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ABSTRACT

Aiming at a better understanding of the search goals in the user

search sessions, recent query recommender systems explicitlymodel

the reformulations of queries, which hopes to estimate the intents

behind these reformulations and thus bene!t the next-query rec-

ommendation. However, in real-world e-commercial search sce-

narios, user intents are much more complicated and may evolve

dynamically. Existing methods merely consider trivial reformula-

tion intents from semantic aspects and fail to model dynamic re-

formulation intent" ows in search sessions, leading to sub-optimal

capacities to recommend desired queries. To deal with these limi-

tations, we! rst explicitly de!ne six types of query reformulation

intents according to the desired products of two consecutive queries.

We then apply two self-attentive encoders on top of two pre-trained

large language models to learn the transition dynamics from se-

mantic query and intent reformulation sequences, respectively. We

develop an intent-aware query decoder to utilize the predicted

intents for suggesting the next queries. We instantiate such a frame-

work with an Intent-aware Variational AutoEncoder (IVAE) under

deployment at Amazon. We conduct comprehensive experiments

on two real-world e-commercial datasets from Amazon and one

public dataset from BestBuy. Speci!cally, IVAE improves the Re-

call@15 by 25.44% and 60.47% on two Amazon datasets and 13.91%

on BestBuy, respectively.

CCS CONCEPTS

• Information systems → Recommender systems.
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1 INTRODUCTION

In modern online search services, users may make multiple search

attempts before! nding the desired products. This reformulation

process could be even longer when users perform complex search

tasks. To alleviate such search di#culty, query recommender sys-

tems [3, 14, 15, 29, 34] (e.g., related search widgets on Amazon) are

becoming integral components by suggesting candidate queries that

re"ect the user search intents to help re!ne their queries. To better

understand the user intents, session-based query recommendations

that learn sequential patterns in user historical query logs have been

investigated to make more precise recommendations [33, 35, 41].

However, the development of session-based query recommender

systems is restricted due to the noise and the ambiguity in the query

logs introduced by the imprecise articulations of hidden search in-

tents. To alleviate such problems, recent studies resort to query

reformulations to better understand the inherent logic behind the

user searching processes [6, 17] since the series of reformulations

are the visible manifestations of their search intents. For example,

Jiang and Wang [17], Guo et al. [13], and Mitra [30] explicitly learn

the reformulation vector representations by assuming that the re-

formulation is the semantic di$erences between queries by either

adding/deleting terms.

Despite the success of the above methods for web search, query

reformulation is under-explored in the e-commercial product search
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Figure 1: The query reformulation intents are complex in e-

commerce: (a) two consecutive queries might be semantically

unrelated but target closely related products (e.g., comple-

mentary items); (b) there are sequential patterns when users

reformulate the queries in a session.

domain, where the queries are more complicated and dynamically

evolving. Concretely, a user may enter product-related terms such

as brand, resulting in consecutive queries that are semantically

dissimilar being relevant in terms of their desired products. Speci!-

cally, an example, as shown in Fig. 1(a) would be { "keyboard", "magic

keyboard", "keychron keyboard", "logit mouse" }, which!rst speci!es

or substitutes the search goal, then switches to a complemen-

tary item. The two consecutive queries { "keychron keyboard", "logit

mouse" } are semantically dissimilar, but we can easily observe a

complementary relationship between the desired items of the two

queries. Existing methods cannot reveal such hidden relationships

as they merely compare the pairwise query semantics.

In addition to the above-described complicated pairwise reformu-

lation intents, it is also observed that there exists dynamic evolution

of intents when a user reformulates the search queries [6]. For exam-

ple, by merely investigating the reformulation sequence in Fig. 1(b):

{ "nike", "nike shoes", "blue nike shoes", "black nike shoes" }, we can ob-

serve that the user starts by specifying the queries for the! rst two

reformulation phases, then reformulates the query to!nd substi-

tuted items. As shown in Figure 2, we also observe similar patterns

while conducting empirical studies on the Amazon dataset. Take

the third row for instance, 0.69% of the total Substitution intents

show on the! rst time step, while 28% of them appear on the last

time step. The users may equivalently reformulate their queries at

an early stage and keep specifying them. Then, they shift to other

related items by substituting or generalizing their queries. We will

describe such statistics in detail in Sec. 4.1.2. Understanding the

sequential dynamics behind the query reformulations can provide

a strong signal for predicting the intent of the next search and thus

can narrow down the recommendation scope for the next query.

However, modeling such sequential patterns of reformulation in-

tents from the relationships between input queries and the desired

products is still under-explored.

Consequently, we are interested in developing a model to bridge

the above gaps by explicitly modeling the dynamic intent" ow from

both semantic and product-related perspectives. To achieve this

goal, we should deal with two major challenges. First, the intents

Figure 2: Intent estimation statistics on Session-AU. The x-

axis is the position in a query sequence, and the y-axis is the

intent type: Equivalence, Speci!cation, Substitution, Gener-

alization, Complement, and Irrelevant. We obtain the intent

prediction from the static intent estimator and analyze the

distribution of each intent type w.r.t the corresponding posi-

tion.

for reformulating the queries in e-commercial product search are

under-de!ned. It is challenging to get the ground-truth label of a

reformulation intent merely from the semantic relations between

two queries. Second, to deal with unseen queries, conventional

works learn vocabulary representations from scratch [13, 17, 35].

Thus the embeddings of queries that are merely learned from such

sparse and noisy domain-speci!c datasets encode less semantic

meanings, exacerbating the di#culty of query recommendation.

