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ABSTRACT

Existing recommender systems face di�culties with zero-shot items,

i.e. items that have no historical interactions with users during the

training stage. Though recent works extract universal item rep-

resentation via pre-trained language models (PLMs), they ignore

the crucial item relationships. This paper presents a novel para-

digm for the Zero-Shot Item-based Recommendation (ZSIR) task,

which pre-trains a model on product knowledge graph (PKG) to

re�ne the item features from PLMs. We identify three challenges

for pre-training PKG, which are multi-type relations in PKG, se-

mantic divergence between item generic information and relations

and domain discrepancy from PKG to downstream ZSIR task. We

address the challenges by proposing four pre-training tasks and

novel task-oriented adaptation (ToA) layers. Moreover, this paper

discusses how to �ne-tune the model on new recommendation task

such that the ToA layers are adapted to ZSIR task. Comprehen-

sive experiments on 18 markets dataset are conducted to verify the

e�ectiveness of the proposed MPKG model .
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1 INTRODUCTION

Recommender systems (RS) provide personalized information re-

trieval services to users, and have increasingly become an irre-

placeable component in several web applications, such as fash-

ion [7] and movies [9]. Most existing collaborative �ltering meth-

ods [12, 15, 35] leverage collaborative signals from the historical

interactions of users and items. However, collaborative �ltering

methods are unable to resolve the item cold-start problem. In the

item cold-start problem, some items have few to no historical inter-

actions [5, 14, 21, 23]. Without historical interactions, the represen-

tations of cold-start items are not optimized during collaborative

�ltering training. In this paper, we tackle the Zero-Shot Item-based

Recommendation task (ZSIR). We present a toy example of ZSIR in

Figure 1(a). Compared with other items, ğ4 has no interactions with

users, and hence ğ4 is a zero-shot item.

Item-based recommendation methods [16, 26, 44] represent users

as weighted sum of interacted items. The key to resolve the ZSIR

task becomes learning representations for zero-shot items [5]. Be-

cause of the unavailability of interaction data, we believe the foun-

dation is to infer embeddings of zero-shot items from generic side

information, such as titles and descriptions. With the booming of

large pre-trained language models (PLMs) [8, 28, 29, 31], power-

ful tools are available to infer universal item representations from

textual data. PLMs have been explored in recent recommender

systems [13, 17, 46]. In these works, PLMs are used to infer item

representations, and these item representations are then used as

input for downstream recommendation tasks. Nevertheless, we

argue that direct inference of item representations from PLMs is

far from aligning the semantics of items for recommendation, thus
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Figure 1: (a) A toy example of Zero-shot Item-based Recom-

mendation (ZSIR), where the zero-shot item ğ4 has no interac-

tion with users. (b) A general framework for universal item

representation learning, which contains universal feature

extraction and product knowledge characterization.

impairing the ZSIR performance. High-quality universal item rep-

resentations should not only capture the semantics of generic in-

formation, but should also incorporate recommendation-oriented

knowledge [41, 42], such as complementary and substitution rela-

tionships among items.

To this end, we propose a novel universal item representation

learning framework, which comprises two components, i.e. generic

features extraction and product1 knowledge characterization. The

illustration of our universal item representation learning process is

presented in Figure 1(b). The generic features extraction module em-

ploys a PLM to extract features from generic item side information,

such as titles, descriptions, etc.

However, features directly extracted from generic information

are hard to adapt to recommendation task. Therefore, we propose

the product knowledge characterization module to enhance the

universal representation of items for recommendation. To be more

speci�c, we construct the product knowledge graph (PKG) to repre-

sent recommendation-oriented knowledge, where nodes are items

and edges are di�erent relations between items, such as complemen-

tary, substitution, and etc. Since those relations in PKG are usually

retrieved from user-item interactions [43], leveraging PKG for re-

�nement adapts the universal representation for recommendation.

We pre-train a graph neural network (GNN) model [1, 2, 20, 27] to

re�ne the features extracted from PLM such that the �nal universal

item representations capture semantics relevant to recommenda-

tion tasks. It is noteworthy that we ensure the pre-trained GNN

has the inductive ability for zero-shot items, since those items may

not present in the pre-training stage of the GNN model. We demon-

strate a toy example of the PKG over items in Figure 1(b), which

contains three item-item relationships.

The challenges of pre-training PKG are from the following three

perspectives: 1) Multi-type Relations in PKG; 2) Semantic Diver-

gence between generic information and relations; 3) Domain Dis-

crepancy from PKG to downstream ZSIR task.

Firstly, the multi-type relations intrinsically exist in PKG due

to various item-item relationships. Pre-training a PKG encoder de-

mands comprehensive characterization of those multiple relations,

which is still under-explored. Secondly, the universal features are

1The terms “product” and “item” are used interchangeably.

extracted from generic information, while the relations in PKG may

re�ect di�erent semantics. For example, two items has similar titles,

but they have no complementary relations. Ignoring the semantic

divergence disables the unifying ability of graph encoder to incor-

porate both generic information and relation semantics. Thirdly, we

use a pre-trained encoder for inferring item embeddings for ZSIR.

However, because ZSIR task has distinct domain from PKG domain,

though PKG yield similar embeddings for two items, users may

have di�erent preferences towards them in ZSIR task. Moreover,

multiple relations may have di�erent contributions to ZSIR task.

