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Abstract

The identifiability of latent variable models has
received increasing attention due to its relevance
in interpretability and out-of-distribution gener-
alisation. In this work, we study the identifiabil-
ity of Switching Dynamical Systems, taking an
initial step toward extending identifiability anal-
ysis to sequential latent variable models. We
first prove the identifiability of Markov Switch-
ing Models, which commonly serve as the prior
distribution for the continuous latent variables
in Switching Dynamical Systems. We present
identification conditions for first-order Markov
dependency structures, whose transition distri-
bution is parametrised via non-linear Gaussians.
We then establish the identifiability of the latent
variables and non-linear mappings in Switching
Dynamical Systems up to affine transformations,
by leveraging identifiability analysis techniques
from identifiable deep latent variable models. We
finally develop estimation algorithms for identifi-
able Switching Dynamical Systems. Throughout
empirical studies, we demonstrate the practical-
ity of identifiable Switching Dynamical Systems
for segmenting high-dimensional time series such
as videos, and showcase the use of identifiable
Markov Switching Models for regime-dependent
causal discovery in climate data.

1. Introduction
State-space models (SSMs) are well-established sequence
modelling techniques where their linear versions have been
extensively studied (Lindgren, 1978; Poritz, 1982; Hamilton,
1989). Meanwhile, recurrent neural networks (Hochreiter
& Schmidhuber, 1997; Cho et al., 2014) have gained high
popularity for sequence modelling thanks to their abilities
in capturing non-linear and long-term dependencies. Never-
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theless, significant progress has been made on fusing neural
networks with SSMs, with Gu et al. (2022) as one of the
latest examples. Many of these advances focus on building
sequential latent variable models (LVMs) as flexible deep
generative models (Chung et al., 2015; Li & Mandt, 2018;
Babaeizadeh et al., 2018; Saxena et al., 2021), where SSMs
have been incorporated as latent dynamical priors (Johnson
et al., 2016; Linderman et al., 2016; 2017; Fraccaro et al.,
2017; Dong et al., 2020; Ansari et al., 2021; Smith et al.,
2023). Despite the efforts in designing flexible SSM priors
and developing stable training schemes, theoretical proper-
ties such as identifiability for sequential generative models
are less studied, contrary to early literature on linear SSMs.

Identifiability, in general, establishes a one-to-one corre-
spondence between the data likelihood and the model pa-
rameters (or latent variables), or an equivalence class of
the latter. In causal discovery (Peters et al., 2017), identi-
fiability refers to whether the underlying causal structure
can be correctly pinpointed from infinite observational data.
In independent component analysis (ICA, Comon (1994)),
identifiability analysis focuses on both the latent sources and
the mapping from the latents to the observed. While general
non-linear ICA is ill-defined (Hyvärinen & Pajunen, 1999),
recent results show that identifiability can be achieved us-
ing conditional priors (Khemakhem et al., 2020). For deep
(non-temporal) latent variable models, the required access
to auxiliary variables can be relaxed using a finite mixture
prior (Kivva et al., 2022). Recent works have attempted to
extend these results to sequential models using non-linear
ICA (Hyvarinen & Morioka, 2017; Hyvarinen et al., 2019;
Hälvä & Hyvarinen, 2020; Hälvä et al., 2021), or latent
causal processes (Yao et al., 2022a;b; Lippe et al., 2023b;a).

In this work, we develop an identifiability analysis for
Switching Dynamical Systems (SDSs) – a class of sequen-
tial LVMs with SSM priors that allow regime-switching
behaviours, where their associated inference methods have
been explored recently (Dong et al., 2020; Ansari et al.,
2021). Our approach differs fundamentally from non-linear
ICA since the latent variables are no longer independent.
To address this challenge, we first construct the latent dy-
namical prior using Markov Switching Models (MSMs)
(Hamilton, 1989) – an extension of Hidden Markov Mod-
els (HMMs) with autoregressive connections, for which
we provide the first identifiability analysis of this model
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On the Identifiability of Switching Dynamical Systems

family in non-linear transition settings. This also allows
regime-dependent causal discovery (Saggioro et al., 2020)
thanks to having access to the transition derivatives. We
then extend the identifiability results to SDSs using recent
identifiability analysis techniques for the non-temporal deep
latent variable models (Kivva et al., 2022). Importantly,
the identifiability conditions we provide are less restrictive,
significantly broadening their applicability. In contrast,Yao
et al. (2022a;b); Lippe et al. (2023a) require auxiliary in-
formation to handle regime-switching effects or distribu-
tion shifts, and Hälvä et al. (2021) imposes assumptions on
the temporal correlations such as stationarity (Hyvarinen &
Morioka, 2017). Moreover, unlike the majority of existing
works (Hälvä et al., 2021; Yao et al., 2022a;b), our identifia-
bility analysis does not require the injectivity of the decoder
mapping. Below we summarise our main contributions in
both theoretical and empirical forms:

• We present conditions in which first-order MSMs with
non-linear Gaussian transitions are identifiable up to
permutations (Section 3.1). We further provide the first
analysis of identifiability conditions for non-parametric
first-order MSMs in Appendix B.

• We further provide conditions for SDS’s identifiability
up to affine transformations of the latent variables and
non-linear emission (Section 3.2).

• We demonstrate the effectiveness of identifiable SDSs
on causal discovery and sequence modelling tasks.
These include discovery of time-dependent causal
structures in climate data (Section 6.2), and time-series
segmentation in videos (Section 6.3).

2. Background
2.1. Identifiable Latent Variable Models

In the non-temporal case, many works explore identifia-
bility of latent variable models (Khemakhem et al., 2020;
Kivva et al., 2022). Specifically, consider a generative model
where its latent variables z ∈ Rm are drawn from a Gaus-
sian mixture prior with K components (K < +∞). Then
z is transformed via a (noisy) piece-wise linear mapping to
obtain the observation x ∈ Rn, n ≥ m:

x = f(z) + ϵ, ϵ ∼ N (0,Σ), (1)

z ∼ p(z) :=
K∑

k=1

p(s = k)N (z|µk,Σk) . (2)

Kivva et al. (2022) established that if the transformation f is
weakly injective (see definition below), the prior distribution
p(z) is identifiable up to affine transformations1 from the
observations. If we further assume f is continuous and in-
jective, both prior distribution p(z) and non-linear mapping

1See Def. 2.2 in Kivva et al. (2022) or the equivalent adapted
to SDSs (Def. 3.4).

MSM

SDS

Figure 1: The generative model considered in this work,
where the MSM is indicated in green and the SDS is indi-
cated in red. The dashed arrows indicate additional depen-
dencies which are accommodated by our theoretical results.

f are identifiable up to affine transformations. In Section
3.2 we extend these results to establish identifiability for
SDSs using similar proof strategies.

Definition 2.1. A mapping f : Rm → Rn is said to be
weakly injective if (i) there exsists x0 ∈ Rn and δ > 0
s.t. |f−1({x})| = 1 for every x ∈ B(x0, δ) ∩ f(Rm), and
(ii) {x ∈ Rn : |f−1({x})| > 1} ⊆ f(Rm) has measure
zero with respect to the Lebesgue measure on f(Rm).2.
Here the notations are extended to sets, i.e., for a set B,
f(B) := {f(x) : x ∈ B} and f−1(B) := {x : f(x) ∈ B}.
Definition 2.2. f is injective if |f−1({x})| = 1, ∀x ∈
f(Rm).

2.2. Switching Dynamical Systems

A Switching Dynamical System (SDS), with an example
graphical model illustrated in Figure 1, is a sequential latent
variable model with its dynamics governed by both discrete
and continuous latent states, st ∈ {1, . . . ,K}, zt ∈ Rm,
respectively. At each time step t, the discrete state st de-
termines the regime of the dynamical prior that the current
continuous latent variable zt should follow, and the obser-
vation xt is generated from zt using a (noisy) non-linear
transformation. This gives the following probabilistic model
for the states and the observation variables:

pθ(x1:T , z1:T , s1:T ) =

pθ(s1:T )pθ(z1:T |s1:T )
T∏

t=1

pθ(xt|zt). (3)

As pθ(x1:T ) is intractable, recent works (Dong et al., 2020;
Ansari et al., 2021) have developed inference techniques
based on variational inference (Kingma & Welling, 2014).
These works consider an additional dependency on the
switch st from xt for more expressive segmentations, which
is not considered in our theoretical analysis for simplicity.

2B(x0, δ) = {x ∈ Rn : ||x− x0|| < δ}
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For the latent dynamic prior pθ(z1:T ), we consider a
Markov Switching Model (MSM) which has also been
referred to as autoregressive HMM (Ephraim & Roberts,
2005). This type of prior uses the latent “switch” st to
condition the distribution of zt at each time-step, and the
conditional dynamic model of z1:T given s1:T follows an
autoregressive process. Under first-order Markov assump-
tion for this conditional auto-regressive processes, this leads
to the following probabilistic model for the prior:

pθ(z1:T ) =
∑
s1:T

pθ(s1:T )pθ(z1:T |s1:T ), (4)

pθ(z1:T |s1:T ) = pθ(z1|s1)
T∏

t=2

pθ(zt|zt−1, st). (5)

Note that the structure of the discrete latent state prior
pθ(s1:T ) is not specified, and the identifiability results pre-
sented in the next section do not require further assumptions
herein. As illustrated in Figure 1 (solid lines), in exper-
iments we use a first-order Markov process for pθ(s1:T ),
described by a transition matrix Q ∈ RK×K such that
pθ(st = j|st−1 = i) = Qij , and an initial distribution
pθ(s1). In such case we also provide identifiability guaran-
tees for the Q matrix and the initial distribution.

3. Identifiability Theory for MSMs & SDSs
This section establishes the identifiability of the SDS model
(Eq. (3)) with MSM latent prior (Eq. (4)) under suitable
assumptions. We address this challenge by leveraging ideas
from Kivva et al. (2022) which uses finite mixture prior for
static data generative models; importantly, this theory relies
on the use of identifiable finite mixture priors (up to mixture
component permutations). Inspired by this result, we first
establish in Section 3.1 the identifiability of the Markov
switching model pθ(z1:T ) as a finite mixture prior, which
then allows us to extend the results of Kivva et al. (2022) to
the temporal setting in Section 3.2 to prove identifiability of
the SDS model. We drop the subscript θ for simplicity.

3.1. Identifiable Markov Switching Models

The MSM p(z1:T ) has an equivalent formulation as a fi-
nite mixture model. Suppose the discrete states satisfy
st ∈ {1, ...,K} with K < +∞, then for any given
T < +∞, one can define a bijective path indexing func-
tion φ : {1, ...,KT } → {1, ...,K}T such that each i ∈
{1, ...,KT } uniquely retrieves a set of states s1:T = φ(i).
Then we can use ci = p(s1:T = φ(i)) to represent the joint
probability of the states s1:T = φ(i) under p. Let us further
define the family of initial and transition distributions for
the continuous states zt:

ΠA := {pa(z1)|a ∈ A},PA := {pa(zt|zt−1)|a ∈ A}.
(6)

where A is an index set satisfying mild measure-theoretic
conditions (Appendix A). Note PA assumes first-order
Markov dynamics. Then, we can construct the family of
first-order MSMs as

MT (ΠA,PA) :=

{
KT∑
i=1

cipai
1
(z1)

T∏
t=2

pai
t
(zt|zt−1) |

K < +∞, pai
1
∈ ΠA, pai

t
∈ PA, t ≥ 2,

ait ∈ A, ai1:T ̸= aj1:T , ∀i ̸= j,
KT∑
i=1

ci = 1

}
. (7)

Since Eq. (7) requires ai1:T ̸= aj1:T for any i ̸= j,
this also builds an injective mapping ϕ(i) = ai1:T from
i ∈ {1, ...,KT } to A. Combined with the path indexing
function, this establishes an injective mapping ϕ ◦ φ−1 to
uniquely map a set of states s1:T to the a1:T indices, and we
can view pai

1
(z1) and pai

t
(zt|zt−1) as equivalent notations

of p(z1|s1) and p(zt|zt−1, st) respectively for s1:T = φ(i).
This notation shows that the MSM extends finite mixture
models to temporal settings as a finite mixture of KT trajec-
tories composed by distributions in ΠA and PA.

Having established the finite mixture model view of Markov
switching models, we will use this notation of MSM in the
rest of Section 3.1, as we will use finite mixture modelling
techniques to establish its identifiability. In detail, we first
define the identification ofMT (ΠA,PA) as follows.

Definition 3.1. The family of first-order MSMs
MT (ΠA,PA) is said to be identifiable up to permu-
tations, when for p1, p2 ∈MT (ΠA,PA) with

p1(z1:T ) =
∑KT

i=1 cipai
1
(z1)

∏T
t=2 pai

t
(zt|zt−1),

p2(z1:T ) =
∑K̂T

i=1 ĉipâi
1
(z1)

∏T
t=2 pâi

t
(zt|zt−1),

p1(z1:T ) = p2(z1:T ), ∀z1:T ∈ RTm, iff K = K̂ and for
each 1 ≤ i ≤ KT there is some 1 ≤ j ≤ K̂T s.t.

1. ci = ĉj ;
2. if ait1 = ait2 for t1, t2 ≥ 2 and t1 ̸= t2, then âjt1 = âjt2 ;
3. pai

t
(zt|zt−1) = pâj

t
(zt|zt−1), ∀t ≥ 2, zt ∈ Rm;

4. pai
1
(z1) = pâj

1
(z1), ∀z1 ∈ Rm.

The 2nd requirement eliminates the permutation equivalence
of e.g., s1:4 = (1, 2, 3, 2); ŝ1:4 = (3, 1, 2, 3) which would
be valid in the finite mixture case with vector indexing.