To address the above challenges, we propose a novel framework

named Intent-Aware Variational AutoEncoders (IVAE) for query

recommendation tasks. IVAE consists of the following key designs:

1) We! rst formally de!ne six types of reformulation intents accord-

ing to the relationships between the desired items. We then train a

language-model-enhanced reformulation intent estimator, which

takes a pair of consecutive queries as input and predicts the corre-

sponding intents based on extremely limited annotations. For all

unlabeled pairs of consecutive queries, the predictions from the in-

tent estimator will be used as their pseudo-labels for the subsequent

learning procedure. 2) After extracting a reformulation sequence

by estimating every consecutive query pair using the trained intent

estimator from the original query sequence, we explicitly model the

evolving dynamics of user intents using a sequential model. Then

our method can predict the next reformulation intents considering

the historical reformulation behaviors. We further utilize the pre-

dicted reformulation intents to facilitate the prediction of the next

query. 3) We employ a frozen Pre-trained Large Language Model

(PLLM) to generate the input query features instead of one-hot

vocabulary indices. This not only helps to alleviate the data sparsity

issue but also enables our method to handle cold-start sessions and

unseen queries without the additional computational burden of

!ne-tuning the PLLM. We also employ an additional regularization

term, named DeepWhitening on query embeddings to get rid of the

PLLMs’ anisotropic problem, which results in poorly semantically

encoded query representations [12, 22, 36]. We incorporate these

key designs in a Variational AutoEncoder for its merits of control-

lable generation and robustness to uncertainty/noise from input
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queries and the intent estimator. Our designs are also compatible

with other AutoEncoders, e.g. DAE, MAE. The main contributions

of this paper are:

1) To our best knowledge, we are the! rst to explicitly model the

dynamic intent" ows in terms of both semantic and product-

related perspectives, which is an important real-world e-

commercial problem under-explored. We also inject such

sequential intent estimations into the generation of the next

query to improve the query recommendation performance

in e-commerce.

2) We propose a new framework named IVAE to improve e-

commercial query recommendations by modeling intent dy-

namics and addressing the issues of data noise and unseen

queries simultaneously.

3) We collect two real-world datasets from Amazon and one

public dataset from BestBuy, and conduct extensive experi-

ments on real-world e-commercial datasets. IVAE consis-

tently outperforms the baseline methods on all datasets.

Especially for Recall@15, IVAE improved the performance

by 25.44%, 60.47% on two Amazon datasets, and 13.91% on

BestBuy, respectively.

2 RELATED WORKS

2.1 Session-based Query Recommendation

Session-based query recommendation, which aims to predict the

next possible query according to the historical query records within

the current session, has been investigated for decades in the web

search areas. A line of work applies sequential models over the

query logs that implicitly model the semantic transitions between

query embeddings as reformulation signals. As a pioneering work,

HRED [35] adopts a hierarchical encoder-decoder framework, where

both the encoder and decoder are implemented with RNNs. Chen

et al. [5], Dehghani et al. [9] and Mustar et al. [31] use transformer

to learn the sequential patterns from the historical queries. Ah-

mad et al. [1] adopts a multi-task training paradigm that combines

the query recommendation task with a document ranking task.

Furthermore, the query recommendation task is handled with the

hierarchical RNN resembling architecture in HRED [35]. Ahmad

et al. [2] further enriches Ahmad et al. [1] with click information.

Another line of work explicitly learns a reformulation represen-

tation from query embeddings by assuming that the reformulations

either add or delete terms from source queries. Guo et al. [13] !rst

estimates the latent intent of each query, then learns unique repre-

sentations for each query of di$erent intent types. The! nal query

representation is the weighted sum of representations of di$erent

types, where the weights are simply the probability estimation

of each intent type. [30] learns the distributed representation of

queries and uses them to implicitly represent query reformulations

that can map similar query changes closer in the latent space. Jiang

and Wang [17] assumes that the reformulations between consec-

utive queries are either adding or deleting some terms from the

original query. It then feeds the di$erence between two consecutive

queries as additional features into an RNN model for predicting the

next query. However, these methods merely model intents from

semantic aspects of two consecutive queries and fail to consider

the complicated intents in terms of desired objective and dynamic

intent evolution.

Session information also has been intensively investigated for

product recommendation [18, 23, 24, 28, 37, 39, 40, 43], which apply

the sequential models, e.g., RNN, LSTM or Self-attention modules

over the sequence of item embeddings to learn the transition pat-

terns from such sequences and predict next possible items.

2.2 Pre-trained Large Language Models in Web
Search

Pre-trained Large Language Models (PLLMs) [4, 8, 10, 21, 27, 32]

have become integral components in natural language process-

ing. Recently, many works have introduced PLLMs to web search

tasks [7, 16, 26, 44] and have achieved signi!cant improvement.

However, the sentence representation directly from PLLMs poorly

encodes the semantic meanings [22], as they are pre-trained by

optimizing word token prediction task given context. A line of

works points out the problem of anisotropy [12, 19, 22, 36, 42] that

the cosine similarity between arbitrary sentence representations

is averagely greater than 0.9. This phenomenon hinders the ap-

plication of PLLMs for sentence-level subsequent tasks based on

semantic similarities. Current methods tend to design!ne-tuning

methods that apply contrastive learning paradigm [12, 19, 42] or

post-processing approaches [22, 36] to map the sentence embed-

dings into the isotropic space. However, the above approaches are

insu#cient for session-based query recommendations as they only

consider the pair-wise sentence similarity independently. Further-

more,! ne-tuning and post-processing are not suitable for end-

to-end optimization in inductive settings. Few works investigate

transferring knowledge learned from PLLM to session-based query

recommendation tasks, as sequential modeling is much more chal-

lenging than simple retrieval tasks. Mustar et al. [31] investigates

the potential of! ne-tuning the PLLM by maximizing the seman-

tic similarity between the target query and the concatenation of

all previous queries. They also designed a hierarchical framework

using the PLLM as the query encoder.

