 0.01£0.00 0.0120.00
Ly 020 0.21 0.18 0.19 0.85 0.84 0.85 0.82
0.524£0.02  0.80£0.03 0.88£0.01 0.9520.01 0.07£0.02 0.0240.00 0.0120.00 0.0220.00
018 0.06 0.29 0.27 0.74 0.80 0.76 0.71

0.26£0.02 0.32+0.01 0.91+£0.01 0.93+£0.00 0.10£0.01 0.03£0.00 0.01£0.00 0.01+£0.00

B.4 Unlabeled colored MNIST

B.4.1 Data Generation and Model Architecture

Data Generation All of the digit pixels will be coloured according to z;;. The background remains untouched
(coloured digits on black background). Now we describe the colouring scheme across domains and different
SCMs.

Independent SCM. For each domain i € [k] we sample [, h’ ~ Uniform|0, 1], such that ¢ ~ Uniform[l%, h],
where ¢ € {r, g,b} denotes the colour channel. In other terms, each of the RGB channels comes from a uniform
distribution that is unique to each domain 7. The digits then are coloured by sampling 2z, = (r, g, b) for each
domain.

Dynamic SCM. To obtain a Dynamic SCM, we introduce a probabilistic relation among digits and z;, as follows.
For any domain 4, we sample each channel ¢ ~ Uniform[l%, h’] with a probability of 0.2, and with a probability
of 0.8 we introduce the following relation among digits and the colours. If the image contains digits from 0-4,
the channels are sampled according to ¢ ~ Uniform[l%, (I 4+ h)/2], and if the image contains digits from 5-9,
the channels are sampled according to ¢ ~ Uniform[(I% + h%)/2, ht]. In simple words, most of the time we
introduce a correlation between the digits and the colours, and for a small portion of the dataset, digits and
colours are sampled independently, thus overall, we achieve a Dynamic SCM.

Model Architecture All experiments are carried out in two stages similar to polynomial mixing, and balls
image datasets. The architectures of the autoencoders at stages 1,2 are given in Tables 21,22.

The results for the Independent and Dynamic SCM are given in Tables 27,28, respectively.
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Table 14 Polynomial Mixing Dataset R? scores, Independent DGP. The results are averaged over 5 seeds. 2,z € R?
and zs, 2y € RY? and z = g(z) € R?%_ Penalty used here is MMD. Top section and bottom section correspond to
polynomial degrees of 2 and 3. For each dimension d, the top and bottom rows correspond to the scores after Stages 1,
2.

RZ Ry
d k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
. 00 0.08 0.09 0.02 0.96 0.83 0.6 0.08
0.5440.04  0.5520.04  0.99£0.00 0.99£0.00 0.01£0.00 0.01£0.00 0.0120.00  0.0040.00
g 026 0.15 0.08 0.12 0.80 0.92 0.91 0.92
0.4240.05 0.76£0.00 0.9840.01 0.9740.02 0.08£0.05 0.01£0.00 0.00£0.00 0.0140.00
o 02 0.04 0.03 0.05 0.79 0.97 0.98 0.96
0.5240.04 0.81£0.00 0.8620.00 0.91£0.04 0.05£0.01 0.01£0.00 0.0120.00 0.0120.00
007 0.19 0.04 0.17 0.95 0.90 0.98 0.88
0.48+0.01  0.6540.02 0.90£0.00 0.9840.00 0.1240.03 0.0240.00 0.0120.00 0.0140.00
e 0.17 0.17 0.11 0.94 0.93 0.86 0.93
0.5240.05 0.5520.01  0.99£0.00 0.9840.01 0.05£0.01 0.06£0.02 0.0120.00 0.0140.00
. 016 0.04 0.05 0.09 0.83 0.96 0.95 0.02
0.4620.05 0.6320.00 0.80£0.00 0.98£0.01 0.05£0.03 0.01£0.00 0.00£0.00 0.0040.00
g 000 0.25 0.23 0.20 0.95 0.87 0.83 0.81
0.54+0.02  0.7340.01 0.9240.04 0.98+0.00 0.0740.04 0.0240.00 0.0120.00 0.00+0.00
o 013 0.15 0.11 0.04 0.89 0.80 0.93 0.96
0.49+0.04  0.7240.01  0.8740.00 0.98£0.00 0.05£0.01 0.01£0.00 0.0120.00 0.0120.00
L, 020 0.21 0.18 0.19 0.85 0.84 0.85 0.82
0.5140.02  0.7440.02 0.8940.00 0.9740.00 0.1240.02 0.04£0.00 0.0140.00 0.0140.00
4 018 0.06 0.29 0.27 0.74 0.80 0.76 0.71

0.38£0.02 0.40+0.00 0.944+0.00 0.95£0.00 0.08+0.00 0.03£0.00 0.02+£0.00 0.01+0.00

B.5 [—VAE Baseline

For all experiments in sections B.1, B.2, B.3, we implement a baseline based on S—VAE (Higgins et al., 2017)
and report the metrics in tables 10, 11 for Linear Mixing, in tables 19, 20 for Polynomial Mixing, and in
tables 25, 26 for the Balls image dataset. To obtain the scores for this baseline, we employ a similar 2 stage
procedure, where in stage 1, we train an autoencoder with reconstruction objective only. Then at stage 2, we
employ the KL divergence constraint from Higgins et al. (2017) on the representations obtained from the
autoencoder at stage 1, and randomly divide the resulting 2 into two halves to represent Z¢,%,;, and compute
the R? scores against zs,z. Note that unlike our method that directly affects a known subset of 2 to obtain
Zg, we have no way of knowing beforehand such subsets with the KL divergence penalty of Higgins et al.
(2017), hence the need for randomly selecting such features.

