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Abstract

Decentralized bilevel optimization based machine
learning techniques are achieving remarkable suc-
cess in a wide variety of domains. However,
the intensive exchange of information (involv-
ing nested-loops of consensus or communica-
tion iterations) in existing decentralized bilevel-
optimization algorithms leads to a great challenge
to ensure rigorous differential privacy, which,
however, is necessary to bring the benefits of ma-
chine learning to domains where involved data
are sensitive. By proposing a new decentralized
stochastic bilevel-optimization algorithm which
avoids nested-loops of information-exchange iter-
ations, we achieve, for the first time, both differ-
ential privacy and accurate convergence in decen-
tralized bilevel optimization. This is significant
since even for single-level decentralized optimiza-
tion and learning, existing differential-privacy so-
Iutions have to sacrifice convergence accuracy
for privacy. Besides characterizing the conver-
gence rate under nonconvex/convex/strongly con-
vex conditions, we also rigorously quantify the
price of differential privacy in computational com-
plexities. Experimental results on practical ma-
chine learning models confirm the efficacy of our
algorithm.

1. Introduction

Bilevel stochastic optimization is evolving as an effective
tool for solving many machine learning problems having
a nested structure, with typical examples including meta-
learning (Bertinetto et al., 2019; Rajeswaran et al., 2019),
hyperparameter optimization (Franceschi et al., 2018), im-
itation learning (Arora et al., 2020), and neural architec-
ture search (Liu et al., 2018). So far, numerous centralized
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stochastic bilevel-optimization algorithms have been pro-
posed (Ghadimi & Wang, 2018; Khanduri et al., 2021; Ji
et al., 2021; Hong et al., 2023). Recently, with the increas-
ingly pressing need to parallelize learning algorithms in or-
der to handle the enormous growth in data and model sizes,
the following decentralized stochastic bilevel-optimization
(DSBO) problem is gaining increased traction (Lu et al.,
2022; Yang et al., 2022; Gao et al., 2023; Chen et al., 2023):
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where € RP and y € RY represent the optimization pa-
rameters and m denotes the number of agents. Each agent
1 only has access to its local upper-level objective function
fi and lower-level objective function g;, which, in machine
learning applications, are usually given by

fz(x,y) = ]E%[h(x,y, 901)}7 (2)

gi(z,y) = B, [I(z, y;: &)]-
In (2), ; and &; represent random data samples which usu-
ally follow unknown and heterogeneous distributions across
different agents.

All above DSBO algorithms require participating agents
to explicitly share model updates in every iteration, which
raises severe privacy concerns when involved data are sen-
sitive. In fact, recent studies (Zhang et al., 2018a; Zhu
et al., 2019; Burbano-L et al., 2019; Triastcyn & Faltings,
2020; Wang & Nedié, 2023) have shown that even though
raw data are not shared, exploiting information shared in
decentralized optimization, external adversaries can still
precisely recover the raw data used for training (pixel-wise
accurate for images and token-wise matching for texts). As
differential privacy is evolving as the de facto standard for
privacy preservation due to its rigorous mathematical foun-
dations yet implementation simplicity and post-processing
immunity (Dwork et al., 2014), it is of great interest to
achieve differential privacy in DSBO. However, given that
existing DSBO algorithms all involve nested-loops of com-
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munication (consensus) iterations', directly incorporating
the standard differential-privacy noise injection mechanism
in existing DSBO algorithms will inevitably result in an ex-
ploding cumulative privacy budget as the iteration proceeds,
leading to diminishing privacy protection in the long run.
Another challenge is to maintain the accuracy of DSBO
under the constraint of differential privacy. In fact, even for
the simpler single-level decentralized optimization problem,
existing differential-privacy solutions have to trade optimiza-
tion accuracy for privacy (Bellet et al., 2018; Zhang et al.,
2018b; Agarwal et al., 2018; Cyffers et al., 2022), which is
undesirable in accuracy-sensitive applications.

1.1. Our Contributions

1. We propose a differentially private DSBO algorithm that
can ensure both accurate convergence and rigorous differ-
ential privacy, with the cumulative privacy budget bounded
even when the number of iterations tends to infinity. To the
best of our knowledge, no such results have been reported
before. Moreover, by employing the local differential pri-
vacy framework, our results can be applied to the fully
decentralized setting where no data aggregator or mediator
exists to gather data or assist privacy design.

2. A key enabler for our approach to achieving both differ-
ential privacy and accurate convergence is a novel algorithm
for DSBO. Different from existing DSBO algorithms that
all employ nested-loops of communication (consensus) iter-
ations, our new algorithm successfully circumvents nested-
loops of communication iterations, which makes it possible
to alleviate the growth of the cumulative privacy budget as
the number of iterations increases. In fact, given that using
intensive (nested-loops of) communication rounds among
agents is the only approach in the literature to achieving
accurate estimation of hypergraidents when g; are hetero-
geneous across the agents, our algorithm is of independent
interest in itself even if privacy is not considered.

3. We establish the convergence rate of our algorithm for
nonconvex/convex/strongly convex objective functions f;,
which is different from existing DSBO results (Lu et al.,
2022; Chen et al., 2022; Gao et al., 2023; Chen et al., 2023)
that focus solely on the nonconvex case. Moreover, our
convergence analysis relaxes the assumption that g; is Lip-
schitz continuous with respect to y, which is widely used
in existing DSBO literature (see, e.g., Chen et al. (2022)
and Yang et al. (2022)).

4. Despite retaining accurate convergence, our algorithm
does pay a price for obtained differential privacy in conver-
gence rate. We systematically quantify the tradeoff between

"Note that the algorithm in Gao et al. (2023) assumes identical
data distributions for &; and hence g1 = g2 = -+ = gm (see
equations (2) and (3) in Gao et al. (2023) or Appendix C.2 in Chen
et al. (2023)), and thus does not apply to our general setting here.

privacy and convergence rate. It is worth noting that by
avoiding estimating the full Hessian or Jacobian matrix, our
algorithm still achieves improved computational complexity
compared with the result for DSBO in Chen et al. (2022),
which does not consider privacy protection.

5. We conduct experiment evaluation using several machine
learning problems. The results confirm the efficiency of our
algorithm on both the synthetic and the real-world datasets.

1.2. Related Work
1.2.1. BILEVEL OPTIMIZATION

Bilevel optimization was first discussed in Bracken &
McGill (1973) for solving resource allocation problems.
Historically, it was treated by viewing the lower-level op-
timality condition as constraints to the upper-level prob-
lem (Hansen et al., 1992; Shi et al., 2005). More recently,
Couellan & Wang (2016) proposed a gradient-based al-
gorithm providing asymptotic convergence and Ghadimi
& Wang (2018) developed a nested-loop stochastic ap-
proximated algorithm establishing non-asymptotic conver-
gence. Following these developments, various centralized
approaches have been introduced, trying to improve the effi-
ciency in solving bilevel-optimization problems (Khanduri
etal., 2021; Ji et al., 2021; Hong et al., 2023).

Driven by the need for parallelized learning algorithms to
handle the enormous growth in data and model sizes in
machine learning, plenty of DSBO algorithms have been
proposed recently (Lu et al., 2022; Chen et al., 2022; Yang
et al., 2022; Gao et al., 2023; Chen et al., 2023). For ex-
ample, Lu et al. (2022) and Gao et al. (2023) considered
the DSBO problem where the lower-level objective function
is fully accessible to every agent. Chen et al. (2022), Yang
et al. (2022), and Chen et al. (2023) considered the case
where neither the upper-level function nor the lower-level
function is fully accessible to every local agent. In addi-
tion, the approaches in Chen et al. (2022) and Yang et al.
(2022) require computing the full Jacobian and/or Hessian
matrix, entailing a computational complexity of the order
O(pq) or O(q¢?) in every iteration. To reduce the computa-
tional complexity, Chen et al. (2023) proposed to estimate
the Hessian-vector and Jacobian-vector products, which re-
duces the per-iteration complexity from O(pq) (or O(q?))
to O(max{p, ¢}). However, none of the existing results
have addressed differential privacy for DSBO. In fact, as
discussed in Section 1, to ensure accurate enough local
estimation of the hypergradient, all of these algorithms em-
ploy nested-loops of consensus (communication) iterations,
which will result in an exploding cumulative privacy bud-
get if we incorporate these algorithms with the standard
Laplace-noise mechanism in Dwork et al. (2014) to achieve
differential privacy. In Table 1, we summarize the difference
between our algorithm and existing results.
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Table 1. We compare our Algorithm 2 (LDP-DSBO) with existing algorithms, including the centralized bilevel-optimization algorithm
BSA (Ghadimi & Wang, 2018), personalized DSBO algorithms SPDB (Lu et al., 2022) and VRDSBO (Gao et al., 2023), and DSBO
algorithms DSBO-JHIP (Chen et al., 2022), GBDSBO (Yang et al., 2022), and MA-DSBO (Chen et al., 2023). In the table, we use § to
denote the optimization error. We use “Jacobian” to represent whether the algorithm requires computing the full Hessian or Jacobian
matrix. We use “DP” to represent whether the algorithm considers differential privacy. We also use “Privacy Budget” to refer to the
cumulative privacy budget of the algorithm when it is combined with the Laplace noise used in our algorithm to enable differential privacy.
The detailed cumulative privacy budget calculation is provided in Appendix H.2).

ALGORITHM  DECENTRALIZED? COMPUTATIONAL COMPLEXITY JACOBIAN DP PRIVACY BUDGET
BSA No O3+ (¢*log(6™") +pg)d~—2) YES No 0673
SPDB YES O(max{p, ¢} log(s 1)5—"’) No No 0(57?)
VRDSBO YES O((pg + ¢° )8~ %) YES No 0™ 2)
DSBO-JHIP YES O(pqlog( He~?) YES No O(57%)
GBDSBO YES O((¢*1log(5™Y) + pg)d—2) YES No O(57?)
MA-DSBO YES O(max{p, ¢} log(671)672) No No 0(672)
LDP-DSBO YES O(max{p, ¢}6%°) No YES o(1)

1.2.2. DIFFERENTIAL PRIVACY

Widely regarded as the “gold standard” for privacy pro-
tection (Cummings et al., 2021), differential privacy has
found numerous applications in distributed computation sce-
narios, including distributed control systems (Cortés et al.,
2016), federated learning (Zhang et al., 2022), and dis-
tributed deep learning (Papernot et al., 2018). Note that
the commonly used differential-privacy framework assumes
the presence of a data aggregator/curator to collect the raw
data and inject noise. In the decentralized scenario, to en-
sure agent-level privacy, we employ the local differential
privacy (LDP) framework (Kasiviswanathan et al., 2011),
in which random perturbations are performed locally by
each agent, thereby protecting individual data against ex-
ternal adversaries and neighboring agents. LDP has been
implemented in decentralized optimization and learning al-
gorithms (Bellet et al., 2018; Zhang et al., 2018b; Agarwal
et al., 2018; Cyffers et al., 2022); however, these algorithms
often face a fundamental tradeoff between optimization ac-
curacy and privacy. It is worth noting that although using
the information-theoretic approach, Kasiviswanathan et al.
(2011) and Dwork et al. (2014) have proven the possibil-
ity to retain accurate convergence in differentially private
learning by trading convergence rate for privacy, it is only re-
cently that Wang & Nedi¢ (2023) and Chen & Wang (2023)
proposed concrete implementable algorithms that actually
achieve this goal in decentralized optimization and learn-
ing. Nevertheless, these results are for the conventional
single-level decentralized optimization and they cannot be
combined with existing bilevel-optimization algorithms to
ensure both differential privacy and accurate convergence.
In fact, due to the existence of nested-loops of communica-
tion (consensus) iterations in existing DSBO algorithms, di-
rectly applying the differential-privacy mechanisms in Wang
& Nedi¢ (2023) and Chen & Wang (2023) will result in both
loss of convergence accuracy and explosion of the cumula-

tive privacy budget.

Notations: We denote VF(x) € RP as the gradient of
F(z). We use V,g(x,y) and V,g(z,y) to represent the
gradients of g with respect to x and y, respectively. We
write V2, g(x,y) € RP*4 for the Jacobian matrix of g and
V%g(x y) € R2*1 for the Hessian matrix of g with respect
to y. We denote ||-||1 and || - || as the /;-norm and the l2-norm
of vectors, respectively. We use 1,, to denote the all-ones
vector in RP. We add an overbar to a letter to denote the
average of all agents, e.g., T; = % it @it We use bold
font to represent stacked vectors of all agents, e.g., x; =
col(z1,, -, Tm,.). We write P[A] for the probability of an
event 4. We use Lap(v) to denote the Laplace distribution
with a parameter v > 0, featuring a probability density
function f(z|v) = ie#. Lap(v) has a mean of zero and
a variance of 202, We denote the set of m agents as [m] and
the neighboring set of agent 7 as NV;. We denote the coupling
weight matrix as W = {w;;} € R"™*™, in which w;; > 0
if agent j interacts with agent ¢, and w;; = 0 otherwise.

2. Preliminaries
2.1. Hypergradient Estimation

The major challenge in solving DSBO lies in the absence
of explicit knowledge of y*(z), which makes it impos-
sible for individual agents to evaluate the hypergradient
VF(z,y*(z)). By leveraging the results for centralized
stochastic bilevel optimization (Ghadimi & Wang, 2018),
recently, Chen et al. (2022) proposed to calculate the hyper-
gradient using the following relation:

1 & .
m —

)] S il (@),

=1

) = V2,9(z, y*(x))
3
x [V2,9(z,y"(
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It is evident that computing V F'(x) requires global informa-
tion about g, which is inaccessible to agent ¢ in a decentral-
ized setting. A natural approach is to use Vg; as a surrogate;
however, due to data heterogeneity across the agents, this
approach results in steady-state errors. Therefore, every
agent has to maintain local estimates of the global hyper-
gradient. Instead of estimating the entire Hessian/Jacobian
matrix, Chen et al. (2023) proposed to estimate the Hessian-
inverse-vector product:

= <Z vnyz’(%?f@))) <Z Vyfz(x’y*(x))> :
=1 =1 (4)

According to (3), the global hypergradient is given by

:%ZVfZ:cy (x)) = V2,9:i(z,y"(x))2"),
=t )

where V2, g;(x, y*(x))z* will be referred to as the Jacobian-
vector product.

From (5), we know that if each agent i can have an
accurate enough estimation of Vf;(z,y*(x)), z*, and
V2ygz (x,y*(x))z*, then every agent can have a good esti-
mate of the global hypergradient. Notably, estimating the
vector-valued z* and V2, g;(z,y*(x))z* circumvents the
need for estimating the full Hessian and Jacobian matrices,
which substantially reduces the per-iteration computational
complexity.

2.2. Assumptions

Assumption 2.1. The weight matrix W = {w;;} € R™*™
is symmetric and satisfies 177 = 07 and W1 = 0. The
eigenvalues of I + W (after arranged in an increasing order)
satisfy 0 = 01 < 0o < --- < 6y < L.

Assumption 2.2. For any i € [m], functions f;, V f;, Vg,,
and V2g; are Lo, L1, Ly.1, and L, o Lipschitz continu-
ous, respectively. Moreover, each function g; is p14-strongly
convex in y.

Assumption 2.3. The stochastic oracles Vh(z,y; ),
V2h(z,y; ), Vi(z,y;€), V2(z,y;€), and V3I(z,y;)
are unbiased with bounded variances, which are represented
as 0]2[’1, 0%2, 021,02, and o] 3, respectively.

Assumptions 2.2 and 2.3 are standard in the DSBO litera-
ture (Lu et al., 2022; Chen et al., 2022; Yang et al., 2022;
Chen et al., 2023; Gao et al., 2023). They allow f; and
g; to be heterogeneous across the agents, which are more
general than the homogeneous-function assumption in Lu
et al. (2022) and Gao et al. (2023). In addition, we relax the
assumption that lower-level objective functions g; are Lips-
chitz continuous with respect to y, which is used in Chen
et al. (2022) and Yang et al. (2022).

2.3. Local Differential Privacy

In this paper, we consider the case where data arrive se-
quentially in a serial manner, and only one data point is
acquired by each agent at each time instant, i.e., at time
instant 7', the dataset D; accessible to agent ¢ is given by
D; ={& 1, ,& v} Then, we can introduce the follow-
ing definitions for differential privacy:

Definition 2.4. (Adjacency) Given two local datasets D; =
{610+ Eory and D} = {€},, - & 1} forany i € [m]
and any time 7" € N, D and D’ are adjacent if there exists
a time instant k € {1,--- , T} such that &, ;, # &/, while
Eo=6 forallt £k, t€{l,--- T} ’
Definition 2.5. (Local Differential Privacy) Denote a DSBO
algorithm as a mapping A;(D;,z_;) — O;, where z_;
denotes all messages received by agent ¢ and O; represents
the set of all possible observations on agent 7. Then, for
any given ¢; > 0, we say that A; is ¢;-locally differentially
private if for any adjacent datasets D; and Dj, the following
inequality holds:

P[Az(Dl,Jﬁ_l) € Ol] < 6€iP[Ai(D;,x_i) S Ol] 6)
The parameter ¢; is referred to as the cumulative privacy
budget for iterations 1,2,--- ;7. A smaller ¢; indicates
closer distributions of observations under adjacent datasets,
thereby a higher level of privacy protection. Clearly, if ¢;
grows to infinity as the number of iterations 7' tends to
infinity, privacy will be lost eventually in the infinite-time
horizon.

3. The Proposed Algorithm

In this section, we first introduce an approach for individual
agents to locally estimate Hessian-inverse-vector product
under the constraint of differential privacy, which is nec-
essary for individual agents to locally estimate the global
hypergradient according to (5). Using it as a subroutine, we
will then propose our differentially private DSBO algorithm.

Approximating z* in (4) amounts to letting each agent solve
for the following equation:

m m m -1 m
ZHiZ* = sz or 2* £ <Z Hz> (Z bz) )
i=1 i=1
N

i=1 i=1

where H; and b; are given by H; = V3 g;(x,y*(x)) and
b = Vfi(z,y*(x)), respectively. Equality (7) is essen-
tially the optimality condition of the following optimization
problem:

17 T
ireurz E ¢z , Z 2 z iZ bz 4 ®)
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Algorithm 1 Subroutine for Estimating Hessian-Inverse-
Vector Product for Agent i, ¢ € [m]

Algorithm 2 LDP Design for DSBO Algorithm for Agent
i, 1 € [m]

1: Input: Parameters x; ., v;:, and z;;; Data samples

. A,
{ik}epo,g and {&it}refo,; Stepsize A e = 15

with A, o > 0 and v, € (0, 1); DP-noise ¥J; ; satisfying
Assumption 3.1.

Hizip = Vo0t (Zi, Yie) zie-

bit = Vyfit(Tit,yir)

vz¢i,t(zi,t) = Hi,tzi,t - bz’,t~

Zit+1l = Zig¢ T Zje/\/,; wii (2 + V50 —
A2t Vaii(Zi)-

6: Output: z; ;11 on agent 1.

Zi,t) -

We present Algorithm 1 that enables all agents to collabora-
tively find the optimal solution z* to problem (8).