We refer this as the domain discrepancy issue.

To resolve aforementioned problems, we propose a novel Multi-

task Product Knowledge Graph model for pre-training, and devise

a novel paradigm to �ne-tune the pre-trained model on recom-

mendation task. MPKG is able to adapt to the downstream recom-

mendation task and infer the universal representation of zero-shot

items. To be more speci�c, we extract multiple single-relation PKG

from the original PKG and adopt the SGCN [40] as the encoder

for each single-relation PKG. Then, we endow this multi-relation

graph encoder with adaptation ability to di�erent tasks via novel

Task-oriented Adaptation (ToA) layers. We also devise four pre-

training tasks to optimize the graph encoder and ToA layers, which

are Knowledge Reconstruction (KR), High-order Neighbor Recon-

struction (HNR), universal Feature Reconstruction (FR), and Meta

Relation Adaptation (MRA) tasks. Each task is associated with one

type of ToA layer. Experiments are conducted on the cross-market

dataset [3], which consists of 18 di�erent markets data from Ama-

zon. We summarize our contributions as follows:

• We propose a novel PKG pre-training and �ne-tuning framework

to tackle the ZSIR problem, which enhances the MPKG with

inductive ability.

• We identify three type of challenges in PKG pre-training and

devise four pre-training tasks. The MRA pre-training task is

�rstly proposed for adapting model to new downstream tasks.

• We propose a novel task-oriented adaption layer for each task,

which adapts the embeddings from multi-relation graph encoder

to di�erent tasks.

2 RELATEDWORK

2.1 Product Knowledge Graph

Product knowledge graphs (PKGs) are graphs whose nodes rep-

resent products (items) and whose edges represent various item-

item relationships, such as complementary and substitute relation-

ships. The item-item relationships are extracted from meta data

of items or interaction data on items. Existing literature of PKG

for recommendation mainly focuses on two directions, including

PKG construction [11, 25, 43] and PKG utilization for recommenda-

tion [6, 34, 41, 45, 48, 49].

Regarding the PKG construction, the earliest work is Sceptre [25],

which focuses on modeling product complementary and substitu-

tion relationships. PKG [43] is further introduced with three more

knowledge relationships between products, including co-view and

IsA. Moreover, Autoknow [11] builds the PKG from item textual

knowledge and user-item interaction data. Those works suggest

that item relationships described in PKG are more closely related

to item semantics in recommendation [11, 43].
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Utilizing PKG for recommendation also attracts increasing at-

tention. RSC [48] proposed complement and substitution networks

to improve rating prediction accuracy, demonstrating the e�ective-

ness of additional item relationships. [41] developed Bayesian dual

embedding framework to encode complementary item relation-

ships for recommendation. Chorus [34] encoded item relationships

into sequential recommendation with temporal kernel functions.

In summary, constructing and leveraging PKGs is a promising di-

rection for improving recommendation performance. In this work,

we �rstly propose to pre-train a PKG model and then �ne-tune this

model in recommendation task.

2.2 Graph Pre-Training

Graph neural networks (GNNs) encode rich relationships between

nodes and formulates these connections as a graph. As a great

amount of data can be represented as a graph, the GNN repre-

sentation learning and its pre-training become an important but

challenging research problem. Several classical GNN pre-training

methods were developed for general graph tasks[19, 20, 24, 27, 33].

GPT-GNN [20] proposed two pre-training generation tasks, includ-

ing node attributes generation and edge generation. The demonstra-

tion of GPT-GNN is conducted in downstream tasks with time and

data shifts. Another representative work GCC [27] assumes that

the graph structural property is transferable and universal across

di�erent networks. The authors de�ned the Ĩ -ego network as the

positive subgraph and proposed the negative subgraph sampling

into the contrastive learning. Lu,[24] proposed to bridge the gap

between graph pre-training and �ne-tuning with model-agnostic

meta-learning strategy. It focused on subgraph learning node-level

embedding learning for predicting the node connections, subgraph

graph-level learning for predicting how close between the subgraph

and the whole graph. Each subgraph is used as the support set for

node and graph levels adapation meta-learning.

3 PRELIMINARIES

Our work is focused on strategically pre-training a graph neural

network for PKG. We begin with the de�nition of PKG.

De�nition 1. Product Knowledge Graph (PKG). A product

knowledge graph (PKG) is denoted as G = {I, E,R,X, ĉ }, where

I and E denote the sets of item nodes and edges, respectively.

R is the relation type of edges, which is associated with E via a

edge-type mapping function ĉ : E → R. X ∈ R | I |×Ě denotes the

feature vector for nodes, which is extracted from item generic side

information via PLMs. For each edge type Ĩ ∈ R, we de�ne its

Ĩ -PKG as GĨ = {I, EĨ ,X}, where EĨ only has edges in relation Ĩ .

Note that PKG only has one node type, i.e. items, while having

multiple edge types between items, e.g. co-purchasing, co-view, etc.

To achieve knowledge-enhanced universal item representations,

we pre-train a model that encodes nodes to embeddings in PKG.

De�nition 2. PKG Pre-training. Given a PKG G, the PKG pre-

training task is to learn an encoder Enc(G)→ E ∈ R | I |×Ě , where

each node ğ ∈ I is represented as an embedding eğ ∈ R
Ě .