Training Details and Hyperparameter Selection It should be noted that hyperparameter selection in un-
supervised scenarios such as this work differs crucially from the conventional setups as in practice one
does not have access to the ground-truth latents z. Therefore we focus on using default hyperparameters
and demonstrate the robustness and versatility of our approach across the different datasets. We train all
models with Adam (Kingma and Ba, 2014) optimizer with a learning rate of 10~ without weight decay,
e=1078,3; = 0.9, B2 = 0.999. We reduce the learning rate by a factor of 0.5 if the training objective is not
improved for 10 epochs. This drop is followed by a cool-down period of 10 epochs, and the learning rate
cannot decrease to lower than 10~%. For all datasets we use a batch size of 1024 and early stop the training at
2000 steps. The weight of invariance penalty is always set to 1.0, regardless of the combination of penalties
used. To ensure the robustness of the Min-Max penalty, we enforce the support invariance not just on the
minimum and maximum across a batch, rather, we sort the batch and for each component of zg take the
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Table 15 Polynomial Mixing Dataset R? scores, Independent DGP. The results are averaged over 5 seeds. 2,z € R? and
z2s,2u € RY? and z = g(z) € R?%_ Penalty used here is MMD+Min-Max. Top section and bottom section correspond
to polynomial degrees of 2 and 3. For each dimension d, the top and bottom rows correspond to the scores after Stages

1, 2.

R R
d k=2 k=4 k=38 k=16 k=2 k=4 k=8 k=16
6 0.03 0.08 0.09 0.02 0.96 0.83 0.89 0.98
0.60£0.06 0.60+£0.00 0.994£0.00 0.99£0.01 0.02+0.01 0.004£0.00 0.01£0.00 0.00+0.00
8 0.26 0.15 0.08 0.12 0.80 0.92 0.91 0.92
0.52£0.04 0.98+0.00 0.97+0.01 0.99£0.00 0.03£0.02 0.00£0.00 0.00£0.00 0.01+£0.00
10 0.22 0.04 0.03 0.05 0.79 0.97 0.98 0.96
0.68+£0.03 0.96+0.01 0.954+0.03 0.94%£0.01 0.02+0.00 0.014£0.00 0.01£0.00 0.01+0.00
19 0.07 0.19 0.04 0.17 0.95 0.90 0.98 0.88
0.63£0.04 0.92+£0.00 0.90£0.00 0.97£0.01 0.02+0.00 0.01£0.00 0.01£0.00 0.01+£0.00
14 0.12 0.17 0.17 0.11 0.94 0.93 0.86 0.93
0.63+0.02 0.65+£0.00 0.96+0.02 0.98+£0.01 0.04+0.02 0.04+0.01 0.01£0.00 0.0140.00
6 0.16 0.04 0.05 0.10 0.83 0.96 0.95 0.92
0.44£0.03 0.63£0.00 0.80£0.00 0.96£0.02 0.03£0.01 0.004£0.00 0.00£0.00 0.01£0.00
3 0.06 0.25 0.23 0.20 0.95 0.87 0.83 0.81
0.63£0.04 0.91£0.02 0.93£0.02 0.97£0.01 0.03£0.02 0.01£0.00 0.01£0.00 0.00+£0.00
10 0.13 0.15 0.11 0.04 0.89 0.80 0.93 0.96
0.62£0.04 0.79£0.04 0.85£0.01 0.97=0.00 0.02+0.00 0.01£0.00 0.01£0.00 0.01+0.00
12 0.20 0.21 0.18 0.20 0.85 0.84 0.85 0.82
0.62£0.02 0.81£0.01 0.8940.00 0.97£0.00 0.08+0.02 0.02+0.00 0.01£0.00 0.01+£0.00
14 0.18 0.06 0.29 0.27 0.74 0.80 0.76 0.71
0.36£0.01 0.39£0.00 0.93£0.02 0.95£0.00 0.10+0.01 0.03£0.00 0.02£0.00 0.01+0.00

top 10 for computing the penalty. For MMD penalty we always use the standard RBF kernel with a default
bandwidth of 1.0, with the only exception of using an adaptive bandwidth for linear mixing experiments.
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Table 16 Polynomial Mixing Dataset R? scores, Dynamic SCM DGP. The results are averaged over 5 seeds. 2,z € R?
and zs, 2y € RY? and z = g(z) € R?%°. Penalty used here is Min-Max. Top section and bottom section correspond to
polynomial degrees of 2 and 3. For each dimension d, the top and bottom rows correspond to the scores after Stages 1,

2.