Since objective functions f; and g; in problem (8) are ex-
pectations over unknown distributions (see the equations
in (2)), they are inaccessible and can only be approxi-
mated from sampled data in practical implementations.
Therefore, under our setting of serially arriving data, we
use fi4(2,9) = gy koo hw, 43 0ix) and gi(2,9) =
T ko U@, y3 k).

Building on Algorithm 1, each agent ¢ can estimate the
hypergradient VF'(z) in (5) locally by using the following
equality:

Uip = Vafit(Tit,Yir) — viygi,t(xi,tayi,t)zi,t- )

With the hypergradient estimation (9), we propose a locally
differentially private algorithm to solve the DSBO prob-
lem (1) in Algorithm 2. The injected DP noises satisfy the
following assumption:

Assumption 3.1. For every i € [m] and ¢ > 0, each ele-
ment of DP-noise vectors ; ¢+, (; ¢+, and ¢; ; follows Laplace

distributions Lap (W), Lap ﬁ), and

Lap (W , respectively, where o; ;, 05y, and o; .
are positive constants and the rates of DP-noise variances
satisfy

max{s; ,} < vy, max{g ,} < vy, and max{s; .} < v,
1€[m] 1€[m] 1€[m]

where v, vy, v, € (0, 1) are the decaying rates of the step-
sizes Ay ¢, Ay, and A, 4, respectively, in Algorithm 2.

It is worth noting that different from existing DSBO algo-
rithms in Chen et al. (2022), Yang et al. (2022), and Gao et al.
(2023) which estimate the full Hessian matrix or Jacobian
matrix, Algorithm 2 only estimates a vector of dimension
max{p, ¢}, and hence has reduced computational complex-
ity. In addition, different from existing DSBO algorithms
in Chen et al. (2022) and Chen et al. (2023) which use a

1: Input: Random initialization z; o € RP, y;0 € RY,
and z; o € RY for each agent i € [m]. Stepsizes A\, ; =
i and Ay, = 34 with Ao > 0, Ay 0 > 0,
and v, vy, € (0,1); DP-noises x; ; and (;; satisfying
Assumption 3.1.

2: fort=0,1,---,T—1do

3 Acquire current data ¢; ; and &; ;.

4 Y1 = Yir + Zje/\/i wij (Y + G —

)\y,tvygi,t(xi,tayi,t)~

5: Run Algorithm 1 and obtain the output z; ;4.

6:  Estimate hypergradient u; ; by using (9).

T Tipp1 = T+ ZjeM wii (T + Xt — Tig) —

)\m,tui,t~
8: end for
9: Output: z; 7 on agent ¢.

yi,t) -

nested communication (consensus) loop to estimate z*, Al-
gorithm 2 avoids any nested-loops of consensus operations.
The avoidance of nested consensus loops is significant in
that under nested-loops of consensus iterations, the cumula-
tive privacy budget will grow quickly as iteration proceeds,
making it impossible to ensure a finite cumulative privacy
budget in the infinite-time horizon (see detailed explanations
in Appendix H.1).

4. Main Results
4.1. Convergence Rate of Algorithm 2

Theorem 4.1. Denote the lowest decaying rates of DP-
noise variances as G; = MiNic[m)Si,z» Sy = MiNie[m]Si,y»
and G, = Mmin;em)Si .- Under Assumptions 2.1-2.3, and 3.1,
if the stepsize rates satisfy 0 < v, < vy < vz < 1, then we
have the following results for the iterates {x;} generated by
Algorithm 2:

(1) If F(x) is strongly convex and the rates of DP-noise
variances satisfy 2¢; > vz, 26, > U + vy, 26y > U, + Uy,
and 2¢, > vy, then we have

E[|zir —2*|?)] <O (T™7), (10)
where the rate 3y is given by /1 = min{2¢, — v, 2¢, —
20,, 26, — 20,,26, — V;, 26, — Uy, 2 — 20, }.

(2) If F' is convex and the rates of DP-noise variances satisfy
Sy > % 26 > v+ vy, 26, > 20,4220, 26, > v+,
26y > 20, +2—2v,, 26y > vy +2—2v,, 2¢; > v, +2—2uv,,
and 2¢, > vy, then we have

—F(z")]<0 (T‘“‘“m)) . (1)
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(3) If F' is nonconvex and the rates of DP-noise variances
satisfy ¢ > 5, 26 > vy + vy, 26 > 20, + 1 — vy,
26y > 20, + 1 — vy, 26y > vy + 1 — vy, 2¢, > v, + vy,
2¢; > v, + 1 — vy, and 2, > vy, then we have

T+1ZE IV F(2i.4)]%] <0(T (1- >) (12)

Theorem 4.1 proves that the optimization errors for strongly
convex, convex, and nonconvex F'(z) decrease with itera-
tions atrates O (T~71), O (T~} and O (T~ 7)),

respectively.

Moreover, to give a more intuitive description of the compu-
tational complexity, we define a §-solution to problem (1):

Definition 4.2. (Lian et al., 2017) For any ¢ € [m] and some
positive integer 7, if E [||z; 7 — 2*||*] < 6 holds when F
E[F(zit) - F(z*)] <6

. T

holds when F is convex, or T%rl S o EIVFE(z0))?] <
0 holds when F' is nonconvex, then we say that the sequence
{xi}1_, can reach a §-solution to problem (1).

- 1 T
is strongly convex, or 77 Y ieo

Definition 4.2 provides a direct quantitative measure of the
optimization error with respect to the optimal solution x*
under strongly convex F'. This measure is stronger than the
metrics in Ghadimi & Wang (2018) and Yang et al. (2022)
that characterize the distance between F'(Zr) and F'(z*).
Moreover, in the nonconvex case, compared with Chen et al.
(2023), which uses the minimum hypergradient over all iter-
ations (i.e., ming<¢<7 E [||[VF(Z;)||?] < 6), Definition 4.2
is much more stringent.

Corollary 4.3. (1) For a strongly convex F(x), if we choose
T = (9(5_ﬁ), then the computational complexity of Al-
gorithm 2 is O(max{p,q}éiﬁ) in finding a d-solution.
For example, setting v, = 0.66, v, = 0.64, v, = 0.43,
Se = 0.65, ¢y = 0.63, and ¢, = 0.42 yields a-convergence
rate-of 51 = 0.4 and a complexity of O(max{p, q}d=2?).
(2) For a convex F(x), if we set T = (9(5 = )
then the computational complexity of Algorithm 2 is
O(max{p,q}é~ ﬁ) in finding a 5-solution. For example,
withv, = 0.77, v, = 0.75, v, = 0.5, ¢, = 0.76, g, = 0.74,
and ¢, = 0.49, the-econvergenceratets 1 — v, = 0.23 and
the, complexity #5 O(max{p, ¢}6~*3).

(3) For a nonconvex F (), if we choose T = O(6~ T v ),
then the computational complexity of Algorithm 2 is
O(max{p, q}éfl%vz) in finding a 5-solution. For example,
using v, = 0.615, v, = 0.60375, v, = 0.4, ¢, = 0.61125,
Gy = 0.6, and ¢, = 0.398125 yields a-convergence+ate-of
1 — v, = 0.385 and a esmptexity of O(max{p, ¢} 2%).

Corollary 4.3 provides eonvergeneerates-and computational

complexities under different convexity assumptions. It is
more comprehensive than existing DSBO results (Chen

et al., 2022; Gao et al., 2023; Chen et al., 2023), which
only focus on a nonconvex function F'. Moreover, it is
worth noting that compared with the computational com-
plexity of O(pglog(6=1)6=3) in Chen et al. (2022), our
Algorithm 2 ensures an improved computational complexity
of O(max{p, ¢}6~29), even under the additional constraint
of differential privacy.

4.2. Differential Privacy Analysis for Algorithm 2

In this subsection, we prove that besides accurate conver-
gence, Algorithm 2 can simultaneously ensure rigorous €;-
LDP for each agent, with a finite cumulative privacy budget
even when the number of iterations tends to infinity.

Assumption 4.4. Functions Vh, VI, and V2] are Ly 1,
L1, and L; » Lipschitz continuous, respectively. Moreover,
there exist some positive constants cpg and c;p such that
IVyh(z,y:0i)l1 < cho and [[Vyl(z,y:&)]1 < co hold
forall s € [m].

Assumption 4.4 is commonly used in differential-privacy
design for decentralized learning/optimization (Huang et al.,
2015; Bellet et al., 2018; Zhang et al., 2018b; Agarwal
et al., 2018; Cyffers et al., 2022). Although it is stricter
than Assumption 2.2 (which assumes Lipschitz continuity
of the gradients of expected functions f; and g;), it is not
required in our convergence analysis. In fact, existing DSBO
results (Chen et al., 2022; Yang et al., 2022; Gao et al., 2023;
Chen et al., 2023) often do not clearly differentiate between
Assumption 2.2 and Assumption 4.4, and usually assume
Lipschitz continuity of loss functions h and [ and their first-
and second-order moments, similar to Assumption 4.4 (see
e.g., Assumptions 3.3 and 3.4 in Yang et al. (2022) and
Assumption 2.1 in Chen et al. (2023)).

Theorem 4.5. Under Assumptions 2.1 and 4.4, if each el-
ement of Xit Cit, and 9, follows the Laplace distribu-
tions given in Assumption 3.1, then x; ; (resp. F(x;+) and
VF(z;4) in the general convex case and nonconvex case,
respectively) in Algorithm 2 converges in mean square to the
optimal solution x* to problem (1) (resp. in mean to F(x*)
and in mean square to zero, respectively). Furthermore,

1) For any finite number of iterations T', agent i’s im-
plementation of Algorithm 2 is locally differentially pri-

vate with a cumulative privacy budget bounded by €¢; =
T 2 (t+1)%0e
€ix T €y + €2 where €, < >, fg’g%,

T \f (t+1)%v T f L(t41)562
<Z Qty ) zz<z Qt( )

Oiy ’ 0,z ’
Otx = 2(ChO + Cle,l) 22:1(1 - w) p/\l,P—l’ Oty =
2610 Z;:l(l - Uj)t_p Ot,z = 2(Cle,l +

cno) gy (L= @) ™PA, poy, € = maxyeory{llziclh},
and W = min; e, {wiil }-

Ay.p—15

2) The cumulative privacy budget €; is finite even when the
number of iterations T tends to infinity.
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Figure 1. The communication graph of ten agents.

Theorem 4.5 shows that Algorithm 2 can ensure rigorous
€;-LDP and accurate convergence simultaneously. This dif-
fers from most existing differential-privacy solutions for
decentralized single-level optimization (Bellet et al., 2018;
Zhang et al., 2018b; Agarwal et al., 2018; Cyffers et al.,
2022), which have to trade convergence accuracy for differ-
ential privacy. In fact, our algorithm’s accurate convergence
comes at the expense of a reduced convergence rate. We use
the convergence rate and cumulative privacy budget under a
nonconvex F'(z) as an example to quantify this tradeoff:

Corollary 4.6. For any given 6 > 0, the convergence rate
of Algorithm 2 is O(TV=~') and the cumulative privacy

budget €; is on the order Ofo(uw—lo.fs) with v, € (0.6, 1).

Corollary 4.6 indicates that a higher level of differential
privacy, i.e., a smaller cumulative privacy budget ¢;, corre-
sponds to a reduced convergence rate O(T=~1).

5. Experiments

In this section, we study the application of Algorithm 2 in
hyperparameter optimization:

S e .
min E;ﬁ(}\’w (N),

AERP
st wr(\) = argmin,, g, Z;gi()‘vw)v

in which we aim to find an optimal hyperparameter A under
the constraint that w*(\) is the optimal model parameter
with a given A\. We conducted experiments on both synthetic
and real-world datasets.

In each experiment, we compared Algorithm 2 with state-of-
the-art DSBO algorithms, including MA-DSBO (Chen et al.,
2023) and GBDSBO (Yang et al., 2022). The interaction
pattern associated with the coupling weight matrix W was
consistent across all experiments and is depicted in Figure 1.

To evaluate the performance of Algorithm 2 without
differential-privacy constraints, we also conducted experi-
ments in the absence of DP noises, with the results given in

Appendix A.1. Furthermore, additional comparison results
with VRDSBO in Gao et al. (2023) (which only addresses
the special case of gy = --- = g,,) were given in Ap-
pendix A.2.

5.1. Synthetic Data

Following Chen et al. (2022) and Chen et al. (2023), we
define loss functions for each agent ¢ as follows:

L(Yi.e%p. o),

h()‘7w;§0i) = Z

(wi,myi,e)EDZt

l()‘vw;gi) = Z

(€i,esyi,e)EDL,

1 200
L(yi,exzew) + 3 Z eMw?,
s=1

where )\, and w, represent the s-th element of A € R2%0

and w € R2%, respectively. The function L(-) is given by
L(z) = log(1+e~"). D}, and D}, represent the training
dataset and the validation dataset for agent ¢, at time ¢,
respectively. For each agent ¢, the data distribution of z; .
was drawn from a normal distribution N'(0,4%), which is
heterogeneous due to the difference in variances. The label
ye was generated by y; . = = ,w + 0.1¢, where ¢ € R
denotes the noise vector sampled from the standard normal
distribution. The algorithm was executed for 100 iterations,
with each agent randomly selecting 50 training samples in
every iteration. The test dataset contains 20, 000 samples,
with 1, 000 samples randomly selected for each iteration.

For Algorithm 2, the stepsizes were set to A\, ; = %,

Ayt = %, and A\, ; = %. Each element of DP-
noise vectors x; ¢, C;.+,» and ¥; ; for agent ¢ follows Laplace
distributions Lap(

and Lap ( W )
near-optimal stepsizes were selected for MA-DSBO and
GBDSBO, ensuring that doubling these stepsizes would lead
to non-converging behaviors. The number of nested-loops
for MA-DSBO and GBDSBO was set to 10. We applied the
fastest decaying DP-noise variance Lap ( m) to

MA-DSBO and GBDSBO, as using a slower decaying DP
noise to make their privacy budget the same as ours results
in divergence of both algorithms (this gives them an edge in
accuracy comparison).

1 1
\/E(t+1)0.8+0.01i )’ Lap( \/ﬁ(t+1)0.76+0.01i )’
, respectively. In our comparison,

The resulting training loss, test loss, and test accuracy are
shown in Figures 2(a), 2(b), and 2(c), respectively. It is clear
that the proposed algorithm has much lower training loss and
higher test accuracy under differential-privacy constraints.

5.2. MNIST

In the second experiment, we evaluated the performance of
Algorithm 2 by using the “MNIST” dataset (Grazzi et al.,
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The structure of main proofs is given in Figure 4. Given that auxiliary lemmas from Sections B and C are utilized in several
lemmas, they are omitted from this figure.
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Figure 4. Structure of proofs.
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Figure 6. Comparison by using the “MNIST” dataset in the absence of DP-noises.

A. Additional Experiments
A.1. Comparison between Algorithm 2 with MA-DSBO and GBDSBO in the absence of DP-Noise

To further assess the performance of our Algorithm 2 in the absence of DP-noise, we conducted additional experiments to
compare Algorithm 2 with MA-DSBO and GBDSBO using both synthetic data and real-world data. In the synthetic-data
experiment, we chose the stepsizes for our Algorithm 2 as A, ; = %, Ayt = %, and A, ; = %. The
stepsizes for MA-DSBO (Chen et al., 2023) were set to « = 3 = 0.03 and v = 0.01, and the stepsizes for GBDSBO (Yang

et al., 2022) were set to = 5 = 0.05 and v = 0.02. Those stepsizes were set in accordance with the guidelines provided

in these works. In the “MNIST” experiment, the stepsizes for our Algorithm 2 were set to A, ; = %, Ayt = ﬁ,
and A\, ; = ﬁ The stepsizes for MA-DSBO and GBDSBO were all set to 0.1. For all experiments, the number of

nested-loops for both MA-DSBO and GBDSBO was set to 10. This setup corresponds to 10 outer iterations, which is
equivalent to 100 iterations used in our algorithm, ensuring a fair comparison.

Figure 5 shows that our Algorithm 2 achieves similar test accuracy to GBDSBO and higher test accuracy than MA-DSBO in
the synthetic-data experiment. Figure 6 confirms the advantage of our proposed algorithm in both test accuracy and training
loss.

A.2. Comparison between Algorithm 2 with VRDSBO

In this subsection, we compared our algorithm with the single-loop algorithm VRDSBO in Gao et al. (2023). While
VRDSBO eliminates the need for nested-loops of communication (consensus) iterations, it is not applicable to general
DSBO problems because it implicitly assumes homogeneous lower-level functions (a detailed illustration is provided in
Appendix C.2 in Chen et al. (2023)). Therefore, we did not include this comparative experiment in the main text.

In the absence of DP-noises, the stepsizes for our Algorithm 2 were set to A\, ; = #, Ayt = ?0_5, and

1.
G+l
Azt = ﬁ For VRDSBO, the stepsizes were set to vy = g = 3, 1 = P2 = 1, and n = 1. When considering

DP-noise, the stepsizes of our Algorithm 2 were set to A\, = ﬁ Ayt = ﬁ and A\, ; = ﬁ The
1.2

stepsizes for VRDSBO were setto a; = ae = 3,81 = f2 = 1,and n = TFi0es (with 7 specifically designed to avoid

12
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Figure 7. Comparison Algorithm 2 with VRDSBO by using the “MNIST” dataset under differential-privacy constraints.
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Figure 8. Comparison Algorithm 2 with VRDSBO by using the “MNIST” dataset in the absence of DP-noises.

divergent behaviors). The DP-noise variances were the same as those employed in the previous synthetic-data experiment.

Figure 7 and Figure 8 show that under heterogeneous lower-level objective functions, our Algorithm 2 outperforms VRDSBO
both in the presence and the absence of differential-privacy constraints.

B. Notations and Auxiliary Lemmas

B.1. Additional Notations

Throughout this paper, we add a bar over a letter to denote the average of all agents and use bold font to represent stacked
vectors of m agents. For further notational simplicity, we introduce the following notations:

H,=H,—1,,®H, = — 1, @ Ty, U =Yy — 1y @ i,
R _ . ol o R _
Zi=2z—1,®%, 2= (szgt(xnyt)) la Z Vfit(Zt, ), Uy = Uy — 1y @ Uy,

i=1
Xwi,t = Z WijXi,ts Cuit = Z wi;Git, Vit = Z w94 1,
JEN; JEN; JEN;
Xt:Xt_]-m@Xu ét:C_]-m@éta 1§15:’1915_1m®7§ty
of = max{o; .}, 0; = max{al uts of = max{al 2t
1€[m] i€[m i€[m]
Sz = min {cz ot Sy = mln {cz,y} ¢. = min {Cz 21
i€[m i€[m i€[m
0: Uz?f U?
Ogt = 77— Oyt = 77— Opt = 77— -
(t+1)c= (t4 1) (t+ 1)s-
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B.2. Auxiliary Lemmas

In this subsection, we introduce some well-known results from the existing literature, along with auxiliary lemmas that will
be used in our subsequent convergence analysis.