3 METHODOLOGY

In this section, we introduce IVAE in detail, with a high-level il-

lustration of IVAE presented in Fig. 3. IVAE consists of four key

components: 1) We! rst train the Static Intent Estimator with

extremely limited annotations from a product perspective. 2) We

employ an Dynamic Intent Encoder with a self-attention layer

to model the evolving dynamics of reformulation intents. 3) Query

Encoder: to overcome the data sparsity issue and handle unseen

queries, we employ a frozen PLLM followed by a self-attention

layer to learn semantic dynamics of input queries. 4) Finally, we

design the Intent-Aware Query Decoder with a multi-head self-

attention layer scaled by intent estimations from the dynamic intent

encoder. Next, we introduce the details of each component.

3.1 Problem Formulation

We target a real-world e-commercial query recommendation task.

The input is a set of query sessions: S = {s1, · · · , s |S | }, and a query

set Q = {q1, · · · , q | Q | }, where s! represents the !-th session. Each

session corresponds to a sequence of queries s! = [q!,1, · · · , q!,"],

and each query consists of a sequence ofwords q!,# = [w1
!,# , · · · ,w

$
!,# ],
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where" and# are the maximum session/query length respectively.

We pad each session and query so that all sessions and queries

are aligned. Then, for each session s! , we aim to predict the next

most possible query q!,"+1. In the remaining parts, we use bold

roman symbols to represent the raw input and the bold italic

symbols to represent the corresponding vectorized representations.

For instance, q! denotes the raw input consisting of word tokens of

the !-th query, whereas !! denotes its vectorizations.

3.2 Static Estimations of Reformulation Intents

3.2.1 Explicit Definitions of Reformulation Intent Types. Existing

methods model the reformulation intents directly from the di$er-

ences between semantic query representations, as they assume

that the query reformulations in web search either add or delete

terms from the original query. However, in e-commercial prod-

uct search scenarios, two consecutive queries may be semantically

dissimilar but relevant in terms of the usage of their desired prod-

ucts, i.e., the relationships between desired products are substitu-

tion/complement, etc.

To this end, we explicitly de!ne the following six types of re-

formulation intents according to underlying relations between the

two desired products:

• Equivalence: the expected products are equivalent.

• Speci!cation: the user adds attributes expecting higher

retrieval precision.

• Substitution: the user replaces attributes expecting substi-

tute products.

• Generalization: the user removes attributes expecting higher

retrieval recall.

• Complement: the user expects complementary products.

• Irrelevant: the expected items are of di$erent product types,

and there are no complementary relationships.

To explicitly model the product-related reformulation intents, we

need to address the following challenges: 1) It is hard to obtain

ground-truth labels, as we have tens of millions of query records

but extremely limited intent annotations. 2) The reformulation in-

tent might be complicated, e.g., the transition from "red shoes" to

"white Adidas shoes" contains both speci!cation and substitution re-

formulation intents. To address these challenges, we use the limited

intent annotations to! ne-tune a PLLM that takes a pair of queries

as input and predicts the corresponding reformulation intent type,

and use the predicted soft logits as soft-pseudo-labels of unseen

reformulations during the subsequent training procedure.

3.2.2 Static Intent Estimator. With the limited annotated intent

labels, we wish to learn a predictive model which can estimate

the intent given a pair of two consecutive queries. Speci!cally, we

!ne-tune a separate PLLM which takes a pair of queries as input

and generates a vector denoting the probability that the transition

between queries belongs to each reformulation intent:

"% = So%max[PLLM& (q%−1, q% )]∈ R1×' , (1)

where $ is the number of reformulation intents ($ = 6 as de!ned

in Sec. 3.2). The parameters of the PLLM % are optimized using

cross-entropy loss between the reformulation intents predicted

by the PLLM and the limited ground-truth labels. It is also worth

noting that the static intent estimator is trained ahead of other

model components.

3.3 Dynamic Intent Encoder

3.3.1 Sequential Modeling of Intents. After the intent estimator

is well-trained, we freeze its parameters and use it to estimate

the intents for every consecutive query pair. Thus by obtaining a

sequence of estimated intents in a session # = [ "1, · · · , "" ] ∈ R"×' ,
we hope to predict the next intent "%+1 given the previous intents

"≤% , i.e., learning an autoregressive sequential model. To reach this

target, we train a masked self-attention layer (i.e., we mask the

tokens after & to avoid information leakage as we would like to

predict the intent at & + 1), which takes the features of previous

intents as input and outputs the predicted intent of the next step:

$% = So%max
!"
#
[
( "#%

() ( "%%
) )&

√
$

]%
#=1

&'(
∈ R1×% ,

"′% = MSA( "≤% ) =
%∑
#=1

'% ,# · " #%
*
,

(2)

where %(
,%) , and % * are the linear transformation matrices

in self-attention of dimension R'×' . MSA(·) is the masked-self-

attention layer. Note that we also equip positional embeddings to

the input intent sequence so that the model is aware of the relative

positions of di$erent intents. "′% is the estimation of the next step

intent "%+1, e.g., "
′
1 is the prediction of "2, and "′

"
is the prediction of

""+1. For convenience, we denote the parameters of the MSA(·) in

Intent-Encoder by (1.

3.4 Query-Encoder

3.4.1 Embedding Layer with PLLM. For a query q = [w1, · · · ,w$ ]

where each w! represents a word token, we feed it into another

PLLM (e.g., BERT. Other encoders also applicable.) to obtain the

corresponding input query features. During the whole training

procedure, we freeze the PLLM’s parameters to avoid high compu-

tational costs and catastrophic forgetting. Unlike traditional query

recommendation models that learn the word token representation

from scratch, the utilization of the large language model bene!ts

our method from the rich semantic information of queries. Besides,

such a practice can help address the problem of cold-start queries.