RS Ry

d k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
) 0.05 0.02 0.01 0.05 0.95 0.97 0.99 0.95

0.2840.04 0.96+0.01 0.714£0.00 0.99+0.00 0.03£0.02 0.014£0.00 0.01£0.00 0.01%0.00
. 0.20 0.18 0.14 0.01 0.88 0.87 0.85 0.99

0.3940.03 0.7140.01 0.78+£0.01 0.93+0.04 0.05£0.01 0.014£0.00 0.01£0.00 0.0120.00
o 019 0.04 0.02 0.05 0.86 0.98 0.99 0.97

0.3540.04 0.76+0.02 0.98+£0.00 0.99+0.00 0.07£0.03 0.014£0.00 0.01=£0.00 0.01%0.00
005 0.18 0.13 0.11 0.97 0.90 0.92 0.93

0.4140.03  0.8040.01 0.97+0.01 0.97+0.01 0.09£0.03 0.014£0.00 0.01£0.00 0.0140.00
! 0.16 0.17 0.04 0.95 0.94 0.83 0.98

0.3940.01  0.69+0.01 0.95+£0.02 0.97+0.01 0.06+0.01 0.04+0.01 0.02£0.00 0.01%0.00
] 0.30 0.16 0.30 0.07 0.71 0.88 0.74 0.94

0.3440.01  0.9240.01 0.98+£0.00 0.99+0.00 0.03£0.02 0.014£0.00 0.01£0.00 0.0140.00
. 0.18 0.06 0.13 0.21 0.86 0.98 0.89 0.80

0.4540.05 0.90+£0.04 0.95+0.01 0.9540.02 0.07£0.04 0.014£0.00 0.01£0.00 0.0140.00
o o2 0.12 0.22 0.07 0.87 0.84 0.87 0.94

0.4240.02  0.70+£0.00 0.95+0.01 0.95+0.01 0.0840.03 0.014£0.00 0.01=£0.00 0.0120.00
S 0.23 0.14 0.17 0.88 0.81 0.87 0.85

0.4440.02 0.8140.02 0.87+0.03 0.9440.01 0.1140.01 0.02+0.00 0.01£0.00 0.0140.00
R 0.16 0.25 0.22 0.69 0.79 0.80 0.73

0.3440.02  0.63+£0.01 0.88+£0.02 0.9240.00 0.08£0.01 0.03+£0.00 0.02:£0.00 0.0240.00

® ® [ ® ®
O O o ®
® o [ ® ®
o ) PS ®

Figure 5 The top row shows the inputs to the image autoencoder, and the bottom row shows model’s reconstructions.
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Table 17 Polynomial Mixing Dataset R? scores, Dynamic SCM DGP. The results are averaged over 5 seeds. 2,z € R?
and zs, 2y € RY? and z = g(z) € R?%°. Penalty used here is MMD. Top section and bottom section correspond to
polynomial degrees of 2 and 3. For each dimension d, the top and bottom rows correspond to the scores after Stages 1,
2.

RS Ry
d k=2 k=4 k=38 k=16 k=2 k=4 k=38 k=16
6 0.05 0.02 0.01 0.05 0.95 0.97 0.99 0.95
0.25£0.06 0.85£0.03 0.64+0.02 0.99£0.00 0.08+0.05 0.05+0.01 0.01£0.00 0.01£0.00
8 0.20 0.18 0.14 0.01 0.88 0.87 0.85 0.99
0.41£0.03 0.58+0.03 0.73£0.02 0.95£0.03 0.08+0.04 0.084+0.03 0.02£0.00 0.01+£0.00
10 0.19 0.04 0.02 0.04 0.86 0.98 0.99 0.97
0.41£0.02 0.53£0.02 0.91£0.01 0.96+£0.02 0.10£0.03 0.04+0.01 0.02£0.00 0.01£0.00
19 0.05 0.18 0.13 0.11 0.97 0.90 0.92 0.93
0.39£0.03 0.54+0.02 0.894+0.01 0.99£0.00 0.10+0.03 0.044+0.01 0.03£0.01 0.01+£0.00
14 0.11 0.16 0.17 0.04 0.95 0.94 0.83 0.98
0.38£0.02 0.48+0.02 0.894+0.01 0.99£0.00 0.09£0.02 0.104£0.02 0.03£0.00 0.01+0.00
6 0.30 0.16 0.30 0.07 0.71 0.88 0.74 0.94
0.41£0.03 0.77£0.03 0.86+0.03 0.98+£0.00 0.04+0.01 0.05+0.02 0.02£0.01 0.01+£0.00
8 0.18 0.06 0.13 0.21 0.86 0.98 0.89 0.80
0.46£0.02 0.66+0.02 0.844+0.03 0.98£0.00 0.05£0.02 0.024+0.01 0.02£0.00 0.01+£0.00
10 0.21 0.12 0.22 0.07 0.87 0.84 0.87 0.94
0.42£0.03 0.55£0.02 0.90£0.01 0.96£0.00 0.08+0.01 0.03£0.00 0.03£0.00 0.01+£0.00
12 0.15 0.23 0.14 0.17 0.88 0.81 0.87 0.85
0.45£0.01 0.64£0.02 0.854+0.01 0.96£0.00 0.11+£0.01 0.07£0.01 0.04£0.00 0.01+£0.00
14 0.22 0.16 0.25 0.22 0.69 0.79 0.80 0.73