For the purpose of building deep generative models, we seek
to define identifiable parametric families and defer the study
of the non-parametric case in Appendix B. In particular we
use a non-linear Gaussian transition family as follows:

GA = {pa(zt|zt−1) = N (zt;m(zt−1, a),

Σ(zt−1, a)) | a ∈ A, zt, zt−1 ∈ Rm}, (8)
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where m(zt−1, a) and Σ(zt−1, a) are non-linear w.r.t. zt−1

and denote the mean and covariance matrix, respectively.
We further require the unique indexing assumption:

∀a ̸= a′ ∈ A, ∃zt−1 ∈ Rd, s.t. m(zt−1, a)

̸= m(zt−1, a
′) or Σ(zt−1, a) ̸= Σ(zt−1, a

′). (9)

In other words, for such zt−1, pa(zt|zt−1) and pa′(zt|zt−1)
are two different Gaussian distributions. We also introduce
a family of initial distributions with unique indexing:

IA := {pa(z1) = N (z1;µ(a),Σ1(a)) | a ∈ A}, (10)

a ̸= a′ ∈ A ⇔ µ(a) ̸= µ(a′) or Σ1(a) ̸= Σ1(a
′). (11)

The above Gaussian families paired with unique indexing
assumptions satisfy conditions which favour identifiability
of first-order MSMs under non-linear Gaussian transitions.

Theorem 3.2. Define the following first-order Markov
switching model family under the non-linear Gaussian fam-
ilies,MT

NL =MT (IA,GA) with GA, IA defined by Eqs.
(8), (10) respectively. Then, the MSM is identifiable in terms
of Def. 3.1 under the following assumptions:
(a1) Unique indexing for GA and IA: Eqs. (9), (11) hold;
(a2) For any a ∈ A, the mean and covariance in GA,

m(·, a) : Rm → Rm and Σ(·, a) : Rm → Rm×m,
are analytic functions.

The proof strategy can be summarised in 4 steps.
(1) Under the finite mixture model view, it suffices to show
{pai

1:T
(z1:T ) | ai1:T ∈ A× · · · × A} contains linearly

independent functions (Yakowitz & Spragins, 1968).
(2) Since pai

1:T
(z1:T ) is first-order Markov, we just need

to find conditions for the linear independence of
{pai

1:2
(z1:2)}, and prove T ≥ 3 cases by induction.

(3) For non-parametric {pai
1:2
(z1:2)} case, we specify con-

ditions on PA = {pa(zt|zt−1)} and ΠA = {pa(z1)}
to ensure linear independence of {pai

1:2
(z1:2)}.

(4) We show the MSM family with (non-linear) Gaussian
transitionsMT

NL =MT (IA,GA) is a special case of
(3) when assuming (a1 - a2).

Intuitively, “switches” can be identified as discontinuities in
the dynamic model and are fully controlled by the discrete
states (assumptions a1, a2). Also assumption (a2) means
m(·, a) and m(·, a′) with a ̸= a′ can only intercept at a set
of points with zero Lebesgue measure (similarly for Σ(·, a)),
and this smoothness property contributes to the identifiabil-
ity for the continuous-state transitions pa(zt|zt−1).

The central part of our proof strategy involves showing
linear independence in products of consecutive variables;
e.g.,

ΠA ⊗ PA ⊗ PA =

{
pa1

(z1)pa2
(z2|z1)pa3

(z3|z2)
}
,

(12)

Figure 2: Illustration of the intuition behind Lemma B.3,
where linear independence holds if, for any pair of functions
(shown in green and purple), the intersection in the domain
of the conditioned variable (zt−1) is zero-measured.

where the overlapping variable (indicated with different
colours) challenges linear independence for any consecu-
tive product of linearly independent functions. Figure 2
illustrates the intuition behind our main linear independence
result, Lemma B.3, showing that linear independence of the
product function can be achieved, as long as for the function
family of each component, linear dependence only happens
in zero-measure sets. Our result only requires the above to
hold in at least a non-zero measured set of the overlapping
variable space, and it connects to non-linear Gaussians via
assumption (d3) in Theorem B.8. However, the paramet-
ric assumption (a2) is stronger, as it ensures the non-zero
measure intersection is satisfied almost everywhere.

The following indications of Thm. 3.2, when combined,
show the profound expressivity of identifiable MSMs:

• Assumption (a2) enables parameterising pa(zt|zt−1)
with e.g., polynomials and neural networks (NNs) with
analytic activations (e.g. SoftPlus). For NNs, identifi-
ability applies to the functional form only, since NN
weights do not uniquely index NN functions.

• The identifiability result holds independently of the
choice of p(s1:T ), allowing e.g., non-stationarity and
higher-order Markov dependencies.

Our experiments consider p(s1:T ) to be stationary and first-
order Markov, where its state transitions are also identifiable
(Appendix C). We leave other cases to future work.

Remark. Key to the full proof is the establishment of step
(3), which is proved via a new theoretical result on linear
independence (Lemma B.3), and it can be of independent
interest. Unlike Hidden Markov Models (HMMs), in MSMs
zt and zt+1 are not conditionally independent given the
discrete states. Therefore, seminal HMM identifiability
results (Allman et al., 2009; Gassiat et al., 2016), which
exploit conditional independence of zt and zt+1 in HMMs
and leverage Kruskal’s “3-way arrays” technique (Kruskal,
1977), do not apply to non-parametric MSMs, rendering our
development of new theory (Lemma B.3) necessary.
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Kivva et al (2022) Khemakhem et al. (2020)

Figure 3: We assume zt is transformed via f with noise
ϵt at each time-step t independently. We view this as a
transformation on z1:T via a factored F with noise E .

3.2. Identifiable Switching Dynamical Systems

Based on identifiable MSMs, our analysis of Switching
Dynamical Systems extends the setup from Kivva et al.
(2022) (Section 2.1) to the temporal case. Assume the prior
dynamic model p(z1:T ) belongs to the non-linear Gaussian
MSM familyMT

NL specified by Thm. 3.2. At each time
step t, the latent zt ∈ Rm generates observed data xt ∈ Rn

via a piece-wise linear transformation f . The generation
process of such SDS model can be expressed as follows:

xt = f(zt) + ϵt, ϵt ∼ N (0,Σ) (13)

z1:T ∼ p(z1:T ) ∈MT
NL. (14)

Note that we can also write the decoding process as x1:T =
F(z1:T ) + E with E = (ϵ1, ..., ϵT )

⊤, where F is a fac-
tored transformation composed by f as defined below. Im-
portantly, this notion allows F to inherit e.g., piece-wise
linearity and (weakly) injectivity properties from f .

Definition 3.3. We say that a function F : RmT → RnT is
factored if it is composed by f : Rm → Rn, such that for
any z1:T ∈ RmT , F(z1:T ) = (f(z1), . . . , f(zT ))

⊤.

The identifiability analysis of the SDS model (Eq. (13))
follows two steps (see Figure 3). (i) Following Kivva et al.
(2022), we establish the identifiability for a prior p(z1:T ) ∈
MT

NL from (F#p)(x1:T ) in the noiseless case. Here F#p
denotes the pushforward measure of p by F . (ii) When
the noise E distribution is known, F#p is identifiable from
(F#p) ∗ E using convolution tricks from Khemakhem et al.
(2020). In detail, we first define the notion of identifiability
for p(z1:T ) ∈MT (ΠA,PA) given noiseless observations.

Definition 3.4. Given a family of factored transformations
F, for F ∈ F the prior p ∈ MT (ΠA,PA) is said to be
identifiable up to affine transformations, when for any F ′ ∈
F and p′ ∈ MT (ΠA,PA) s.t. F#p = F ′

#p
′, there exists

an invertible factored affine mapping H : RmT → RmT

composed by h : Rm → Rm, where p ≡ H#p
′.

For the factored F , identifiability up to affine transforma-
tions extends from Def. 2.2.1 in Kivva et al. (2022), which

is defined on f . I.e., for factored mappings F , F ′ composed
by f , f ′, respectively, if f = (f ′ ◦h), where h : Rm → Rm

is an invertible affine transformation, then F = (F ′ ◦ H)
with H a factored mapping composed by h. Now we can
state the following identifiability result for (non-linear) SDS
(proof in Appendix D).

Theorem 3.5. Assume the observations x1:T are generated
from a latent variable model following Eq. (13), whose prior
p(z1:T ) belongs toMT

NL =MT (IA,GA) and satisfies (a1
- a2), and f is a piece-wise linear mapping. Then:

(i) If f , which composes F , is weakly injective (Def. 2.1),
the prior p(z1:T ) is identifiable up to affine transfor-
mations as defined in Def. 3.4.

(ii) If f , which composes F , is continuous and injective
(Def. 2.2), both prior p(z1:T ) and f are identifiable up
to affine transformations (Def. 3.4).

Thm. 3.5 allows identifiable SDSs to employ e.g., SoftPlus
networks for pθ(zt|zt−1, st), and certain (Leaky) ReLU
networks for f (see Kivva et al. (2022)). Again, for neural
networks identifiability refers only to their functional form.

Remark. The MSM family is closed under factored affine
transformations (Prop. C.2) and the proved MSM iden-
tifiability result (Thm. 3.2) is up to permutation equiva-
lence. This means for p1, p2 ∈ MT

NL, one can show that
p1 = H#p2 with an invertible factored affine transforma-
tionH composed by h(z) = Az + b, z ∈ Rm. It indicates
the following relations for mi(·, a) and Σi(·, a), i = 1, 2,
with σ(·) a permutation over indices a ∈ A:

m1(z, a) = Am2

(
A−1(z − b), σ(a)

)
+ b, (15)

Σ1(z, a) = AΣ2

(
A−1 (z − b) , σ(a)

)
AT . (16)

3.3. On Identifiability Conditions for Sequential LVMs

Key to the design of identifiable models is the specification
of constraints to eliminate unwanted equivalences or sym-
metries. For deep sequential latent variable models, these
conditions are required for (i) the temporal dependencies
of the latent dynamic model p(z1:T ) , and (ii) the emission
model p(x1:T |z1:T ) to translate the latent variables to obser-
vations. We compare our proposed identifiability conditions
with existing work, with flexible/restrictive conditions high-
lighted in different colours.

• Identifiable SDS (ours): An MSM dynamic model
p(z1:T ) with smoothness conditions on p(zt|zt−1, st)
but no restrictions on p(s1:T ). The emission model is
restricted to use (weakly) injective mappings.

• HMM-ICA (Hälvä & Hyvarinen, 2020): Latent and
stationary HMM priors following Gassiat et al. (2016),
which requires stationarity and bijective emissions.

• SNICA (Hälvä et al., 2021): Includes SDS under gen-
eral conditions on latent temporal dependencies (weak

5
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stationarity) but restricts the emission to use injective
mappings. Identifiability does not cover transitions.

• IIA-HMM (Morioka et al., 2021): Introduces a re-
current structure in the emissions with bijectivity of
the demixing function. Allows non-stationary innova-
tions using regime-switching sources from a stationary
HMM Gassiat et al. (2016).

• Mechanism Sparsity (Lachapelle et al., 2022; 2024):
A temporal model p(z1:T |u1:T ) with auxiliary obser-
vations u1:T and sparse interactions within z1:T . The
emission model is restricted to use diffeomorphisms.

Overall, often relaxed constraints for one part of the latent
dynamic model need to be compensated with restrictive con-
ditions on the other components. The above works share a
limitation on the use of at least (weakly) injective mappings
for the emission model, which is a common issue in iden-
tifiable DGM research since Khemakhem et al. (2020) and
thus requires substantial future work to address.

4. Model Parameter Estimation
We consider two modelling choices for N sequences D =
{x1:T } of length T : (a) the MSM model (Eq. (4) with z1:T
replaced by x1:T ) and (b) the SDS model with MSM latent
prior (Eqs. (3),(4)). Although our theory imposes no restric-
tions on the discrete latent state distribution, the methods
are implemented with a first-order stationary Markov chain,
i.e., pθ(s1:T ) = pθ(s1)

∏T
t=2 pθ(st|st−1).

Markov Switching Models We use expectation maximi-
sation (EM) for efficient estimation of mixture models
(Bishop, 2006). Below we discuss the M-step update of
the transition distribution parametrised by neural networks;
more details (including polynomial parametrisations) can be
found in Appendix E. When considering analytic neural net-
works, we take a Generalised EM (GEM) (Dempster et al.,
1977) approach where a gradient ascent step is performed

θnew ← θold+

η
T∑

t=2

K∑
k=1

γt,k∇θ log pθ(xt|xt−1, st = k), (17)

where γt,k = pθ(st = k|x1:T ) and the update rule can
be computed using back-propagation. In the equation we
indicate the update rule for a single sample, but note that
we use mini-batch stochastic gradient ascent when N is
large. Convergence is guaranteed for this approach to a local
maximum of the likelihood (Bengio & Frasconi, 1994).