In this work, we pre-train a graph encoder for PKG. The graph

encoder preserves heterogeneous semantics of items, including both

the features of items and their associated relations. The ultimate

goal for pre-training a graph encoder is to tackle the ZSIR problem.

Though the encoder Enc(·) is able to generate embeddings for all

nodes in PKG G, zero-shot items may not be present in the pre-

training stage of the graph encoder. Thus, we require that the graph

encoder can perform inductive on new items, de�ned below.

De�nition 3. Inductive Inference. Given a PKG G and a pre-

trained PKG encoder Enc(·), suppose there is a zero-shot item ğ∗

with edges E∗
ğ . The inductive inference is to encode an updated

graph G∗ which is constructed from G by including ğ∗ and E∗
ğ .

After inductive inference, we have embeddings for all items, in-

cluding both warm items and zero-shot items. Thus, we can resolve

the ZSIR task.

4 PROPOSED METHOD

In this section, we introduce the proposed frameworkMPKG for

pre-training PKG encoder and �ne-tuning the pre-trained model to

the ZSIR task. The overall framework is shown in Figure (2).

4.1 Product Knowledge Graph Construction

Constructing a PKG for pre-training requires two crucial factors: (1)

the universal features from item generic information; (2) item-item

connections derived from either meta-data or user-item interac-

tions. To be speci�c, the universal item features are task-invariant

item generic features. For example, in this paper, we extract items

feature embeddings, X, from the pre-trained BERT [8] by using

the concatenated description and title texts of items as input. We

also analyze the e�ects of other PLMs [29, 31]. Item-item connec-

tions are derived from the collected feedback. Inspired by previous

works [41, 43], our PKG consists of multiple item relationships,

including complement, co-view, substitute, etc, which are extracted

from user interaction data.

4.2 Multi-Relation Graph Encoder

In the pre-training stage, we �rst encode the PKG to obtain item

embeddings over various relationships, which is shown in the upper

left component in Fig. (2). The semantics of PKG contains multiple

item-item relations. Therefore, during pre-training of the graph

encoder, we simultaneously ingest both relations and node features

for encoding the graph. We ensure the graph encoder has the in-

ductive inference ability such that zero-shot item embeddings can

be inferred during the evaluation stage.

Motivated by the e�ectiveness of existing works [15, 36, 38], we

adopt a graph encoder based on the message-passing framework for

each edge type. Speci�cally, for each edge type Ĩ ∈ R, we extract

the Ĩ -PKG as GĨ = {I, EĨ ,X}. Following SGCN [40], we adopt the

encoder to obtain the item embeddings withĉ layers of message

aggregation as follows:

Enc(GĨ ) → E
Ĩ
=

(

D
− 1

2 ÃD
− 1

2

)ĉ
XW

Ĩ , (1)

where EĨ ∈ R | I |×Ě is the embeddings of items w.r.t. relation Ĩ , D

denotes the degree matrix of Ã, Ã is the adjacency matrix with

self-loop for Ĩ -PKG, and W
Ĩ ∈ RĚ×Ě is the weight matrix. The

advantage of this simple form and the removal of activation in

each aggregation layer allows the pre-computation of high-order
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Figure 2: The framework of our proposed method. In step 1, we pre-train the MPKG model by using multiple pre-training tasks

upon the PKG. Each task is associated with one type of ToA layer. Next in step 2, we �ne-tune the model on the recommendation

task with user-item interactions, which has frozen graph encoder and free ToAMRA layer parameters. Finally, in step 3 we

conduct inductive inference of the zero-shot item ğ4. Best viewed in colors.

neighborhood connectivity matrix, which signi�cantly increases

the e�ciency. Also, since the multi-layer message aggregation pro-

cess, i.e., the term
(

D
− 1

2 ÃD
− 1

2

)ĉ
can be decoupled from the feature

transformation step, i.e. the term XW
Ĩ , we can update the PKG

with zero-shot items and conduct the message-passing directly on

updated PKG, thus ensuring the inductive inference ability.

4.3 Task-oriented Adaptation Layer

Given |R | relationships, we obtain |R | item embedding matrices.

However, our �nal goal is to resolve the ZSIR task, which requires

the fusion of embeddings from all relations. Due to the domain

discrepancy from our PKG pre-training tasks to the ZSIR task, we

adapt the embeddings to di�erent tasks such that semantics from

multiple relations can be properly fused. Let {EĨ }|Ĩ ∈R denote the

item embeddings for |R | relations. We de�ne the fused embedding

for a speci�c task Ī as:

EĪ = ToAĪ ({E
Ĩ }|Ĩ ∈R ), (2)

where ToAĪ can be arbitrary read-out functions, such as concat,

mean-pooling, weighted-sum, etc. In the next sections, we discuss

de�ning ToA layers for various pre-training tasks and �ne-tuning

on down-stream tasks.

4.4 Multi-task Pre-training

Our approach pre-trains a multi-relation graph encoder on four

tasks for the PKG, which are presented as the step 1 in Figure (2).

In this section, we introduce these pre-training tasks and de�ne the

corresponding ToA layers.

4.4.1 Knowledge Reconstruction (KR). Let (ğ, Ĩ , Ġ) denote a knowl-

edge triplet, where items ğ and Ġ are connected by relation Ĩ . To

preserve the original semantics from each relation, we adopt a

knowledge reconstruction task with respect to each relation. To be

concrete, we propose a link prediction task for each relation. In our

link prediction task, the encoded item embeddings EĨ must e�ec-

tively reconstruct the item-item knowledge triplets under relation Ĩ .