0.34£0.01 0.52+0.01 0.85£0.01 0.93£0.01 0.09£0.01 0.094£0.02 0.05£0.00 0.02+0.00
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Table 18 Polynomial Mixing Dataset R? scores, Dynamic SCM DGP. The results are averaged over 5 seeds. 2,z € R?
and zs,zy € RY? and z = g(z) € R Penalty used here is MMD+Min-Max. Top section and bottom section
correspond to polynomial degrees of 2 and 3. For each dimension d, the top and bottom rows correspond to the scores
after Stages 1, 2.

RS Ry
d k=2 k=4 k=38 k=16 k=2 k=4 k=38 k=16
6 0.05 0.16 0.01 0.05 0.95 0.88 0.99 0.95
0.32£0.04 0.81£0.03 0.694£0.01 0.99£0.00 0.02+0.00 0.05+0.02 0.01£0.00 0.01£0.00
8 0.20 0.06 0.14 0.01 0.88 0.98 0.85 0.99
0.43£0.02 0.82+0.02 0.80£0.00 0.95£0.03 0.05+0.01 0.024+0.01 0.01£0.00 0.01+£0.00
10 0.19 0.04 0.02 0.04 0.86 0.98 0.99 0.97
0.53£0.02 0.65+0.02 0.90£0.01 0.99£0.00 0.07£0.01 0.02£0.00 0.02£0.00 0.01£0.00
19 0.05 0.18 0.13 0.11 0.97 0.90 0.92 0.93
0.48+£0.03 0.72+0.02 0.884£0.03 0.98£0.00 0.07£0.02 0.03£0.00 0.02£0.00 0.01+£0.00
14 0.11 0.16 0.17 0.04 0.95 0.94 0.83 0.98
0.49£0.02 0.56+0.02 0.894+0.01 0.97£0.02 0.06+£0.01 0.07£0.01 0.03£0.00 0.01+0.00
6 0.30 0.02 0.30 0.07 0.71 0.97 0.74 0.94
0.36£0.03 0.88+0.03 0.87£0.04 0.99£0.00 0.04+0.02 0.05+0.01 0.02£0.00 0.01+£0.00
8 0.18 0.18 0.13 0.21 0.86 0.87 0.89 0.80
0.53£0.04 0.62+0.03 0.83+0.04 0.98£0.00 0.06+0.03 0.044+0.01 0.02£0.00 0.01+£0.00
10 0.21 0.12 0.22 0.07 0.87 0.84 0.87 0.94
0.53£0.02 0.62+0.01 0.90£0.01 0.96£0.00 0.08+0.03 0.03£0.00 0.03£0.00 0.01+£0.00
12 0.15 0.23 0.14 0.17 0.88 0.81 0.87 0.85
0.52£0.02 0.73£0.02 0.83£0.01 0.96£0.00 0.10+0.02 0.054+0.00 0.04£0.00 0.01+£0.00
14 0.22 0.16 0.25 0.22 0.69 0.79 0.80 0.73

0.41£0.01 0.55£0.01 0.854£0.01 0.93£0.00 0.08+0.01 0.07£0.01 0.04£0.00 0.02+0.00
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Table19 [-VAE - Polynomial Mixing Dataset R? scores, Independent SCM DGP. The results are averaged over 5 seeds.
2,z€ R and zs, 2 € RY? and z = g(2) € R*. Top section and bottom section correspond to polynomial degrees
of 2 and 3. Each set of 4 rows correspond to a specific d and from top to bottom denote the R? scores before training
B-VAE, and after training with 8 € [0.1, 1.0, 10.0].

RZ Ry
d k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
0.3720.02 0.1940.05 0.3520.00 0.19£0.04 0.96£0.02 0.99£0.00 0.98+0.00 0.99%0.00
0.1240.07 0.0340.01 0.0840.05 0.0240.01 0.91+£0.04 0.95£0.02 0.84+0.07 0.9540.02

6 0.07£0.05 0.02+0.00 0.02£0.00 0.01£0.00 0.96+0.01 0.944+0.04 0.90£0.08 0.93+0.04
0.09£0.06 0.01£0.00 0.02£0.00 0.01£0.00 0.97+0.01 0.96+0.03 0.95£0.03 0.92+0.06
0.056£0.01 0.12+0.05 0.054£0.03 0.06£0.04 0.97+0.00 0.924+0.04 0.95£0.04 0.95+0.04