Speci!cally, when a brand new query comes into the system, our

method is able to generate a meaningful query embedding instead

of initializing a random embedding.We denote the pre-trained large

language model by PLLM(·), and then apply a shallow MLP model

on top of PLLM’s output in order to project the embeddings into a

di$erent latent space. Formally, this can be written as

!% = MLP+2 (PLLM(q% )), (3)

where (2 denotes the parameters of the MLP model. Besides the
capacity to exploit the rich semantic information in textual data,

an additional sequential model is required to learn the transition

patterns in query sequences and make predictions for the next

possible queries. To this end, we employ a VAE framework with

both the encoder and the decoder implemented with masked self-

attention (MSA) layers. We introduce the encoder in the next part

and the decoder in Sec. 3.5.
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Figure 3: Illustrates the framework of IVAE. For an input session, we extract both the query sequence and the query reformulation

sequence, which are fed into PLLM and intent estimator to obtain query features and reformulation intents correspondingly.

)0 is the artifact query, which is only used to infer the! rst intent type. We apply the masked self-attention layer on top of the

query feature sequence and reformulation estimation sequence to learn the dynamic sequential patterns. On the right side

of the! gure is the detailed illustration of the intent-aware decoder, where the dynamic intent estimation based on previous

intent behaviors is used as the coe"cients of weighted concatenation among di#erent heads of multi-head self-attentions.

3.4.2 Masked Self-A!ention Layer. The encoder of the VAE aims to

learn the posterior distribution *+3 (&% |!≤% ) ∼ N('% , !% ), where &%
is the hidden state of the query at time step & , !≤% are the queries no
later than & , and !% = diag((2

% ) is the diagonal covariance matrix.

Formally, the mean '% and standard deviation (% are estimated as

'% = MSA, (!≤% ), and (% = MSA- (!≤% ), (4)

where MSA, (!≤% ) and MSA- (!≤% ) are two masked self-attention
layers described in Eq. 2 to estimate the corresponding mean '% and

covariance !% of the hidden state &% , given all the queries before & .

With the learned distribution, we are able to sample the latent

vector for each state with the reparameterization trick:

&% = '% + ) * (% , (5)

where ) is noise sampled from standard Normal distribution.

3.5 Intent-aware Query-Decoder

Previous methods either entangle the intent implicitly during the

query generation or train a query intent classi!er! rst, and then use

it as the coe#cient of query representation learning. However, the

generation of the query recommendation is a complex process, thus

implicit entangling or being used as a coe#cient is insu#cient. To

mitigate the above limitations, we devise an intent-aware decoder

that takes into account both the predicted next queries (with intent

estimation semantically) and the predicted next intent from the

product-related perspective when generating the next query.

3.5.1 Multi-head masked self-a!ention. Let &1· · ·" be the sampled

latent vectors of queries (with reparameterization trick), i.e., &% ∼
N('% , !% ), we! rst use multi-head masked self-attention mecha-

nism to generate a series of output vectors for each time step:

!̃
#
% = MSA# (&≤% ), + = 1, · · · ,$ . (6)

Note that we set the number of attention heads as the number of

reformulation intents $ , so that each head can encode the speci!c

information for each type of intent.

3.5.2 Intent-scaled weighted concatenation. To inject the intent

knowledge into the decoder model, we de!ne the! nal estimated

query representation as a weighted concatenation of the multi-head

outputs up to a linear transformation:

!′% = Concat

( [
!′
% ,( # )

· !̃
#
%

]'
#=1

)
%.

, (7)

where "′% is the predicted (normalized) intent vector at time & , and
!′
% ,( # )

is its +-th entry. Then with the output representation at time

step & , i.e., !′% , we are able to compute a rating score for a target

query, as -%,) = !′%
& ·!) . We denote the parameters in Intent-aware

Query-Decoder by (4.

3.6 Optimization

The optimization of IVAE consists of two steps: 1) we! rst opti-

mize the intent estimator, i.e.,! ne-tuning the large language model

PLLM& in Eq. 1 by minimizing the cross-entropy loss between the

predicted intents and limited ground-truth labels; 2) We freeze

the intent estimator’s parameters after the! rst step ends. The re-

maining modules are jointly optimized with the next-query (Sec.

3.6.1) and next-intent (Sec. 3.6.2) prediction tasks, together with a

whitening regularization (Sec. 3.6.3) over the query representations.

3.6.1 Next query prediction. For the reconstruction term in VAE’s

optimization, we target a next-query prediction task. Given a ses-

sion s = [q1, · · · , q" ], the reconstruction loss is de!ned as:

Lrec = −
"−1∑
%=1

(
log. (-% ,%+1) + log(1 − . (-%,)))

)
, (8)
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where -%,%+1 = !′%
& · !%+1 is the rating of the ground-truth positive

example !%+1, whereas -% ,) = !′%
& · !) is the rating of a randomly

selected negative query !) .

For the KL-divergence term, we minimize the KL-divergence be-

tween the estimated posterior distribution N('% , !% ) and standard

Normal distribution every time step, and the analytical solution is:

Lkl =

"−1∑
%=1

/∑
0=1

(.2
% ,0

+ /2
%,0

− 1 − log.2
%,0

), (9)

where 0 is the dimension of '% and !% .

3.6.2 Next intent prediction. To enable the model with the capa-

bility to predict next intent according to previous reformulation

behaviors, we minimize the cross entropy loss between the output

of the intent encoder at time step & , i.e., "′% and the input intent of

the next step "%+1,

Lintent =

"−1∑
%=1

ℓce ( "
′
% , "%+1), (10)

where ℓce is the cross entropy loss.