Therefore, in this knowledge reconstruction task for relation Ĩ , the

ToA layer uses only the embedding EĨ . We calculate the knowledge

reconstruction score ĩĨğ Ġ as follows:

ĩĨğ Ġ = Ă (E
Ĩ
ğ · E

Ĩ
Ġ ), (3)

where Ă (·) denotes the sigmoid activation function and E
Ĩ
ğ and

E
Ĩ
Ġ represent the embeddings under relation Ĩ for item ğ and Ġ ,

respectively. Hereafter, we develop the item knowledge link recon-

struction loss, LKR, as the BCE loss between positive triplet and

negative triplet and sum over all relations:

LKR =

∑

Ĩ ∈R

−
1

|EĨ |

∑

(ğ, Ġ ) ∈EĨ

(

log ĩĨğ Ġ + log(1 − ĩĨğ Ġ− )
)

, (4)

where EĨ denotes all links under relation Ĩ and (ğ, Ġ−) ∉ EĨ is a

negative sample to pair with the positive link.

4.4.2 High-order Neighbor Reconstruction (HNR). While the knowl-

edge reconstruction task encourages the graph encoder to be relation-

aware, due to sparsity of PKGs, it is insu�cient to only consider

direct neighbors. Thus, we leverage the higher-order neighbors in

the PKG to fully reconstruct the semantics. Speci�cally, we enhance

the embeddings by reconstructing the ć-order neighbors, regard-

less of relationships, which is de�ned as the High-order Neighbor

Reconstruction (HNR) task. This task simultaneously incorporates
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semantics from all relations. Hence, we de�ne the ToA layer for

this task as the concatenation for all embeddings,

EHNR = ToAHNR ({E
Ĩ }|Ĩ ∈R ) = Concat({EĨ }|Ĩ ∈R ), (5)

where EHNR and ToAHNR denotes the item embeddings and ToA

layer for this HNR task respectively. We �rst collect the ć-order

neighbors of each item, denoted as Nć (ğ). Then the neighbor re-

construction score ėğ Ġ between item ğ and Ġ is de�ned as the soft

dot-product:

ėğ Ġ = Ă (EHNR (ğ) · EHNR ( Ġ)), (6)

where EHNR (ğ) and EHNR ( Ġ) represent the HNR embedding for

item ğ and Ġ , respectively. Finally, we optimize the task with BCE

loss as follows:

LĄĊĎ = −
∑

ğ∈I

∑

Ġ∈Nć (ğ )

(

logėğ Ġ + log(1 − ėğ Ġ− )
)

, (7)

where Ġ denote a K-hop neighbor of item ğ and Ġ− denotes a negative

sample to pair with Ġ such that Ġ− ∈ I \ Nć (ğ)

4.4.3 Feature Reconstruction (FR). The universal item features en-

code the basic item generic information and bene�t the inductive

inference for zero-shot items. However, since universal item fea-

tures are extracted from PLMs, there is a large semantic divergence

between the universal item features and output from multi-relation

graph encoder. Therefore, we propose to use the feature reconstruc-

tion (FR) task to optimize the graph encoder such that semantic

divergence is mitigated. Concretely, we propose to use the item

embeddings from graph encoder to reconstruct the universal item

features via a decoder. For this task, semantics from all relations

are also harnessed. Hence, we de�ne the ToA layer to be the same

as in HNR task, i.e. the concatenation, as follows:

EFR = ToAFR ({E
Ĩ }|Ĩ ∈R ) = Concat({EĨ }|Ĩ ∈R ), (8)

where EFR denotes the item embeddings for this FR task. Then, we

input this EFR to a decoder Dec(·) such that the universal feature

from PLMs can be reconstructed, formulated as follows:

X̃ = Dec(EFR), (9)

where X̃ is the feature decoded from the concatenated relational

embeddings. Though a wide range of decoders can tackle this FR

task, we adopt one fully-connected layer as the decoder here in this

paper. The reason is that a light-weight decoder is less complex to

optimize and the output embeddings from graph encoder can be

linearly aligned with universal features. We leave the investigation

of other types of decoders as future work.

Finally, we optimize this task under the measurement of Ĉ2 losses

between orignal features and reconstructed features as follows:

LFR =

∑

ğ∈I

∥Xğ − X̃ğ ∥
2
2, (10)

where Xğ and X̃ğ are the universal and reconstructed features for

item ğ , respectively.

4.4.4 Meta Relation Adaptation (MRA). Recall that the objective of

pre-training a graph encoder is to yield embeddings for the items

in the downstream ZSIR task. Nevertheless, due to the domain dis-

crepency between PKG semantics and the ZSIR task, di�erent item-

item relations have unequal contributions. Therefore, we should

devise a proper strategy to adapt relational embeddings to vari-

ous tasks. Since during the pre-training stage, we have no access

to downstream data, we propose a novel Meta Relation Adapta-

tion (MRA) task. To be concrete, we treat one relation Ĩ as the target

relation, and use embeddings from other relations to reconstruct

the edges in Ĩ -PKG GĨ . We de�ne this as the Ĩ -MRA task. Firstly,

the ToA layer for Ĩ -MRA task is a weighted sum of all relational

embeddings except the relation Ĩ embeddings, which is formulated

as:

EĨ -MRA = ToAĨ -MRA ({E
Ĩ }|Ĩ ∈R ) =

∑

Ĩ ∈R−Ĩ

ĭĨEr, (11)

where R−Ĩ denotes all relations but relation Ĩ , and ĭĨ ∈ R is a

scalar weights, denoting the contrition of each relation embeddings

in R−Ĩ . In this paper, we use a self-excitation layer [18] to compute

the weightĭĨ , which ingests the associated relation embeddings

into two fully-connected layers and normalizes those weights w.r.t.

each relation with a softmax function. The reason is self-excitation

layer is easy to implement and �ne-tune for new downstream tasks.