8 0.10£0.04 0.03£0.01 0.084£0.06 0.01£0.00 0.93£0.03 0.924+0.03 0.95£0.03 0.93+£0.03

0.07£0.03 0.02+0.00 0.04+0.01 0.03£0.01 0.91£0.02 0.96+0.02 0.94£0.03 0.91+0.04
0.05£0.02 0.04£0.01 0.07£0.04 0.03£0.01 0.93£0.03 0.92+0.03 0.95£0.04 0.93+0.04

0.06£0.03 0.05£0.01 0.044+0.02 0.02£0.01 0.80+0.03 0.834+0.02 0.77£0.04 0.80%0.02
10 0.05£0.01 0.09£0.03 0.05+0.02 0.05£0.03 0.95+0.01 0.944+0.03 0.98+£0.00 0.95+0.01
0.09£0.03 0.12+0.04 0.04£0.01 0.09£0.04 0.94+0.02 0.96+0.02 0.95£0.03 0.95+0.04

0.08£0.03 0.03£0.00 0.044£0.01 0.07£0.04 0.97+0.00 0.96+0.03 0.99£0.00 0.984+0.01

0.04£0.02 0.03+0.01 0.024+0.00 0.01£0.00 0.70+0.02 0.7940.01 0.72+£0.02 0.69+0.02
0.15£0.03  0.07£0.02 0.074£0.03 0.05£0.02 0.91+0.02 0.964+0.01 0.97£0.00 0.90+0.03
0.08£0.02 0.09£0.03 0.064£0.03 0.10£0.03 0.97+0.00 0.95+0.01 0.95£0.02 0.96+0.02
0.08£0.03 0.09+0.03 0.03£0.01 0.02£0.00 0.96+0.01 0.97£0.00 0.95£0.03 0.99+0.00

0.02£0.00  0.03+0.01  0.02+0.01 0.01£0.00 0.70+0.02 0.684£0.04 0.65+£0.03 0.58%+0.02
14 0.14£0.01 0.08+0.02 0.174£0.02 0.07£0.02 0.95+0.01 0.954+0.00 0.96£0.01 0.92+0.02
0.08£0.02 0.07£0.02 0.07£0.01 0.11£0.02 0.94+0.01 0.944+0.01 0.96£0.02 0.93%+0.02

0.05£0.00  0.09£0.03 0.094£0.03 0.03£0.01 0.95+0.02 0.97£0.00 0.96+£0.02 0.97+0.01

0.35+0.03 0.13£0.04 0.2840.01 0.33£0.00 0.97+0.03 0.97+0.02 1.00£0.00 1.0040.00
0.13£0.06  0.02+0.01  0.02+0.00 0.03£0.01 0.86+0.06 0.93+0.02 0.97£0.01 0.97+0.01

12

0 0.10£0.05 0.02+0.00 0.01£0.00 0.03£0.01 0.90£0.03 0.93+0.03 0.98£0.01 0.93+0.04
0.05£0.03 0.02+0.01 0.01£0.00 0.02£0.01 0.97£0.02 0.95+0.03 0.99£0.00 0.99+0.00
0.19£0.04 0.09£0.03 0.05£0.02 0.14£0.05 0.82+0.06 0.93£0.02 0.94+0.02 0.8440.07

8 0.08£0.03 0.14+0.05 0.0840.04 0.05£0.03 0.87£0.02 0.924+0.03 0.96£0.02 0.94+0.04

0.12£0.04 0.13£0.04 0.05£0.03 0.07£0.02 0.90+0.04 0.924+0.03 0.98£0.00 0.91+0.03
0.05£0.01 0.13£0.04 0.03£0.01 0.01£0.00 0.94+0.02 0.97+0.02 0.97£0.03 0.88+0.04

0.08£0.04 0.05+0.01 0.144£0.03 0.07£0.03 0.77£0.05 0.75£0.03 0.67£0.05 0.76+0.04
10 0.1240.02 0.07£0.02 0.13+0.04 0.08+0.04 0.95£0.01 0.90+0.03 0.88+£0.04 0.9440.02
0.15£0.01 0.08+0.04 0.124+0.03 0.15£0.03 0.93£0.02 0.954+0.01 0.92£0.03 0.90+0.03

0.08£0.03 0.04+0.01 0.054£0.01 0.10£0.04 0.94+0.01 0.93+0.03 0.96£0.02 0.98+0.00

0.04£0.01 0.06+0.01 0.06£0.01 0.06£0.01 0.66+0.03 0.63+0.04 0.65+£0.03 0.65+0.02
0.16£0.03 0.13+£0.02 0.15£0.02 0.15£0.03 0.89+0.02 0.914+0.02 0.88+£0.02 0.86+0.02
0.15+£0.01 0.13+£0.01 0.11£0.01 0.12+0.02 0.894£0.02 0.92+0.02 0.92+0.01 0.90£0.02
0.13£0.02 0.11+0.03 0.124+0.02 0.11£0.03 0.93+0.02 0.91+0.03 0.93£0.02 0.96+0.01