3.6.3 Preventing anisotropic issues. Asmentioned above, the PLLMs

have anisotropic issues where only a few dimensions of query em-

beddings are used to encode the information related to the input,

resulting in high similarity scores of di$erent queries (average co-

sine similarities of all query pairs are greater than 0.9) that limit

the model’s representation capacity. We also visualize the query

feature distribution in Appendix A.1 indicating that the anisotropic

problems of PLLMs indeed exist in our task. To mitigate this issue,

we adopt a simple uniformity loss as regularization [38], termed

as DeepWhitening. DeepWhitening forces the query embeddings

to distribute isotropically in the latent space mapped by#23+2 in

Eq. 3. Formally,

LDW = log
∑
!,#

[
4−‖!!−! " ‖22/2

]
, (11)

where !! and ! # are two input query embeddings within the current

batch. With such regularization term, we can omit burdensome

!ne-tuning/post-whitening, and enable an end-to-end optimization

procedure directly for query recommendation tasks.

The overall objective function is simply a summation of the terms de-

scribed above. Denote the model’s parameters as ( = [(1, (2, (3, (4],

then

(∗ = argmin
+

L(( ) =Lrec ((1, (2, (3, (4) + Lkl ((2, (3)

+ Lintent ((1) + LDW ((2) .
(12)

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the e$ectiveness

of IVAE by answering the following research questions:

• RQ1: What’s the performance of IVAE on real-world query

recommendation tasks comparedwith othermethods? (Sec.4.2)

• RQ2: Are the key designs in IVAE, such as the PLLM with

proper regularization, the utilization of intent information

bene!cial for satisfactory improvement? (Sec. 4.3)

• RQ3: How does the performance of IVAE vary with di$erent

query frequencies and query lengths? (Sec. 4.3)

4.1 Experiment setups

4.1.1 Datasets. We use two real-world e-commercial datasets col-

lected from search logs of Amazon, Session-AU and Session-CA,

where AU and CA denote Australia and Canada, respectively. The

queries within a session are! rst sorted according to the times-

tamps and then sliced into sub-sessions by purchase-leading queries.

We only keep sessions longer than two. We also adopt publicly

available sessions released by BestBuy1. The di$erences between

the BestBuy dataset and the former two are that the sessions in

BestBuy do not end with purchase behavior, and the sessions of

BestBuy dataset may span several days or even months. Thus,

the historical queries within a session may be more noisy and

misleading for predicting the last query. Finally, we present the

statistics of these datasets in Table 1. Following the common prac-

tice [11, 25], we randomly sample 10, 000 sessions from Session-AU

and Session-CA for evaluation and test, respectively. For BestBuy,

we sample 1, 000 instead. The rest of the sessions are used for train-

ing. We use the target queries that appeared in the test dataset as

our recommendation candidate queries.

4.1.2 Statistics of Intents. In addition, we gather statistics on the

intent types in our evaluation dataset from Session-AU as reported

in Table 2. We! rst obtain the predictions of each consecutive query

pair using the static intent estimator. We count the corresponding

intent types of the last reformulation and report their ratios. The

high ratio of Irrelevant intents suggests that reformulated queries

may be related to historical queries instead of the current ones,

necessitating the usage of historical queries. We also report the

precision of the static intent estimator, which is trained ahead of

other components using extremely limited annotations. Due to

the imbalance and noisy nature of the intent estimator, instead

of merely relying on its estimations for the prediction of the next

query, we need to take intent evolution into account for the correct

intent prediction. To further justify the necessity and rationality

of the usage of intent dynamics, we report the distribution of each

intent type w.r.t. their positions in a sequence using the static intent

estimator in Fig. 2. We can observe that there exist discernible

sequential patterns of each intent type. For instance, Equivalence

is highly likely to appear in the early stage, while Substitution and

Complement tend to appear afterward. Even if the intent estimator

is not 100% correct, we can analyze the previous intent estimations

and their positions to correct the next intent prediction.

Table 1: Statistics of datasets.

Dataset #sessions #queries avg. query freq. avg. seq. len.

Session-AU 1,621,374 1,575,659 6.05 6.23

Session-CA 516,117 724,602 5.72 4.07

BestBuy 83,305 97,690 5.83 4.97

4.1.3 Baselines. We select three types of baseline methods for

a comprehensive comparison: 1) three PLLM-based methods, in-

cluding DLKNN, Bert-Finetune, and SimCSE [12]; 2) two classical

sequential recommendation models, SASRec [18] and Bert4Rec [37];

3) two representative intent-aware query recommendation models,

HRED [35] and RIN [17].

1https://www.kaggle.com/c/acm-sf-chapter-hackathon-big/data
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Table 2: Statistics of Intent types in Session-AU.

Intent Equ Spe Sub Gen Com Irr

Ratio 5.53% 8.06% 8.65% 6.38% 11.81% 59.57%

Estimator Precision 95.49% 76.61% 72.99% 72.31% 92.96% 76.99%

Average Position 2.14 4.84 5.02 4.95 4.70 4.62

• DLKNN,Bert-Finetune and SimCSE utilize the same PLLM.

DLKNN applies k-nearest neighbors directly on the output of

PLLM to predict the next possible queries. Bert-Finetune!ne-

tunes the PLLM bymaximizing the cosine similarity between

consecutive query pairs. SimCSE enhances the Bert-Finetune

with an additional contrastive learning objective.

• SASRec [18]! rst randomly initializes an embedding for

each query and applies a stack of self-attention layers to

predict the next possible queries.Bert4Rec [37]: The original

implementation of Bert4Rec is similar to SASRec, but has the

bi-directional self-attention layer. We enhance the Bert4Rec

using PLLM with regularization for fair comparison.

• HRED [35] applies hierarchical RNN over query sessions.

They! rst apply RNN to learn query representations. An-

other RNN is applied on top of these query representations

to extract sequential patterns from query sessions. RIN [17]

further enhances the HRED by explicitly modeling the di$er-

ences between two query embeddings as reformulation. RIN

also employs GNN methods to learn query embeddings from

a term-query-website graph as the initialization of queries.