Lemma B.1. (Ghadimi & Wang, 2018; Chen et al., 2023) Under Assumption 2.2, V F(z) defined in (1) is L p-Lipschitz
continuous, i.e., for any given r1,xs € RP, we have

IVE(x1) = VE(zo)|| < L2y — 2], (13)

2Lf,1Lg,1+Lg_y2L§,10 I 2Lg,1Lf,0Lg,2+L§71Lf,1 n L_,,,,,nglLf,0
Bg oy u

where the Lipschitz constant L is given by Ly = Ly 1 +

Lemma B.2. (Wang & Nedié, 2023) Let {v;} be a nonnegative sequence, and {a;} and {b;} be positive sequence satisfying
ap < 1, limyyo0 ar = 0, D2, g ap = 00, and limy_, o Z—i =0. If vir1 < (1 — a¢)ve + by holds for all t > 0, then we always

have vy < C Z—’t' for all t > 0, where C' is some positive constant.

Lemma B.3. For any given pairs (z,y) € RP x RY, we introduce an auxiliary function l(x,y; ) : RP x R — R with a
random variable &. If E¢ [I(z,y; €)] is L-Lipschitz continuous and V1(z,y; §) is unbiased with a bounded variance o>, then
for any given pairs (x1,y1) and (x2,y2) € RP x RY, the following inequality always holds:

Ee [[[1(z1,y1:€) — Uza, y2: O] < 4L+ 0*) (w1 — w2l” + llyr — w2]?). (14)

Proof. The mean value theorem implies that there must exist some constant r € (0, 1) such that for any =, = rzy+(1—7r)xs
and y,. = ry; + (1 — r)ya, the following inequality holds:

E [[i(z1,91;€) = Uz2,42: )] = [(<Vxl(mr,yr;€),w1 — 22) + (Vyl(@r, yri ), 41 — 12))°

< 2B [ Val(@r, 4o )12 los — @l + 2B [V, (0 3 O] lys — vl
Since both terms E[|V,l(z,, y,; €)||?] and E[||Vyl(z, yr; €)||?] are no larger than E[||Vi(x,,y,; €)||?], we can arrive
at (14) based on the relationship E[||VI(x,, y,; €)||?] < 2L% + 202. O
C. Empirical Risk Minimization Problems and Useful Properties of Empirical Functions
C.1. Empirical Risk Minimization Problem with respect to Problem (1)
We introduce the following ERM problem to approximate problem (1) under sequentially arriving data:

min Fy(x), Fi(z) = % Z fit(z,yi (x))

x€RP
(15)

st y;(z) = argming g, g: (7, y) ng (z,9),

for any t > 0, where empirical functions f; ; and g, ; are given by f; ,(z,y) = t_%l ZZ:O h(z,y; pix) and g;¢(x,y) =
] S h_o l(x,y; & 1), respectively.

In the following lemmas, we present the useful properties of empirical functions F;(z) and g:(z, y).

Lemma C.1 proves the boundedness properties of F}(x) and g;(x, y).

Lemma C.1. Under Assumptions 2.2 and 2.3, for any given pair (z,y) € RP x RY, the following inequalities hold:

E IV, F@)I?] <203, +2L%0, ElIVZ,0(y)7) < 2025+ 212,

E[IVZ,9:(2,9)|1%] < 205 5 +2L5 1, E[IV5,9:(2, 9)IIP] > pg-

(16)

14
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Proof. By using the definition of F;, Assumption 2.2, and Assumption 2.3, we have

2
1 & 1 &
i=1 k=0
20']% 2 2 , )
*t+’1 ZHV filz,y)|I* < *t+ L4202 <202 4202,

Similarly, based on the definition of g;, Assumption 2.2, and Assumption 2.3, we obtain

+ 2

Z Vo @, y; Eik) — Viygi(@,y) + Vo, 9i(x,y)

A

E [|V,9:(z,9)IIP] < %Z

%
2
9

t+1

i 202
2 2
Z IV3y9:(e )P < =27 +2L5, < 2055+ 215y,

and the following inequality:

¢ 2

Z V2, 6k) — Va,0i(,y) + Vigi(e,y)|| | <200, +2L7

E[[V2,9:(z,9)|?] Z
=1

t—|—1

The p4-strongly convexity of lower-level functions g; in Assumption 2.2 implies
1 & 1 <
E [Vf,ygt(%y)] = ZE [t 1 ZV;yl(x,y;fi,k) — ngl(m y) + ngz(az y)] ng(x y) > pgly,
i=1 k=0
which implies the last inequality in (16). O
By using Lemma B.3, we establish Lemma C.2 for Lipschitz continuity of functions F}(x) and g;(x, y).

Lemma C.2. Under Assumptions 2.2 and 2.3, we have the following statements:

(i) For any given pairs (x1,y1) € R? x R? and (x2,y2) € R? x R? and any t > 0, we have
E IV, Fi(w2) = Vy Fu(@)lI*] < 45+ 0%) (lez = 22 + 1y — %) (17)

(ii) For any given pairs (x1,y1) € RP x RY and (x2,y2) € RP x R? and any t > 0, we obtain

—|—0)

E [H(Vf,ygt($27y2))l = (V2,9¢(x1,11)) H } (lze = 1] + lly2 — w1 l?) (18)

E|[[V2g1(22,92) = Vigi(an, ||| < 4(£2, g,2><||xrx1\\2+uy2—yl||2>. (19)

Proof. (i) By using the definition of F} and Lemma B.3, we obtain

1 m t
E (19, Fiw) = VR 1] £ = 37— S B [I19yhe2, 123 01) — Vhon, s i) ]
i=1 k:
<ALG 1 +072) (o2 = P + 2 = 0 )

where we have used V,, f;(z,y) = E [Vyh(z,y; ¢i )], Ly 1-Lipschitz continuity of V,, f;(x, y), and the bounded variance
0% 5 of V2h(z,y; @i 1) in the last inequality.

15
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(i1) According to the definition of g;, we use Lemma C.1 and Lemma B.3 to obtain

E |:va2/ygt(x27y2) — V2, 9:(x1, y1)H2}

g

£ [H(szgt(x27y2))1 - (szgt(ml7y1)>1“2:| <

ALy +073)
< =2 (e — a1+ vz — )
K
where in the derivation we have used the following inequality from the proof of Lemma 2.2 in Ghadimi & Wang (2018) for
any symmetrical matrices A; € R9*? and Ay € R?9*7 satisfying A; > pgl and Ay > pgl:

Az — Ayl

2
g

JATY = A = [|AT (Az — A A < ATHIIIAZ A2 — Aql| < (20)

Additionally, using an argument similar to the derivation of (17), we arrive at (19). O

Lemma C.3 establishes the variations of functions V, F} () and V,g¢(x,y) over iterations.

Lemma C.3. Under Assumptions 2.2 and 2.3, for any given pairs (x,y) and any t > 0, the following inequalities hold.:

8(‘7,%,1 +L?¢,o) 8(03,2 +L3,1)

E [[IVyFisa(z) = VyFo(2)]?] < and B [[|Vyyger1(z,y) = Vyyge(z,y)|*] <

(t+2)? (t+2)?
2D
Proof. We estimate an upper bound on E [[|V, Fy11(z) — V, F,(2)||?] by using the definition of F;:
E [|IVyFei(z) = Vy Fi(2)|?]
1 & 1 1 « 1 « ’
< =) Elll—/—=Vyh(z y;¢i —5 h(x,y; pik) — h(z,y; i
m; AL (m7y,so,t+1)+t+2kzzovy (2,: 01.x) Hlkzzovy (2, ; i) )

t 2

> Vyh(x,yi i)

k=0

2 2 m 2
= (75+222E{|v Mz, g pic1) H mz<t+2 t+1)> E

The first term on the right hand side of (22) satisfies

E [I9,h(z,4; 91001)IP] < E [21Vyh(2, 53 01001) = Vo filw )’ + 21V, filw )| <203, 4203, @3)

The second term on the right hand side of (22) satisfies

2

t
<+ 1) DB 19k, s 0in)] < 208+ 1203, + L), 4
k=0

t
> Vyh(@,y;pin)

k=0

where we have used (a; + - -+ + a,)? < n(a? + - - + a2) in the first inequality and (23) in the last inequality.

After substituting (23) and (24) into (22), we arrive at the first term in (21). Furthermore, by employing an argument similar
to the derivation of the first term in (21), we can obtain the second term in (21). L]

Lemma C.4 quantifies the distance between the optimal solution y; () to the lower-level ERM problem in (15) and the true
optimal solution y*(x) to the lower-level optimization problem in (1):

Lemma C.4. Under Assumptions 2.2 and 2.3, for any given x € R? and any t > 0, we have

402

E[Ivi () - v @IF] < 6%

(25)

16
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Proof. We introduce the auxiliary functions g, +(y) = g:(x,y) and g, (y) = g(x, y), each with its optimal solution denoted
as y; = argmin, cg,g.,(y) and y* = argmin, g, g, (y), respectively. For any given x € R, at time ¢, it follows that
yi = yi (z) and y* = y* ().

Given the definition of y;, we obtain g, ;(y;) < gz, (y*), which further implies

By applying the mean value theorem to (26), we have
9:(yr) — 9:(y") < <vygx (0) — vygzc,t(e)a yr —y") < Hvyga@(g) - vygm,t(g)” s — I, (27)

where the variable 6 is given by 6 = ry; + (1 — r)y* with some constant r € (0, 1).
The definition Vg, (0) = L > E[V,I(x,0;&;)] implies

’VVL

B(I¥:322(0) = Vude@l] = | |3 Vuna(r:6) = Vaa(z.0)

m

< fZ o ZE IV,1(@,0:6ix) = B[V, 1z, 0: &)l

(28)

Considering that the data points &; j, are independently and identically distributed across iterations, we use Assumption 2.3
and the Lyapunov inequality E[| X||] < (F [||X||p]) Vp > 1 to obtain

M~

E[IVyl(z,0;&i k) —E[Vyl(z,6;&0)]l] < |E (ZIV Wz, 0: & k) —E[Vyl(z,0 &,MII)

k=0

~
Il

0
(29)

ot
<L |E Z IVyl(z,0; & x) — Vygi(x,ﬂ)zl S 0gavt+ 1

Lk=0

Substituting (29) into (28) yields E [|| VG, +(0) — Vg2 (0)[]] < U" . Further combing this relation with (27) leads to

Ug 1 * *
z ——E — . 30

E (g2 (y7) — g2yl < JitT ly: =7l (30)
The 114-strongly convex of g; implies %2 ||ly; — y*[|* < g.(y;) — g=(y*). By combing this relation with (30), we have

Mg * * |12

Rog Mlyr - < ol . 31

S Bl —yIIP] < W E {lly; =yl (31
which implies E[||y; —y*||] < MZ‘\T/QL Substituting this inequality into (31), we obtain E[||y; —y*||?] < u4(t 77~ Recalling
relationships y; = y; (z) and y* = y* () for any given z € RP, at time ¢, we arrive at (25). O
Remark C.5. Since V,g(z, y*(x)) = 0 is valid for any given z € RP, it follows from Lemma C.4 that

o2
* * * 2 ,1 ,1
E[IIVyg(z,5; @)I?] = E |V, i (@) = Vyg(e,y* @)I°] < L2,1E [ly; (2) - y* @) °] < ﬁ (32)

We would like to point out that the relation (32) is a key to circumventing the assumption of Lipschitz continuity of the
lower-level objective function g(x,y) with respect to y, which are used in existing DSBO results (see Assumption 2.1
in Chen et al. (2022) and Assumption 3.4(iv) in Yang et al. (2022).)

Furthermore, we define y; (x) = argmin, g, g;(7, y) for any given z € RP. By using an argument similar to the derivation
of (25), we can obtain

2 2
L5195

E (I9y9:( 47 )] = B (195010097 (2)) — VagiCo i @)IF] < L34 [l ) — i @] < 585

(33)

17
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In Lemma C.6, we quantify the variation of y; () over iteration ¢.

Lemma C.6. Under Assumptions 2.2 and 2.3, for any given x € RP, the following inequality always holds:

203,1 (N§ + 4L§,1)

E [H?J:H(x) - ZU:(@HQ] < Mé(t +1)2

(34)

Proof. For any given « € R?, the definition of y; () implies Vg, (z, y; (x)) = 0, which further implies

V2,90, 57 (2)) + V2,902, 57 (2)Vari (1) =0 or  Vayi (@) = = (V2,0(2,5; (2))) " V,00(2, 57 (2)). (35)

Taking the squared norm and expectation on both sides of (35), we obtain the following inequality based on Lemma C.1:

202 5 + 2L2
E [Hmyf(x)ﬂ < =92l (36)
Hg
The differential mean value theorem implies Lipschitz continuity of y; (z):
. . 202, +2L2,
E[lly; (x2) =y (z0)[?] £ =52 |zo — 2% (37)
Hg
We proceed to estimate an upper bound on E [||y;, , (z) — y; (2)]|].
For any given z € RP, we define an auxiliary function g, ¢(y) £ = > (%, y;& ). Considering the definition of

g+(x,y), we obtain the relation g;(x,y) = t% EZ:O 9.k (y), which further implies the following two inequalities based
ony;(x) = argminyengt(a:, Y):

t t+1
> Viyger i (@) =0 and > Vygor(yiia(z) =0. (38)
k=0 k=0

Given 310 Vo gu i (U1 (7)) = Sheo Vodu k(i1 (%)) + Vg i1 (4541 (), we use (38) to obtain

M~

(Wi (@) = ¥7 (@), Vigar (4i41(2) = Vygo i (47 (2)))

k=0

t+1 t (39)
= <y?+1(fv) 95 (@), Ve k(i1 (1) = Vygear Wi () = > Vygz,k(y?(x))>

k=0 k=0

= - <yf+1($) - y;tk (CE), Vygm,t+1(y:+1(x))> .
Recalling the definition g;(z,y) = t% ZZ:O 9.k (y), Assumptions 2.2, and 2.3, for any given x € RP, y; € R?, and
y2 € RY, the following inequality always holds:

E [Z (y1 — y2, VyGu k(1) — Vygz,k(y2)>1 = (t+ DE[(y1 — y2, Vyge(z,91) — Vyge(, y2))]
k=0

= (t+1) (y1 — y2, Vyg(@,11) — Vyg(z,52)) > pg(t + 1)[ly2 — w2|1?,

which further implies

E lz Wit (@) = v7 (@), Vigar(yia () — Vygm,k(yf(w)»] > p1g(t+ DE [llys11 (@) = yi (@))% (40)
k=0

Combing (39) and (40) leads to
—E [(yi1(2) = y; (2), Vo1 (i1 (2))] = (¢ + 1)pgE [Jlyp (2) — yi (@)]%] - (41)

18
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By using Assumption 2.2, Assumption 2.3, and Lemma C.4, we have

E [[IVyga.er1(41 ()17

ZV U, yi1 () 6ii1) = Vg (@, 454 (2)) + Vyg(2, 474 (2)

< 205, +2E [Hvyg(z,yfﬂ(x)) Vig(@,y" (@) } <20, W
g

which implies E [[[Vygz.141 (51 (@))]]] < 0g14/2 + 2541 Further combing this inequality and (41), we arrive at

2

8L2 ,
og14/2+ ug E (lyfei (@) — i @)l] =+ DpgE [y (@) — v (2)]7], 42)

which implies (34) in Lemma C.6. O

C.2. Empirical Risk Minimization Problem with respect to Problem (8)
We introduce the following ERM problem to approximate problem (8) under sequentially arriving data:

1
mm—Z@t,¢ma=fwm—%a (43)

zeRT M

where H; ; and b; ; are given by H, ; = Vyygi,t(xi,t, Vi) and by y = Vo fi e(@it, Yit).

Considering the optimality conditions of (8) and (43), for any given x € R? and any ¢ > 0, the optimal solution z* to
problem (8) and the optimal solution z; to problem (43) satisfy the following relationships, respectively:

* * -1 * * * -1 *
2 = (V2 g0,y (@) V,Fley' (@) and 2 = (Vg0(x,y* (2)) ' V, i,y (). (44)
In the following lemma, we quantify the distance between z; and z*:

Lemma C.7. For any given x € RP, we denote z; as the optimal solution to problem (43) at time t and z* as the optimal
solution to the original problem (8). Under Assumptions 2.2 and 2.3, we have

202 2L% o2 9 1
E [l - = I°] < | —5% + =2 : (43)
Hg g t+1

Proof. By using (44), (20), Assumption 2.2, Assumption 2.3, and Lemma C.1, we arrive at
* * 12 2 * -1 2 * * 2
E[lz - =17 <2 |[[(V3, 002" @) | 19y Fula, v (@) = Vy Fla,y @)

+2E U\ (V2,0(2,97(2)) "~ (vf,yg@,y*(x)))*le |VyF(x,y*(a?))||2}

2

Ly S Vb @) — SB[V, Ay (@): )
: — i=1

:1t+1k_0

<2E H(Viygt(w,y*(@))leQ

2
Viuge(@,y* (2)) = Vi gz, y* (= .
+op [Vt o) - VgV DN 1 iy a2
Hg
< (2951, 2Geose | 1
< + ;
na 1y t+1
where we have used the definition g;(x, y*(z)) = tJ%l ZZ:O l(z,y*(x); & k) in the last inequality. O

Lemma C.7 demonstrates that the optimal solution z; to the ERM problem (43) converges in mean square to the true optimal
solution z* to problem (8).
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D. Results of Algorithm 2

This section is devoted to analyzing the consensus error of the iterative variables generated by Algorithm 2. To this end,
several technical lemmas are presented in Subsections D.1-D.10, with their interrelationships depicted in Figure 4.