0.07£0.02 0.04£0.01 0.07£0.01 0.08£0.01 0.54+0.02 0.51£0.04 0.52£0.01 0.51+£0.03
14 0.13£0.01 0.09+0.02 0.16£0.02 0.11£0.03 0.81+0.02 0.81+0.01 0.88+£0.01 0.80%0.02
0.10£0.01 0.07v+0.01 0.1040.02 0.13£0.02 0.83+0.01 0.83+0.02 0.91£0.01 0.85%0.02

0.08£0.01 0.05£0.01 0.074£0.01 0.10£0.03 0.85+0.01 0.924+0.01 0.92+£0.02 0.91+0.02

12
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Table 20 3-VAE - Polynomial Mixing Dataset R? scores, Dynamic SCM DGP. The results are averaged over 5 seeds.
2,z€ R and zs, 2 € RY? and z = g(2) € R*. Top section and bottom section correspond to polynomial degrees
of 2 and 3. Each set of 4 rows correspond to a specific d and from top to bottom denote the R? scores before training
B-VAE, and after training with 8 € [0.1, 1.0, 10.0].

RZ Ry
d k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
0275005 0412006 0.23£0.04 0.34£0.00 0.98£0.01 0.92£0.06 0.99£0.00 0.99+0.00
0.0540.01  0.1940.04 0.0740.03 0.07£0.03 0.87£0.06 0.91+£0.03 0.92+0.04 0.92+0.02

6 0.07£0.03 0.25£0.04 0.07£0.03 0.07£0.03 0.91+£0.04 0.83£0.05 0.89£0.04 0.89+0.04
0.05£0.01 0.21+£0.06 0.0840.04 0.13£0.05 0.85£0.07 0.81£0.05 0.87£0.04 0.90+0.04
0.18£0.04 0.05£0.01 0.054+0.02 0.03£0.01 0.89+0.02 0.96+0.01 0.96+£0.02 0.97+0.01

8 0.14£0.05 0.12+0.03 0.04+0.01 0.03£0.01 0.92+0.02 0.944+0.03 0.94£0.01 0.93+0.02

0.14£0.04 0.12+0.03 0.084£0.04 0.05£0.02 0.86+0.04 0.91£0.05 0.92£0.03 0.90+0.04
0.14£0.03 0.16+0.02 0.11£0.04 0.08£0.04 0.90£0.01 0.91£0.06 0.88+£0.04 0.89+0.04

0.06£0.02 0.02+0.01 0.03£0.00 0.05£0.02 0.81+0.02 0.834+0.02 0.79£0.03 0.77+0.03
10 0.17£0.03  0.10+0.03 0.114£0.03 0.08£0.02 0.92+0.01 0.93+0.02 0.92+0.03 0.96+0.01
0.17£0.02 0.08+0.01 0.144£0.03 0.09£0.04 0.89+0.02 0.92+0.03 0.95£0.01 0.92+0.03

0.17+£0.03 0.15+0.02 0.144+0.04 0.09£0.04 0.89£0.02 0.88+£0.04 0.94+0.02 0.91+0.04

0.04£0.00  0.03+0.01  0.02£0.00 0.03£0.01 0.69+0.02 0.7940.02 0.71£0.01 0.69+0.02
0.18£0.01 0.14+0.02 0.104£0.03 0.10£0.03 0.91+0.01 0.93£0.02 0.90£0.01  0.96+0.01
0.14£0.02 0.12+0.03 0.094£0.03 0.11£0.03 0.91£0.02 0.93£0.02 0.90£0.08 0.94+0.03
0.14£0.03  0.13£0.03 0.094£0.03 0.14£0.03 0.90+0.02 0.904£0.03 0.90£0.01 0.95+0.02

0.03£0.01 0.03+£0.01  0.02+0.00 0.01£0.00 0.68+0.01 0.694£0.03 0.64£0.01 0.58%+0.02
14 0.17+£0.01 0.15+0.03 0.13£0.02 0.13£0.03 0.91£0.01 0.94£0.01 0.93£0.02 0.90£0.01
0.19£0.03 0.16+0.03 0.154+0.03 0.15£0.03 0.91+£0.01 0.914+0.02 0.88£0.02 0.87+0.03

0.21+0.02 0.17+0.03 0.144+0.02 0.184+0.03 0.91£0.01 0.88£0.02 0.85£0.03 0.84+0.03

0.37£0.04 0.33+£0.01 0.3540.01 0.34£0.00 0.95+0.04 0.9940.00 0.99£0.00 1.00+0.00
0.07£0.04 0.10£0.05 0.094£0.06 0.03£0.01 0.94+0.02 0.944+0.02 0.95£0.02 0.90+0.04

12

0 0.11£0.06  0.09£0.05 0.0840.06 0.04£0.02 0.94+0.02 0.91+0.04 0.93£0.03 0.89+0.05
0.06£0.03  0.09£0.05 0.084£0.05 0.06£0.03 0.92+0.05 0.92+0.03 0.96£0.02 0.91+0.04
0.17£0.04 0.10+0.04 0.05£0.02 0.11£0.04 0.86+0.06 0.92+0.03 0.95£0.02 0.87+0.05