As we do not have website information in the e-commercial

scenario, we replace the query encoder components of HRED

and RIN by the PLLM with regularization.

4.1.4 Implementation Details. We implement our model with Py-

torch, and all the experiments are conducted on an Nvidia A100

GPU with 40GB memory. The model is optimized with Adam [20].

The pre-trained query encoder and static intent estimator adopt

similar architecture as that of the BERT base [10] (12 layers, 768

hidden size). During training, these two models are! xed, and their

outputs (query embeddings and static intent estimations) are fed

into a two-layer MLP and three masked-self-attention layers (MSA)

of hidden size 768. Two MSAs process the query embedding se-

quence to determine mean and variance separately, while one MSA

processes the intent estimation sequence to predict next intent prob-

abilities. The decoder is a six-head-self-attention layer of hidden

size 768. We use a learning rate of 0.0001, batch size of 1024, and

dropout rate of 0.5 for all datasets. To avoid over!tting, we employ

early stopping with patience of 100 epochs. For a fair comparison,

we tune the hyperparameters for all methods on the validation set.

4.2 Performance on Query Recommendation

We report the Top-K recommendation performance regarding Re-

call and NDCG of IVAE compared with other baseline methods in

Table 3. Our method IVAE consistently outperforms all baseline

methods in all metrics, which strongly demonstrates the e#cacy of

IVAE. Besides, we have the following observations: 1) Compared

to DLKNN, Bert-Finetune, and SimCSE, our model IVAE consis-

tently improves the query recommendation performance, which

proves the e$ectiveness and necessity of utilizing all historical ses-

sion information. 2) Compared to the second-best model Bert4Rec

on Session-AU dataset, our model consistently improves perfor-

mance by over 15%. These results strongly support the e$ectiveness

of IVAE, as we equip Bert4Rec with PLLM and MLP, from which

we can conclude that the improvement is not majorly contributed

by adding more parameters. The improvements come from disen-

tangling the latent variables using VAE to make the model more

robust to noise. Moreover, the intent information, e.g., the estima-

tion of whether the previous query is irrelevant, also improves the

IVAE’s robustness to the noisy and misleading query records and

narrows the range of candidate queries. 3) Compared to DLKNN,

Bert-Finetune performs even worse on all three datasets. This phe-

nomenon indicates that anisotropic issues indeed exist in our task.

The collapse of Bert-Finetune supports the necessity of uniformity

regularization. 4) The baseline models that utilize historical queries

pairwisely or sequentially do not outperform the DLKNN on the

BestBuy dataset. The reason may be that the sessions in this dataset

span several days or even longer, making the historical queries more

noisy and misleading since the search goal is highly likely to be

di$erent from that revealed by the historical queries. Despite the

noisy and misleading historical records, IVAE can still outperform

strong baseline DLKNN on this dataset, as IVAE can capture the

noisy interaction through VAE and irrelevant intent estimations.

4.3 Analysis of IVAE (RQ2 and RQ3)

4.3.1 Ablation studies. Our main contribution is proposing a novel

query recommendation method that captures the intent dynamics

using PLLMs with appropriate regularizers. Thus, the aim of the ab-

lation study is to examine the e$ectiveness of 1) the Intent Encoder,

2) the PLLM, and 3) the uniformity regularizer, i.e., DeepWhitening.

The comparisons, such as Transformer vs. RNN, VAE vs. AE/DAE,

and Uniformity vs. post-whitening, are not directly related to the

main goal of the ablation study and are omitted for brevity. For

variants without intent, we delete the Intent-Encoder; for variants

without PLLM, we use a learnable embedding as the input feature

for each query; for variants without DeepWhitening, we remove

LDW from the! nal loss computation.We report the performance of

di$erent variants compared with the original IVAE on Session-AU

dataset in Table 4, and we report the average performance drop in

the last row compared to that of IVAE.

From the performance of di$erent variants of IVAE, we have the

following observations: 1) If we only remove the Intent-Encoder,

the model IVAE’s performance will drop by 8.54%. We also report

the comparison between VAE and IVAE on all three datasets in

terms of Recall@40 and NDCG@40 in Appendix A.2, which in-

dicates that IVAE outperforms VAE on all datasets. These results

strongly support the e$ectiveness and necessity of utilizing intent

information for query recommendations. As explicitly modeling

such intent information can not only narrow down the query rec-

ommendation candidates but also make the model robust to noisy

and misleading interactions. Furthermore, the design of IVAE also

equips the model with the capability of controllable generation.

We report a case study over the controllable generation in Appen-

dix A.3. 2) Compared to the variants without PLLMs on columns 2,
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Table 3: Overall Comparison. Boldface indicates the best performance while the underlined one indicates the second best. The

proposed IVAE achieves the best performance over all datasets across a variety of metrics

Dataset Metric DLKNN Bert-Finetune SimCSE SASRec Bert4Rec HRED RIN IVAE Improv.