We leave other methods for calculating the weights in future works.

Next, we predict edges in Ĩ -PKG by a soft dot-product upon the

Ĩ -MRA embedding. The prediction score Ęğ Ġ between item ğ and Ġ

is formulated as follows:

Ęğ Ġ = Ă (EĨ -MRA (ğ) · EĨ -MRA ( Ġ)), (12)

where EĨ -MRA (ğ) and EĨ -MRA ( Ġ) represent the Ĩ -MRA embeddings

for items ğ and ğ , respectively. The intuition for this meta relation

adaption task is to simulate the process of adapting relation em-

beddings to new tasks. The Ĩ -MRA task views the edge prediction

task on Ĩ relation as a new task and train the encoder to adapt the

embeddings from other relation sematics to relation Ĩ . In this way,

the encoder would have more generalizatio ability and endows the

ToAĨ -MRA (·) layer more �exibility for downstream task adaptation,

thus resolving the domain discrepency problem betwen PKG se-

mantics and ZSIR task. We will introduce how to �ne-tune this

layer in ZSIR task in the next section.

Next, we optimize the MRA tasks for all relations via MSE loss

as follows:

LMRA =

∑

Ĩ ∈R

−
1

|EĨ |

∑

(ğ, Ġ ) ∈EĨ

(

logĘğ Ġ + log(1 − Ęğ Ġ− )
)

, (13)

where EĨ denotes all edges under relation Ĩ and (ğ, Ġ−) ∉ EĨ is a

negative sample to pair with the positive edge.

4.4.5 Final Pre-Training Loss. We present the entire training frame-

work as a multi-task training framework. The �nal loss is calculated

as the weighted sum of four proposed losses:

L = ĂLKR + ăLFR + ĉLHNR + ĄLMRA, (14)

where Ă , ă , ĉ , and Ą are hyper-parameters, and we choose them

based on the best performance on the validation set.

4.5 Model Fine-tuning

In general, we could �ne-tune the proposed model on any new

tasks. We could update parameters in the graph encoder Enc(·) and

ToA layers by de�ning new objective functions for new tasks. This

work mainly �ne-tunes the ToAMRA layers for all relations as it is

most relevant to the ZSIR task and more e�cient to adapt without

loading the entire PKG again in ZSIR. Hence, we only discuss how
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to �ne-tune ToAMRA layers on ZSIR task in this paper. An example

process is given in the step 2 of Figure (2). Any other tasks can be

investigated in analogy.

Concretely, we update ToAMRA layers with a recommendation

objective function. Given the user-item interaction data, denoted

as D = {(ī, ğ) |ī ∈ U, ğ ∈ I} where U is the user set, we optimize

the pre-trainedMPKG with only ToAMRA layers as free parameters

and all other parameters are �xed. During the �ne-tuning stage,

the item embeddings are produced similar to Eq. (11), but involving

all relations in PKG, denoted as EMRA =
∑

Ĩ ∈RĨ ĭĨEr. Recall that

ĭĨ represents the contribution of each relation Ĩ and computed

via self-excitation over the relational embedding EĨ . Hence, we

optimize the self-excitation layers such that the contribution of

each relation towards recommendation task can be characterized.

The recommendation task is to predict ranking scores between

items and users. For each pair (ī, ğ), we represent the user rep-

resentation eī as the mean aggregation for all interacted items,

formulated as eī =
1

|Dī |

∑

ğ∈Dī EMRA (ğ), where Dī is the inter-

acted items for user ī and EMRA (ğ) denotes the output embedding

for item ğ . Then, we calculate the ranking score Ħīğ between user ī

and item ğ via the dot-product similarity as follows:

Ħīğ = eī · EMRA (ğ). (15)

Finally, we �ne-tune the model via the BPR loss [30] as follows:

LĘĦĨ =
∑

(ī,ğ ) ∈D

− logĂ
(

Ħīğ − Ħīğ−
)

, (16)

where ğ− is a negative item such that (ī, ğ−) ∉ D for user ī. After

optimization, ToAMRA layers are adapted to the recommendation

task. Note that we could use any other functions to produce the

�nal representation of users and items for recommendation task.

This paper investigates the above methods as it is the minimal way

to verify the e�ectiveness of the MPKG framework, no additional

parameters being introduced during �ne-tuning stage.

Hereafter, we utilize the �ne-tuned model to conduct inductive

inference for the zero-shot items, which is demonstrated in the step

3 of Figure 2. Finally, the prediction scores between users and all

items are calculated as in Eq. (15.)