Switching Dynamical Systems We adopt variational in-
ference as presented in Ansari et al. (2021). The parame-
ters are learned by maximising the evidence lower bound
(ELBO) (Kingma & Welling, 2014), and the proposed ap-
proximate posterior over the latent variables {z1:T , s1:T }

incorporates the exact posterior of the discrete latent states
given the continuous latent variables:

qϕ,θ(z1:T , s1:T |x1:T ) = qϕ(z1|x1:T )

T∏
t=2

qϕ(zt|z1:t−1,x1:T )pθ(s1:T |z1:T ). (18)

As in Ansari et al. (2021); Dong et al. (2020), the variational
posterior over the continuous variables qϕ(z1:T |x1:T ) sim-
ulates a smoothing process by first using a bi-directional
RNN on x1:T , and then a forward RNN on the resulting
embeddings. By introducing an exact posterior, the dis-
crete latent variables can be marginalised from the ELBO
objective (see Appendix E.2 for details),

pθ(x1:T ) ≥ Eqϕ(z1:T |x1:T )

[
log pθ(x1:T |z1:T )

]
−KL

(
qϕ(z1:T |x1:T )||pθ(z1:T )

)
. (19)

We use Monte Carlo estimation with samples z1:T ∼
qϕ(z1:T |x1:T ) and the reparametrization trick for back-
propagation (Kingma & Welling, 2014), and jointly learn
the parameters using stochastic gradient ascent on the ELBO
objective. The prior pθ(z1:T ) can be computed exactly us-
ing the forward algorithm (Bishop, 2006) with messages
{αt,k(z1:t) = pθ(z1:t, st = k)} by marginalising out s1:T :

pθ(z1:T ) =
K∑

k=1

αT,k(z1:T ), (20)

αt,k(z1:t) =

K∑
k′=1

pθ(zt|zt−1, st = k)

× pθ(st = k|st−1 = k′)αt−1,k′(z1:t−1). (21)

An alternative approach for SDS inference is presented in
Dong et al. (2020), although Ansari et al. (2021) outlines
some disadvantages (see Appendix E.2 for a discussion).
Note that estimating parameters with ELBO maximisation
has no consistency guarantees in general, and we leave
additional analyses regarding consistency for future work.

5. Related Work
Sequential generative models based on non-linear SDSs
have gained interest over the recent years. Notable works in-
clude structured VAEs (Johnson et al., 2016), soft-switching
Kalman Filters (Fraccaro et al., 2017), or recurrent SDSs
(Linderman et al., 2016; Dong et al., 2020) which can in-
clude explicit duration models on the switches (Ansari et al.,
2021). However, identifiability in such highly non-linear
scenarios is rarely studied. A similar situation is found for
MSMs, which were first introduced by Poritz (1982) and
have been studied decades ago for speech analysis (Poritz,
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Figure 4: Synthetic experiment results on MSMs. (a) L2 distance error using different transition functions with varying T .
(b) L2 distance error and (c) averaged F1 score of non-linear data (cosine activations) with increasing states and dimensions.

1982; Ephraim & Roberts, 2005) and economics (Hamilton,
1989). Although studies have been conducted on maximum
likelihood estimation for some first-order and stationary
MSMs and their asymptotic properties (Frühwirth-Schnatter
& Frèuhwirth-Schnatter, 2006), identifiability for general
high-order autoregressive MSMs has not been proved. The
main complication arises from the explicit dependency on
the observed variables, which poses a great challenge to
prove linear independence of p(z1:T |s1:T ). To our knowl-
edge, identifiability in MSMs has been explicitly studied
only in An et al. (2013) which assumes discrete zt states and
uses the joint probability of four consecutive observations.

Regarding non-linear ICA for time series, identifiability re-
sults extend from Khemakhem et al. (2020) where past val-
ues are used as auxiliary information (Hyvarinen & Morioka,
2017; Hyvarinen et al., 2019; Klindt et al., 2021). Specif-
ically, Yao et al. (2022a;b) recover temporal latent causal
variables and allow non-stationarity via distribution shifts
or time-dependent effects across observed regimes. Another
line of work leverages intervention targets (Lippe et al.,
2023b) or unknown binary interactions with regime infor-
mation (Lippe et al., 2023a). Again these identifiability
results require at least injectivity for the decoder function –
see Section 3.3 for further discussions on this limitation.

6. Experiments
We evaluate the identifiable MSMs and SDSs with three
experiments: (1) simulation studies with ground truth avail-
able for verification of the identifiability results; (2) regime-
dependent causal discovery in climate data with identifi-
able MSMs; and (3) segmentation of high-dimensional se-
quences of salsa dancing using MSMs and SDSs. Additional
results are also presented in Appendix F. Code for inference
and data generation can be found in https://github.
com/charlio23/identifiable-SDS.

6.1. Synthetic Experiments

MSMs We generate data using ground-truth MSMs and
evaluate the estimated functions upon them. We parametrise
the transition distribution means using random cubic polyno-

mials or networks with cosine/SoftPlus activations; and use
fixed transition covariances. When increasing dimensions,
we use locally connected networks (Zheng et al., 2018) to
construct regime-dependent causal structures for the grouth-
truth MSMs, which encourages sparsity and stable data
generation. The estimation error is computed with L2 dis-
tance between grounth-truth and estimated transition mean
functions. We also estimate the causal structure via thresh-
olding the Jacobian of the estimated transition function,
and compute the F1 score to evaluate structure estimation
accuracy. Both evaluation metrics are averaged over K com-
ponents after accounting for permutation equivalence. See
Appendices F.1 to F.4 for experimental details.

Figure 4a shows increasing the sequence length generally
reduces the L2 estimation error. The polynomials are esti-
mated with higher error for short sequences, which could be
caused by the high-frequency components from the cubic
terms. Meanwhile the smoothness of the softplus networks
allows the MSM to achieve consistently better parameter
estimates. Regarding scalability, Figure 4b shows low es-
timation errors when increasing the number of dimensions
and components. For structure estimation acurracy, Figure
4c shows that the MSM with non-linear transitions is able to
maintain high F1 scores, despite the differences in L2 dis-
tance when increasing dimensions and states (4b). Although
the approach is restricted by first-order Markov assump-
tions, the synthetic setting shows promising directions for
high-dimensional regime-dependent causal discovery.

SDSs We use data from 2D MSMs with cosine activations
for the transition means, fixed covariances, and K = 3 com-
ponents, and a random Leaky ReLU network to generate
observations (with no additive noise). For evaluation, we
generate 1000 test samples and compute the F1 score of
the state posterior with respect the ground truth component.
We also compute the L2 distance of m(z, ·) using Eq. (15).
Again both metrics are computed after accounting for per-
mutation and affine transform equivalence (Appendix F.1).
Results in Table 6 show that the method obtains high F1

scores as well as a low L2 distance between the estimated
and ground-truth transition mean functions. We further
apply identifiable SDSs to synthetic videos generated by
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Figure 5: Reconstruction and segmentation (with ground truth) of a video
generated from 2D latent variables sampled from a MSM (frame size 32×32).
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Figure 6: Synthetic experiment on SDSs for
increasing xt dimension.

Table 1: (weak) MCC scores (mean and 95-CI on 5 datasets)
of iSDS in comparison to other nonlinear ICA baselines.

Model MCC-strong MCC-weak

iVAE* 0.642± 0.104 0.770± 0.059
∆-SNICA 0.940± 0.041 0.979± 0.043

iSDS (ours) 0.936± 0.041 0.992± 0.008

treating the 2D latents as positions of a moving ball, and
show a reconstruction with the corresponding segmentation
in Figure 5. This high-dimensional setting increases the
difficulty of accurate estimation as the reconstruction term
of the ELBO out-weights the KL term for learning the la-
tent MSM (Appendix F.3). This results in an increased L2

distance from the ground truth MSM. Still, the estimated
model achieves high-fidelity reconstructions (with an av-
eraged pixel MSE of 8.89 · 10−5), and accurate structure
estimation as indicated by the F1 score.

In Table 1 we compare our identifiable SDS (iSDS) with
iVAE (Khemakhem et al., 2020), and ∆-SNICA (Hälvä
et al., 2021) in the nonlinear ICA domain. For iVAE, which
requires auxiliary observations, we use the ground-truth dis-
crete states to create a strong non-temporal baseline (iVAE*).
Using 50-dimensional test observations generated from the
2D latent MSMs, we compute the mean coefficient cor-
relation (MCC-strong) as described in Khemakhem et al.
(2020). Since our results achieve identifiability up to affine
transformations, we also report the MCC scores after affine
alignment of the latent variables (MCC-weak), as used in
Kivva et al. (2022). Our approach achieves high MCC
scores in both strong and weak settings. For ∆-SNICA,
we observe successful disentanglement despite the linear
prior dynamics differing from the groundtruth MSM struc-
ture based on cosine networks. This is due to the mean-
field variational inference design from Johnson et al. (2016)
and overparametrised linear SDSs, which allow flexible
parametrisations but lose transition identifiability.

6.2. Regime-Dependent Causal Discovery

We explore regime-dependent causal discovery using cli-
mate data from Saggioro et al. (2020). The data consists

0.1

ENSO AIR

(a) linear effects

0.07

0.16

ENSO AIR
0.24

(b) non-linear effects

Figure 7: Regime-dependent graphs generated assuming
(a) linear and (b) non-linear effects. Green and blue lines
indicate effects in summer and winter months respectively.

on monthly observations of El Niño Southern Oscillation
(ENSO) and All India Rainfall (AIR) from 1871 to 2016. We
follow Saggioro et al. (2020) and train identifiable MSMs
with linear and non-linear (softplus networks) transitions.
Figure 7 shows the regime-dependent graphs extracted from
both models, where the edge weights denote the absolute
value of the corresponding entries in the estimated transition
function’s Jacobian (we keep edges with weights ≥ 0.05).
The MSMs capture regimes based on seasonality, as one
component is assigned to summer months (May - Septem-
ber), and the other is assigned to winter months (October -
April). In the linear case, the MSM discovers an effect from
ENSO to AIR which occurs only during Summer. This sug-
gests that ENSO has a direct effect on AIR during summer,
but not in winter, which is consistent with Saggioro et al.
(2020) and Webster & Palmer (1997). For the non-linear
case (Figure 7b), additional links are discovered which are
yet to be supported by evidence in climate science. But as
the flexibility of non-linear MSMs allows capturing corre-
lations as causal effects in disguise, these additional links
may imply the presence of confounders influencing both
variables – a likely result for cases with few observations.

6.3. Segmentation of Dancing Patterns

We consider salsa dancing sequences from CMU mocap data
and Hip-Hop videos from AIST Dance DB (Tsuchida et al.,
2019) to demonstrate our models’ ability in segmenting
high-dimensional time-series. See Appendix for details on
the data (F.6), training (F.3), and additional results (F.7).

Key-point data We present a sample using key-point data
in Figure 9 with both the identifiable MSM (iMSM; softplus
networks) and KVAE (Fraccaro et al., 2017). The iMSM
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(a) Synthetic salsa videos (pixel MSE 2.26 · 10−4 per frame). (b) AIST Hip-Hop videos (pixel MSE 7.85 · 10−3 per frame).

Figure 8: Reconstructions and segmentations of (a) salsa dancing and (b) AIST Hip-Hop videos, where colour boxes indicate
different components. The MSE results are computed on 560 and 100 test videos for salsa and Hip-Hop, respectively.

iM
SM

 (o
ur

s)

Forward- backward Turning around Double spinStanding in front

KV
AE

Figure 9: Posterior probability of a salsa dancing sequence
of iMSM and KVAE (Fraccaro et al., 2017) along with
several patterns distinguished in the example.

assigns different patterns to different states, e.g., the ma-
jor pattern (forward-backward movements) is assigned to
state 1. The iMSM also identifies this pattern at the end,
which KVAE fails to recognise. Additionally, KVAE as-
signs a turning pattern into component 2, while iMSM treats
turning as in state 1 patterns, but then jumps to component
2 consistently after observing it. The iMSM also classi-
fies other dancing patterns into state 0. For limitations, the
soft-switching mechanism restricts KVAE from confident
component assignments. The iMSM’s first-order Markov
transitions hinders learning e.g., acceleration that would
provide richer features for better segmentation.

Dancing videos We show reconstructions and segmenta-
tion results in Figure 8 to demonstrate identifiable SDS’s
applicability to videos. Here, we generate salsa videos by
rendering 3D meshes from key-points using the renderer
from Mahmood et al. (2019) (Figure 8a). Again in this
experiment, one component is more prominent and used
for the majority of the forward and backward patterns; and
the other components are used to model spinning and other
dancing patterns. Meanwhile segmentation results on AIST
videos (Figure 8b) show more diverse patterns, illustrating a
correlation between the discovered regimes and the moving

position of the dancer and background information. The
pixel MSE results also support identifiable SDSs as flexible
sequential LVMs for video modelling.

7. Conclusion
We present identifiability analysis for Markov Switching
Models and Switching Dynamical Systems. Key to our
innovation is the establishment of MSM identifiability using
Gaussian transitions with analytic functions, independently
of the discrete state prior. We further extend the results
to develop identifiable SDSs fully parameterised by neural
networks. We verify our theory with synthetic experiments,
and apply our models to regime-dependent causal discovery
and high-dimensional time-series segmentation.

While our work focuses on identifiability, accurate estima-
tion is also key to the success of causal discovery. Current es-
timation methods require intensive hyper-parameter tuning
and are prone to state collapse in high-dimensional settings.
Also variational learning for deep LVMs has no consistency
guarantees unless assuming universal approximations of the
q posterior (Gong et al., 2023), which disagrees with the pop-
ular use of Gaussian encoders. Future work should design
efficient estimation methods, and extend the identifiability
and estimation innovations to higher-order MSMs/SDSs.
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A. Non-parametric finite mixture models
We use the following existing result on identifying finite mixtures (Yakowitz & Spragins, 1968), which introduces the
concept of linear independence to the identification of finite mixtures. Specifically, consider a distribution family that
contains functions defined on x ∈ Rd:

FA := {Fa(x)|a ∈ A} (22)

where Fa(x) is an d-dimensional CDF andA is a measurable index set such that Fa(x) as a function of (x, a) is measurable
on Rd ×A. In this paper, we assume this measure theoretic assumption on A is satisfied. Now consider the following finite
mixture distribution family by linearly combining the CDFs in F :

HA := {H(x) =
N∑
i=1

ciFai
(x)|N < +∞, ai ∈ A, ai ̸= aj , ∀i ̸= j,

N∑
i=1

ci = 1}. (23)

Then we specify the definition of identifiable finite mixture family as follows:

Definition A.1. The finite mixture familyH is said to be identifiable up to permutations, when for any two finite mixtures
H1(x) =

∑M
i=1 ciFai

(x) and H2(x) =
∑M

i=1 ĉiFâi
(x), H1(x) = H2(x) for all x ∈ Rd, if and only if M = N and for

each 1 ≤ i ≤ N there is some 1 ≤ j ≤M such that ci = ĉj and Fai
(x) = Fâj

(x) for all x ∈ Rd.