Session-AU

Recall@15 0.2626 0.1471 0.2841 0.2741 0.3290 0.2689 0.2333 0.4127 25.44%

Recall@20 0.2917 0.1651 0.3144 0.3058 0.3697 0.3066 0.2719 0.4583 23.97%

Recall@40 0.3621 0.2178 0.3938 0.3919 0.4819 0.4091 0.3739 0.5762 15.69%

NDCG@15 0.1518 0.0761 0.1569 0.1615 0.1671 0.1274 0.1102 0.2188 30.94%

NDCG@20 0.1587 0.0803 0.1640 0.1691 0.1767 0.1363 0.1193 0.2296 29.94%

NDCG@40 0.1731 0.0911 0.1803 0.1867 0.1997 0.1572 0.1402 0.2537 27.04%

Session-CA

Recall@15 0.2259 0.1628 0.2325 0.1505 0.2246 0.1217 0.1553 0.3731 60.47%

Recall@20 0.2453 0.1808 0.2513 0.1682 0.2580 0.1432 0.1829 0.4228 63.87%

Recall@40 0.2945 0.2289 0.3055 0.2246 0.3444 0.2066 0.2665 0.5443 58.04%

NDCG@15 0.1372 0.0934 0.1400 0.0850 0.0970 0.0564 0.0728 0.1899 35.64%

NDCG@20 0.1417 0.0977 0.1444 0.0892 0.1129 0.0614 0.0793 0.2017 39.68%

NDCG@40 0.1518 0.1075 0.1555 0.1007 0.1384 0.0744 0.0963 0.2265 45.65%

BestBuy

Recall@15 0.1150 0.0580 0.0890 0.0400 0.0560 0.0620 0.0680 0.1310 13.91%

Recall@20 0.1400 0.0740 0.1120 0.0570 0.0730 0.0790 0.0860 0.1510 7.86%

Recall@40 0.1910 0.1280 0.1650 0.0970 0.1340 0.1320 0.1600 0.2110 10.47%

NDCG@15 0.0628 0.0242 0.0484 0.0159 0.0266 0.0263 0.0282 0.0640 1.91%

NDCG@20 0.0680 0.0280 0.0538 0.0199 0.0307 0.0304 0.0324 0.0688 1.17%

NDCG@40 0.0791 0.0389 0.0646 0.0281 0.0431 0.0411 0.0474 0.0809 2.28%

4, and 6, the IVAE outperforms substantially. This could be attrib-

uted to the sparsity nature of the dataset, as the query embeddings

merely learned from such highly noisy and sparse training datasets

encode fewer semantics than those from PLLM. 3) From another

aspect, by comparing IVAE with variants without DeepWhitening

on columns 3, 4, and 5, we can conclude that DeepWhitening helps

improve performance by addressing the issues of anisotropy. Al-

though the MLP can also alleviate the anisotropic issues to a certain

extent, DeepWhitening further improves by directly penalizing the

anisotropic query embeddings. It is simple yet e$ective and provides

a plug-and-play mechanism without! ne-tuning the cumbersome

PLLMs. We also further examine the e$ect of DeepWhitening in

Appendix A.1. Because of the limited space, we do not report the

version directly using the normalized [CLS] embedding as model

input, as the model collapsed to the degenerate representation.

4.3.2 Impacts of session length. In this section, we split the test

sessions into eight groups according to their length. We compare

four models’ performance over di$erent groups and report the ex-

periment results in Fig. 4. We chose DLKNN, SimCSE and Bert4Rec

for comparison, as they achieve second best performances on three

datasets respectively. Within Fig. 4, we can observe that: 1) IVAE

outperforms the other baseline models over all groups on both Re-

call@40 and NDCG@40. These results validate the e$ectiveness of

IVAE. 2) The performance of all models except DLKNN decreases as

the length of sessions increases. The reason might be that there are

more noisy queries for the long sessions. Without the capability of

being robust to the noise, the performance of models like Bert4Rec

decreases dramatically. DLKNN only recommends queries based

on semantic similarity without considering historical queries. Thus

the performance stays invariant to the session length. 3) SimCSE

performs better than Bert4Rec and DLKNN on short sessions, as it

introduces additional uniformity loss over query representations

and! ne-tunes the PLLM by looking one step back. These factors

make SimCSE good at short sessions. This phenomenon also sup-

ports IVAE as we add uniformity loss and train the model by looking

back to all previous queries. Thus, IVAE performs much better for

short sessions but is also more robust to the noise in long sessions.

(a) Recall@40 (b) NDCG@40

Figure 4: Performance comparison w.r.t. session lengths.

4.3.3 Impacts of query frequency. We divide test sessions into eight

groups based on the frequency of target queries in the training

dataset. We then compare the performance of second-best models

(SimCSE, DLKNN, and Bert4Rec) with our model. We report the

results in Fig. 5 and have the following observations: 1) IVAE has

better results for all groups of queries that appear more than seven

times in the training dataset. 2) DLKNN and SimCSE outperform

IVAE for queries with low frequency, as these rare queries usually

have speci!c descriptions and search goals. Thus, historical infor-

mation is highly likely to be irrelevant. IVAE and Bert4Rec that

look back to all previous queries can extract little signal for such

query recommendation, resulting in decreased performance. 3) The

performance of IVAE and Bert4Rec improves as the frequency of

queries increases, while SimCSE performs the opposite. The reason
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Table 4: Ablation Study

Components

Intent ! " " " ! ! "

PLLM " ! " ! " ! "

DeepWhitening " " ! ! ! " "

Session-AU

Recall@15 0.3781 0.1385 0.3408 0.1355 0.3338 0.1289 0.4127

Recall@20 0.4274 0.1632 0.3874 0.1589 0.3793 0.1531 0.4583

Recall@40 0.5415 0.2339 0.4994 0.2267 0.4918 0.2166 0.5762

NDCG@15 0.1908 0.0688 0.1703 0.0665 0.1655 0.0620 0.2188

NDCG@20 0.2024 0.0746 0.1813 0.0720 0.1762 0.0677 0.2296

NDCG@40 0.2258 0.0890 0.2042 0.0858 0.1992 0.0807 0.2537

avg. drop -8.54% -64.26% -17.03% -65.33% -18.79% -67.03% 0%

might be that the frequent queries are more likely to be relevant

to the historical queries that are two or more time steps back, and

IVAE and Bert4Rec can learn the global relevance from all historical

queries. IVAE is superior to Bert4Rec as it is more robust to the

noisy and misleading queries when considering all previous queries.

(a) Recall@40 (b) NDCG@40

Figure 5: Performance comparison with di#erent target

query frequencies. IVAE performs better as the target query’s

frequency increases.