5 EXPERIMENTS

In this section, we demonstrate the e�ectiveness of our proposed

universal pre-training PKG framework in several perspectives. We

answer the following Research Questions (RQs) to validate the

superiority:

• RQ1: Does MPKG generalize to downstream ZSIR tasks, espe-

cially for zero-shot items?

• RQ2: DoesMPKG yield better universal item embeddings than

other state-of-the-art models?

• RQ3: What are the contributions of multiple pre-training tasks?

• RQ4: What are the e�ects of MPKG variants?

5.1 Data Preparation

We conduct the experiments on the largest category Home and

Kitchen category in Xmarket dataset2. The dataset consists of 18

2https://xmrec.github.io/

markets, of which each has user-item reviews and item-item rela-

tionships as meta-data. We utilize the item-item relationships in

meta-data as the PKG pre-training item relationships, including

alsoViewed, alsoBought, boughtTogether as these are widely used

item relationships for recommendation [45, 48, 49]. We aggregate

item-item relationships pairs from all markets and construct the

PKG. We list statistics of user-item interaction data of all markets

in Table 1. The data statistics of the product knowledge graph are

in Table 2. We concatenate the description and title texts as the

universal textual information, and we extract the item universal

features X using a pre-trained language model [10].

We rank the user-item interactions in chronological order. We

use data in the earliest 80% time for training, the following 10%

time for validation, and the last 10% period for testing. The items

appearing in the training data are the train item set. For validation

and testing items appearing in the train item set, we denote them

as warm items, otherwise, we denote them as zero-shot (zs) items.

To avoid the data leakage problem we delete all the cold items from

PKG during training.

5.2 Evaluation Tasks

We present the e�ectiveness of our proposed pre-training PKG

framework via two evaluation tasks, i.e. the knowledge prediction

task and zero-shot item-based recommendation (ZSIR) task. The

knowledge prediction task assesses the ability of our pre-trained

GNN in recovering the semantics between items in the PKG. Specif-

ically, the knowledge prediction task predicts the knowledge triplet

links associated with items as head entities. The ZSIR task assesses

the inference ability of MPKG on a downstream task.

The performance of both tasks is evaluated on all items and

zero-shot items settings. For all downstream tasks, we predict top-

N ranking lists from either the all item candidates, or only the

test zero-shot items. We report the overall performance on both

settings to demonstrate the recommendation ability of our model.

The inductive inference experiments introduced in Section 3 infer

the embeddings of zero-shot items with a updated PKG in test time.

We report the testing performance based on the grid-searched best

validation performance.

5.3 Baselines and Implementation

To validate the e�ectiveness of the proposed framework, we com-

pare the model with the following two groups of related base-

lines: (1) Triplet-based heterogeneous graph methods, including

TransE [4], TransD [22], DistMult [47], and TransH [37]; (2) Hetero-

geneous graph models, including GPT-GNN [20] with a generative

graph model framework and HeCo [36] with the self-supervised

graph learning architecture.

We implement MPKG in PyTorch and conduct the experiments

with 4 V100 GPUs. We grid search important hyper-parameters in

baselines and the proposedMPKG. During the pre-training stage,

we can only access the knowledge triplets and we select the best pre-

training MPKG based on the validation performance on validation

set of knowledge triplets predictions. For all methods, we search

the hidden dimension from {64, 128}, the L2 regularization weight

from {1ě−3, 1ě−2, 1ě−1, 5ě−1}, the learning rate from {1ě−3, 1ě−

4, 5ě − 3}, the batch size is set to be 256, the base GNN is SGC [40],
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Table 1: Home and Kitchen Dataset User-Item Interactions Statistics. For each market, statistics are reported in the following

format: #of users/#of items/#of user-item interactions. We �lter out markets with less than 1,000 users.

Brazil(br) Japan(jp) Mexico(mx) Italian(it) France(fr) Spain(es)

1.7K/60K/10.5K 1.9K/5.6K/14K 3.5K/7K/16K 3.7K/11K/20K 5.7K/16K/38K 5.9K/10K/29K

Australia(au) Germany(de) India(in) Canada(ca) United States(us) United Kingdom(uk)

13K/27.6K/121K 18K/31K/122K 22K/20K/114K 30K/38K/208K 1.7K/8K/8K 251K/66K/1.8M

Table 2: Product Knowledge Graph Statistics.

Edge Type alsoBought alsoViewed boughtTogether Total

#of items/#of edges 93,659/2,044,418 86,481/1,048,779 64,574/115,386 97,626/3,208,583

and the number of GNN layers is default at 3. For all triplet-based

heterogeneous graph baselines, we search the hidden dimension

and L2 regularization weight. For heterogeneous graph model GPT-

GNN [20], we additionally search its attribute generation loss ratio

from {0.1, 0.3, 0.5, 0.7, 0.9} and the queue size from {128, 256, 512}.

For HeCo [36], we further search its dropout rate for features and

attentions from {0.1, 0.3, 0.5, 0.7, 0.9}.

5.4 ZSIR Task Performance (RQ1)

We conduct the ZSIR evaluation in multiple markets. We report

the performance on all items recommendation in Table 3 and the

performance on only zero-shot items recommendation in Table 4.