Then Yakowitz & Spragins (1968) proved the identifiability results for finite mixtures. To see this, we first introduce the
concept of linearly independent functions under finite mixtures as follows.

Definition A.2. A family of functions F = {fa(x)|a ∈ A} is said to contain linearly independent functions under finite
mixtures, if for any A0 ⊂ A such that |A0| < +∞, the functions in {fa(x)|a ∈ A0} are linearly independent.

This is a weaker requirement of linear independence on function classes as it allows linear dependency by representing one
function as the linear combination of infinitely many other functions. With this relaxed definition of linear independence we
state the identifiability result of finite mixture models as follows.

Proposition A.3. (Yakowitz & Spragins, 1968) The finite mixture distribution familyH is identifiable up to permutations,
iff. functions in F are linearly independent under the finite mixture model.

B. Proof of theorem 3.2
We follow the strategy described in the main text.

B.1. Identifiability via linear independence

Proposition A.3 can be directly generalised to CDFs defined on z1:T ∈ RTm. Furthermore, if we have a family of PDFs3,
e.g. PT

A := ΠA ⊗ (⊗T
t=2PA), with linearly independent components, then their corresponding Tm-dimensional CDFs are

also linearly independent (and vice versa). Therefore we have the following result as a direct extension of Proposition A.3.

Proposition B.1. Consider the distribution family given by Eq. 7. Then the joint distribution inMT (ΠA,PA) is identifiable
up to permutations if and only if functions in PT

A are linearly independent under finite mixtures.

The above assumption of linear independence under finite mixtures over the joint distribution implies the following
identifiability result.

Theorem B.2. Assume the functions in PT
A := ΠA ⊗ (⊗T

t=2PA) are linearly independent under finite mixtures, then the
distribution familyMT (ΠA,PA) is identifiable as defined in Definition 3.1.

Proof. From proposition B.1 we see that, PT
A being linearly independent implies identifiability up to permutation for

MT (ΠA,PA) in the finite mixture sense (Definition A.1). This means for p1(z1:T ) and p2(z1:T ) defined in Definition 3.1,
we have K = K̂ and for every 1 ≤ i ≤ KT , there exists 1 ≤ j ≤ K̂T such that ci = ĉj and

pai
1
(z1)

T∏
t=2

pai
t
(zt|zt−1) = pâj

1
(z1)

T∏
t=2

pâj
t
(zt|zt−1), ∀z1:T ∈ RTm.

3In this case we assume that the probability measures are dominated by the Lebesgue measure on RTm and the CDFs are differentiable.
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This also indicates that pai
t
(zt|zt−1) = pâj

t
(zt|zt−1) for all t ≥ 2, zt, zt−1 ∈ Rm, which can be proved by noticing that

pa(zt|zt−1) are conditional PDFs. To see this, notice that as the joint distributions on z1:T are equal, then the marginal
distributions on z1:T−1 are also equal:

pai
1
(z1)

T−1∏
t=2

pai
t
(zt|zt−1) = pâj

1
(z1)

T−1∏
t=2

pâj
t
(zt|zt−1), ∀z1:T−1 ∈ R(T−1)m,

which immediately implies pai
T
(zT |zT−1) = pâj

T
(zT |zT−1), ∀zT−1, zT ∈ Rm. Similar logic applies to the other time

indices t ≥ 1, which also implies pai
1
(z1) = pâj

1
(z1) for all z1 ∈ Rm.

Lastly, if there exists t1 ̸= t2 such that ait1 = ait2 but âjt1 ̸= âjt2 , then the proved fact that, for any α,β ∈ Rm,

pâj
t1

(zt1 = β|zt1−1 = α) = pai
t1
(zt1 = β|zt1−1 = α)

= pai
t2
(zt2 = β|zt2−1 = α)

= pâj
t2

(zt2 = β|zt2−1 = α),

implies linear dependence of PA, which contradicts to the assumption that PT
A are linearly independent under finite mixtures.

We show the contradiction by assuming the case where Pt−1
A is linearly independent for some t > 1, and then we consider

the linear independence on Pt
A. We should have∑

i,j

γijpai
1:t−1

(z1:t−1)paj
t
(zt|zt−1) = 0, ∀z1:t ∈ R(t−1)m × Rm,

with γij = 0, ∀i, j. We can swap the summations to observe that from linear dependence of PA, we have γij ̸= 0, for some
i and j such that

∑
j γijpaj

t
(zt|zt−1) = 0.

∑
i

∑
j

γijpaj
t
(zt|zt−1)

 pai
1:t−1

(z1:t−1) = 0, ∀z1:t ∈ R(t−1)m × Rm,

which satisfies the equation with γij ̸= 0 for some i and j and thus contradicts with the linear independence of Pt
A.

B.2. Linear independence for T=2

Following the strategy as described in the main text, the next step requires us to start from linear independence results for
T = 2, and then extend to T > 2. We therefore prove the following linear independence result.

Lemma B.3. Consider two families UI := {ui(y,x)|i ∈ I} and VJ := {vj(z,y)|j ∈ J} with x ∈ X ,y ∈ Rdy and
z ∈ Rdz . We further assume the following assumptions:

(b1) Positive function values: ui(y,x) > 0 for all i ∈ I, (y,x) ∈ Rdy ×X . Similar positive function values assumption
applies to VJ : vj(z,y) > 0 for all j ∈ J, (z,y) ∈ Rdz × Rdy .

(b2) Unique indexing: for UI , i ̸= i′ ∈ I ⇔ ∃ x,y s.t. ui(x,y) ̸= ui′(x,y). Similar unique indexing assumption applies
to VJ ;

(b3) Linear independence under finite mixtures on specific non-zero measure subsets for UI : for any non-zero measure
subset Y ⊂ Rdy , UI contains linearly independent functions under finite mixtures on (y,x) ∈ Y × X .

(b4) Linear independence under finite mixtures on specific non-zero measure subsets for VJ : there exists a non-zero measure
subset Y ⊂ Rdy , such that for any non-zero measure subsets Y ′ ⊂ Y and Z ⊂ Rdz , VJ contains linearly independent
functions under finite mixtures on (z,y) ∈ Z × Y ′;
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(b5) Linear dependence under finite mixtures for subsets of functions in VJ implies repeating functions: for any β ∈ Rdy ,
any non-zero measure subset Z ⊂ Rdz and any subset J0 ⊂ J such that |J0| < +∞, {vj(z,y = β)|j ∈ J0} contains
linearly dependent functions on z ∈ Z only if ∃ j ̸= j′ ∈ J0 such that vj(z,β) = vj′(z,β) for all z ∈ Rdz .

(b6) Continuity for VJ : for any j ∈ J , vj(z,y) is continuous in y ∈ Rdy .

Then for any non-zero measure subset Z ⊂ Rdz , UI ⊗ VJ := {vj(z,y)ui(y,x)|i ∈ I, j ∈ J} contains linear indepedent
functions under finite mixtures defined on (x,y, z) ∈ X × Rdy ×Z .

Proof. Assume this sufficiency statement is false, then there exist a non-zero measure subset Z ⊂ Rdz , S0 ⊂ I × J with
|S0| < +∞ and a set of non-zero values {γij ∈ R|(i, j) ∈ S0}, such that∑

(i,j)∈S0

γijvj(z,y)ui(y,x) = 0, ∀(x,y, z) ∈ X × Rdy ×Z. (24)

Note that the choices of S0 and γij are independent of any x,y, z values, but might be dependent on Z . By assumptions
(b1), the index set S0 contains at least 2 different indices (i, j) and (i′, j′). In particular, S0 contains at least 2 different
indices (i, j) and (i′, j′) with j ̸= j′, otherwise we can extract the common term vj(z,y) out:

∑
(i,j)∈S0

γijvj(z,y)ui(y,x) = vj(z,y)

 ∑
i:(i,j)∈S0

γijui(y,x)

 = 0, ∀(x,y, z) ∈ X × Rdy ×Z,

and as there exist at least 2 different indices (i′, j) and (i, j) in S0, we have at least one i′ ̸= i, and the above equation
contradicts to assumptions (b1) - (b3).

Now define J0 = {j ∈ A|∃(i, j) ∈ S0} the set of all possible j indices that appear in S0, and from |S0| < +∞ we have
|J0| < +∞ as well. We rewrite the linear combination equation (Eq. (24)) for any β ∈ Rdy as

∑
j∈J0

 ∑
i:(i,j)∈S0

γijui(y = β,x)

 vj(z,y = β) = 0, ∀(x, z) ∈ X × Z. (25)

From assumption (b3) we know that the set Y0 := {β ∈ Rdy |
∑

i:(i,j)∈S0
γijui(y = β,x) = 0, ∀x ∈ X} can only have

zero measure in Rdy . Write Y ⊂ Rdy the non-zero measure subset defined by assumption (b4), we have Y1 := Y\Y0 ⊂ Y
also has non-zero measure and satisfies assumption (b4). Combined with assumption (b1), we have for each β ∈ Y1, there
exists x ∈ X such that

∑
i:(i,j)∈S0

γijui(y = β,x) ̸= 0 for at least two j indices in J0. This means for each β ∈ Y1,
{vj(z,y = β)|j ∈ J0} contains linearly dependent functions on z ∈ Z . Now under assumption (b5), we can split the
index set J0 into subsets indexed by k ∈ K(β) as follows, such that within each index subset Jk(β) the functions with the
corresponding indices are equal:

J0 = ∪k∈K(β)Jk(β), Jk(β) ∩ Jk′(β) = ∅, ∀k ̸= k′ ∈ K(β),

j ̸= j′ ∈ Jk(β) ⇔ vj(z,y = β) = vj′(z,y = β), ∀z ∈ Z.
(26)

Then we can rewrite Eq. (25) for any β ∈ Y1 as

∑
k∈K(β)

 ∑
j∈Jk(β)

∑
i:(i,j)∈S0

γijui(y = β,x)vj(z,y = β)

 = 0, ∀(x, z) ∈ X × Z. (27)

Recall from Eq. (26) that vj(z,y = β) and vj′(z,y = β) are the same functions on z ∈ Z iff. j ̸= j′ are in the same index
set Jk(β). This means if Eq. (24) holds, then for any β ∈ Y1, under assumptions (b1) and (b5),∑

j∈Jk(β)

∑
i:(i,j)∈S0

γijui(y = β,x) = 0, ∀x ∈ Rd, k ∈ K(β). (28)

Define C(β) = mink |Jk(β)| the minimum cardinality count for j indices in the Jk(β) subsets. Choose β∗ ∈
argminβ∈Y1 C(β):

15



On the Identifiability of Switching Dynamical Systems

1. We have C(β∗) < |J0| and |K(β∗)| ≥ 2. Otherwise for all j ̸= j′ ∈ J0 we have vj(z,y = β) = vj′(z,y = β) for
all z ∈ Z and β ∈ Y1, so that they are linearly dependent on (z,y) ∈ Z × Y1, a contradiction to assumption (b4) by
setting Y ′ = Y1.

2. Now assume |J1(β∗)| = C(β∗) w.l.o.g.. From assumption (b5), we know that for any j ∈ J1(β
∗) and j′ ∈ J0\J1(β∗),

vj(z,y = β) = vj′(z,y = β) only on zero measure subset of Z at most. Then as |J0| < +∞ and Z ⊂ Rdz has
non-zero measure, there exist z0 ∈ Z and δ > 0 such that

|vj(z = z0,y = β∗)− vj′(z = z0,y = β∗)| ≥ δ, ∀j ∈ J1(β
∗), ∀j′ ∈ J0\J1(β∗).

Under assumption (b6), there exists ϵ(j) > 0 such that we can construct an ϵ-ball Bϵ(j)(β
∗) using ℓ2-norm, such that

|vj(z = z0,y = β∗)− vj(z = z0,y = β)| ≤ δ/3, ∀β ∈ Bϵ(j)(β
∗).

Choosing a suitable 0 < ϵ ≤ minj∈J0
ϵ(j) (note that minj∈J0

ϵ(j) > 0 as |J0| < +∞) and constructing an ℓ2-
norm-based ϵ-ball Bϵ(β

∗) ⊂ Y1, we have for all j ∈ J1(β
∗), j′ ∈ J0\J1(β∗), j′ /∈ J1(β) for all β ∈ Bϵ(β

∗) due
to

|vj(z = z0,y = β)− vj′(z = z0,y = β)| ≥ δ/3, ∀β ∈ Bϵ(β
∗).

So this means for the split {Jk(β)} of any β ∈ Bϵ(β
∗), we have J1(β) ⊂ J1(β

∗) and therefore |J1(β)| ≤ |J1(β∗)|.
Now by definition of β∗ ∈ argminβ∈Y C(β) and |J1(β∗)| = C(β∗), we have J1(β) = J1(β

∗) for all β ∈ Bϵ(β
∗).