D.1. Estimation of E [||Z;41 — 7] in Lemma D.1 and Its Proof

Recalling Algorithm 2 Step 7: @; 141 = 24+ + ZjeNi Wi (2.4 + Xj.t — Tit) — Aa,tUi e, We express the update rule of Z;41
as follows:

m

. B 1
Tpg1 = Ty + Xt — Aeplly  With @y = o Z (Vafii(zie, yie) — viygi,t(-ri,byi,t)zi,t) . (46)

i=1

Lemma D.1. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, we have

E [1Ze41 — Zel*] < 02y + car X2 B [ &]1%] + cz2A2 E [19,)1°] + casAl K [[126]17] + czal B [[|2 — Z|°]

47)
2 _ *r= (12 2 (
+ cf5)‘m,tE [Hyt — Y (:Tt)H } + ciﬁ)‘x,ﬁ
. 36L2 (o2 ,+L2 18L2 12(02 ,+L2
where the constants cz1 to czg are given by cz1 = W, Czo = %, Cz3 = W, Cza = Cz3M,
g

2
_ _ 2 2 czaly o
Cz5 = Czam, and czg = ()‘((ff’1 + Lf,o) + “2f

g

Proof. Considering the definition of u, in (46), we have

m

_ 1
E [J|a:|*] = o Z]E IV fit (@it yie) = Vg it (in, Yie) ziel|*]
i=1
2 m 2 m i
< = E(IVadiel@in i) 1P+ = Y E[IV2 g0 @in v IP12:07]
=1 i=1
2 — ) )
s - ZE IVafit(@inyin) — Vafi(@ie, vie) + Vo fi(@in vie) — Vafil@ie, vi @in)) + Vafi(@ie, yi (zie))|)]
i=1
2 — )
+ = B[V gie(wie i) I 7))
i=1
6971 , 6 5 * 2 2 4 2 2
< T+l T m ;E IVafi(@ie, yie) — Vafilie,yi (@) ] +6LF o + ~ (025 + L2, E [[lz])?]
602, 6L A
fi1 f,0 * 2 2 2 2 2
< T By - i @)+ 6L + - (o + L) E [llz0]

(48)
where y, and y; (x) are given by y, = col(y1,¢, - - , Ym,¢) and y; () = col(y; (x1,6), - Y; (Tm,1))-

To further analyze the term E [y, — y; ()[|?] in (48), we use the following decomposition:

Ellly, —yi@)°] SE[llys — L @Gt + L @G — Ln @ 47 (20) + L @ 47 (21) — 7 (@) ]

< 3E [19.17] + 3mE [lge — yi (@0)17] +3 D E [Ily7 (@) — 7 (i) ||°] 49

i=1 (49)
" e 6(ogo+Lo1) .
< 3E [[15,17] + 3mE [[l7e — w7 (z)|*] + —"=5—"=E [[l2:]°] ,
g

with g, =y, — 1,, ® §; and &; = x4 — 1,,, ® T¢. In the last inequality, we have used (37).
We now focus on characterizing the term E [||z;[|?] in (48). Considering that both the first term in (16) from Lemma C.1

2
and Assumption 2.2 lead to E [||%]?] = E [[(V2,9¢(Z¢, 7)) 'V F(Ze,30)|1?] < LJgO, where V, Fy(Z,7;) =
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% Z:’;l fit(Z¢, §i). We subsequently obtain

3mL>
E |27 = E [0 + Ln ® (2 — ) + 1 © 5*] <3E [|20]%] + 3mE [|z - %)7] + =22, (50)
g
where 2; is defined as 2; = z; — 1,,, ® Z;.
Substituting (49) and (50) into (48), we arrive at
602, 36L%,(02,+L2,) 1812 12 (02, + L2 )
E Ma, 2] < L2 f,0\"g,2 SV R 4,12 LO® 14,112 9,2 91 m 115,112
llealP) < 5 + =205 [I21%] + —L2E [1g,1°] + (2117 o

12 (02, + L2 ) L2
9,2 9,1) ~£,0 2
2 +6Lf’0o
g

Taking the squared norm and expectation on both sides of (46) and then substituting (51) into (46), we arrive at (47). [

+I8L2 B [|[5: — yi (#)|1P] + 12 (025 + L2 E[|2 — 7] +

D.2. Estimation of E [||7;+1 — %:/|*] in Lemma D.2 and Its Proof

Recalling Algorithm 2 Step 4: y; 111 = yi+ + Zje/\/i Wi (Y5t + Gt — Yit) — Ayt Vit (Tie, yir), we express the update
rule of ;1 as follows:

_ - 1 ¢
Y1 =Gt + G — )‘y,ta ; VyGit(Tit, Yist)- (52)
Lemma D.2. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, we have

~ ~ — * [ — )\2 t
E 901 = 0el”) < o5+ et Ny [124l17] + ooy B [196017] + epady o (15 = 7 @)I°] + ey 53)
2 2 2 2 2
with g1 = 24(Ly’1)w(nz%2+Lg’l)’ Cy2 = 127Lng,1’ cy3 = cgam, and cyy = 207 (1 + 23167%1) .

Proof. By taking the squared norm and expectation on both sides of (52), we have

m

1
oo ; Vy9i(Ti e, Yit)

_ _ . 2 —
E (|51 — 5el?] <E[IIGIP] + A2 ,E - D IVygi s (@i yie) = Vygi(@in, yis)I” +2
=1

2

1 m
o > Vygi(@in, i (wi)

202,702, 1 & ¥
<o+ 242N B2 (IVygi(@i yie) — Vigi(@is vl (i) ||* + 2
=1 =1

t+1 m 4

20371)\?2!7t 4L£2771 2 * 2 2 * * 2
S oy t+1 + m )‘y,tE [”yt -y (z)|l ] + 4>\y,tE [”vyg(xi,ta Yi (zi,t)) - Vyg(xi,tvy (xz,t))H }

A2, ) 82\ A2,
< Oi,t + T;’ /\32;,151[*: [Hyt - Y (m)HZ} + 203,1 <1 + Mg’ 7 _’y_’l’
g

(54)
where we have used (32) in the last inequality. Further substituting (49) into (54) yields (53). O

D.3. Estimation of E [||%,11 — %|?] in Lemma D.3 and Its Proof

Recalling the definition z; = (Viygt(rft, gjt))’lvat (Z¢,7¢) with V Fy (T4, Tt) e % S VT, Ur), we express
Ziy1 — 2 as follows:

Zei1 — 5 = (Vi ge1 (Tea1, Ue41))  Vy Frat (Tea1, Ger) — (Vo 96 (T, Ge)) Vi Fy(Ze, G )- (55)
Lemma D.3. Under Assumptions 2.2 and 2.3, for any t > 0, we have
o 2 —_ — — — CV
E [|Ze41 — 21°] < AR [1Ze41 — Zel?] + caE [||Ge41 — 2lIP] + G J:22)2’ (56)
with cz1 = 16(L?’12+U§’2) + 32(L§'2+g§‘32(g’%’1+L?°) and czo = w (1 + w)
[T I p2 [T
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Proof. By taking the squared norm and expectation on both sides of (55), we have
E [Hét+1 - EtHQ} [H o901 (e, 1)) T Vy Frga (T, Gegn) — (Vi 01 (Z1, gt))ilvat(fztagt)HQ]
<4E {H(V 96T 90)) TV Fy (T, Ter) — (Vf,ygt(i“t,Z?t))flvat(ft,Qt)HQ}
+4E M o9t (T, Uei1)) TV Fe(Trg, Geyn) — (Vi 01(T1, l?t))_lvat(@HaQt+1)|ﬂ (57
+4E {H o9t (T, Ge11)) T Vy Pt (Tor, Ger1) — (Vi 0e(Tein, Z7t+1))71VyFt(ft+17ZJHHHZ}

_ _ _ _ _ _ _ _ _ _ 2
+4E {H (V2,941 (Zer1, T041)) " Vy Fopt (T, Ge1) — (Vi 9t (Trg 1, Ge1)) ™ Vi Frpr (T, Ge) | } -
Using both (16) in Lemma C.1 and (17) in Lemma C.2, we obtain

[H wgt T, 5) "V Fu(Zg1, Yep1) — (Vf,ygt(fuﬂt))_lvat(i“t,@t)‘ﬂ

<E [H ygt Ze, 5e) | } {|V Fy(Ti1,Yeg1) — VyFt(fm?t)Hﬂ (58)
- 4(Lf’1 Jrcrf’Q)

2 (E [[|Ze41 — Zel*] + E [|5e41 — %elI?]) -
g

Similarly, using (16) in Lemma C.1 and (18) in Lemma C.2, we have

- - _ = _ _ 2
[H yygt (Te41,Ut+1)) 1VyFt(-Tt+1ayt+1) - (V?ﬂ,gt(xuyt)) 'v Ft($t+1,yt+1)H ]

<E [H yygt (Tev1,Ye11))” ' (vyygt Ty, Jt)) || } [HV Fi(Zeg1, Jesr) || } (59)
8(L; 2+ 03 3) (07, +L3y) _ _ _ _
< =t (B |7 — 3]+ E (e - 5l])
g

Using (16) in Lemma C.1 and the first term in (21) of Lemma C.3, one yields

_ _ _ _ _ _ _ _ 2
[H 209t (Tei1,Te41) TV Fop1 (Zeg1, Ge1) — (Viy9e(Beg1, Gei1)) VB (Zesr, s || ]
8(0%, +L%,) (60)

1 2
<—E{VF Fot, Gest) — Vo FiFra1, § }<
<2 IVyFer1(Zeq1, Ger1) — VyFe(Tegn, Gea) 7| < 12(0 1 2)°

Utilizing (20), the results in (16) from Lemma C.1 and the second term in (21) of Lemma C.3, we arrive at

_ _ _ _ _ _ _ _ 2
{H yygt-‘rl (Zt+1, Ut+1)) lvat+1(xt+1ayt+1) - (szgt($t+17yt+1)) lvat+1(l’t+1,yt+1)H ]

<E [H(Vf;ygt-&-l(i't—i-lv?jt-ﬁ-l))_l - (szgt(ftﬂa?tﬂ))_lm E [||VyFt+1(ft+1’§t+1)H2}

1 _ _ _ _ _ _ 61
< B (I3 0001 (Fren, Bies) = Vi1 Feer, o) I E IV FiEein, )] ©D
g
_ 16(07 o+ L2 1) (05, + L)
Ha(t+2)2
Substituting (58) to (61) into (57), we arrive at (56). O]

In the following Subsections D.4-D.7, we quantify the distance between the iterative variables generated by Algorithm 2 and
their corresponding average values.

D.4. Estimation of E [||@,|?] in Lemma D.4 and Its Proof

Here, we use the definitions @; = u; — 1,,, @ Uy, wy = col(uy 4, -+ , U ), and @y = % S wi e with u; 4 given by
2
Uit = Vafit(@it,Yit) = ViyGit(Tit, i)zt (62)
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Lemma D.4. Under Assumptions 2.2 and 2.3, for any t > 0, the following inequality always holds:
E [Jla]*] < carl [[[2:]|*] + cazE [19,1°] + casE [I12¢]1%] + casl [z — 2] + casE [[17e — v7 (@)I7] + cas, (63)

144L7% o (02 ,+L2 1)

where the constants cg1 1o cq6 are given by cgp = e , Cag = 72L§_0, Caz = 48(03’2 + L3,1), Ciaa = Cazm,
2 ;

caaL?
Cas = Cgam, and cgg = 24m0f 1+ 24mLf£0 + ‘; o

Proof. We first determine an upper bound on E [||u¢||?]. Based on (62) and Lemma C.1, we have

“|utH < 2Z]E |V fz t(mz t) Yi, t)||2 + ||va;ygzt(xz t) Yi,t H2||zi,t||2]

i=1

< QZE[Hmei,t(CUi,nyi,t) Vafi(@ies yie) + Vo fi(@ie, vie || "‘QZE |Va;ygz (i e, Ui, t)||2||zzt||2]

i=1 i=1 (64)

6m * 2 2 32 2
< — t+1 +6Z]E Hvxfz(xztayzt) xfi(zi,tvyt (xl,t))H }—|—6mLf70+4 t+1 +L ]E[Hth ]

bm fl * 2 2
< o1 TOLRE lly —yi @] + 6mLio +4 (052 + Lga) Efllz:)7]

Then, we characterize the term E [||1,,, ® @ |?]. By using (48), we have
_ 1 «
E[|[1n ® @] < =L + 6L 0E [ly, — y; (@)|%] +6mL2 o +4 (02, + L2, E [|2?] . (65)

t+1

Based on the relation ||@]|? = 2||u||? + 2||1,, ® ]|%, by summing up the corresponding sides of (64) and (65), we obtain

24m
E 4] < f{l + 2413 0E [y, — i (@)]?] + 24mL3 o + 16 (02, + L2) E[|2?] . (66)
Substituting (49) and (50) into (66), we can arrive at (63). O

D.5. Estimation of E [||2,||?] in Lemma D.5 and Its Proof

Recalling the definitions &, = @; — 1, ® Ty, © = col(z1,4,-++ ,Tmy), and Ty = = 3" @y, with @441 = @, +
ZjeM_ Wi (T4 + Xjt — Tit) — Ag,1Uiy in Algorithm 2 Step 8, we have

Tip1 =T +WRIL)E: + Xy — Aot Tt (67)
Lemma D.S. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, we have

é
B (leent 1) < (1= 2+ canx2, ) B (1] + 4mo2, + caad & [19,17] + csa2 B 12017

(68)
+caa i (B 12 — Ze)1%] + cas A2 B (15 =y (20)1] + cas)i e,
where c31 to cz¢ are given by cz; = (1 + %) caiy © = {1, ,6} with cqg; given in the statement of Lemma D.4.
Proof. By taking the squared norm and expectation on both sides of (67), we obtain
E [||@t+1||2] = 1+ W @ L|E [[|&:]%] +4moZ , + A2 E [[|a]*] = 2E (I + W @ Ig)&, Ao vae)]
2 . (69)
< (1= ) B e+ amoZ, + (14 3 ) 2B [ladl?).
where in the derivation we have used Assumptions 2.1, Assumption 3.1, and the following inequality:
“2E[((T+ W @ L)y, Aeyi)) < SR [|2)°] + 5 E [lla?].
Substituting (63) from Lemma D.4 into (69), we arrive at (68). O
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D.6. Estimation of E ||, ?] in Lemma D.6 and Its Proof

Recalling the definitions §, = y, — 1, ® 4t Yy = col(Y1,¢,** ,Ym,t), and gy = % Yo yie With Y i1 = yir +
Zje/\fi wij (e + Gt — Yit) — Ayt Vyit(Tit, yi¢) given in Algorithm 2 Step 5, we have

Y1 =T +WRI1)G, + ét — Ayt Vydi (e, yy), (70)
with vygt(xt» Yy) = COl(vygl,t; T 7gm,t) and Vg, ¢ = vygi,t(xi,t, yi,t) - % Z:’;l Vygi,t(l'i,ta yzt)
Lemma D.6. Under Assumptions 2.1- 2.3 and 3.1, for any t > 0, the following inequality always holds:

2

t—|— 1
(71)

, Cg3 = cg1m, and

85 . . L Ay
[Hyt+1” ] (1 ) + cyl)‘ ) E [”yt”2] + 4m‘7§,t + CQQ)‘i,t]E [||wt||2] + CQB)‘i,t]E [Hyt =y, (Z4) | ] +Cga —

. 96(o5 o +L5 1)L5
where the constants cgy 1o cgy are given by cgy = 48L7 | (1 + %) Cyo = (1 + %) W
’ g

L2
et =802,m (14 2) (1+ 522 ).

9

Proof. By taking the squared norm and expectation on both sides of (70), we obtain

E (1§31 ]"] = 11+ W & LIPE [1§,]1°] +4moy, + AL E[IVyg (@ y) 1] — 2E[T + W @ L), Ao Vodi (0, y,)]

1 . .
< (1-2) Bl + amod + (1 v 5) 32 E IV, )l

(72)
We proceed to characterize the term E [||V, g, (2, y,)||] in (72). Considering the definition of Vg, (z¢, y,), we have
E[IVygi(@ey)l?] <23 E |IV,g:0(@ie v | +2 ) E ‘m > Vg via) 73)
i=1 i=1 i=1
We first analyze the first term on the right hand side of (73):
m ) 'm 2 m
> E [llvygzm,u woll’] < 55+ 23 B [IVyons o))
i=1
2moy . 2 * 2
<941 - 42 ZE 201Vygi (@i, yie) = Vygi(@ie i (i) |7 + 2 Vygi (@i e, y7 (i) [17] (74)
2 2
2 « 27, 20g1M 8Ly
<AL? \E [lly, — i (@)]?] + Tl (1 + 2
where we have used (33) in the last inequality. Similarly, the second term on the right hand side of (73) satisfies
’ 202 ,m 8L2%,
H Z Vygia(wieyie) | | <ALGE [y, — vl @)*] + =25 (1 t s ) : (75)
Substituting (74) and (75) into (73) and subsequently substituting (73) and (49) into (72), we arrive at (71). O

D.7. Estimation of E [||£;|?] in Lemma D.7 and Its Proof

Using z; = % S Zits i1 = Zig + Zjej\/f, wij (x4 + 956 — 2it) — A2t V25 ¢(2¢) from Algorithm 1 Step 5, and
V.bi(zi) = Hi1zip — b;y from Algorithm 1 Step 4, we have

_ 1 & _
Zip1 =2 + 0y — )\z,ta Z H; 24 + Az by, (76)

i1
with by = L 3" by and by = Vo fi 4 (Tie, Yir)-
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. .. ~ o _ o 2 o1 m .
Recalling definitions 2; ; = z;+ — 2¢, H; s = Vyyg,;7t(:1:,;7t, i), and Hy = - > "7, H;y, we obtain
1 m
H; 20 — — E H;zip = Hipzi0 — — E H;(2i0+ 7)) = Higzig — ooy E H; 2y — HiZy
i=1 i=1

1 & _
=H; 24 — m ZHi,tfi,t + (Hi,t - Ht) Z

=1

(77)

We define auxiliary variables H, = H, — —( m @ 1) (H)T € RmMIX™m4 with H, = diag(Hy 4, - - - ,Hmﬂ:) € Rmaxmq
and H; = col(Hy 4, -+ , Hy, ). Further using the definitions 2, = z; — 1,,, ® z; € R™9, by =b, —1,, @b, € R™, and
H,=H,-1,®H ¢ quxq and then combining (76) and (77), we obtain the following equality:

S =T +W L) 2+ Dy — \oyHy 2y — N HiZo + M. by (78)
Lemma D.7. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, the following inequality always holds:

1 N o
B (leal?] < (13 ) B [1l) + 4o+ e B [l — 51P] + i 19

2
where cz1 and cso are given by c;1 = 8mL3_1 (3 + M) and czo = 22221 (4L 1(05 2+L%o) + L2 )
! 9,1 g

Proof. By taking the squared norm and expectation on both sides of (78), and then using inequality (a + b + ¢ + d)?
a? + b2 + 2 + d? + 2ab + 2ac + 2ad + 2bc + 2bd + 2¢d, we have

E 2012 =E[I (1 + W @ I,) 21] +E [I19:)2] + X2 E [IEL22:02] + A2,E (1AL 202] + X2 [ 16.)2]
= 2B [((1+W @ 1) 20, Ao Hoz )| = 2B [((1 4+ W @ 1) 20, Ao Lz )| + 2B [((T+W @ 1) 20, 02.b0 )|

+2E |:<>\z,tﬁt2t; /\z,tﬁtft>] —2E |:<>\z,tﬁt2ta )\z,tl;tﬂ —2E K)\z,tﬁtft, )\z,ti)t>i| )

(80)
where in the derivation we have used Assumption 3.1, which implies E[(-, )] = 0.
By using the relationships 2ab < a? + b? and 2(a, A, ;b) < k1a? + 2 )\2 .b? holding for all ; > 0, we can obtain
—2E [((I+W @ I,) 20, ey Hi21)| <20 E [IT+W @ LI 1L 12007]
" A2,
~2E [(([+ W L) 20 h Bz )| < T+ W 0 LIPE [[12°] + 2B (|20
R )\2
2B [((L+W @ 1) 200 ibe)| < mallT+W @ IIPE [I12:) + 778 [ &

2F [(hs 20 Ao u iz )| < 02E [|HPIZR) + 22E [ H200°)
2 [( Ao iz, doibe)| < 02E (112002 + Aﬁ,tE [ASE

28 (Ao Bz A b)) < X2E [IHLIPI?) + X2 8 [[B]?]

Substituting (81) into (80), we arrive at

. A2 . A2 A
E[I211%] = 11 + W & LIPE [I2:1%] + B[ 19:%] + <3A + Hj) E [P I]2] + 632+ 2O |[bi1?]