(a) IVAE (b) VAE

(c) DLKNN (d) Bert4Rec

Figure 6: Top-40 Ranked Queries from IVAE (our method),

VAE, DLKNN and Bert4Rec. Even though the input queries

(in Table 5) are noisy, IVAE can still give correct predictions.

4.4 Case Study

Finally, we analyze speci!c cases of the predicted queries by com-

paring the top-40 ranked queries from: IVAE, DLKNN, Bert4Rec,

and VAE (a variant of our model without intent information). We

report the recommended queries of these four models in the form of

the word cloud, as shown in Fig. 6, where the font size corresponds

to the rank of the query. We also report the input information of

these four models in Table 5. From the input data, we can observe

that there is a noisy query dog toy, and the target query noodle is a

complementary reformulation from the previous query. In Fig. 6,

we can observe that the IVAE correctly predicts the next poten-

tial query noodle, even though (as shown in Table 5) the static

intent estimation is incorrect, as the dynamic intent estimator can

re-estimate the potential intent considering the intent evolution.

Furthermore, the intent information also introduces diversity into

the query recommendation, e.g., fruit basket, and drinking game,

which are not semantically relevant to the historical queries but

might be complementary and inspiring queries.

Table 5: Case Study of Input Data

Historical Queries dog toy, Genoa Foods, apricot

Target Query noodle

Static intent estimator Irrelevant

Dynamic intent estimator Complement

5 CONCLUSION

In this paper, we have proposed IVAE for explicitly modeling the

complex reformulation intent evolving from both semantic and

product-related perspectives. To reach such desiderata, we!rst

explicitly de!ne the six types of reformulation intents according to

the relationships between the desired items. Then, we extract an

additional reformulation intent sequence from the original query

sequence and apply the self-attention module over these two se-

quences, respectively, to learn the sequence transitions of queries

and intents. In the end, we propose an intent-aware decoder that

can generate candidate queries using the dynamic next intent es-

timations and next query estimations. Extensive experiments on

real-world query recommendation datasets demonstrate the e#-

cacy of the proposed method.
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A ADDITIONAL EXPERIMENTS

A.1 E#ects of DeepWhitening

DeepWhitening provides a simple yet e$ective mechanism for high-

level sentence tasks e.g. query recommendation. It provides the

possibility to combine the PLLMs and the sequential models while

avoiding anisotropy. It plays a plug-and-play interface and can

also be applied to existing sequential approaches. In this section,

we equip the SASRec, Bert4Rec with the PLLM using the Deep-

Whitening, and report the results in Fig. 7, where SASRec-w/o DW,

Bert4Rec-w/o DW represent the variants without DeepWhitening,

SASRec-DW, and Bert4Rec-DW with DeepWhitening on the con-

trary. Compared to the vanilla version that learns query embedding

from scratch using the training data, the performance in terms of

both Recall@40 and NCDCG@40 of models with DeepWhitening

improves substantially. These phenomena prove the potential of

utilizing PLLMs and the e$ectiveness of DeepWhitening.

(a) Recall@40 (b) NDCG@40

Figure 7: The e#ect of DeepWhitening. We equip the Deep-

Whitening technique to di#erent backbone models and com-

pare their corresponding performance. DeepWhitening can

boost the performance of all backbones.

To investigate whether the proposed DeepWhitening can really

mitigate the anisotropic issue, we further plot and compare the

query feature distribution of Session-CA with and without Deep-

Whitening in Fig. 8. As demonstrated in the! gure, without the

regularization of DeepWhitening, the query features tend to be

concentrated, thus, are hard to discriminate. By contrast, Deep-

Whitening encourages query features to distribute uniformly in the

hypersphere.

A.2 E#ects of Intents

We further compare IVAE with VAE that simply removes the Intent-

Encoder of IVAE on all three datasets. From the experimental results

reported in Fig. 9, we can observe that the intent information im-

proves the query recommendation performance consistently on

all datasets in terms of Recall@40 and NDCG@40. Especially for

dataset Session-CA, which has the most sparse sessions, the IVAE

managed to improve the Recall@40 compared to VAE is improved

from 0.2957 to 0.5443.

Figure 8:We plot the query feature distributions (the! rst two

dimensions) with Gaussian kernel density estimation (KDE)

in R2 and von Mises-Fisher (vMF) KDE on angles for ran-

domly selected 10,000 queries from Session-CA dataset. Left

is the feature distribution without DeepWhitening, while the

right is that with DeepWhitening.

(a) Recall@40 (b) NDCG@40

Figure 9: The e#ect of Intent.We compare the performance of

our method with (IVAE) and without (VAE) the intent infor-

mation on Session-AU, Session-CA and BestBuy, respectively.

Adding the intent information can improve the model’s per-

formance on all datasets.

Table 6: Case Study of Controllable Generation from

Session-AU. We report the top-5 ranked queries from IVAE

and Bert4Rec.

rank IVAE with Equivalent intent estimation Bert4Rec

1 face mask reusable pm 2.5! lters for face mask

2 face masks virus protection kids face mask

3 face mask face mask reusable

4 face mask disposable reusable face mask

5 face masks disposable weddingstar face masks

A.3 Controllable Generation

The design of IVAE also equips the model with the capability of

controllable generation. Speci!cally, we can a$ect the query recom-

mendation process of the intent-aware decoder by manipulating

its input from the dynamic intent encoder. For example, we manu-

ally enlarge the probability estimation of equivalent reformulation
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intent and report the top-5 ranked queries for recommendation in

Tab. 6. For this case, we have historical queries as {face masks virus

protection, face mask disposable kids, face mask reusable kid, face

mask disposable} and the target query is face mask reusable. From

Tab. 6, we can observe that the top-ranked queries from IVAE are

all equivalent reformulations compared to those from Bert4Rec.