3. One can show that |J1(β∗)| = 1, otherwise by definition of the split (Eq. (26)) and the above point, there exists
j ̸= j′ ∈ J1(β

∗) such that vj(z,y = β) = vj′(z,y = β) for all z ∈ Z and β ∈ Bϵ(β
∗), a contradiction to

assumption (b4) by setting Y ′ = Bϵ(β
∗). Now assume that j ∈ J1(β

∗) is the only index in the subset, then the fact
proved in the above point that J1(β) = J1(β

∗) for all β ∈ Bϵ(β
∗) means∑

i:(i,j)∈S0

γijui(y = β,x) = 0, ∀x ∈ X , ∀β ∈ Bϵ(β
∗),

again a contradiction to assumption (b3) by setting Y = Bϵ(β
∗).

The above 3 points indicate that Eq. (28) cannot hold for all β ∈ Y1 (and therefore for all β ∈ Y) under assumptions (b3) -
(b6), therefore a contradiction is reached.

B.3. Linear independence in the non-parametric case

The previous result can be used to show conditions for the linear independence of the joint distribution family PT
A in the

non-parametric case.

Theorem B.4. Define the following joint distribution family{
pa1,a2:T

(z1:T ) = pa1(z1)
T∏

t=2

pat(zt|zt−1), pa1 ∈ ΠA, pat ∈ PA, t = 2, ..., T

}
,

and assume ΠA and PA satisfy assumptions (b1)-(b6) as follows,

(c1) ΠA and PA satisfy (b1) and (b2): positive function values and unique indexing,

(c2) ΠA satisfies (b3), and

(c3) PA satisfies (b4)-(b6).

Then the following statement holds: For any T ≥ 2 and any subset Z ⊂ Rm The joint distribution family contains linearly
independent distributions for (z1:T−1, zT ) ∈ R(T−1)m ×Z .
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Proof. We proceed to prove the statement by induction as follows. Here we set I = J = A.

(1) T = 2: The result can be proved using Lemma B.3 by setting in the proof, ui(y = z1,x = z0) = πi(z1), i ∈ A and
vj(z = z2,y = z1) = pj(z2|z1), j ∈ A.

(2) T > 2: Assume the statement holds for the joint distribution family when T = τ − 1. Note that we can write pa1:τ
(z1:τ )

as
pa1:τ

(z1:τ ) = pa1,a2:τ−1
(x1:τ−1)paτ

(zτ |zτ−1).

Then the statement for T = τ can be proved using Lemma B.3 by setting ui(y = zτ−1,x = z1:τ−2) = pa1:τ−1
(z1:τ−1), i =

a1:τ−1, and vj(z = zτ ,y = zτ−1) = paτ (zτ |zτ−1), j = aτ . Note that the family spanned with pa1:τ−1(z1:τ−1), i =
a1:τ−1 satisfies (b1) and (b2) from ΠA and PA directly, and (b3) from the induction hypothesis.

With the result above, one can construct identifiable Markov Switching Models as long as the initial and transition
distributions are consistent with assumptions (c1)-(c3).

B.4. Linear independence in the non-linear Gaussian case

As described, in the final step of the proof we explore properties of the Gaussian transition and initial distribution families
(Eqs. (8) and (10) respectively). The unique indexing assumption of the Gaussian transition family (Eq. (9)) implies linear
independence as shown below.

Proposition B.5. Functions in GA are linearly independent on variables (zt, zt−1) if the unique indexing assumption
(Eq. (9)) holds.

Proof. Assume the statement is false, then there exists A0 ⊂ A and a set of non-zero values {γa|a ∈ A0}, such that∑
a∈A0

γaN (zt;m(zt−1, a),Σ(zt−1, a)) = 0, ∀zt, zt−1 ∈ Rm.

In particular, this equality holds for any zt−1 ∈ Rm, meaning that a weighted sum of Gaussian distributions (defined on zt)
equals to zero. Note that Yakowitz & Spragins (1968) proved that multivariate Gaussian distributions with different means
and/or covariances are linearly independent. Therefore the equality above implies for any zt−1

m(zt−1, a) = m(zt−1, a
′) and Σ(zt−1, a) = Σ(zt−1, a

′) ∀a, a′ ∈ A0, a ̸= a′,

a contradiction to the unique indexing assumption.

We now draw some connections from the previous Gaussian families to assumptions (b1-b6) in Lemma B.3.

Proposition B.6. The conditional Gaussian distribution family GA (Eq. (8), under the unique indexing assumption (Eq. (9),
satisfies assumptions (b1), (b2) and (b5) in Lemma B.3, if we define VJ := GA, z := zt and y := zt−1.

Proposition B.7. The initial Gaussian distribution family IA (Eq. (10), under the unique indexing assumption (Eq. (11),
satisfies assumptions (b1), (b2) and (b3) in Lemma B.3, if we define UI := IA,y := z1 and x = X = ∅.

To see why GA satisfies (b5), notice Gaussian densities are analytic in zt. Similar ideas apply to show that IA satisfies (b3).
With the previous results, we can rewrite the previous result for the non-linear Gaussian case.

Theorem B.8. Define the following joint distribution family under the non-linear Gaussian model

PT
A =

{
pa1,a2:T

(z1:T ) = pa1(z1)
T∏

t=2

pat(zt|zt−1), at ∈ A, pa1 ∈ IA, pat ∈ GA, t = 2, ..., T

}
, (29)

with GA, IA defined by Eqs. (8), (10) respectively. Assume:

(d1) Unique indexing for GA and IA: Eqs. (9), (11) hold;

(d2) Continuity for the conditioning input: distributions in GA are continuous w.r.t. zt−1 ∈ Rm;
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(d3) Zero-measure intersection in certain region: there exists a non-zero measure set X0 ⊂ Rm s.t. {zt−1 ∈
X0|m(zt−1, a) = m(zt−1, a

′),Σ(zt−1, a) = Σ(zt−1, a
′)} has zero measure, for any a ̸= a′;

Then, the joint distribution family contains linearly independent distributions for (z1:T−1, zT ) ∈ R(T−1)m × Rm.

Proof. Note that assumptions (b1) - (b3) and (b5) are satisfied due to Propositions B.6 and B.7, and assumptions (b6) and
(d2) are equivalent, and assumption (b4) holds due to assumption (d3). To show (d3) =⇒ (b4), We first define VJ := GA,
z := zt, and y := zt−1 from Prop. B.6. From (d3), Y := X0 and note that VJ contains linear independent functions on
(z,y) ∈M ⊂ Z × Y ifM ̸= Z ×D, where D denotes the set where intersection of moments happen within Y . Also by
(d3), D has measure zero and thus, (b4) holds since Y ′ is a non-zero measure set.

Then, the statement holds by Theorem B.4.

B.5. Concluding the proof

Below we formally state the proof for Theorem 3.2 by further assuming parametrisations of the Gaussian moments via
analytic functions, i.e. assumption (a2).

Proof. (a1) and (d1) are equivalent. Following (a2), let m(·, a) : Rm → Rm be a multivariate analytic function, which
allows a multivariate Taylor expansion. The corresponding Taylor expansion of m(·, a) implies (d2). Similar logic
applies to Σ(·, a). To show (d3), we note for any a ̸= a′ the set of intersection of moments, i.e. {z ∈ Rm|m(z, a) =
m(z, a′),Σ(zt−1, a) = Σ(zt−1, a

′)} can be separated as the intersection of the sets {z ∈ Rm|m(x, a) = m(z, a′)} and
{z ∈ Rm|Σ(zt−1, a) = Σ(zt−1, a

′)}. Wlog, the set {z ∈ Rm|m(z, a) = m(z, a′)} is the zero set of an analytic function
f := m(·, a)−m(·, a′). Proposition 0 in Mityagin (2015) shows that the zero set of a real analytic function on Rm has
zero measure unless f is identically zero. Hence, the intersection of moments has zero measure from our premise of unique
indexing.

Since (d1-d3) are satisfied, by Theorem B.8 we have linear independence of the joint distribution family, which by Theorem
B.2 implies identifiability of the MSM in the sense of Def. 3.1.

C. Properties of the MSM
In this section, we present some results involving MSMs for convenience. First, we start with the result on first-order
stationary Markov chains presented in section 3.1.

Corollary C.1. Consider an identifiable MSM from Def. 3.1, where the prior distribution of the states p(s1:T ) follows
a first-order stationary Markov chain, i.e p(s1:T ) = πs1Qs1,s2 . . . QsT−1,sT , where π denotes the initial distribution:
p(s1 = k) = πk, and Q denotes the transition matrix: p(st = k|st−1 = l) = Ql,k. Then, π and Q are identifiable up to
permutations.

Proof. From Def. 3.1, we have K = K̂ and for every 1 ≤ i ≤ KT there is some 1 ≤ j ≤ K̂T such that ci = ĉj . Now
writing s1:T = (si1, ..., s

i
T ) = φ(i) and ŝ1:T = (ŝj1, ..., ŝ

j
T ) = φ(j), we have

ci = πsi1
Qsi1,s

i
2
. . . QsiT−1,s

i
T
= π̂ŝj1

Q̂ŝj1,ŝ
j
2
. . . Q̂ŝjT−1,ŝ

j
T
= ĉj .

Since the joint distributions are equal on s1:T , they must also be equal on s1:T−1. Therefore, we have QsiT−1,s
i
T
= Q̂ŝjT−1,ŝ

j
T

.
Similar logic applies to t ≥ 1, which also implies πsi1

= π̂ŝj1
.

For t = 1, the above implies that for each i ∈ {1, ...,K}, there exists some j ∈ {1, ...,K}, such that πi = π̂j . This indicates
permutation equivalence. We denote σ(·) as such permutation function, so that for all i ∈ {1, ...,K} and the corresponding
j, πi = π̃j = πσ(j).

For t > 1, the previous implication gives us that for i, j ∈ {1, . . . ,K}, ∃k, l ∈ {1, . . . ,K} such that Qi,j = Q̂k,l. Following
the previous logic, we can define permutations that match Q and Q̂: i = σ1(k), j = σ2(l). We observe from the second
requirement in Def. 3.1 that if i = j, then k = l and since σ1(k) = σ2(l), we have that the permutations σ1(·) and σ2(·)
must be equal. Therefore, we have Qi,j = Q̂k,l = Qσ1(k),σ1(l).
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Finally, we can use the second requirement in Def. 3.1 to see that σ(·) and σ1(·) must be equal.

Proposition C.2. The joint distribution of the Markov Switching Model with Gaussian analytic transitions and Gaussian
initial distributions is closed under factored invertible affine transformations, z′

1:T = H(z1:T ): z′
t = Azt + b, 1 ≤ t ≤ T .

Proof. Consider the following affine transformation z′
t = Azt + b for 1 ≤ t ≤ T , and the joint distribution of a Markov

Switching Model with T timesteps

p(z1:T ) =
∑
s1:T

p(s1:T )p(z1|s1)
T∏

t=2

p(zt|zt−1, st),

where we denote the initial distribution as p(z1|s1 = i) = N (z1;µ(i),Σ1(i)) and the transition distribution as
p(zt|zt−1, st = i) = N (zt;m(zt−1, i),Σ(zt−1, i)). We need to show that the distribution still consists of Gaussian
initial distributions and Gaussian analytic transitions. Let us consider the change of variables rule, which we apply to
p(z1:T )

pz′
1:T

(z′
1:T ) =

pz1:T

(
A−1

1:T (z′
1:T − b1:T )

)
det(A1:T )

,

where we use the subscript z′
1:T to indicate the probability distribution in terms of z′

1:T , but we drop it for simplicity. Note
that the inverse of a block diagonal matrix can be computed as the inverse of each block, and we use similar properties for
the determinant, i.e. det(A1:T ) = det(A) · · · det(A). The distribution in terms of the transformed variable is expressed as
follows:

p(z′
1:T ) =

∑
s1:T

p(s1:T )
p
(
A−1 (z′

1 − b) |s1
)

det(A)

T∏
t=2

p
(
A−1 (z′

t − b) |
(
A−1

(
z′
t−1 − b

))
, st
)

det(A)

=
∑

i1,...,iT

p (s1:T = {i1, . . . , iT })N
(
z′
1;Aµ(i1) + b, AΣ1(i1)A

T
)

T∏
t=2

1√
(2π)

m
det
(
AΣ

(
A−1

(
z′
t−1 − b

)
, it
)
AT
)

exp

(
− 1

2

(
A−1 (z′

t − b)−m
(
A−1

(
z′
t−1 − b

)
, it
) )T

Σ
(
A−1

(
z′
t−1 − b

)
, it

)−1(
A−1 (z′

t − b)−m
(
A−1

(
z′
t−1 − b

)
, it
) ))

=
∑

i1,...,iT

p (s1:T = {i1, . . . , iT })N
(
z′
1;Aµ(i1) + b, AΣ1(i1)A

T
)

T∏
t=2

1√
(2π)

m
det
(
AΣ

(
A−1

(
z′
t−1 − b

)
, it
)
AT
)

exp

(
− 1

2

(
z′
t −Am

(
A−1

(
z′
t−1 − b

)
, it
)
− b

)T
A−1Σ

(
A−1

(
z′
t−1 − b

)
, it

)−1

A−T
(
z′
t −Am

(
A−1

(
z′
t−1 − b

)
, it
)
− b

))
=

∑
i1,...,iT

p (s1:T = {i1, . . . , iT })N
(
z′
1;Aµ(i1) + b, AΣ1(i1)A

T
)

T∏
t=2

N
(
z′
t;Am

(
A−1

(
z′
t−1 − b

)
, it
)
+ b, AΣ

(
A−1

(
z′
t−1 − b

)
, it

)
AT
)
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We observe that the resulting distribution is a Markov Switching Model with changes in the Gaussian initial and transition
distributions, where the analytic transitions are transformed as follows: bmm′(z′

t−1, it) = Am
(
A−1

(
z′
t−1 − b

)
, it
)
+ b,

and Σ′(z′
t−1, it) = AΣ

(
A−1

(
z′
t−1 − b

)
, it

)
AT for any it ∈ {1, . . . ,K}.