+ 3N E (I 2] E [I201%] + 2617 + W @ L PE [120112] + 222l + W @ LI [I1HL] E 127 -
(82)
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By using the definition of H, and Assumption 2.2, we obtain

B [1A0?] < 2 [JE17] + 22 || Lo 10"

2
] <4mL} ;. (83)

We choose k1 < 8(1 5 T2 leading to 21 (1 — 52) < 2. Additionally, since the stepsize A, ; decays with time, the

inequality 12ng7 z,t +4y/mLgiX. (1 —02) < 542 always holds for a sufficiently large iteration I". Without loss of
generality, we can set A, o as a small constant, ensuring that above inequality is satisfied. This strategy is commonly used in
the DSBO result, such as Yang et al. (2022). Then, the summation of the last three terms on the right hand side of (82) can
be simplified as follows:

(=]

32 B (12| B [1200) + 20l + W @ LIE B B [1202) + 26011 + W @ L IPE [I20012) < 2 [I20])

2
(84)
where in the derivation we have used (83) and || + W ® I,;|| < 1 — d5 from Assumption 2.1.

Substituting (84) into (82) and using (1 — d2)? < 1 — J, based on d, < 1, we have

X 0 . . B 1 N "
B lleal?] < (1 2 ) B 12l?) + (34 ) 2 (P17 + (34 ) A2, (18] + B (19017
1
(1 - ‘522> E [[|2)|?] +4mL?, (3 + m) X2, (2E 12 — 2117] + 2E [[|%]1%]) + 4mL? (3 + m) A2, +4mo?,

1) R _ o
< (1= 2 )R]+ ama, + 2 B [l - 1P + el

where we have used E[|| H,||2] < 4mL7 | and E[]|b]2] < 4mLfc’0 from Assumption 2.2, as well as E[||9;]|2] < dmo?

. . . . - 9 20% +2L% .
from Assumption 2.3 in the second inequality. Moreover, we have utilized E[||%;]|?] < W from Lemma C.1 in the
g9

last inequality. ' O
D.8. Estimation of E [||Z,41 — %,41/?] in Lemma D.8 and Its Proof
Here, we use definitions z, = = > | 2, and %, = (V2,9:(Z¢,5¢)) "'V Fy(Z¢, 5¢). The update of Z, 4, satisfies
1 m
2, =z ’g—)\zf H,; .z )\zi) 85
Zt41 = 2t T Ut ,tm; 2t T Azt (85)

Lemma D.8. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, we have

_ . Az, A7 o
E [Hzt-s-l — Zt+1||2] < <1 — iug + 021)\/2 ++Ca2 X, t) E “|Zt - Zt||2]

2 )\2 /\2 /\2
+Cz6)\ >1E [1&:]°] + (czsz\szczwz +Cz7>\ + et ) AR

Az,
+ <Cz3)\z t T Czako + Co5—— )\

(86)
2 2 2

AZ . )\ )\ B .
+ [ oot + cr0-2L | E 12)?] + [ conn = Lt e E [l5: — v; (z0)|%]
/\z,t )\ )\z,f

21

02 02 2, 2 1
Ma)? +c Lte CRA
+ CleUZ 4T CziaT— L Czlav— L Cz15 216 217 218
27

)\z,t )\z,t )\z,t )\z7t(t + 1) )‘Z,t (t + 2)
where the constants c,1 to c,18 are given by c,1 = ¢z (1 4 e 0“5'), Cro = Cx1Cz4 ()\Z o+ i), Cy3 = %, Cps =
cz1C C22Cz __ Cz2Cq1 __ Cx2Cz __ Cz22Cy2 __ Cz1C CzoC. C22Cx __ C22Cy3
v f“, Cap = T, Co6 = Ty CaT = TR, Cag = T, Cag = T, Gl T T, Gl = TR, Gl =

Cxz C Cx 2Cg4 C C

Co1z = S, Co1a = E2, co15 = I €15 = CoiaCa, Coip = TS, ¢y = 8 and ¢y = 292
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Proof. According to the update of Z; ;1 in (85) and the definition of Z;, we have

E [lIZi+1 — %I1°] = E [|I2 — Z)°] + E [I19:)1°] + A2

1 & ’
— E Hi,tzi,t*bt
m £

=1

(87)
—2E < Zt, ( ZHthzt >>‘| .
The definition of 2; ; implies z; ; = 2; ; + 2, which further implies
2 2
1 m _ 1 m R 2(0,2 + L2 ) R
— Z Hiz 0 — Hi 2 = — Z H; 24 < o2 TolR [||Zt||2] ) (88)
i=1 mi= m
where in the derivation we have used E[||H; ;||*] = E[|[V2, gt (i, yie)|*] < 2(02 5 + L2 ;) from Lemma C.1.
Substituting (88) into the third term on the right hand side of (87) yields
Lo 2 2
= = T2
EZHi’tzi’t *bt < 2E H ZHl tZit — tht +2E [||tht*bt|| :|
i=1
4(024+ L2 ) ) } o2 4+ 2
< =2 R (] 416 (052 + L) B (5 — 207] 482 (00 + L) g0 48 (0% + L)
g
(89)

where we have used the following inequality in the last inequality:

E [z = bl”] <E 2| )7 (202 - 207 + 21502) +2 5]

16 (62, + L2 ) (6%, + L2 (90)
Ona L) Ol P i) (03,13,
g

<8(02a+L2,)E |5 — 4l°] +

_ o2 2 —
and relations E[|| 7;|2] < 202, + 2L2 |, E[[| %] < % and E[||b,[|%] < 2%, + 2L2 ; from Lemma C.1.

9,1

To characterize the last term on the right hand side of (87), we define an auxiliary variable Z; as follows:

-1

. _ 1 & 1 & -1

%= (Hy) by = (m va/ygi,t(xi,tayi,t)> (m Zvyfi,t(xi,tayi,t)> = (Vi 9:(@in,yin))  VyFu(is, yir)-
i=1

i=1
Then, we can obtain the following relationship:
)\z,tE [<2t — 22, (Htgt — Et>>:| = )\z,tE [<2t — 22, (Htgt — Ht5£)>:| 2 )\Z’t,ugE [Hit — 22”2] ) (91)

where we have used E¢ [V, g:(2,y)] = Vyyg(x,y) for any given (z,y) and Assumption 2.2 in the last inequality.
By using (91) and 2(a, A, :b) < koa® + é)\itbQ holding for all k2 > 0, we obtain the following inequality:

2AZ,tIE |:<Zf - Et, tht - Bt>] - 2)\27t]E [<2t - é;, tht - l_)f>] + 2>\z,t]E [<é£ - éhﬁt'zt - l_)f>]
> 20,4116  [||2e — Z11] + 22X E [(2] — %, (Hez — by))]

) ©2)

‘g [HHtft - bt||2]> ,

> AoettgE [112 — Z)1°] — 20 0igE 1|2 — 211%] — <H2E [I12 — 2] +

where in the last inequality we have used the inequality ||b||> < 2||a||? + 2/|b — al|? resulting in ||a/|? > ”b“ — |6 —al?
for any a, b, c € R9.
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According to definitions 2, = (V2 g:(Z¢,5:)) "'V Fy (%, 5e) and 2, = (V3 9¢ (i, Y1)~ Vy Fy (i, yi,0), We estimate
an upper bound on E [[|%] — %||?] as follows:

E (1% = Z%] = E[I(Vey9e(@ie, yie) " VyFo(@is, Yit) — (Viy9e(Te: )~ Vo Fi(Te, 7o) |1?]
<2E[|[(V3,9t(@its yin) ™" = (Voyge (@, 50) " IP] E [[IVy Fe (@i, yie) ]

+ 2B [[(V5,9: (@4, 7)) P E [IVy Fu(Ze, 5e) = Vo Fo(ie, yie)|I]
< css [[|&:1*] + cssE [|19:]1%] ,

(93)

where we have used Lemma C.1, as well as (17) and (18) from Lemma C.2 in the second inequality. The constants cy3 is
given by cz3 = 5L with cz; given in the statement of Lemma D.3.

By using inequalities (88), (90), (92), and (93), the last term on the right hand side of (87) satisfies

o))

_ _ _ 1 «—
= =2);;E [<5t — %z, HyZ — bt>] +2XE l<zt — Zi, Hyzy — - ZHi,tZi,t>]

i=1

—2E

2

YE ||z — be||?]
2 (94)

< X egB (120 = ZP] + (20001 + R2)E [[|2 — Z)1%] +

AZ Z
+ ;ug]E[H z — %|?] ‘E Htht_ZHztzzt

4(02 5+ L2
W0u2t L), g [z

Az _ . N "
< — 229 (|5 — 4] + (2Xsamty + rz)ess (E [I) +E [I9,]7)) +
g9

8 (02 L? 4(02’ +L2, > 4 L2
I (O'g72+ g,l))\?t]E |:||2t—Z’tH2j| + fi1 f,0 ( 2+ ) +1 )\gt

K2 Ko 2

Substituting (89) and (94) into (87), we arrive at

. Az .
B (I - 50P] < (1= 2525 4 cok?, ) B [l - 50P) + o2,

95)
+ (cz2X.t + Kocz3)E [HﬂJtH } + (cz2Az + Kacs3)E [H@tHQ] + cz3 A E [||2tH2} + 054)\3,15,
where the constants cz1 to ¢4 are given by ¢z = 8 (03,2 + Lg)l) (2 + i), Cz2 = 2[14Cx3, Cz3 = W( +X20),
0_2 2 0,2 2
and ¢z = (16( g‘2+Lg;§( FatLio) + 2(0%1 + L?‘,O)) (2 + %2)
We proceed to use the following decomposition:
_ y A _ y y y
loees = el < (14228 ) g = 202+ (14 52 ) B - 5P 96)
z,tlg
Substituting (56) in Lemma D.3 into (96) yields
_ . Az _ y
E [l - 5 l?) < (1422222 ) B [l - 7]
4 Cn)
1 1 E |||z — 7|12 S E |||y — 7|1 €22 .
+ ( + )\mug) <C 1E [[|Ze41 = Zel1?] + e E [17e+1 — 5:]°] + EE
Further substituting (47) in Lemma D.1, (53) in Lemma D.2, and (95) into (97), we arrive at (86). O]
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D.9. Estimation of E [||3¢+1 — y7, 1 (Z:41)]|?] in Lemma D.9 and Its Proof

Here, we use definitions §; = % Yo yie and Y (Ty) == argminyengt(ft, y) with T, = % St @i . We express the
update rule of 4,1 as follows:
_ 1 &
Y41 = Yr + G — )\y,ta Zl Vi t(Tie, Yit)- (93)
1=
Lemma D.9. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, we have

; . Ayl 7 7 A
E (17041 — v (@) |1?] < (1 fuite e Ay ) E (15— yi (@)P] + eyeoy + ey -
N ~ Cy6
+ cyady B [Haf'tHQ] + cys Ay [”ytHQ} + m’
where the constants cy1 to cye are given by c, = (1—|— & O‘L") Cy3, Cy2 = ZT’; Cy3s = Cy2Cga, Cysa =
8 L2 8 L2 2 412
e (M ). e = o (FEETD o) and ego = (o + 5 ) R,

Proof. Taking the squared norm and expectation on both sides of (98), we obtain

2
E [[17e+1 — v @)1?] < E[l1g: — i (@)]1°] + H Z Vit (Tie, Vi)
(100)
=22y < =y, (Ze), Zvyng xztayzt)>] .
=1
By using an argument similar to the derivation of (53), we have
2
o N _ %/ = Cy4
H Z Vit (@ie,yi)|| | < e [[12:]1°] + g2l [|9:]1°] + cgaB [[15: — yi ()] + t—yil (101
By using (19) in Lemma C.2, we obtain
1 m B B 2 4(L3’1 + 0‘3’2) ~ 2 ~ 2
m Z vygi,t(xi,tyyi,t) - Vygt(xta Yt) < o (E [HiBtH ] +E [Hyt” ]) ) (102)
i=1

which further implies

< yt th Zvygzt xztaylt)>

=1

— 20y E = =20 B[ — yi (), Vyg:(Te, 52))]

+2),E

* (= — = 1 =
<yt — Y7 (T4), Vyge(Te, 9r) — - Z Vit (Tig, yi,t)>] (103)

i=1

_ w/ Ay, thh _ /= 8(L2 +U ))‘ t N A
< =Ayutto (190 — i @OIP] + =57E (190 — v (@0)|°] + -~ = (E[l12:[1”] + E [I19:1%]) .
9
where we have used Assumption 2.2 and (102) in the last inequality.
Substituting (101) and (103) into (100), we obtain
. RN Ay.thg 2 - (2 (]2 2 )‘Z’t
E [Fe41 —vr (@))?] < (1 - 5 +egady . | E 17 — i (@) IIP] + Oyt t+ 4
(104)
8(Ly1+0y5) . 8(Lj 1 +055) .
+ (mﬂg + Cyl)\y) ) )\y,tE [Hq;tHﬂ + < g;nug 927 CQQAy7O )\y,tE [||yt||2] .
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We proceed to use the following decomposition:

_ v - A _ .=
E (17101~ viaa )] = (14 2220 ) B [lgiss - v @)+ (1+

>Eﬂw;ﬂ@+0yﬂﬂﬂﬂ-

(105)
By substituting (34) and (104) into (105), we arrive at (99). O]

Ay thg

D.10. Consensus Errors of Algorithm 2

In this subsection, we summarize the consensus errors of the iterative variables generated by Algorithm 2. The analysis is

based on the definitions: Z; =y — 1, @ Z¢, Y =Y, — Ly @ Y, and 2, = 2z, — 1, ® Z;.

Lemma D.10. Under Assumptions 2.1-2.3 and 3.1, if the stepsize rates satisfy 1 > v, > vy, > v, > 0 and the rates of

DP-noise variances satisfy 2¢; > v, + vy, 25y > v, + vy and 25, > vy, then the following inequality always holds:
Co

(t+1)P0°

where the rate f3 is given by By = min{2¢, — v, — Vy, 26y — Uz — Uy, 26, — Uy, 2 — 2vy} and Cy > 0 is some constant.

E[I1Z:1%] + E [9:1°] + E[I12:11°] + E [Iz: — 2I1*] + E [[l7: — v, (@)II°] < (106)

Proof. We sum up both sides of (68), (71), (79), (86), and (99) to obtain

E[|&e410?] + E 1901 17] + B[22 17] + B [ 2641 = Zeal?] + B [[1Ge41 — 47 (@) ]
5 )\2 2 ~ 5

1—-= +Cm1)\zt +Cy2)\ +Cz3)\zt+cz4ﬁ2+cz5)\ +Czﬁ/\ +Cy4>\yt E [Hwt” ]

z,t z,t

)

)\2 2
<1 - = + Cyl/\yt + 012)\3; Tt Cz3>\z t T Czako + Cz7)\ + C8 5 )\ + Cy5>\y f> E [||Cgt||2]
z,t z,t
02 A2 ot
+{1- ?+Cx3/\xt+cz9)\zt+0210>\ ]E[Hﬁt‘lﬂ
z,t
,u 2, (107)
+ <1 Asi =g zl/\zt+cz2)\ +cz4Amt+czl)\z t) E [Hgt_étHZ}
2t
tH )‘2 2
+ (1 y’ g+ C'ql)\yt +casAl, + Cy3)\y et . + Czl2>\ ) E (15 — vi (@)]1?]
z,t
+(4+)+(4+)+02+ 02+/\+(+))\2t
4dmo? m-+c m+ c.13)0% Cs Cs Cag\5 c c
x,t Y2 yt 13 t 14 /\z,t 14 )\z,t 6 t g4 y3 t+1
A2 A Cyo Ca1s
+ (c39 + ¢, )\ +c, +c, vt + Y d .
(cz2 4 cz15) (Xzr) 16/\2,5 TNt 1) At 12 T Nt 1)2

To guarantee c,qko < 54 , we select kg < 4C . Furthermore, considering decaying stepsizes satisfying A, ; < Az 0,
Ayt < Ayo,and A, < A; o, we can choose the 1n1t1a1 stepsizes Az 0, Ay,0, and A, o to satisfy the following inequalities:
Y, Y, 1Y v, y g meq

02 Ay,0lg 2 2 )‘2 /\2
Z > T + le)\LO + c@2>‘y,0 + Cz3>\z’0 + C.5 )\270 + Cre—— X o + Cy4)\y’0,
da Ayt A2 o Ay o
Z > % + Cz}l)\;o + 6932)\270 + Cz3/\z70 + Cy7 )\z70 + Crg—— )\ + Cy5)\y)0,
DY A2
52 > 20l c3A2 o+ C20\2.0 + Ca10 0 (108)
8 ’ )\Z,O
L 2 20 2
g
g > CZIAZO_FCZQ )\2’0 + Cz4 )\Z +Czl)\z ,05
2 2
Fg - . Ao A Moo Ay.0
g = Cuiy0 + ¢i5 N, + CyzAy,0 + Cz11 *odyo + 12— Mo
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It should be noted that in practical applications, the initial stepsizes A; o, Ay,0, and A, o can be chosen as any positive
constants, without strictly following (108). This flexibility is due to the decaying property of the terms on the right hand
side of (108), which guarantees that there will be a time instant Ty > 0 such that (108) is valid for all ¢ > Tj.

Considering the relations in (108), inequality (107) can be rewritten as

E [|&e10?] + E [14111] + E [1Ze11?] + E [|IZ41 — Zea1 1] + B [|Fe41 — v7 (@es1)]?]

Ay 01 . . N . B . (109)
< (1- g2 ) @ 10aP] + £ [19ul?) + E [12el) + B (12— 507] + £ 15 - i w0l + 2
where @, is given by
b — am(ot)?  (4m+ CyQ)(O_;_)2 (4m + c.13)(0F)? N ca14(0f)? Cz14(U;_)2
S S R RV Ry S R (SN
cieheg  (cgatcys)Aly (s +cas)Aly C216M7 ¢ n 7y 0 (110)
(t+ 1)21}1 (t+ 1)21)y+1 (t+ 1)2'uz >\z,0(t+ 1)2@271;2 )\z,O(t+ 1)21)y+1—vz
+ Cy6 Cz18 c1

+ ;
Ayo(t+1)27v X, o(t+1)27v= = (t+1)*

with ¢1 = 4m(0+) + (4m + Cy2)(‘7+) + (4m + c213)(0F)? + c214(0F)? + c14(03))? + caoAZ o + (cga + ¢y3) A o +
(c22 + c215)(A20)? + CzlﬁAz o+ cZ17)\y o+ (”6 + C“S and s = min{2¢, — v,, 25, — v;,2¢,,2 — vy }.

Recalling the conditions 1 > v, > v, > v, > 0, 2gx > v, + vy, 26, > v, + vy, and 2¢; > v, given in the lemma
statement, we know that s > v, always holds. Hence, using Lemma B.2 leads to (106). O

To accurately characterize the consensus error of iterative variables generated by Algorithm 2, we present the following
lemma, which is derived from Lemma D.10.