We only list 7 markets due to the space limitation. The �rst three

from the left are the smallest 3 markets while the remaining 4

markets are the largest 4 markets. From both tables, we have the

following observations:

• In both all items and zero-shot items recommendations, our

proposedMPKG consistently achieves the best performance in

all markets and all metrics. The relative improvements range

from 23.08% to 83.33% in all items recommendation. For zero-

shot items recommendation, the improvements are from 4.68%

to 56.33%. These improvements demonstrate that the proposed

MPKG framework successfully addresses the domain discrepancy

between the PKG and the downstream ZSIR task in the zero-shot

setting. We argue that the improvements result from the superior

pre-training capability on handling multi-type item relationships

and the adaptation layer to improve the generalization capability.

• The pre-training heterogeneous GNN baselines outperform the

triplet-based methods. However, there is not a consistent winner

among heterogeneous GNN baselines. This again demonstrates

the importance of multi-type relations modeling in GNN.

• The improvements on low-resource markets are larger than the

rich markets. For example, in all items recommendation, the low-

resource markets have at least 36.53% relative improvements in

NDCG@20 while the larger markets have at most 33.52%. This

demonstrates thatMPKG can bene�t low-resource markets more

than rich markets, indicating better generalization capability.

5.5 Knowledge Prediction Comparison (RQ2)

In this section, we validate the pre-training e�ectiveness of the

proposed MPKG in learning item-item relationships predictions,

in both warm items (seen items in training portion) and zero-shot
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Figure 3: Knowledge Prediction on Warm (Seen) Items.
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Figure 4: Knowledge Prediction on Zero-Shot Items.

items (unseen items). The knowledge prediction task validates the

capability of pre-training with product knowledge graph informa-

tion over existing methods.

5.5.1 Warm Items Comparison. The knowledge prediction perfor-

mance of product knowledge graph triplets on warm items are

shown in Figure 3. We report the Recall@20 and MRR in Figure 3a

and Figure 3b, respectively. We obtain the following observations

from these comparisons:

• The proposed MPKG achieves the best warm item knowledge

prediction performance in both metrics, with relative improve-

ments from 28% to 100% in all metrics. We attribute this superior
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Table 3: ZSIR Task Results on All Items Comparison. The best models are bolded and the second-best are underlined.

NDCG@20 MRR

Model br mx es in ca uk us br mx es in ca uk us

TransE 0.0357 0.0250 0.0196 0.0153 0.0149 0.0126 0.0166 0.0298 0.0186 0.0163 0.0121 0.0100 0.0080 0.0102

TransD 0.0345 0.0251 0.0189 0.0157 0.0148 0.0127 0.0159 0.0275 0.0199 0.0153 0.0117 0.0103 0.0080 0.0103

TransH 0.0393 0.0289 0.0208 0.0164 0.0160 0.0129 0.0197 0.0317 0.0229 0.0187 0.0143 0.0107 0.0083 0.0126

DistMult 0.0344 0.0233 0.0202 0.0159 0.0168 0.0125 0.0155 0.0253 0.0207 0.0195 0.0129 0.0111 0.0075 0.0088

GPT-GNN 0.0397 0.0304 0.0222 0.0182 0.0174 0.0140 0.0210 0.0329 0.0242 0.0251 0.0169 0.0113 0.0096 0.0158

HeCo 0.0384 0.0285 0.0222 0.0175 0.0175 0.0132 0.0217 0.0323 0.0246 0.0234 0.0156 0.0125 0.0090 0.0157

MPKG 0.0542 0.0433 0.0407 0.0243 0.0204 0.0162 0.0257 0.0413 0.0332 0.0346 0.0208 0.0166 0.0139 0.0208

Impro. 36.52% 42.43% 83.33% 33.52% 16.57% 15.71% 18.43% 25.53% 34.96% 37.85% 23.08% 32.8% 44.79% 31.65%

Table 4: ZSIR Task Results on Zero-Shot Items Comparison. The second-best and the best models are underlined and bolded.

NDCG@20 MRR

Model br mx es in ca uk us br mx es in ca uk us

TransE 0.0467 0.0365 0.0312 0.0206 0.0162 0.0130 0.0215 0.0333 0.0245 0.0216 0.0150 0.0115 0.0096 0.0143

TransD 0.0454 0.0332 0.0304 0.0213 0.0175 0.0132 0.0205 0.0313 0.0227 0.0228 0.0130 0.0121 0.0088 0.0144

TransH 0.0501 0.0404 0.0312 0.0240 0.0197 0.0152 0.0252 0.0364 0.0280 0.0202 0.0167 0.0114 0.0095 0.0181

DistMult 0.0452 0.0332 0.0309 0.0202 0.0174 0.0129 0.0198 0.0290 0.0241 0.0227 0.0151 0.0125 0.0086 0.0126

GPT-GNN 0.0528 0.0426 0.0319 0.0236 0.0194 0.0147 0.0342 0.0404 0.0302 0.0229 0.0178 0.0124 0.0109 0.0240

HeCo 0.0508 0.0403 0.0326 0.0240 0.0210 0.0160 0.0324 0.0401 0.0288 0.0219 0.0180 0.0117 0.0101 0.0245

MPKG 0.0601 0.0481 0.0452 0.0270 0.0227 0.0181 0.0358 0.0431 0.0348 0.0358 0.0213 0.0168 0.0129 0.0262

Impro. 13.83% 12.91% 41.69% 12.5% 17.01% 23.13% 4.68% 6.68% 15.23% 56.33% 18.33% 35.48% 18.35% 6.94%

capability to the design of several proposed pre-training tasks as

it mitigates the semantic divergence between generic information

and item multi-relations.