D. Proof of SDS identifiability
D.1. Preliminaries

We need to introduce some definitions and results that will be used in the proof. These have been previously defined in
Kivva et al. (2022).

Definition D.1. Let D0 ⊆ D ⊆ Rn be open sets. Let f0 : D0 → R. We say that an analytic function f : D → R is an
analytic continuation of f0 onto D if f(x) = f0(x) for every x ∈ D0.

Definition D.2. Let x0 ∈ Rm and δ > 0. Let p : B(x0, δ)→ R. Define

Ext(p) : Rm → R

to be the unique analytic continuation of p on the entire space Rm if such a continuation exists, and to be 0 otherwise.

Definition D.3. Let D0 ⊂ D and p : D → R be a function. We define p|D0
: D → R to be a restriction of p to D0, namely

a function that satisfies p|D0
(x) = p(x) for every x ∈ D0.

Definition D.4. Let f : Rm → Rn be a piece-wise affine function. We say that a point x ∈ f(Rm) ⊆ Rn is generic with
respect to f if the pre-image f−1({x}) is finite and there exists δ > 0, such that f : B(z, δ) → Rn is affine for every
z ∈ f−1({x}).
Lemma D.5. If f : Rm → Rn is a piece-wise affine function such that {x ∈ Rn : |f−1({x})| > 1} ⊆ f(Rm) has measure
zero with respect to the Lebesgue measure on f(Rm), then dim(f(Rm)) = m and almost every point in f(Rm) is generic
with respect to f .

D.2. Proof of theorem 3.5.(i)

We extend the results from Kivva et al. (2022) to using our MSM family as prior distribution for z1:T . The strategy requires
finding some open set where the transformations F and G from two equally distributed SDSs are invertible, and then use
analytic function properties to establish the identifiability result. First, we need to show that the points in the pre-image of a
piece-wise factored mapping F can be computed using the MSM prior.

Lemma D.6. Consider a random variable z1:T which follows a Markov Switching Model distribution. Let us consider f :
Rm → Rm, a piece-wise affine mapping which generates the random variable x1:T = F(z1:T ) as xt = f(zt), 1 ≤ t ≤ T .
Also, consider x(0) ∈ Rm a generic point with respect to f . Then, x(0)

1:T = {x(0), . . . ,x(0)} ∈ RTm is also a generic point
with respect to F and the number of points in the pre-image F−1({x(0)

1:T }) can be computed as∣∣∣F−1
({

x
(0)
1:T

})∣∣∣ = lim
δ→0

∫
x1:T∈RTm

Ext
(
p|

B(x
(0)
1:T ,δ)

)
dx1:T

Proof. If x(0) ∈ Rm is a generic point with respect to f , x(0)
1:T is also a generic point with respect to F since the pre-

image is F({x(0)
1:T }) now larger but still finite. In other words, F({x(0)

1:T }) is the Cartesian product Z × Z × · · · × Z ,
where Z = {z1, z2, . . . , zn} are the points in the pre-image f({x(0)}). Considering this, we have well defined affine
mappings Gi1,...,iT : B({zi1 , . . . , ziT }, ϵ)→ Rm, it ∈ {1, . . . , n} for 1 ≤ t ≤ T , such that Gi1,...,iT = F(z1:T ), ∀z1:T ∈
B({zi1 , . . . , ziT }, ϵ). This affine mapping Gi1,...,iT is factored as follows:

git(zt) = f(zt), ∀zt ∈ B(zi, ϵ)

Gi1,...,iT =

Ai1 . . . 0
...

. . .
...

0 . . . AiT


z1

...
zT

+

bi1
...

biT


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Let δ0 > 0 such that

B(x
(0)
1:T , δ0) ⊆

n⋂
i1,...,iT

Gi1,...,iT (B({zi1 , . . . , ziT }, ϵ))

we can compute the likelihood for every x1:T ∈ B(x
(0)
1:T , δ

′) with 0 < δ′ < δ0 using Prop. C.2 where the MSM is closed
under factored affine transformations.

p|
B(x

(0)
1:T ,δ)

=
n∑

i1,...,iT

K∑
j1,...,jT

p (s1:T = {j1, . . . , jT })N
(
x1;Ai1µ(j1) + bi1 , Ai1Σ1(j1)A

T
i1

)
T∏

t=2

N
(
xt;Aitm

(
A−1

it−1

(
xt−1 − bit−1

)
, jt

)
+ bit , AitΣ

(
A−1

it

(
xt−1 − bit−1

)
, jt

)
AT

it

)
Where the previous density is an analytic function which is defined on an open neighbourhood of x(0)

1:T . Then from the
identity theorem of analytic functions the resulting density defines the analytic extension of p|

B(x
(0)
1:T ,δ)

on Rm. Then, we
have ∫

x1:T∈RTm

Ext
(
p|

B(x
(0)
1:T ,δ)

)
dx1:T

=
s∑

i1,...,iT

K∑
j1,...,jT

p (s1:T = {j1, . . . , jT })N
(
x1;Ai1µ(j1) + bi1 , Ai1Σ1(j1)A

T
i1

)
T∏

t=2

N

(
xt;Aitm

(
A−1

it−1

(
xt−1 − bit−1

)
, jt

)
+ bit , AitΣ

(
A−1

it−1

(
xt−1 − bit−1

)
, jt

)
AT

it

)

=

n∑
i1,...,iT

∫
x1:T∈RTm

K∑
j1,...,jT

p (s1:T = {j1, . . . , jT })N
(
x1;Ai1µ(j1) + bi1 , Ai1Σ1(j1)A

T
i1

)
T∏

t=2

N

(
xt;Aitm

(
A−1

it−1

(
xt−1 − bit−1

)
, jt

)
+ bit ,

AitΣ
(
A−1

it−1

(
xt−1 − bit−1

)
, jt

)
AT

it

)
dx1:T

=

n∑
i1,...,iT

1 = nT =
∣∣∣F−1({x(0)

1:T })
∣∣∣

We can deduce the following corollary as in Kivva et al. (2022).

Corollary D.7. Let F , G : RTm → RTn be factored piece-wise affine mappings, with xt := f(zt) and x′
t := g(z′

t), for
1 ≤ t ≤ T . Assume f and g are weakly-injective (Def. 2.1). Let z1:T and z′

1:T be distributed according to the identifiable
MSM family. Assume F(z1:T ) and G(z′

1:T ) are equally distributed. Assume that for x0 ∈ Rn and δ > 0, f is invertible on
B(x0, 2δ) ∩ f(Rm).

Then, for x(0)
1:T = {x0, . . . ,x0} ∈ RTn there exists x(1)

1:T ∈ B(x
(0)
1:T , δ) and δ1 > 0 such that both F and G are invertible on

B(x
(1)
1:T , δ1) ∩ F(RTm).

Proof. First, we observe that since F is a factored mapping, if f is invertible on B(x0, 2δ) ∩ f(Rm), we can compute the
inverse of F on B(x

(0)
1:T , 2δ) ∩ F(Rm) for x(0)

1:T = {x0, . . . ,x0} ∈ RTn as F−1(x1:T ) = {f−1(x1), . . . , f
−1(xT )} ∈

RTm, for xt ∈ B(x0, 2δ) ∩ f(Rm), 1 ≤ t ≤ T . Then, F is invertible on B(x
(0)
1:T , 2δ) ∩ F(Rm).

By Lemma D.5, almost every point x ∈ B(x(0), δ)∩f(Rm) is generic with respect to f and g, as both mappings are weakly
injective. As discussed previously, if x(0) ∈ f(Rm) is a generic point with respect to f , the point x(0)

1:T = {x(0), . . . ,x(0)} ∈
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F(RTm) is also generic with respect to F , as the finite points in the preimage f−1({x(0)}) extend to finite points in the
preimage F−1({x(0)

1:T }). Then, almost every point x1:T ∈ B(x
(0)
1:T , δ) ∩ F(RTm) is generic with respect to F and G.

Consider now x
(1)
1:T = {x(1), . . . ,x(1)} ∈ B(x

(0)
1:T , δ) such a generic point. From the invertibility of F on B(x

(1)
1:T , δ), we

have |F−1({x(1)
1:T })| = 1. By Lemma D.6, we have that |G−1({x(1)

1:T })| = 1, as x(1)
1:T is generic with respect to F and G.

Then, there exists, δ > δ1 > 0 such that on
(
B(x

(1)
1:T , δ1) ∩ F(RTm)

)
⊂
(
B(x

(0)
1:T , 2δ) ∩ F(RTm)

)
the function G is

invertible.

We need an additional result to prepare the proof for Theorem 3.5.(i).
Theorem D.8. Let F , G : RTm → RTn be factored piece-wise affine mappings, with xt := f(zt) and x′

t := g(z′
t), for

1 ≤ t ≤ T . Let z1:T and z′
1:T be distributed according to the identifiable MSM family. Assume F(z1:T ) and G(z′

1:T ) are
equally distributed, and that there exists x(0)

1:T ∈ RTn and δ > 0 such that F and G are invertible on B(x
(0)
1:T , δ) ∩ f(RTm).

Then there exists an invertible factored affine transformationH such thatH(z1:T ) = z′
1:T .

Proof. From the invertibility of F and G in B(x
(0)
1:T , δ) ∩ f(RTm) we can find a Tm-dimensional affine subspace

B(x
(1)
1:T , δ1) ∩ L, where δ1 > 0, B(x

(1)
1:T , δ1) ⊆ B(x

(0)
1:T , δ), and L ⊆ RTn such that HF ,HG : RTm → L are a

pair of invertible affine functions whereH−1
F andH−1

G coincide with F−1 and G−1 on B(x1, δ1) ∩ L respectively. The fact
that F and G are factored implies thatHF ,HG are also factored. To see this, we observe that the inverse of a block diagonal
matrix is the inverse of each block, as an example for F , we first have thatH−1

F must be forcibly factored since it needs to
coincide with F−1.

H−1
F (x1:T ) =

Ãf . . . 0
...

. . .
...

0 . . . Ãf


x1

...
xT

+

b̃f
...
b̃f

 =

f−1(x1)
...

f−1(xT )


then we can take the inverse to obtain the factoredHF .

HF =

Ã−1
f . . . 0
...

. . .
...

0 . . . Ã−1
f


z1

...
zT

−
Ã−1

f . . . 0
...

. . .
...

0 . . . Ã−1
f


b̃f

...
b̃f



=

Af . . . 0
...

. . .
...

0 . . . Af


z1

...
zT

+

bf
...
bf

 , where Af = Ã−1
f , and bf = −Ã−1

f b̃f

Since F(z1:T ) and G(z′
1:T ) are equally distributed, we have that HF (z1:T ) and HG(z

′
1:T ) are equally distributed on

B(x
(1)
1:T , δ1) ∩ L. From Prop C.2, we know thatHF (z1:T ) andHG(z

′
1:T ) are distributed according to the identifiable MSM

family, which implies HF (z1:T ) = HG(z
′
1:T ), and also H−1

G (HF (z1:T )) = z′
1:T , where H = H−1

G ◦ HF is an affine
transformation.

From the previous result and Theorem 3.2, there exists a permutation σ(·), such that mfg(z
′, k) = m′(z′, σ(k)) for

1 ≤ k ≤ K.

m′(z′, σ(k)) = mfg(z
′, k) = A−1

g mf (Agz
′ + bg, k)−A−1

g bg

= A−1
g Afm

(
A−1

f Agz
′ +A−1

f (bg − bf ) , k
)
+A−1

g (bf − bg)

= Am
(
A−1(z′ − b), k

)
+ b,

where A = A−1
g Af and b = A−1

g (bf − bg). Similar implications apply for Σ(z, a), a ∈ A.

Now we have all the elements to prove Theorem 3.5.(i).

Proof. We assume there exists another model that generates the same distribution from Eq.(13), whith a prior p′ ∈MT
NL

under assumptions (a1-a2), and non-linear emmision F ′, composed by f which is weakly injective and piece-wise linear:
i.e. (F#p)(x1:T ) = (F ′#p′)(x1:T ).
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From weakly-injectiveness, at least for some x0 ∈ Rn and δ > 0, f is invertible on B(x0, 2δ) ∩ f(Rm). This satisfies
the preconditions from Corollary D.7, which implies there exists x

(1)
1:T ∈ B(x

(0)
1:T , δ) and δ1 > 0 such that both F and

F ′ are invertible on B(x
(1)
1:T , δ1) ∩ F(RTm). Thus, by Theorem D.8, there exists an affine transformation H such that

H(z1:T ) = z′
1:T , which means that p ∈MT

NL is identifiable up to affine transformations.

D.3. Proof of theorem 3.5.(ii)

So far we have proved the identifiability of the transition function on the latent MSM distribution up to affine transformations.
By further assuming injectivity of the piece-wise mapping F , we can prove identifiability of F up to affine transformations
by re-using results from Kivva et al. (2022). We begin by stating the following known result.

Lemma D.9. Let Z ∼
∑J

j=1 λjN (µj ,Σj) where Z is a GMM (in reduced form). Assume that f : Rm → Rm is a
continuous piecewise affine function such that f(Z) ∼ Z. Then f is affine.

We can state the identification of F .

Theorem D.10. Let F ,G : RmT → RnT be continuous invertible factored piecewise affine functions. Let z1:T , z′
1:T be

random variables distributed according to MSMs. Suppose that F(z1:T ) and G(z′
1:T ) are equally distributed.