8 0.13£0.05 0.10£0.04 0.074£0.02 0.09£0.03 0.87£0.04 0.904£0.02 0.84£0.03 0.87+0.03

0.16£0.05 0.09£0.04 0.094£0.02 0.08£0.02 0.87£0.03 0.904£0.03 0.87£0.03 0.85+0.03
0.21+0.04 0.12+0.05 0.12+0.04 0.13£0.04 0.87£0.02 0.92+0.02 0.88+£0.03 0.84£0.05

0.08£0.03 0.06+0.01 0.104£0.02 0.05£0.02 0.80+0.03 0.744£0.03 0.73£0.02 0.76+0.03
10 0.19£0.03 0.17+0.02 0.164£0.03 0.09£0.02 0.88+0.02 0.824+0.04 0.85%£0.03 0.85+0.03
0.21£0.02 0.20£0.03 0.1840.04 0.16£0.03 0.84+0.03 0.83+0.03 0.82+£0.04 0.79+0.02

0.2240.02 0.20+0.02 0.16+0.04 0.194£0.02 0.81£0.04 0.81£0.03 0.79£0.04 0.79+0.03

0.05£0.01 0.06+0.01 0.07£0.02 0.04£0.00 0.65+0.03 0.65+0.03 0.64£0.03 0.67+0.02
0.17£0.02 0.18+0.01 0.204£0.01 0.13£0.03 0.84+0.01 0.82+0.02 0.82£0.03 0.83£0.03
0.17+£0.02 0.1840.01 0.22+0.01 0.13£0.02 0.81+0.01 0.8440.02 0.82+0.02 0.80£0.02
0.16£0.02 0.19£0.01 0.23+0.01 0.12£0.02 0.80£0.02 0.824+0.02 0.81£0.02 0.80+0.02

0.06£0.02 0.05£0.01 0.06£0.01 0.08£0.01 0.51£0.07 0.55+0.07 0.53£0.01 0.50+£0.03
14 0.18£0.03 0.20+0.01  0.214£0.01 0.18£0.01 0.82+0.03 0.82+0.02 0.83+£0.02 0.7940.01
0.1940.03 0.22£0.02 0.254+0.02 0.23£0.03 0.78+£0.03 0.80+0.03 0.78£0.02 0.7540.02

0.21£0.02 0.22+0.02 0.254+0.01 0.25£0.03 0.75+0.03 0.80%0.02 0.75£0.03 0.75+0.02

12
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Layer Input Size Output Size Bias Activation BatchNorm

Linear (1) 784 256 True ReLU True
Linear (2) 256 256 True ReLU True
Linear (3) 256 128 True ReLU True
Linear (1) 128 256 True ReLU True
Linear (2) 256 256 True ReLU True
Linear (3) 256 784 True - False

Table 21 Autoencoder architecture for stage 1. First section presents the encoder layers, and the second section presents
the decoder layers.

Table 22 Autoencoder architecture for stage 2. First section presents the encoder layers, and the second section presents
the decoder layers.

Layer Input Size Output Size Bias Activation BatchNorm
Linear (1) 128 200 True LeakyReLU(0.2) True
Linear (2) 200 200 True LeakyReLU(0.2) True
Linear (3) 200 200 True LeakyReLU(0.2) True
Linear (3) 200 128 True - False
Linear (1) 128 200 True LeakyReLU(0.2) True
Linear (2) 200 200 True LeakyReLU(0.2) True
Linear (3) 200 200 True LeakyReLU(0.2) True
Linear (3) 200 128 True - False

Table 23 Balls Dataset R%, Independent SCM DGP. For each penalty, the top row corresponds to the scores after
training the autoencoder, and the bottom row denotes the scores after enforcing distributional invariances. The results
are averaged over 5 seeds. 2 € R'® and zs, 2y € R®**. The underlying latent z € R*. The sections are Min-Max,

MMD, and the combination, respectively.

RZ Ry,

k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16

0.99 0.99 0.99 0.99 0.99 0.8 0.08 0.97
0.9440.00 0.89+0.01 0.85+0.04 0.6540.01 0.8840.00 0.66+0.02 0.56+0.04 0.19+0.01

0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.97
0.76+0.01  0.83+0.03 0.6740.05 0.6320.04 0.6520.02 0.7240.04 0.57£0.01 0.27+0.05

0.99 0.99 0.99 0.99 0.99 0.8 0.99 0.97
0774001  0.9140.01  0.8620.03 0.8140.04 0.30£0.01 0.1140.01 0.1440.01 0.1820.02

Table 24 Balls Dataset R?, Dynamic SCM DGP. For each penalty, the top row corresponds to the scores after training
the autoencoder, and the bottom row denotes the scores after enforcing distributional invariances. The results are
averaged over 5 seeds. 2 € R'?® and zs, 2 € R®*. The underlying latent z € R*. The sections are Min-Max, MMD,

and the combination, respectively.