Lemma D.11. Under the same assumptions given in Lemma D. 10, we have

Cy Cy Cy
“|mt|| ] < (S [HytH ] < [k E [|5: — y7 (z0) ] (t 1 1) —vn2-20,) .
¢y C, ( )
[Hzt” ] (t ¥+ 1)2gz [Hzt — ZtH ] (t + 1)m1n{2<7—2v272<y—2vz 2. —v,}]
where the constants Cy, Cy, ., Cy, and €, are given in (113), (114), (115), (117), and (119), respectively.
Proof. Combing (106) in Lemma D.10 with (68) in Lemma D.5 yields
5 2 2
. 8o dm(c)? Do ciColio  Cac)io
E [[|@al?] < (1 -2 +eadd, ) E[l12*] + ; NTets 2
2 (t+1)%= (t + 1)2vetbo (t+1)%v= (112)

< (1-2) el + 5

where the constant ¢, is given by ¢, = 4m(o)? + Zl 5 CiCoN2 20T CrG)‘x 0-

By using Lemma 11 from Chen & Wang (2023), we can obtain the following inequality:

26z
éy L 8¢z E[[|2]?] (4—-62) & 8
7@_'_ )2 with ¢, =c; <eln(8852)> ( ic, + 5 ) (113)

By combining (106) in Lemma D.10 with (71) in Lemma D.6 and (79) in Lemma D.7, we use again Lemma 11 from Chen
& Wang (2023) to obtain

E [||Z:]*] <E[I&)%] <

26y R
2 Cy L 8cy Efllgol®] 4-32) 8
E[19"] <E (18] < gy with & =c, (eln(8852)> ( y t5 ) 19
26,
2112 & L 8¢ E[l|20]?] (4—62) = 8
< = —
E[|2/1°] <E[2?] < SIS with ¢, =c, <6ln(8_852)> < " + 5 ) (115)

31



LDP Distributed Bilevel Optimization

where ¢, and ¢, are given by ¢, = 4m(o})? + (cg2 + ¢33)CoAl o + cgaXl g and ¢, = 4m(o})? + cz1CoAZ o + c22)2 .

Utilizing (106) in Lemma D.10, (108), (113), (114), and (99) in Lemma D.9, we obtain

_ _ Ay,oft _ _ cya(0)? Cy3 Ay 0 Cyady o€
B o 2] « (1 2wty g o 2 Yy Y, y4\y,0C
[”yt+1 Z/t+1(:lrt+1)|| ] > ( 8(t+1)”y [||yf yr (Ze) ] ] + (t+1)2<y (t+1)2”y+1 (t+ 1)2§I+vy
Cy5Ay,08y Cy6 Ay,0kg - N Cyx
<[1—-——""—"—)E — -
Tt Dt T Moot D S ( S+ 1) 17e — i (@)N?] + (5 iz 2]
(116)
where the constant cy, is given by cz. = cy2 (Jj)2 + CygAZ’O + cyary 0€z + Cys Ay 06y + Cyo.
Applying Lemma B.2 to (116), we have
— * (= 2 E’U
where the rate (5 is given by S5 = min{2¢, — v,,2 — 2v, } and ¢, is some positive constant.
Furthermore, we use (106) in Lemma D.10, (108), (113), (114), (115), and (86) in Lemma D.8 to obtain
A A2 A2 é
_ o 2 z,tlg _ o2 x,0 2,0 x
E [[|Ze+1 — Ze4a[?] < (1 - 8) B [z — 20°] + (Cz?’)‘zvo F Ceatiz + “ o e Aeo | (E+1)2
Ao A2 Cx Ao Az0Cz
+ <Cz3/\z,0 + Crako + cwa + C.8 X0 m + | cxo + CZwF’O W
e 2e0 A5,0%y L cas(0f)” cz1a(of)? cz1a(0y)? (118)
211 )‘570 212 Moot + 1)2v1/—vz+537 (t+ 1)2<z )\z,o(t + 1)2%7@2 Az,o(t + 1)29,—%
c215(A20)2 c216(Ae0)? c217(My0)? C218
(t+1)2= X o(t+ 1)Zve=v= - A ot +1)20wFlmve X, o(t+1)27vs
Az 0 _ Czx
<|l1--=L9 _|E — %12 :
= ( S(t I 1)%) [Hzt ZtH } + (t+ 1)m1n{2§x7v272§y7’02,QCZ}’
. . . A . A _ A2
where the constant c., is given by c.., = 2¢,ak2éz+(2¢.3¢5 42962 ) Az 0+ ((€25+C27)x+C210¢: +C211Cy +Ca16) /\jg +
. _ A2
Cz13(0-2_)2 + ((CZG + czS)cz + CleCy + Cz17) )\Z:E + (cz14((0';_)2 + (03)2) + Czl8)$yo + 0215)\270~
By applying Lemma B.2 to (118), we arrive at
E [||z: — )] < e (119)
~ (t+ 1)k
where the rate 3z is given by £: = min{2¢, — 2v., 2¢, — 2v.,2¢, — v, } and ¢, is some positive constant. O
D.11. Estimation of E [[|%; — u;||?] in Lemma D.12 and Its Proof
Here, we use the definitions u; = % 27;1 u;p and Uy = Vo Fy(Te, 5¢) + Viygt (Z¢, Jt)Z:. Moreover, we define the
following auxiliary variables:
=% = * (= -1 = * (= — % = * (= = * (= =%
zi = (Vi,0¢(Ze,y"(3h))  VyFu(@e,y (3h), 0 = VaFy (T, y" (20)) — Vo, 0¢(Ze, y" (T4)) 2] (120)
* = * (= -1 = * (= * = * (= = * (= *
2f = (V9@ y" (7)) VyF(Z,y"(Zh),  uf = VoF (2, y"(2)) — Va,9(Te, v (20))z].
Lemma D.12. Under Assumptions 2.1- 2.3 and 3.1, for any t > 0, the following inequality always holds:
_ _ 3(cay + cay + caz) _ PN ~ 112 .2
E [[la; —ui[]*] < P} + 3ca; B [15: — vi ()] + 3caz E [1&4]|°] + 3ca: E |9, ]°] (121)

+ 3cazE [12:117] + 3ca:E [12e — Z7]
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2 2 2 2
where the constants cgy to cy: are given by cy; = 2(7)201 + w + 4L3 1Cz+ With cz« = 2‘;’;1 +
> g ’ g
2L2 2 2 2 +L2 48 2 +L2 2 2 +L2 2 2 +L2
7@0;9’2, cay = 120%, (1 + ("9’25 9*1)) + ("f*;g 10) (03,2 + 709*2(”% 9*1)), cay = 12L%, (1 + 7("9*’;3 9'1)) +
48(07 1+L5 o) L2 y(02 ,+L2 ) 4802 (0% | +L2 ) 12L3% 48L2 (03 ,+L% )
b ) (17, 4 Bt ), oy — 130, 4 SR oy = 22Dy SRR
WOL ) ng e = 16(02, + L2 )
Proof. We use the following decomposition:
E [llui — ) < 3E [Jui — a7 (1] + 3E [|aF — |*] + 3E [[1ite — a@l|?] (122)
By using Assumption 3.1, the definitions of z; and z;, and Lemma C.1, we have
—1(|2 N B _ B 9
E (15 - 1) <28 | [Py @) | 19, ey @) - ¥, P @)l
) (123)
N | N _ Cz
+2E [H(viygm,y (@0) " = (V3,9 @) | IV Py @) ] <

.. 202 2L2 o2 . .. _ . . .
where cz- is given by ¢z« = Z’;*l + fﬂ+"’2 Using the definitions of %} and u; and inequality (123), we further obtain
g g

E [lla; — ui]?] < 2E [||Vth(ftay*(ft)) - VIF(Et»y*(ft))Hz] +2E [||Viy9t(5?t7y*(fft))5f - Viyg(fhy*(:ﬁt))zﬂF]
2

2 f = 2 — * [ = 2| =* — 21| =% * (12
20f)1 80g72(0f)1 +Lf’0) 4L37lcg* _ cm
T t+1 pa(t+1) t+1 t+1

I /\

(124)
where we have used the relationship E [||z; ||| < M from Lemma C.1 in the last inequality.

We proceed to estimate an upper bound on E [||@; — i, ]|?] in (122) based on the definitions of @} and 4,
E [la; — )] < 2E [IVaFy(Ze, y* (2) — Vo Fu(Ze, 50) 1] + 2E [[IV2,9:(Ze, v (20)) 2] — Va,9¢(Ze, 5e) %1%
602
fi1 2 Py — 2
<2 <t+1 +6L7 K [[ly; (z1) — 5l ])
+AR [IV2,9:(Ze,y* (20)) 2 — Vay90(Te, 502 1P + 4B [V 2,90 (Z0, )2 — Vo, 90(Ze, 5) %1%

4802 5(07 1 + L3 ) 1 A8L2 o(0% , + L3 0) . _
< (120%1+ e Tl T et R ACA R
g g

+8(0g o+ Ly DE [z = 2],

(125)
where in the derivation we have used the following inequalities:
2 GJJQ” 1 2 2
E (V. Fi(w2,92) = VoFi(orm)l*] < 1 (lz2 = aal* + llyz = 911%)
602 (126)
2 04,2
|:Hvxygt T2, Y2) — Vf;ygt(xhlh)n ] < H—igl GL;Q (llz2 = 21> + [ly2 — w1 ll?)

02 2
for any given pairs (21, 1), (z2,y2) € RP x R? and any ¢ > 0. Moreover, we have utilized E [||z; ||?] < Q(fzi—w and
9

E [V2,9¢(Z¢, 5:)|1] < 2(02 45+ L2 ) in the last inequality.

9,
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Next, we characterize the term E [||z; — %||?] in (125) as follows:

E [|Izf — %% < 2E {H (szzygt(ftay*(ft)))il 11V y F (e, y* (24)) — VyFt(ftvﬂt)HQ}

s -1 1 _
+2E [|| (szgt(xhy (7)) — (szgt(xtayt)) ||2||vat(xtayt)||2} (127)
_ 1207,  2407,(07, + L)\ 1 1205, 24L7 5(0F, + L7 ) B Tl (5] — o2
I 4 R 4 “|yt (@) — gell ]7
My Ho b+l Hg Hg

where we have used the following relationship in the last inequality:

602

E H V2, gi(x0,10)) " — (V , ‘1H 2 (lzg — a1 |2 —ul?), 128
(T30 = (T o) ] < s 22 =P - l), 129
for any given pairs (z1,y1), (z2,y2) € RP x R? and any ¢ > 0.
Substituting (127) into (125), we arrive at

E [l — wl?] < = + cosE 170 — vi (@) - (129)

-1 —‘r t+1
Now we estimate an upper bound on E [||i; — @ |?] in (122):

m

E [||a, — @?] || < %Z (E[IVafit(@it,vit) — Vafir@e G I’] + B [IVay, 9ot (it vin)zie — Vg9t (@, )2 )7]) -
= (130)
The last term on the right hand side of (130) satisfies
2 9 2 — —\y 2
- S EIV2,9i(@in,yin)zin — Vaygit (e, G %]

i=1

4 & y 4 & y Y
E Z ||nygz t(Tits Yi)Zie — Viygi,t(ﬂci,n yi,t)Zt||2] + m ZE I:Hviygi,t(mi,t7 Yit)Zt — Viygi,t(xtu yt)2t||2]
_ i=1

8(02 5 + L2 ) 2402, 24L2 2(02 , + L2 ,)
< O\0g,2 T Lg1) 1, ® % 2 9,2 E N4, 112 fr1 f,0
< R - Ly o 2]+ | T+ ([l +E 9P ) TR
4802 (0% | + L2 48L2 4(0%, + L3 16(c2, + L2
202+ Lyo) | B0al0a ¥ 150) (g g, 2] + B [15,7]) + 2002 Lor)g s,
pg(t+1) myg m
+16(02 o + L2 )E ||z — Z1%] ,
(131)
. . o 12 2(0%1+L%,) . . .
where we have used the relationship E [ %,[|*] < —+7—1% in the third inequality.
By using (126) and substituting (131) into (130), we obtain
IE[Ilﬂt—mH]ll_H_1 sE [[120)17] + caz B [19:]1°] + cag B [12e°] + caz E [l — 211°] (132)
where the constants cz: to ¢y are given in the lemma statement.
Substituting (124), (129), and (132) into (122), we arrive at (121). L]

E. Proof of Theorem 4.1

In this section, we establish convergence rates of Algorithm 2 under different convexity assumptions on the upper-level
objective function F'. Specifically, the convergence rate for a strongly convex F' is given in Theorem E.1, for a convex F'is
given in Theorem E.2, and for a nonconvex F'is given in Theorem E.3.
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E.1. Convergence Rate for a Strongly Convex Upper-Level Objective Function

Theorem E.1. Under Assumptions 2.1-2.3 and 3.1, if the upper-level objective function F(x) is pg-strongly convex, the
stepsize rates satisfy 0 < v, < vy < v, < 1, and the rates of DP-noise variances satisfy 2¢; > v, + vy, 26y > v, + vy,
26, > vy and 25, > vy, then the following inequality always holds:

E [|lzir — 2*|] <0 (T77), (133)
forallT > 0 and any i € [m], where 31 is given by 1 = min{2¢; — vy, 26, — 20, 26, — 2v,, 26, — V4, 26, — Uy, 2 — 2vy }.
Proof. We first characterize the distance between the average sequence Z;; and the optimal solution z* to problem (1).
Recalling the update of x; ; in Algorithm 2 Step 7, we have Z+11 = T+ + Xt — Az Uz, which further implies

E [[|Ze41 — 2*[?] S E[l|ze — a*[I°] + 07, + A2 E [a]?] — 220 sE[(T: — 2, u0)]
<E[[|Z = 2*|?] + 02, + A2 LE [[15e]|”] — 22, B (T — ¥, up)] + 220 B [(T0 — %, up — )]

A 2\
<E[l7 — 2" ?] + 07, + ALE [[6]?] — AeoptsB [ 70 — 27[*] + %WE [z — ")) + Tj’tE [y —e]?]

A B . _ 2, .
< (1= 2 Bl = 1)+ o2 R E ) + 22 [l - wl?),

(134)
where we have used the j¢-strong convexity of F(x), i.e., 2X; ¢(Ty — a*,uf) > Ag epip||Ze — 2*]|2.

By substituting (49) and (50) into (48), we can obtain an upper bound on E [||@ |?]:
E [[lael”] < o1 [[|&:]°] + ca2E [19:11%] + s [[126)1] + czaB [[12: — 21%] + casE [19: — v (Z)[1] + ca6. (135)

By further substituting (135) and (121) in Lemma D.12 into (134), inequality (134) can be rewritten as

Az, _ . . .
E [”fﬂ'l - I*HZ] < <1 - tﬂf) E [”xt - ||2] + U?c,t + a1 Ayt B [IlthQ] + g E [||yt||2]

2
\ (136)
z 12 = v o112 — * [ = 2 2 x,t
+ cz3 e E [”sz } + Crade (B [”Zt — Z| ] + Ca5 Az E [”yt =y (z)]] ] + Co Ayt Cm7ma
. 6C,H:< GC,H:; 6cy =
where the constants c;1 to c,7 are given by c;1 = cz1 Az 0 + T;, Cr2 = CzaAz,0 + TfO, Cz3 = Cz3Az,0 + Tfﬁ,
6cyx 6cyx 6(cqax +cax+cax)
Cod = Czada,0 + -5, Cas = CasAa0 T iy Ca6 = Cz6s and c;7 = —

Using the results in Lemma D.11, we rewrite inequality (136) as follows:

+

_ )\m oM f _ (U )2 Crl)\x Oér CIQAI Oé CmSAx Oéz
E K12 <[(1= ) E k2 x > V=Y >
[”xt—‘rl T ” ] — ( 2(t+ 1)% [”xt Z ” ] + (t + 1)2% + (t+ 1)2%—&-1}1 + (t+ 1)2§y+vw + (t—i— 1)2<z+vx

_ - 2
Cm4)\x,OCz + Cm5)\x,00y + 6136)‘170 Cm7)\x,0
(t + 1)min{2<m—2vz+vm,2§y—2vz+vm,2§z —v,4vg } (t + 1)min{2cy—vy—o—vm,Q—QUy—Q—vm} (t + 1)21}m (t + 1)1-&-1}1

)\xO,U'f _ 2 C2
< (1- 228 Vg iz, — 2] + —2—
< < 3+ 1) [z — z*[|?] + G

+

(137)
with cg = (0])% + (164 + Ca2Cy + Cp3Cs + CgaCs + Cp5Cy) Ap0 + C27 Az 0 and s1 = min{2¢,, 2¢;, — 20, + vy, 2g, —
20, + vy, 26, — U + Vg, 26y — Uy + Vg, 2 — 20y + Uz}

According to the conditions given in the theorem statement (or given in the statement of Theorem 4.1-(1)), we know that
s1 > v, always holds. Therefore, by using Lemma B.2, we arrive at
C3

_ * (12
E[[|z: — 2*|] SEroE

(138)

where the rate £ is given by 51 = min{2¢, — vy, 2¢, — 2v,, 25, — 2v,, 26, — v, 26, — vy, 2 — 2v, } and ¢3 is some positive
constant.
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By using the definition &; = x; — 1,, ® Z; and the first term of inequality (111) in Lemma D.11, we obtain
E @i — 2*|?] < 2E [||zie — 2] + 2K [||7¢ — 2*[])] < Ci(t+1)77, (139)

where the constant C' is given by Cy = 2(é, + ¢3) and the rate £ satisfies 51 = min{2¢, — vy, 26, — 2v., 25, —2v,, 2, —
Uz, 26, — vy, 2 — 2vy }. Inequality (139) directly implies (133) in Theorem E.1 and (10) in Theorem 4.1-(1). O]

E.2. Convergence Rate for a Convex Upper-Level Objective Function

Theorem E.2. Under Assumptions 2.1-2.3 and 3.1, if the upper-level objective function F(x) is convex, the stepsize rates
satisfy 0 < v, < vy < v, < 1, and the rates of DP-noise variances satisfy ¢, > %, 26, > v, + Uy, 26, > 20, + 2 — 2uy,
26y > 20, +2 = 2vy, 26y > Uy +2— 204, 26, > v, + vy, 26, > v, +2 — 2v,, and 25, > vy, then the following inequalities
always hold:
E [|er — 1, ® 27[]*] < O (T7%*),
T

Ty) — z* < vy —1 ,
1 L EFG) — Fla)] <0 () 120

1

T
m ZE [F(xl,t) - F(:L'*)] § O (T’U:L.fl) ,
t=0

forall T > 0 and any i € [m], where v, is the rate of stepsize Ay ; given in Algorithm 2 satisfying v, — 1 < 0.

Proof. (i) Based on the definition &; = x; — 1,, ® Ty, the first inequality in (140) follows naturally from (111) in
Lemma D.11.

(i) We now proceed to prove the second inequality in (140). Taking the squared norm and expectation on both sides of
equality T;41 = T + Xt — Mg+ Uy yields

E (1241 — 2* 1] SE[l|Ze — 2*(]°] 4+ 02, + A3 E [1ae]?] — 2E [(Z — 2%, Ap1lie)] - (141)

According to the definition uf = V. F(Zy,y*(Z;)) — V2, 9(Zt, y* (%)) 2, we have uf = VF(Z;). Using this relation and
the convexity of F, the last term on the right hand side of (141) satisfies

—2E [<"ft — x*, )\m,tﬂt” =2E [<£C* — Lft, )\x,tu:” —2E [<i’t — 1'*, )\zyt(ﬂt — U:)>]

_ * — * 112 Ait _ *(|12 (142)
< O E[F(@) — F(a*)] + o/ [ — 2 I7] + "2 [l — uf]?)
t

where a; is an auxiliary decaying sequence satisfying a; = ﬁ with 1 < r < 2v,.