Then there exists a factored affine transformationH : RmT → RmT such thatH(z1:T ) = z′
1:T and G = F ◦ H−1.

Proof. From Theorem D.8, there exists an invertible affine transformationH1 : RmT → RmT such thatH1(z1:T ) = z′
1:T .

Then, F(z1:T ) ∼ G(H1(z1:T )). From the invertibility of G, we have z1:T ∼ (H−1
1 ◦ G−1 ◦ F)(z1:T ). We note that

H1,G,F are factored mappings, and structured as follows

(
H−1

1 ◦ G−1 ◦ F
)
(z1:T ) =


(
h−1
1 ◦ g−1 ◦ f

)
(z1)

...(
h−1
1 ◦ g−1 ◦ f

)
(zT )

 ∼
(z1)

...
(zT )

 ,

where the inverse ofH1 is also factored, as observed from previous results. Since the transformation is equal for 1 ≤ t ≤ T ,
we can proceed for t = 1 considering z1 is distributed as a GMM (in reduced form), as it corresponds to the initial
distribution of the MSM. Then, by Lemma D.9, there exists an affine mapping h2 : Rm → Rm such that h−1

1 ◦g−1 ◦f = h2.
Then,

F =

f
...
f

 =

g ◦ h1 ◦ h2

...
g ◦ h1 ◦ h2

 =
(
G ◦ H

)
,

where h = h1 ◦ h2. Considering the invertibility of G and the fact that F(z1:T ) and G(z′
1:T ) are equally distributed, we also

haveH(z1:T ) = z′
1:T .

We use the previous result to prove Theorem 3.5.(ii).

Proof. We assume there exists another model that generates the same distribution from Eq.(13), whith a prior p′ ∈MT
NL

under assumptions (a1-a2), and non-linear emmision F ′, composed by f which is continuous, injective and piece-wise
linear: i.e. (F#p)(x1:T ) = (F ′#p′)(x1:T ).

These are the preconditions to satisfy Theorem D.10, which implies there exists an affine transformation H such that
H(z1:T ) = z′

1:T and F = F ′ ◦ H. In other words, the prior p ∈ MT
NL, and f which composes F are identifiable up to

affine transformations.

E. Estimation details
We provide additional details from the descriptions in the main text.
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E.1. Expectation Maximisation on MSMs

For convenience, the expressions below are computed from samples {zb
1:T }Bb=1 for a batch of size B. Recall we formulate

our method in terms of the expectation maximisation (EM) algorithm. Given some arrangement of the parameter values (θ′),
the E-step computes the posterior distribution of the latent variables pθ′(s1:T |z1:T ). This can then be used to compute the
expected log-likelihood of the complete data (latent variables and observations),

L(θ,θ′) :=
1

B

B∑
b=1

Epθ′ (sb1:T |zb
1:T )

[
log pθ(z

b
1:T , s

b
1:T )

]
. (30)

Given a first-order stationary Markov chain, we denote the posterior probability pθ(s
b
t = k|zb

1:T ) as γb
t,k, and the joint

posterior of two consecutive states pθ(sbt = k, sbt−1 = l|zb
1:T ) as ξbt,k,l. For this case, the result is equivalent to the HMM

case and can be found in the literature, e.g. Bishop (2006). We can then compute a more explicit form of Eq. (30),

L(θ,θ′) =
1

B

B∑
b=1

K∑
k=1

γb
1,k log πk +

1

B

B∑
b=1

T∑
t=2

K∑
k=1

K∑
l=1

ξbt,k,l logQlk+

1

B

B∑
b=1

K∑
k=1

γb
1,k log pθ(z

b
1|, sb1 = k) +

1

B

B∑
b=1

T∑
t=2

K∑
k=1

γb
t,k log pθ(z

b
t |zb

t−1, s
b
t = k), (31)

where π and Q denote the initial and transition distribution of the Markov chain. In the M-step, the previous expression
is maximised to calculate the update rules for the parameters, i.e. θnew = argmaxθ L(θ,θ′). The updates for π and Q
are also obtained using standard results for HMM inference (again see Bishop (2006)). Assuming Gaussian initial and
transition densities, we can also use standard literature results for updating the initial mean and covariance. For the transition
densities, we consider a family with fixed covariance matrices, and only the means mθ(·, k) are dependent on the previous
observation. In this case, the standard results can also be used to update the covariances of the transition distributions. We
drop the subscript θ for convenience.

The updates for the mean parameters are dependent on the functions we choose. For multivariate polynomials of degree P ,
we can recover an exact M-step by transforming the mapping into a matrix-vector operation:

m(zt−1, k) =
C∑

c=1

Ak,cẑc,t−1, ẑT
t−1 =

(
1 zt−1,1 . . . zt−1,d z2t−1,1 zt−1,1zt−1,2 . . .

)
, (32)

where ẑt−1 ∈ RC denotes the polynomial features of zt−1 up to degree P . The total number of features is C =
(
P+d
d

)
and

the exact update for Ak is

Ak ←

(
B∑

b=1

T∑
t=2

γb
t,kz

b
t (ẑ

b
t−1)

T

)(
B∑

b=1

T∑
t=2

γb
t,kẑ

b
t−1(ẑ

b
t−1)

T

)−1

. (33)

For exact updates such as the one above, we require B to be sufficiently large to ensure consistent updates during training.
In the main text, we already discussed the case where the transition means are parametrised by neural networks.

E.2. Variational Inference for SDSs

We provide more details on the ELBO objective for SDSs.
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log pθ(x1:T ) = log

∫ ∑
s1:T

pθ(x1:T , z1:T , s1:T )dz1:T (34)

≥ Eqϕ,θ(z1:T ,s1:T |x1:T )

[
log

pθ(x1:T , z1:T |s1:T )pθ(s1:T )
qϕ(z1:T , s1:T |x1:T )

]
(35)

≥ Eqϕ(z1:T |x1:T )

[
log

pθ(x1:T |z1:T )
qϕ(z1:T |x1:T )

+ Epθ(s1:T |z1:T )

[
log

pθ(z1:T |s1:T )pθ(s1:T )
pθ(s1:T |z1:T )

]]
(36)

≥ Eqϕ(z1:T |x1:T )

[
log

pθ(x1:T |z1:T )
qϕ(z1:T |x1:T )

+ log pθ(z1:T )

]
(37)

≈ log pθ(x1:T |z1:T ) + log pθ(z1:T )− log qϕ(z1:T |x1:T ), z1:T ∼ qϕ (38)

where as as mentioned, we compute the ELBO objective using Monte Carlo integration with samples z1:T from qϕ, and
pθ(z1:T ) is computed using Eq. (20). Alternatively, Dong et al. (2020) proposes computing the gradients of the latent MSM
using the following rule.

∇ log pθ(x1:T , z1:T ) = Epθ(s1:T |z1:T ) [∇ log pθ(x1:T , z1:T , s1:T ] (39)

where the objective is similar to Eq.(17). Below we reflect on the main aspects of each method.

• Dong et al. (2020) computes the parameters of the latent MSM using a loss term similar to Eq. (17). Although we need
to compute the exact posteriors explicitly, we only take the gradient with respect to log pθ(zt|zt−1, st = k) which is
relatively efficient. Unfortunately, the approach is prone to state collapse and additional loss terms with annealing
schedules need to be implemented.

• Ansari et al. (2021) does not require computing exact posteriors as the parameters of the latent MSM are optimized
using the forward algorithm. The main disadvantage is that we require back-propagation to flow through the forward
computations, which is more inefficient. Despite this, the objective used is less prone to state collapse and optimisation
becomes simpler.

Although both approaches show good performance empirically, we observed that training becomes a difficult task and
requires careful hyper-parameter tuning and multiple initialisations. Note that the methods are not (a priori) theoretically
consistent with the previous identifiability results. Since exact inference is not tractable in SDSs, one cannot design a
consistent estimator such as MLE. Future developments should focus on combining the presented methods with tighter
variational bounds (Maddison et al., 2017) to design consistent estimators for such generative models.

F. Experiment details
F.1. Metrics

Markov Switching Models Consider K components, where as described the evaluation is performed by computing the
averaged sum of the distances between the estimated function components. Since we have identifiability of the function
forms up to permutations, we need to compute distances with all the permutation configurations to resolve this indeterminacy.
Therefore, we can quantify the estimation error as follows

err := min
k=perm({1,...,K})

1

K

K∑
i=1

d(m(·, i), m̂(·, ki)), (40)

where d(·, ·) denotes the L2 distance between functions. We compute an approximate L2 distance by evaluating the functions
on points sampled from a random region of Rm and averaging the Euclidean distance, more specifically we sample 105 in
the [−1, 1]d interval for each evaluation.

d(f, g) :=

∫
x∈[−1,1]d

√∣∣∣∣f(x)− g(x)
∣∣∣∣2dx (41)

≈ 1

105

105∑
i=1

√∣∣∣∣f (x(i)
)
− g

(
x(i)

) ∣∣∣∣2, x(i) ∼ Uniform([−1, 1]m) (42)
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Note that resolving the permutation indeterminacy has a cost of O(K!), which for K > 5 already poses some problems in
both monitoring performance during training and testing. To alleviate this computational cost, we take a greedy approach,
where for each estimated function component we pair it with the ground truth function with the lowest L2 distance. Note
that this can return a suboptimal result when the functions are not estimated accurately, but the computational cost is reduced
to O(K2).

Switching Dynamical Systems To compute the L2 distance for the transitions means in SDSs, we first need to resolve the
linear transformation in Eq.(15). Thus, we compute the following

argmin
h

{
d
(
f, (f ′ ◦ h)

)}
(43)

where f ,f ′ compose the groundtruth F and estimated F ′ non-linear emissions respectively, and h denotes the affine
transformation. We compute the above L2 norm using 500 generated observations from a held out test dataset. Finally, we
compute the error as in Eq. (40), and with the following L2 norm.

d

(
m
(
·, i
)
, Am̂

(
A−1(z − b), σ(i)

)
+ b)

)
(44)

which is taken from Eq.(15). Similarly, we compute the norm using samples from the ground truth latent variables, generated
from the held out test dataset. To resolve the permutation σ(·), we first compute the F1 score on the segmentation task
as indicated, by counting the total true positives, false negatives and false positives. Then, σ(·) is determined from the
permutation with highest F1 score.

F.2. Averaged Jacobian and causal structure computation

Regarding regime-dependent causal discovery, our approach can be considered as a functional causal model-based method
(see Glymour et al. (2019) for the complete taxonomy). In such methods, the causal structure is usually estimated by
inspecting the parameters that encode the dependencies between data, rather than performing independence tests (Tank et al.,
2021). In the linear case, we can threshold the transition matrix to obtain an estimate of the causal structure (Pamfil et al.,
2020). The non-linear case is a bit more complex since the transition functions are not separable among variables, and
the Jacobian can differ considerably for different input values. With the help of locally connected networks, Zheng et al.
(2018) aim to encode the variable dependencies in the first layer, and perform similar thresholding as in the linear case. To
encourage that the causal structure is captured in the first layer and prevent it from happening in the next ones, the weights
in the first layer are regularised with L1 loss to encourage sparsity, and all the weights in the network are regularised with
L2 loss.

In our experiments, we observe this approach requires enormous finetuning with the potential to sacrifice the flexibility of
the network. Instead, we estimate the causal structure by thresholding the averaged absolute-valued Jacobian with respect to
a set of samples. We denote the Jacobian of m̂(z, k) as Jm̂(·,k)(z). To ensure that the Jacobian captures the effects of the
regime of interest, we use samples from the data set and classify them with the posterior distribution. In other words, we
will create K sets of variables, where each set Zk with size NK = |Zk| contains variables that have been selected using the
posterior, i.e. z(i) ∈ Zk if k = argmax pθ(s

(i)|z1:T ), where we use the index i to denote that z(i) is associated with s(i).
Then, for a given regime k, the matrix that encodes the causal structure Ĝk is expressed as

Ĝk := 1

(
1

Nk

Nk∑
i=1

∣∣∣Jm̂(·,k)

(
z(i)
)∣∣∣ > τ

)
, z(i) ∈ Zk, (45)

where 1(·) is an indicator function which equals to 1 if the argument is true and 0 otherwise. We τ = 0.05 in our experiments.
Finally, we evaluate the estimated K regime-dependent causal graphs can be evaluated in terms of the average F1-score over
components.

F.3. Training specifications

All the experiments are implemented in Pytorch (Paszke et al., 2019) and carried out on NVIDIA RTX 2080Ti GPUs, except
for the experiments with videos (synthetic and salsa), where we used NVIDIA RTX A6000 GPUs.
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Markov Switching Models When training polynomials (including the linear case), we use the exact batched M-step
updates with batch size 500 and train for a maximum of 100 epochs, and stop when the likelihood plateaus. When
considering updates in the form of Eq. (17), e.g. neural networks, we use ADAM optimiser (Kingma & Ba, 2015) with an
initial learning rate 7 · 10−3 and decrease it by a factor of 0.5 on likelihood plateau up to 2 times. We vary the batch size and
maximum training time depending on the number of states and dimensions. For instance, for K = 3 and d = 3, we use a
batch size of 256 and train for a maximum of 25 epochs. For other configurations, we decrease the batch size and increase
the maximum training time to meet GPU memory requirements. Similar to related approaches (Hälvä & Hyvarinen, 2020),
we use random restarts to achieve better parameter estimates.

Switching Dynamical Systems Since training SDSs requires careful hyperparameter tuning for each setting, we provide
details for each setting separately.