R Ry

k=2 k=4 k=38 k=16 k=2 k=4 k=38 k=16

0.99 0.99 0.99 0.99 0.97 0.95 0.99 0.99
0.93£0.00 0.77£0.03 0.42+0.01 0.61£0.03 0.92+0.01 0.844+0.00 0.67£0.04 0.224+0.01

0.99 0.99 0.99 0.99 0.97 0.95 0.99 0.99
0.55+0.01 0.46+0.01 0.31£0.01 0.55£0.12 0.67+0.01 0.46+0.01 0.32+£0.01 0.15+0.04

0.99 0.99 0.99 0.99 0.97 0.95 0.99 0.99
0.73£0.01 0.71+£0.03 0.77+0.02 0.82£0.02 0.35£0.02 0.224+0.01 0.19£0.01 0.20+£0.04
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Table 25 S3-VAE - Balls Dataset R?, Independent SCM DGP. The top row corresponds to the scores after training
the autoencoder and before enforcing 5-VAE’s KL divergence constraint, and the rest denote the disentanglement
performance after training the 8-VAE for each value of 8. -VAE The results are averaged over 5 seeds. 2 € R'® and
zs,2u € R%. The underlying latent z € R*.

RZ Ry
B k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
0284002 0242004 0252002 0.2520.03 0.29£0.06 0.25£0.03 0.34%0.04 0.2620.04
0.1 0.97£0.00 0.97£0.00 0.96£0.00 0.96£0.00 0.98£0.00 0.98:£0.00 0.97£0.00 0.93:£0.01

1.0 0.96+0.00 0.94%+0.01 0.93+£0.00 0.924+0.01 0.95£0.01 0.97+£0.00 0.97+0.00 0.93£0.01
10.0 0.83£0.03 0.82+0.03 0.77+0.02 0.77£0.02 0.92+£0.01 0.93+0.01 0.94£0.00 0.87+£0.01

Table 26 (-VAE - Balls Dataset R%, Dynamic SCM DGP. The top row corresponds to the scores after training
the autoencoder and before enforcing 5-VAE’s KL divergence constraint, and the rest denote the disentanglement
performance after training the 8-VAE for each value of 8. S-VAE The results are averaged over 5 seeds. 2 € R'® and
zs,zu € R%. The underlying latent z € R*.

RZ Ry
B k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
0294003 0.3220.03 0292004 0.3720.03 0.3420.03 0.2920.03 0.26£0.04 0.37%£0.05
0.1 0.96£0.00 0.96£0.00 0.95£0.00 0.95£0.00 0.94+£0.01 0.93£0.00 0.98:£0.00 0.98:0.00

1.0 0.944+0.00 0.94£0.01 0.924+0.01 0.90£0.01 0.93£0.00 0.93+0.01 0.97£0.00 0.984+0.00
10.0 0.82£0.02 0.81+£0.05 0.77+0.02 0.74£0.03 0.88+£0.01 0.894+0.01 0.94£0.00 0.94+0.01

Table 27 MNIST, Coloured Digits, Independent SCM DGP. The top row corresponds to the scores after training the
autoencoder, and the following rows denote the scores after enforcing distributional invariances through Min-Max
penalty, MMD, and the combination, respectively. The results are averaged over 5 seeds. 2 € R'?® and Za,2; € R%%.

Digits Classification Accuracy Colours R},
k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
0.87 0.33 0.33 0.32 0.76 0.67 0.73 0.74

0.71£0.02 0.59£0.01 0.584+0.01 0.66£0.01 0.72£0.02 0.55+0.01 0.51£0.03 0.49+0.02
0.72£0.01 0.70+£0.01 0.73£0.01 0.73£0.01 0.77£0.01 0.64+0.01 0.64£0.02 0.63£0.02
0.73£0.02 0.70£0.02 0.744+0.00 0.74£0.01 0.73£0.02 0.544+0.02 0.38+£0.01 0.28%+0.01

Table 28 MNIST, Coloured Digits, Dynamic SCM DGP. The top row corresponds to the scores after training the
autoencoder, and the following rows denote the scores after enforcing distributional invariances through Min-Max
penalty, MMD, and the combination, respectively. The results are averaged over 5 seeds. 2 € R'?® and 2,2, € RS54,

Digits Classification Accuracy Colours R},
k=2 k=4 k=28 k=16 k=2 k=4 k=28 k=16
0.84 0.90 0.70 0.75 0.81 0.55 0.74 0.77

0.56£0.01 0.78+0.01 0.4840.02 0.53£0.01 0.72£0.02 0.16+0.01 0.56£0.02 0.43+£0.02
0.70£0.01 0.80+0.01 0.71£0.01 0.75£0.01 0.80£0.01 0.16+0.01 0.63£0.02 0.65+£0.02
0.70£0.02 0.79£0.02 0.64+0.01 0.72£0.02 0.58+£0.03 0.13+0.01 0.46%=0.01 0.31+£0.03
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