Substituting (142) into (141) leads to
E[|Ze41 — 2*)?] € =220 E[F(@0) — F(2")] + (1 + a)E [[|7 — 2] + @4, (143)

where the term ®, is given by
2

= B (17— 7] + o7, + XL [[3]] (144)

Since the relation F'(Z;) > F(z*) always holds, we drop the negative term —2\, ,E [F'(Z;) — F'(z*)] in (143) to obtain

T

T
E [[Z041 — 2*1%] < (1+ a)E [[l7 — 2*|2] + & < (H(l +at>> (]E (7o — *|12] + Z@) NP
t=0

t=0

By using the relation In(1 4+ ) < w holding for any v > 0 and the definition a; with 1 < r < 2v,, we have

_ 1
= @

T B T - T - T 1 _ 0o _ CLO(T o 1)
In H(l"‘(lt) —Zln(1+at) 7Zat 7@0+Zm <ag+ : ?dxi ﬁ, (146)
t=0 t=1

t=0 t=0
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which implies Ht ol+a)<e o . Then, inequality (145) can be rewritten as follows:

E [ —2"|?] <e™

T
: (IE [llzo — 2*[|?] +Z<I>t>. (147)
t=0

Next, we estimate an upper bound on Z;‘F:O ®,, where ®; is defined in (144).

Substituting (121) and (135) into (144) and subsequently using (111) and the relation a; < 1, we obtain

T T 3(0@* + cgx + Cﬁ*))\i )\2 ./ — Ai’ a
Z@t S Z ( L at(t2+ 1) 4 7t (3Cu* + Cm5> a “|yt Yy (xt)||2:| + (30@; + le) a;tE [Hwt||2]

2

A2 A2
“E [|l9.)1%] + (3caz + cas) T;E [1Ze1] + (3ca; + cza) Tt’tE (12 — 2] + 02, + céf6)‘i,t>

< i 3\2 olcar +cay +caz) i (30@ + 055) Ey)\i_o i (3011; + cm) éz)‘g,o

> pord (t + 1)2111—74-1 — (t + 1)min{2vm—r+2<y—vy,2vm—r+2_2vy} e (t + 1)2Um—7'+2§z

T (3cu + cﬂ CyA x 0 T 30u6 + (313 cz)\ﬁ 0 T (3071»{ + 0534) 62)@70
+ ; (t + 1)203: 426y + ; 2vx —r+2¢, ; (t + 1)min{2vm—r+2§m—2vz,21}1—7'+2§y—2uz,2Um—r+2§z—vz}

 ( t+1 2% (t+1) 20,
(148)
By using the following inequality:
T T+1 oo
1 1 1 T
=1 — <1 —dx < , 149

;(t—&—l)r +§t5_ +/1 P (149)

and the constant r satisfying 1 < r < 2v,,, we can rewrite inequality (148) as follows:

T
cu*—&-cu +cu)(2vw—r+1) 2, — 1+ 2¢, — v 20, —r+2—2v
< 3car + Cas) Gy A2 il y Y z Y
go - 0, — 71 +(03+05)6y 2,0 THaX 20, —r+2¢ —vy, —1 20, —r+1— 2y,
N (301;; + cm) éa:)\z-,o(%x — 7+ 2¢) N (3011; + cg—cz) éy)‘i,o(%x — 7+ 2¢g) N (36% + 0533) éz/\i,o(zvx —r+2¢,)
20, —r 426, — 1 20, — 7 +2¢, — 1 20, =7+ 2¢, —1

+ (Bcay + caa) €2A2 o max { 20y — 1+ 26 — 20, 20y — 7+ 26y — 20, 20, =7+ 26, — v, }

20, — 1+ 26, — 20, — 17 20, — 1+ 2, — 20, — 17 20, — 7+ 25, —v, — 1
2(0) %, 20@6/\3,0% a

o1 T o1
(150)
Substituting (150) into (147), we can arrive at
ag(r—1)
E [[|Zi41 — 2*]|?] <e 71 (E[|Z0 — 2*|%] +c4) - (151)
We proceed to sum up both sides of (143) from 0 to T" (1" can be any positive integer):
T T T T
S 2 E[F(E) - F(a*)] < =Y B2 — 2] + D> A+ a)E [z — 2*|*] + > . (152)
t=0 t=0 t=0 t=0

37



LDP Distributed Bilevel Optimization

The first and second terms on the right hand side of (152) can be simplified as follows:

[M]=

T
(1+a)E [z — 2" *] = Y E (@141 — 2"||?]
t=0

T
< ok [I|70 — =*”] + " @i [|2 — *?] +E [I70 - 2*[’] ~ E [[[Zsr — 2°]

T (153)
<y 0 +11)v~ (eQ (E [Ii20 — @ 2] + 1) ) + (1 + ao)E [|lz0 — 2|7
t=1 e
R ao)) E [l - o*|*) + = 2 s,

where we have used (151) in the second inequality and (149) in the last inequality.

Substituting (150) and (153) into (152) and using A, < A, ¢ for any ¢ € [0, 7] yield ZtT:o 20 E[F(Z) — F(2*)] <
¢4 + c5, which further implies

T
1 _ Cy + Cs Cé
—_— E E[F —F(x®)] < = 154
1 par [ (xt) (I )] = 2)\%0(T+ 1)1—1}1 (T_|_ 1)1—vz’ (154)

with Cf = C4+“ . Inequality (154) directly implies the second inequality in (140).
(iii) We now prove the third inequality in (140).
Assumption 2.2 implies E [F(x; 1) — F(Z¢)] < Ly o(E[||&]|] + E[||9:]]])- By using Lemma D.11, we have

E[F(z;:) — F(&)] < Ly <( Ver + \/@ ) . (155)

t4+ 1) (4 1)

Since Zt 0 (t+1)p hS fTﬂ Ldz < % always holds for any p € (0, 1), we arrive at

0 zP

T =
\/a Cy _ Cs
Z Il t (xt)] S Lf,O ((T ¥ 1)%‘ + (T ¥ 1)§y - (T + 1)min{<z,<y}’ (156)

t=0

where the constant Cy is given by Cy = L o(v/éz + /Cy)-

According to the conditions 2¢; > v, + vy + 2 — 2v; and 2¢, > v, + vy + 2 — 2v, given in the theorem statement (or
given in the statement of Theorem 4.1-(2)), we have 1 — v, < ¢; and 1 — v, < g,. Hence, by using (154), we arrive at the
third inequality in (140) and (11) in Theorem 4.1-(2). O]

E.3. Convergence Rate for a Nonconvex Upper-Level Objective Function

Theorem E.3. Under Assumptions 2.1-2.3 and 3.1, if the upper-level objective function F(x) is nonconvex, the stepsize
rates satisfy 0 < v, < vy < v, < 1, and the rates of DP-noise variances satisfy ¢, > %, 26 > v, + vy, 26, > 20, +1— vy,
26y > 20, + 1 — vy, 26y > vy + 1 — vy, 26y > v, + vy, 26, > v, + 1 — vy, and 2, > vy, then the following inequalities
always hold:

E [”mT -1, ® iT”Z] <0 (T72§m) >

r 157
1 ZE [||VF(371,¢)||2:| S O (Tq)m—l) , ( )
0

T+14&
forall T > 0 and any i € [m], where v, is the rate of stepsize Ay given in Algorithm 2 satisfying v, — 1 < 0.

Proof. The first inequality in (157) follows naturally from (111) in Lemma D.11.
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We proceed to prove the second inequality in (157).

Assumption 2.2 implies

L
F(@r41) < F(@) + (VF(@), Ter = T) + =55 [Tr = 3. (158)
Taking expectation on both sides of (158) yields
L
E[F(Z41) — F(Z)] SE[VF(Z), Teq1 — To)] + %E [1Z 1 — 2]|%] - (159)

Substituting the relation Z;41 — Ty = X+ — As,+ Uy into the terms on the right hand side of (159) yields

L
E(VF(#), 21 — 2]+ —5 B |70 — 2]
L
= ~E[(VF(@0), Aeeti)] + —27E [IX = Awstie]|°] (160)

L
< ~EUVE(@), s tie)] + =% (07, + X3 E [lad]*]) -

The definition of u; implies u;j = VF(Z,). Hence, the first term on the right hand side of (160) satisfies

—E[VE (@), \p )] = =t E [(VF(Z1), up)] = A fE[(VEF(Z), Uy — uy)]

Az _ Az _ «
< =X E[|[VF(@))] + Tt]E [HVF(ﬂCt)HQ] + Tt]E [ay — uf|?] (161)

Azt _ Az _ .
< —TJE (IIVF(z,)|?] + TtE [, — uf|?] .

By substituting (160) and (161) into (159), we have

/\

E[F(Z41) — F(@)] < == E[[|[VE(z)[I°] + Lf1

L
E [@ — u;|*] + g’lai,t +

AE [llal?]. a6

Summing up both sides of (162) from 0 to T" and using the relationship F'(z*) < F(Z;41), we obtain

T
Az
5 22t (19 F @)
t=0 (163)

_ % d Azt _ * d Lf 2 fl)‘acf
<E[F(20) — F(a")] + Y " E [ — uf|] +22(t+12§£ Z 5 E [lla]]
t=0 t=0

Combining (163) and the relation A, ;E [[|[VF(2;,)%] < 224K [[|[VF(zi4) — F(2)]|?] + 24K [|[VF (2;,)]?] yields

T t
D AB[[VE(2i)|*] < E[F(Z0) = F(z")]+ ) . (164)
t=0 t=0
where the term &, is given by
_ >\a:, _ * L ,1 U;_ 2 Lf1 T,
Oy = A\ E[[|[VE(z) — VF(2,0)]?] + 2tIE [a; — up|?] + 2(;”+(1)2)% + E [||a)?] - (165)

We proceed to estimate an upper bound on Zf:o P
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Substituting (121) and (135) into (165), and then using Lemma B.1 and Lemma D.11, we have

361]* +L \1Cz sz N 3Cﬁ* + L 1Cz )\w, R
Z¢t<z[< F ; ;1 1 0>>\m,tE[wt||2]+< : ;1 2 0))\ME l.12]

3car + Lyiczareo . 3cax + Lyiczareo
< 6 f xt]E [||zt||2] 4 7 f

+

: ! ) AodE [[17 - %7

3ca: + Ly1czsAao 3(cay +cay tcaz) Aoy Lyi(oF)? | Lyicae
3 e ) Mo B N7 — * (= \[12 1 2 4 z, ) T 1T )\2
+ < 9 t [||yt y; ()| ] + 9 t+1 " 2(t4 1) 2 ©,t
< ET: 3)\;3 O(Cu1 + Cu2 + Cu4 ET: f, Z Lf,lca_JG()\a:,O)Q
> part 2(t + 1 14v, = (t + 1 2<x pard 2(t + 1)21@
T T
L 3C»a* + L Czx )\w) éx)\a? 3071* + L 1Cz )\117 ¢ )\1:
+ Z (nj +— ;,1 - 0) (t+ 1)2;34-% Z < : ;1 : O) (t +7J1)2;S+vw
t=0 t=0
N XT: (30,2é + Lf,lcjg,xx,()) ¢ a0
26, +vy
— 2 (t+1)%
L 3cur + Lfi1czadao C2Az,0
+ Z 2 (t 4 1)mi1’l{2§w—2’Uz+'l)m72§y—20z+")m72<z_U2+U.'L}
t=0
L ZT: 3011; + Lf7lcj5>\x70 Ey)\x7o
poar 2 (t + 1)min{2§y—vy+vz,2—2vy+’uz} '
(166)
Using inequality (149) yields
w Cu +Cu +Cu 1+ v, L +2z L 76 (e 2z
Z(I)t_ 0 ¥ )( ) + f,l(asc) S. + f,1€ 6( 70) v
20, 26, — 1 20, —1
SCu + LyicziAeo Codeo(26s + vz) 3car + Lf1czade0) EyAa,0(25y + va)
2 26 +v, — 1 2 2 + vy, —1
3cu + Lﬁlcxg)\x 0\ C2A2,0(26; + vy) (167)
+
26, + v, — 1
3Cu + Lf lcw4)\a: 0 26, — 20, + vy 2§y —2v, + vy 2¢; — v, + v,
+ C. Az 0 Max ’ ?
’ 26 =20, v, =1 26 —2v, +v;, — 1" 26, —v, +v, — 1

n 3Cu +Lf1€z5)\z0 )\ o max 2§y7vy+vx 7272’Uy+1)¢£ éC(i.
2 26 — vy + vy —1 1 =20, +v,

Substituting (167) into (164) and defining c; = E [F(Zy) — F(x*)], we can obtain ZtT=o At B[[IVE(z;0)]1?] < c6 + cr,
which implies

T
1 6+ c7 Cs
—_— E F(x; = , 168
T+1 < |:||v (SU t)” ] A ( 1)1—%», (T + 1)1—UT, ( )
with C3 = 626;;607 . Inequality (168) directly implies the second inequality in (157) and (12) in Theorem 4.1-(3). O

F. Proof of Theorem 4.5

In this section, we prove that in addition to accurate convergence, Algorithm 2 can also simultaneously ensure rigorous
€;-LDP for each agent, even when the number of iterations 7" tends to infinity. To this end, we first provide a definition for
the sensitivity of agent 7’s implementation A;:

Definition F.1. (Sensitivity) The sensitivity of agent i’s implementation A; is

Ai,t = Adjl(%%?(pé) ||Ai(Dia 9—i,t) - Ai(ng 9—i,t)||1 , (169)
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where Adj(D;, Dj) represents the adjacent relationship between agent ¢’s adjacent datasets D; and D;, and 6_; ; represents
all information agent ¢ receives from its neighbors at time ¢.

According to Definition F.1, under Algorithm 2, each agent ¢’s implementation involves three sensitivities: A; ¢ 2, A; ¢y,
and A; ; ., which correspond to z; +, ¥ +, and z; +, respectively. With this understanding, we have the following lemma:

Lemma F.2. (Huang et al., 2015) At each time t > 0, if agent i injects into each of its shared variables x; 1, y; 1, and z; 4

noise vectors X1, G, and U ¢ consisting of p, g, and q independent Laplace noises with parameters V; ¢ 4, Vi 1.y, and Vi -,
Aita Ajty AYRY

Vit,x Vi t,y Vit,z

respectively, such that ZtT:1 (
fortimet=0tot ="1T.

) < €;, then agent i’s implementation A; of Algorithm 2 is ¢;-LDP

For the convenience of privacy analysis, we represent the different data points between upper-level adjacent datasets Dy,
and D, (as well as between lower-level adjacent datasets Dy, and Dy) as the k-th one, i.e., ¢; x in Dy, and ¢; , in D,
(&, In Dy, and 51’-7 & 10 D;i), without loss of generality. We further denote x; ¢+, ¥; +, and z; ; as the parameters generated by
Algorithm 2 based on Dy, and Dy,. We also use z; ;, y; ;, and 2; , to represent the parameters generated by Algorithm 2
based on D}, and Dy .

Now, we are in position to prove Theorem 4.5.

Proof. The convergence results follow naturally from Theorem 4.1.
(1) To prove the statement on privacy, we first analyze the sensitivities of agent ¢’s implementation under Algorithm 2.

According to the definition of sensitivity, we have z; ; +3; ¢+ = 27, +0) 1, Yj.e +Ce = Y +C g and T 0+ XG50 = 2 X,
forallt > 0 and j € NV;. Since we assume that only the k-th data point is different between Dy, and D} , as well as between
Dy, and Dy, when t < k, we have z; 1 = 2], yi+ = Y, and x; ; = ¥ ,. However, when t > k, since the difference in
loss functlons kicks in at iteration k, i.e., h(x Y Qik) ;é h(z,y; ;) and Uz, y; & ) # U, y; & ), we have z; ¢ # 2],
Yit 7 ym, and z; ; # xm Hence, for agent ¢’s implementation of Algorlthm 2, we have

Izi41 = 20 gl = 1L+ wia) (200 — 250) = Moo (Hipzin — Hiy2i0) + Aea(bie — U 4) 1, (170)
forall ¢ > 0. Let w = min{|w;;|}, ¢ € [m], the sensitivity A, , , satisfies

t
Azt
Z’l Z V2 Ui, it Eip) 2t — Vi L@ 4, Ui 15 61 p) 74 el

A1 <(1—w)Ai .+

ym%,p) Vyh(xg,t’%{,ﬁ@g,p)ﬂl
(171)

t+ 1 Z Hv?/yl(xl,fd Yits £i7p) - v?/yl(x{i,m y;,t; fz{,p)Hl

/\

t—l— 1 Z IV yh(Zits Yit; ip) — Vyh(xg,nyz/‘,t;@;,p)llla

where we used ||z; ]|1 < ¢, from the convergence of Algorithm 2. Given that the difference in loss functions kicks in
. . k—1 k-1

at iteration %, we have Z —o szl(xi,t, Yit;&ip)Zit = Z V2 l( T4 yl 4 & p) i and Zp o Vyh(xi, yis; pip) =

Zk ‘v, y (] 4, Y 45 5 ), which are used in the last mequahty.