• For the synthetic experiments, we use batch size 100, and we train for 100 epochs. We use ADAM optimiser (Kingma
& Ba, 2015) with an initial learning rate 5 · 10−4, and decrease it by a factor of 0.5 every 30 epochs. To avoid state
collapse, we perform an initial warm-up phase for 5 epochs, where we train with fixed discrete state parameters π and
Q, which we fix to uniform distributions. We run multiple seeds and select the best model on the ELBO objective.
Regarding the network architecture, we estimate the transition means using two-layer networks with cosine activations
and 16 hidden dimensions, and the non-linear emission using two-layer networks with Leaky ReLU activations with 64
hidden dimensions. For the inference network, the bi-directional RNN has 2 hidden layers and 64 hidden dimensions,
and the forward RNN has an additional 2 layers with 64 hidden dimensions. We use LSTMs for the RNN updates.

• For the synthetic videos, we vary some of the above configurations. We use batch size 64 and train for 200 epochs with
the same optimiser and learning rate, but we now decrease it by a factor of 0.8 every 80 epochs. Instead of running
an initial warm-up phase, we devise a three-stage training. First, we pre-train the encoder (emission) and decoder
networks, where for 10 epochs the objective ignores the terms from the MSM prior. The second phase is inspired by
Ansari et al. (2021), where we use softmax with temperature on the logits of π and Q. To illustrate, we use softmax
with temperature as follows

Qk,: = p(st|st−1 = k) = Softmax(ok/τ), t ∈ {2, . . . , T} (46)

where ok are the logits of p(st|st−1 = k) and τ is the temperature. We start with τ = 10, and decay it exponentially
every 50 iterations by a factor of 0.99 after the pre-training stage. The third stage begins when τ = 1, where we train
the model as usual. Again, we run multiple seeds and select the best model on the ELBO. The network architecture is
similar, except that we use additional CNNs for inference and generation. For inference, we use a 5-layer CNN with 64
channels, kernel size 3, and padding 1, Leaky ReLU activations, and we alternate between using stride 2 and 1. We
then run a 2-layer MLP with Leaky ReLU activations and 64 hidden dimensions and forward the embedding to the
same RNN inference network we described before. For generation, we use a similar network, starting with a 2-layer
MLP with Leaky ReLU activations and 64 hidden dimensions, and use transposed convolutions instead of convolutions
(with the same configuration as before).

• For the salsa dancing videos, we use batch size 8 and train for a maximum of 400 epochs. We use the same optimiser
and an initial learning rate of 10−4 and stop on ELBO plateau. We use a similar three-stage training as before, where
we pre-train the encoder-decoder networks for 10 epochs. For the second stage, we start with τ = 100 and decay it
by a factor of 0.975 every 50 iterations after the pre-training phase. As always, we run multiple seeds and select the
best model on ELBO. For the network architectures, we use the same as in the previous synthetic video experiment,
but we use 7-layer CNNs, we increase all the network sizes to 128, and we use a latent MSM of 256 dimensions with
K = 3 components. The transitions of the continous latent variables are parametrised with 2-layer MLPs with SofPlus
activations and 256 hidden dimensions.

F.4. Synthetic experiments

For data generation, we sample N = 10000 sequences of length T = 200 in terms of a stationary first-order Markov
chain with K states. The transition matrix Q is set to maintain the same state with probability 90% and switch to the next
state with probability 10%, and the initial distribution π is the stationary distribution of Q. The initial distributions are
Gaussian components with means sampled from N (0, 0.72I) and the covariance matrix is 0.12I. The covariance matrices

27



On the Identifiability of Switching Dynamical Systems

Table 2: Mean and 95-CI of the L2 distances reported in Figure 4a (computed across 5 datasets), where we experiment with
increasing sequence lengths and different network types.

Network type Sequence length (T )
10 100 1000

Cubic 4.466± 0.814 0.795± 0.448 0.077± 0.115
Cosine 0.276± 0.238 0.041± 0.032 0.037± 0.020

Softplus 2.249± 1.045 0.078± 0.137 0.005± 0.002

Table 3: Mean and 95-CI of the L2 distances reported in Figure 4b (computed across 5 datasets), where we experiment with
increasing dimensions and states.

States (K) Observation dimensions (m)
3 5 10 20 30 50

3 0.003± 0.005 0.004± 0.004 0.004± 0.002 0.015± 0.005 0.012± 0.006 0.064± 0.010
5 0.004± 0.002 0.008± 0.003 0.009± 0.005 0.023± 0.007 0.032± 0.005 0.052± 0.029
10 0.011± 0.008 0.014± 0.007 0.013± 0.003 0.031± 0.017 0.042± 0.005 0.054± 0.023

of the transition distributions are fixed to 0.052I, and the mean transitions m(z, k), k = 1, . . . ,K are parametrised using
polynomials of degree 3 with random weights, random networks with cosine activations, or random networks with softplus
activations. For the locally connected networks (Zheng et al., 2018), we use cosine activation networks, and the sparsity is
set to allow 3 interactions per element on average. All neural networks consist of two-layer MLPs with 16 hidden units.

When experimenting with SDSs, we use K = 3, T = 200, and N = 5000 of a 2D latent MSM with cosine network
transitions and fixed covariances . We then further generate observations using two-layer Leaky ReLU networs with 8 hidden
units. For synthetic videos, we render a ball on 32× 32 coloured images from the 2D coordinates of the latent variables.
When rendering images, the MSM trajectories are scaled to ensure the ball is always contained in the image canvas.

In Table 2 and Table 3 we show the mean and 95-CI from the experiments reported in Figure 4a and Figure 4b respectively;
where we use datasets generated using 5 different seeds. In Figure 10, we show visualisations of some function responses
for the experiment considering increasing variables and states (figs. 4b and 4c). For K = 3 states and m = 3 dimensions,
we achieve 3 · 10−3 L2 distance error on average and the responses in Figure 10a show low discrepancies with respect to the
ground truth. Similar observations can be made with K = 10 states in Figure 10b, where the L2 distance error is 11−2 on
average. Furthermore, Table 4 shows details of the results reported in Figure 6.

F.5. ENSO-AIR experiment

The data consists of monthly observations of El Niño Southern Oscillation (ENSO) and All India Rainfall (AIR), starting
from 1871 to 2016. Following the setting in Saggioro et al. (2020), we more specifically use the indicators Niño 3.4 SST
Index4 and All-India Rainfall precipitation5 respectively. In total, we have N = 1 samples with T = 1752 time steps and

4Extracted from https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/.
5Extracted from https://climexp.knmi.nl/getindices.cgi?STATION=All-India_Rainfall&TYPE=p&WMO=

IITMData/ALLIN.

Table 4: Mean and 95-CI of the L2 distance and state F1 scores reported in Figure 6 (computed across 5 datasets), where we
experiment with increasing observed dimensions.

Metric Obs. dimensions
2 5 10 50 100 Image

L2 dist. 0.083± 0.083 0.036± 0.043 0.033± 0.063 0.082± 0.136 0.054± 0.083 0.384± 0.257
State F1 0.991± 0.008 0.999± 0.001 0.998± 0.003 0.994± 0.015 0.999± 0.001 0.978± 0.019
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(a)

(b)

Figure 10: Function responses using 3 dimensions where we vary x2 and x3. Column i shows the response with respect to
the i-th dimension. The blue grid shows the ground truth function for (a) 3 states showing component 1, and (b) 10 states
showing component 6.

consider K = 2 components.
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Figure 11: Posterior distribution grouped by month.

In the main text, we claim that our approach
captures regimes based on seasonality. To
visualise this, We group the posterior dis-
tribution by month (fig. 11), where similar
groupings arise from both models, and ob-
serve that one component is assigned to Sum-
mer months (from May to September), and
the other is assigned to Winter months (from
October to April). To better illustrate the sea-
sonal dependence present in this data. We
show the function responses assuming linear
and non-linear (softplus networks) transitions in Figures 12a and 12b respectively. In the linear case, we observe that the
function responses on the ENSO variable are invariant across regimes. However, the response on the AIR variable varies
across regimes, as we observe that the slope with respect to the ENSO input is zero in Winter, and increases slightly in
Summer. This visualisation is consistent with the results reported in the regime-dependent graph (fig. 7). In the non-linear
case, we now observe that the responses of the ENSO variable are slightly different, but the slope differences in the
responses of the AIR variable with respect to the ENSO input are harder to visualise. The noticeable difference is that the
self-dependency of the AIR variable changes non-linearly across regimes, contrary to the linear case where the slope with
respect to AIR input was constant.

F.6. Salsa experiment

Mocap sequences The data we consider for this experiment consists on 28 salsa dancing sequences from the CMU mocap
data. Each trial consists of a sequence with varying length, where the observations represent 3D positions of 41 joints of
both participants. Following related approaches (Dong et al., 2020), we use information of one of the participants, which
should be sufficient for capturing dynamics, with a total of 41× 3 observations per frame. Then, we subsample the data by a
factor of 4, normalise the data, and clip each sequence to T = 200.
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Figure 12: Function responses of the ENSO-AIR experiment assuming (a) linear and (b) non-linear softplus networks. Each
row shows the function responses for Winter and Summer respectively.

Video sequences To train SDSs, we generate 64× 64 video sequences of length T = 200. The dancing sequences are
originally obtained from the same CMU mocap data, but they are processed into human meshes using Mahmood et al.
(2019) and available on the AMASS dataset. The total processed samples from CMU salsa dancing sequences are 14. To
generate videos, we subsample the sequences by a factor of 8, and augment the data by rendering human meshes with
rotated perspectives and offsetting the subsampled trajectories. To do so, we adapt the available code from Mahmood et al.
(2019), and generate 10080 train samples and 560 test samples. In figure 14 we show examples of reconstructed salsa videos
from the test dataset using our identifiable SDS, where we observe that the method achieves high-fidelity reconstructions.
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Figure 13: Forecasting averaged pixel MSE and
standard deviation (vertical lines) of our iSDS
using test data sequences.

Additionally, in Figure 13 we provide forecasting results on the test
data for 50 future frames from the last observation. As a reference,
at each frame we compare the iSDS predictions with a black image
(indicated as baseline). As we observe, the prediction error increases
rapidly. More specifically, the averaged pixel MSE for the first 20
predicted frames is 0.0148, which is high compared to the reconstruc-
tion error (2.26 · 10−4). Nonetheless, this result is expected for the
following reasons. First, the discrete transitions are independent of
the observations, which can trigger dynamical changes that are not
aligned with the groundtruth transitions. Second, the errors are ac-
cumulated over time, which combined with the previous point can
rapidly cause disparities in the predictions. Finally, our formulation
does not train the model based on prediction explicitly. Although the
predicted frames are not aligned with the ground truth, in Figure 15
we show that our iSDS is able to produce reliable future sequences,
despite some exceptions (see 6th forecast). In general, we observe that
our proposed model can be used to generate reliable future dancing sequences. We note that despite the restrictions assumed
to achieve identifiability guarantees (e.g. removed feedback from observations in comparison to Dong et al. (2020)), our
iSDS serves as a generative model for high-dimensional sequences.

F.7. Real dancing videos

To further motivate the applications of our identifiable SDS in challenging realistic domains, we consider real dancing
sequences from the AIST Dance DB (Tsuchida et al., 2019). As in the previous semi-synthetic video experiment, we focus
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Figure 14: Reconstruction and ground truth of salsa dancing videos from the test dataset.
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Figure 15: Forecasts and corresponding ground truth of future T = 50 frames from salsa test samples.
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on segmenting dancing patterns from high-dimensional input. The data contains a total of 12670 sequences of varying
lengths, which include 10 different dancing genres (with 1267 sequences each), different actors, and camera orientations.
We focus on segmenting sequences corresponding to the Middle Hip Hop genre, where we leave 100 sequences for testing.
We process each sequence as follows: (i) we subsample the video by 4, (ii) we crop each frame to center the dancer position,
(iii) we resize each frame to 64× 64, and (iv) we crop the length of the video to T = 200 frames.

For training, we adopt the same architecture and hyper-parameters as in the salsa dancing video experiment (See Appendix
F.3; except we set a batch size of 16 this time). Here we also include a pre-training stage for the encoder-decoder networks,
but in this case we include all the available dancing sequences (all genres, except the test samples). In the second stage
where the transitions are learned, we use only the Middle Hip Hop sequences. We note that training the iSDS in this dataset
is particularly challenging, as we find that the issue of state collapsed reported by related works (Dong et al., 2020; Ansari
et al., 2021) is more prominent in this scenario. To mitigate this problem, we train our model using a combination of the
KL annealing schedule proposed in Dong et al. (2020) and the temperature coefficient proposed in Ansari et al. (2021),
which we already included previously. We start with a KL annealing term of 104 and decay it by a factor of 0.95 every 50
iterations, and with τ = 103, where we decay it by a factor of 0.975 every 100 iterations. We run this second phase for a
maximum of 1000 epochs.

We show reconstruction and segmentation results in Figure 16, where we observe our iSDS learns different components
from the dancing sequences. In general we observe that the sequences are segmented according to different dancing moves,
except for some cases where only a prominent mode is present. We also note that different prominent modes are present
depending on background information. For example, the blue mode is prominent for white background, and the teal mode is
prominent for combined black and white backgrounds. Such findings indicate the possibility of having data artifacts, in
which the model performs segmentation based on the background information as they could be correlated with the dancing
dynamics. Furthermore, our iSDS reconstructs the video sequences with high fidelity, except for fine-grained details such
as the hands. Quantitatively, our approach reconstructs the sequences with an averaged pixel MSE of 7.85 · 10−3. We
consider this quantity is reasonable as it is an order of magnitude higher in comparison to the previous salsa videos, where
the sequences were rendered on black backgrounds.
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Figure 16: Reconstruction, ground truth, and segmentation of dancing videos from the AIST Dance DB test set.
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