By using Assumption 4.4 and the relation A; o . = 0, we iterate (171) from ¢ = 1 to ¢t = T to obtain

t
Aitz <2(czLig +cno Z K VY (172)
p=1

Similarly, by using the update of y; , in Algorithm 2 Step 4, we have
lyite1 — yé,t+1H1 = (1 + wii) (yie — yg,t) - )‘y,t(vygi,t(xi,ta Yit) — vygg,t(‘r;,tv yg,t))Hl» (173)
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for all ¢ > 0. Then, the sensitivity A; ; , satisfies

_ Mt ©
A1y < (1 —0)A4y + t—il Z IVyl(@ie, Yie; Eip) — vyl(xé,tvyg,t;gz/',p)ul

(174)
_ y,t
< (1= @) Ay + - ; - Z IVl @i i Gip) = Vil e 7,65 €)1
By using Assumption 4.4 and the relation A; o, = 0, we iterate (174) from ¢ = 1 to ¢t = T to obtain
Aigy < 2%2 ) PNz 1 (175)
Furthermore, by using the update of x; ; in Algorithm 2 Step 7, we have
@i tr1 — 25 ppall = 11+ wi) (@i — 25 ) — Ne(uie — wi ), (176)
for all t > 0. Then, the sensitivity A, ; , satisfies
_ >\ / / /
Ajpr1e < (1 —0)A 40 t + 1 Yit; Pip) — vyh(xi,tayi,t? ‘Pi,p)Hl
)‘Iyttv2l_ W2 (g Il /
t+1 Z ” Ty (xl,ta yl,ta&,p)zl,t Ty (xi,tvyi,tvfi,p)zi,tnl
p=k (177)
_ Az,
S (L= @) + 22 1 Yits Pip) = Vyh @ 1, yi 45 05 p) Ih
@it Yis Eip) — Vgl e ¥i i €)1
t+1 gcy 2,0y Il 5T,p ac z7ta i,t) Si,p .
By using Assumption 4.4 and the relation Ai,O y = 0, we iterate (177) from ¢ = 1 to ¢ = T to obtain
t
Az t,x < 2 chO + Cle 1 Z p)\ z,p—1- (178)
p=1

Inequalities (172), (175), and (178) imply that for agent 7, the cumulative privacy budgets in 1" iterations ¢; ., €; 4, and €; ;
are bounded by ZT V20i: (1) T V200, ()Y g ZT V2010 (t+1)50

0,2 t=1 Tiy Tix

, where o4 ., 04,4, and g; , are given
in the theorem statement.
(2) By leveraging inequality (174) and the relation &; ,, = fz'-,p for p # k, we have

t

_ A
Aippry < (1 —w)Ajy + ¢ _’y_’tl Z IV yl(@i e, Yits &ip) — Vyl(z] Ty, t7yz i)l
p=0,p#k (179)

)\

t+1 (%u?hn&k) v l( ’Lt’y’bt7§lk})||1

Assumption 4.4 implies that for the same data §; ;,, we can rewrite (179) as follows:

_ Ly at LAyt 2c10\y t
A <|1- L AL i TR I e 180
,t+17y_< 0t =T by T B P (180)
By using inequality (177), we obtain
A; <(1—-w)A; Az, h(z) .,y ;o
it+le S ( w) it T t+ 1 Yi ta%,p) Vy (xi,t,yi,ty%,p)”l
(181)

t+1 ry xl tr Yi t7§l7p)zlt val(z;,ﬁy:,hgi,p)'z:,tnl
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By using the relation ¢; ,, = gog’p for all p # k, the second term on the right hand side of (181) satisfies

t

)\ >\:1:t

t—|— 1 Yit; Pip) — V h( L5 ts yz t5 901 p)”l =i Z ||Vyh(xi,tvyi,t3 Pip) — Vyh(x;t,yg’t; Pip)lh
p=0 p=0,p#k
)\ Lh 1)\1 tt 2Ch0)\x,t

IV A i 910) = Vbl s @)l € T2 (A + Augy) + =10
(182)
Using an argument similar to the derivation of (182), the third term on the right hand side of (181) satisfies

Ao o
t-T—]. ZHviyl(xivt’y@t;gim)zi75 VQ l( 1t7yz t7£,p) thl

t

xy xl it Yits gl,P)Zl t viyl(xg',tv y;,t; §£7p)zi,t||1 + ||V2 l( Tits y1 t fz p)zl t viyl(x;,tv yg,t; §g,p)zg,t||1)

A t
ti7t1 Z ||viyl(xi,t;yi,t;£’i,17) v2 l( 7.t3y1 t’glp)” ||Z’L tHl
p=0,p#k

Tf ||v (xi,byi,t;fi,k) v2 l( zt?yz tagz k)

Z IV2 0yt & Il zie — 211

t +1
Cle 2>\x tt 2Cle 1)\1 t
: - A’L x Az —— L )\m A1 2.
S i1 Bike FAiny) + — 5 T Liade A,

(183)
Substituting (182) and (183) into (181) yields

L L1 2) g it L L1 2) g it 2 2 Li1)A
A’L 10 < (1 w4+ ( h,1 +c l,2> ,t ) it ( h,1 +c [’2> it A, (chO +c l71)

x,t
i - L )\:c Ai -
41 P T 1 + LAzt A,
(184)
Furthermore, by leveraging (171) and using an argument similar to the derivation of (184), we have
_ Az,
ANjir1: <A —w)Ajs .+ 7 +t1 Z IVyh(@ie, Vit ip) — Vol 1 55 505 )
p=0
1
t+1Z”V Wit yits Eip)Zit — Vi L@ 4, Y1 1 €6 p) 70 (185)
-~ )\ t 2(Ch0 + Cle 1)/\2 t
<(1-— A )Ais s, + (L L AV A : :
S(@—w+enr)Disz+ (Lag+c z2)t+1( ta T Diy) + P
Summing up both sides of (180), (184), and (185), we obtain
o Liahg et Azt Azt
Ai z Al Az < 1- ——% Ly 2L : Ly, 2L : Al T
e T A1y + Adgr, _( D+ + (Lny+e z,2)t+1+( h1tec l’Q)t-‘rl t,
_ LAyt Az it Ayt
1-— ——= 4+ (L L L L A; 186
+( O+ e ”%+1+(h1+c w2)ihy ) Bt (180)
_ 2ci0My,t | 2(cho +czLig)des | 2(cho +cLip)A
1 _ L )\JZ )\Z A’L » Y, 9 3 » )
+( W+ LAz +cnn ,t) t 1 + t+1 t+1

Since stepsizes Ay ¢, Ay ¢, and A, ; are decaying sequences, we can choose proper initial stepsizes such that the following
inequality always holds:

Ajirte +Dipr1y + D1,z
w 2¢i0\ 2(cho + c2 Ly 1)z 2(cho + 2 Li1) )\,
< <1 _ 5) (At + Diry + Dirs) + 10 Ay, t (cho 1L,1) At n (cho 1)zt

t+1 t+1 t+1 (187)
w M,

<(1- *) A AV ANjtz)+ ——5,

< < 9 ( ,t, + ,ty + .t )+ (t+ 1)ﬁ6
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with My = 2¢;0My,0 + 2(cho + 2 Li1)Ae,0 + 2(cho + c2Li1) Az 0 and fe = min{l + v, 1 + vy, 1 + v, }.
According to Lemma 11 in Chen & Wang (2023), the following inequality holds:

Aita+ Dty + Dig, < Mot™Pe) (188)

Be ) ) . _®
where the constant M» is given by My = (eln(‘w; )> ((A"'O’”+A1~°-U+A“°=Z)(1 2) 4 é) .

@ My w

According to (188), we have A; ; », < Ma, Aj;y < My, and A; ;. < M forall ¢t > 0. Substituting A; ¢, < Mo
into (180) and using again Lemma 11 in Chen & Wang (2023), we have

1+vy _
C . (1 + o ) ) Az 0 (1 — H) 4
Nigy < —L withC,y = | —— 4L ’ A’yr 2 — . 189

= (t + 1)1+vy e Y (6111( 1 )> (Ll,l/\y,o 2+ 2610)‘970 - w ( )

—2w

Similarly, substituting A; ¢ , < M and A; ; , < My into (185), we have

1+v, _
C . 41+ v,) Ajo-(1-7) 4)
N, < —=  withC,, = | ——Z& = 2 +—1. (190

e = (t —+ ]_)1‘“)2 <eln( 242w)> <(2M2(Lh51 + CZLZ’Q) —+ Q(Ch() + Cle’l)) )\z,O w ( )

CHUZ into (184) yields

Furthermore, substituting A; ; , < Ma and A; ;. < )

+vg
€z . 4(1+Ur) A'LOw(l w) 4>
A < —F—withCep = | ——= 2 + —].
it (t + 1)1+Uz T (6111( 274 1?))) (((Lh,l + Cle,Q)M2 + 2<Ch0 —+ Cle,l) + Ll,lcez) )\a:,O w

2
(191)
By using (189)-(191) and Lemma F.2, we arrive at
T T T
@ < Z t+1 1+um o Gy S Z il t+1 1+vy o’ Z 1+u —= (192)
implying that ¢; = €; , + €, + €; ;. is finite even when T tends to infinity since v, > ¢, vy > ¢y, and v, > . O

G. Proofs of Corollaries 4.3 and 4.6
G.1. Proof of Corollary 4.3

Proof. (1) For a strongly convex F(z), the convergence rate of Algorithm 2 is O(7~"1) based on (10). Therefore, setting
1
T8t = § yields that the iteration complexity of Algorithm 2 is O(§~ 1) in finding a d-solution. Furthermore, since the

per-iteration complexity of Algorithm 2 is max{p, ¢}, the computational complexity of Algorithm 2 is O(max{p, q}(fﬁl*l)
in finding a §-solution.

According to the conditions 0 < v, < v, < v, < 1, 26, > vy, 2¢; > v, + vy, 26, > v, + vy, and 2¢; > v, given in
Theorem 4.1-(1), we can choose v, = 0.66, v, = 0.64, v, = 0.43, ¢, = 0.65, ¢, = 0.63, and ¢, = 0.42. Under these
parameters, the convergence rate is 51 = min{0.64,0.44,0.4,0.43,0.62,0.72} = 0.4 and the computational complexity is

O(max{p, ¢}6=2%).
(2) Similarly, for a convex F(z), the convergence rate of Algorithm 2 is O(T~(1=%=)) based on (11). Therefore, the

computational complexity of Algorithm 2 is O(max{p, ¢} _ﬁ) in finding a J-solution. Recalling the conditions
0 <, <v, <wv, <1,¢ > %, 26 > v + Uy, 26, > 20, + 2 — 204, 26, > v, + vy, 26y > 20, + 2 — 2uy,
26y > vy + 2 — 20y, 26, > v, + 2 — 2v,, and 2, > v, given in Theorem 4.1-(2), we can select v, = 0.77, v, = 0.75,
v, = 0.5,¢, = 0.76, ¢, = 0.74, and ¢, = 0.49 yielding a convergence rate of 1 — v, = 0.23 and a computational complexity
of O(max{p, q}d=43%).

(3) For a nonconvex F'(z), the convergence rate of Algorithm 2 is O(7~(~?=)) based on (12). Therefore, the computational
complexity of Algorithm 2 is O(max{p, ¢}6~ ™5 ) in finding a 6-solution. We use v, = 0.615, v, = 0.60375, v, = 0.4,
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G = 0.61125, ¢, = 0.6, and ¢, = 0.398125 to satisfy the conditions 0 < v, < v, < v, < 1, ¢, > % 26 > v, + vy,
26 > 20, +1 =g, 26, > 20, + 1 — vy, 2¢y > vy + 1 — vy, 26y > v, + vy, 2¢; > v, + 1 —v,, and 2¢; > v,
given in Theorem 4.1-(3). Under these parameters, the convergence rate is 1 — v, = 0.385 and the complexity is
O(max{p, ¢}6=29). O

G.2. Proof of Corollary 4.6

Proof. The convergence rate O (T Ve ’1) follows naturally from Theorem 4.1-(3).

Next, we characterize the cumulative privacy budget. We select v, = + K, Uy = 3 + Tov. = 5, Cp = Ug — f Sy = Uy — %,
and ¢, = v, — & with x € (0, %) that satisfy the conditions given in Theorem 4.1- (3) In this case, based on the convergence
rate in (12) from Theorem 4.1-(3), we have

=

Z [IVF(z:0)|%] < (T“’%), (193)

t=0

which implies that the iteration complexity of Algorithm 2 is no more than (9(5 2-5x ) Moreover, it is evident that a
smaller x corresponds to a faster convergence rate and less iteration complexity.

We proceed to characterize the cumulative privacy budget for agent ¢’s implementation under Algorithm 2. Based on (182),
we can obtain

20 —(va—s 2C. —(vy—
€ = €ix + €yt €y < \[70 (1 _ (T + 1) (v Sz)) + & (1 _ (T + 1) (vy §y))
iz (Ve — Sx) Tiy(vy — Sy) (194)
V2C (
— = (1-(T+1 _(”Z_gz)),
Oi,z(vz - gz) ( )
where in the derivation we have used the following inequality:
Z /T L (T+1)'"—1) (195)
(t+1)r (x+1)r 1—r '

t=1

Substituting the given parameters v, = g + R, Uy = % + 5,0, = % e =Vp— 4, Gy =y — g,and ¢, = v, — % with
r € (0, 2) into (194), we arrive at

1 1 1—(T+1)"%
i = €z T € iy < - = | = —_— . 196
€ G TGy T Gy O(K /e(T—f—l)s) O( K ) (196)

By substituting the obtained relations 7' 4 1 = (’)( 5% ) into (196), we have that the cumulative privacy budget for each

_ 5K
agent ’s implementation is in the order O (% — 2—-"""") when Algorithm 2 achieves a §-solution.

It is evident that for a given > 0, the cumulative privacy budget is no more than O(%) Since the constant x was set to
K=V — §, we can obtain the cumulative privacy budget scaled as O( ) with v, € (0.6, 1). O

06

H. The Reason why Existing DSBO Algorithms cannot Ensure a Finite Cumulative Privacy
Budget ¢,

H.1. The Limitation of Existing DSBO Algorithms under Differential-Privacy Constraints

In this section, we explain the limitation of existing DSBO algorithms in Chen et al. (2022), Yang et al. (2022), and Chen
et al. (2023) under LDP constraints. Specifically, to obtain good approximations of the hypergradient and/or the optimal
solution y* to the lower-level optimization problem in (1), these algorithms incorporate inner-loop iterations into the outer
algorithmic iteration, which leads to a cumulative privacy budget that grows to infinity as the number of outer iterations
tends to infinity.

We use the DSBO-HIGP algorithm in Chen et al. (2023) as an example to illustrate this idea. To ensure privacy, persistent
DP-noises have to be added to messages transmitted in each iteration of the DSBO-HIGP algorithm. Then, the modified

45



LDP Distributed Bilevel Optimization

Algorithm 3 LDP design for DSBO-HIGP
1: Input: Stepsizes ay, By, and 'y; Iterations 7" > 0, K > 0 and N = log(T); Initialization y?k =0,z;0 =70 =0,

df, = —bD,, s, = —b?,.and 20, = 0; DP-noises 9}, ¢f',, and xF, satisfying Assumption 3.1.
2: fort=0,1,---,T—1do
3 yio,t = yil,(tfl'
4 fork=0,1,--- K —1do
5 for:=0,1,--- ,m—1do
6: Vit =Yk Yjens wis (W) + Gy — ulty) — Bl with ol = Vygi(wi0, i €F).
7 end for
8 end for
9: fork=0,1,---,N—1do
10: fori=0,1,--- ,m—1do
Lk
11: +1_Zzt+ZJ€N w’bj( ]t+19 ,t)_’ydf,t’
. K1 gkt SRkt
12: Sz,t Hzt 1t blt ’
E+1 k+1 ;
13: dift = dby + 3 e, wig (A, + 0%, — df) + 507t = sk
14: end for
15:  end for

16: wip = Vo fi(@in, s 0i0) = Va,9i(Tie, uly; Ci0) 2y
17: fori=0,1,--- ,m—1do

18: Tit41 = Tt + Zje/\a Wi (Tje + Xjt — Tijt) — QT
19: Ti,t-i—l = (1 — Oét)Ti#/ + Oétuiﬂg.

20:  end for

21: end for

22: Output: Zp = L 3" @ 7.

DSBO-HIGP algorithm with injected DP-noises is described in the following Algorithm 3. It can be seen that Algorithm 3
has double inner-loops: a K -step inner-loop (lines 4-8) for achieving a good approximation of y* (the optimal solution to the
lower-level optimization problem in (1)) and an N-step inner-loop (lines 9-15) for a good estimation of the hypergradient
V F(z). DP-noises have been injected into all communication steps to enable privacy. According to Theorem 3.3
in Chen et al. (2023), the convergence of the original DSBO-HIGP can be guaranteed only when K = log(T), N > 1,
o = O(ﬁ)7 VT >0, 6; = (’)(ﬁ), VT > 0,and v € (c1,¢z) with 0 < ¢; < ¢g. It is worth noting that when 7" tends to
infinity, the number of iterations K also tends to infinity.

With this understanding, we first analyze the cumulative privacy budget ¢; , associated with y; ; in Algorithm 3. By
leveraging (192), the cumulative privacy budget ¢; ,, of Algorithm 3 satisfies

T K

t=1 k=1

where oF y,¢ represents the variance of the DP-noise Ck,.

When the DP-noise variance decays over the outer-loop iteration ¢ (in this case, a fixed DP-noise is injected into the
consensus operation at Algorithm 3 Step 6 during each inner-loop iteration, which degrades the estimation performance of
the global y*), the convergence of Algorithm 3 is significantly affected. Therefore, we consider the following two designs

k
foroj, 4

(1) The DP-noise variance decays over both inner-loop iterations k£ and outer-loop iterations ¢, i.e., O'f’y’t =
1
O( (t4+1)°v (k+1)°v )’

(2) The DP-noise variance decays over inner-loop iterations k, i.e.,o¥ Tyt = O(W)

By using the decaying stepsize 5; = O(W) with v, € (0, 1), the cumulative privacy budget ¢; ,, for the aforementioned
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two scenarios satisfy

T T
) aw=20 (m)zo (k+1™), @) by <20 (muw)ZO (k+1)),

t=1 k=1 t=1

which imply that the cumulative privacy budget ¢; , in both scenarios will grow to infinity when the number of outer
iterations 7" tends to infinity, thus violating rigorous ¢;-LDP privacy constraints. Of course, employing a constant stepsize =y
in the IV -step inner-loop (lines 9-15) of Algorithm 3 exacerbates this issue, leading to a significant increase in the cumulative
privacy budget ¢; . (see the following Section H.2 for details).

The above mentioned issue also exists in other inner-loop-based DSBO algorithms (Chen et al., 2022; Yang et al., 2022).

H.2. The Calculations of the Cumulative Privacy Budget for the Algorithms Listed in Table 1

First, we compute the computational complexity and the cumulative privacy budget of our Algorithm 2, i.e., LDP-DSBO.
We select v, = % + K, vy = % + 4,0, = % Se =Vs — G,y =vy, — §,and ¢, = v, — § with k € (0, %) that satisfy the
conditions given in Theorem 4.1-(3) (Since all results in Table 1 are obtained for a nonconvex F). Under these settings, the
iteration complexity of Algorithm 2 is (’)(5_2%5'@) and the cumulative privacy budget is O (1) (Detailed computations of
the iteration complexity and the cumulative privacy budget have been given in the proof of Corollary 4.6 in Appendix G.2).
In this case, we can choose x ~ 0.015 such that the iteration complexity of Algorithm 2 is no more than O (5 *2'6) and the
cumulative privacy budget is 66.67, which is a constant and hence has an order of O(1).

Then, we compute the cumulative privacy budget of the remaining algorithms (except LDP-DSBO) listed in Table 1. For
these algorithms, we employ the same Laplace noise used in our algorithm.

Given that all remaining algorithms in Table 1 use a constant stepsize, we estimate their cumulative privacy budgets €; under
a stepsize v > 0 and the DP-noise variance O (ﬁ) for some ¢ € (0, 1). Additionally, we do not include inner-loops

in this estimation. As explained in Subsection H.1, inner-loops cannot ensure a finite cumulative privacy budget in the
infinite-time horizon, and thus a relaxed condition is considered for these algorithms, which makes the results better than the
actual case. Based on (192), we obtain

i (m+1) ZO< ><0((T+1)<), (198)

where o, is the DP-noise variance and we have used the following relation for the last inequality:

r 1 T+ 1 1
ng/l e < (T+1) =< (T H 1) (199)
t=1

A=
Ve

By substituting the respective complexities of the algorithms listed in Table 1 into (199), we can obtain the results given in
the last column of Table 1.
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