• Among compared baselines, we observe that pre-training meth-

ods based on heterogeneous GNN (GPT-GNN, HeCo, and our

MPKG) achieve better performances than triple-based methods.

The heterogeneous GNNmethods outperform triplet-based meth-

ods due to the stronger modeling capability of multi-relations in

PKG while triplet-based methods only model direct connections

and item features.

5.5.2 Zero-Shot Items Comparison. We further conduct the knowl-

edge prediction task on zero-shot items. The zero-shot item embed-

ding inference is corresponding to the inductive inference as in the

step 3 in Figure 2 but without the �ne-tuning step. The performance

is shown in Figure 4. We also report the Recall@20 and MRR in

Fig. (4a) and Fig. (4b), respectively. Zero-shot items evaluation veri-

�es the induction capability of models and demonstrates the extent

to which item embeddings generation can extend to zero-shot items.

From the comparison, we have several observations:

• MPKG still achieves the best zero-shot item knowledge predic-

tion performances in all metrics, with improvements from 88.9%

to 105.6% over the best baseline model. The superiority in knowl-

edge prediction performances demonstrates the e�ectiveness of

MPKG in generalizing to zero-shot items.

• Among the two categories of baselines approaches, pre-training

methods based on heterogeneous GNN still achieve more satis-

factory item embeddings learning than triplet-based methods. It

further demonstrates the necessity of GNN in generalizing item

embeddings learning.
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Figure 5: Item-based recommendation performance sensitiv-

ity of each component in Eq. (14).

Table 5: E�ects of Pre-training Tasks.

Knowledge Pred. ZSIR

Variant MRR Recall@20 MRR NDCG@20

MPKG 0.0142 0.0255 0.0253 0.0310

w/o KR 0.0041 0.0097 0.0124 0.0152

w/o FR 0.0122 0.0224 0.0216 0.0242

w/o HNR 0.0135 0.0238 0.0234 0.0269

w/o MRA 0.0120 0.0217 0.0200 0.0245
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Table 6: E�ects of Graph Encoder Variants.

Knowledge Pred. ZSIR

GNNs MRR Recall@20 MRR NDCG@20

GCN-base 0.0108 0.0231 0.0199 0.0257

GAT-base 0.0117 0.0235 0.0214 0.0286

SGC-base 0.0122 0.0241 0.0223 0.0295

5.6 Pre-training Tasks Study (RQ3)

5.6.1 Impacts of Individual Task. We �rst show the e�ectiveness

of each pre-training tasks as in Eq. (14) by removing one from the

�nal loss. Recall that we have four pre-training tasks, Knowledeg

Reconstruction (KR), High-order Neighbor Reconstruction (HNR),

Feature Reconstruction (FR) and Meta Relation Adaptation (MRA).

Our ablation study includes the performance on both knowledge

prediction and ZSIR tasks after we remove each pre-training tasks,

shown in Table 5. The ZSIR performance is reported as in the

average of all markets. We observe that performance degrades

when we remove each task individually. This demonstrates that

all pre-training taskes are necessary for the satisfactory universal

item embeddings learning.

We also visualize the sensitivity of hyper-parameters for each

task loss as in the �nal loss Eq. (14), shown in Figure 5. The best

weights are not the same for all components because the loss scales

are varying for each loss component. We also observe that the

performance drops more signi�cantly for the k-hop neighbors re-

construction loss weight ĉ .

5.6.2 Impacts of K in HNR task. In this section, we investigate the

e�ect of choosing di�erent ćs in the k-hop neighbors reconstruc-

tion lossLĄĊĎ . We chooseć from {1, 2, 3} and test it on both tasks.

The knowledge prediction task results are shown in Figure 6, and

the item-based recommendation task results are shown in Figure 7.

From both Figure 6 and Figure 7, we can see that when ć = 2, the

best performance is achieved. When we include high-order neigh-

bors if ć = 3, the performance drops signi�cantly. The reason is

that high-order neighbors might introduce more irrelevant noises.

5.7 E�ects of Base Model Variants (RQ4)

We study the sensitivity of choosing di�erent base models, includ-

ing the PLM and graph encoder. Our proposed framework can adopt

arbitrary di�erent GNN encoder and PLM. The performance sensi-

tivity of di�erent graph encoder variants is shown in Table 6. For

di�erent textual language models that generate universal textual

features, we show the results in Table 7.

Our proposedMPKG adopts the e�cient SGC as the base model.

From Table 6, we observe that the GCN [39] achieves the worst

performance. The second best GNN encoder is GAT [32]. The reason

is that SGC is easier to learn and generalize to new data.

We also investigated the e�ects of using di�erent textual lan-

guage models to generate universal textual features, including

Distill-Bert [31], Bert (adopted in this work) [8], and Sentence-

Bert [29]. In Table 7, we can see that Sentence-Bert achievesmarginally

better performances than BERT.Moreover, Distill-Bert cannot achieve

on-par performance, even though its e�ciency is signi�cantly bet-

ter than other two.

Table 7: E�ects of PLM Variants.

Knowledge Pred. ZSIR

PLMs MRR Recall@20 MRR NDCG@20

Distill-Bert 0.0138 0.0238 0.0249 0.0298

Bert 0.0142 0.0255 0.0253 0.0310

Sentence-Bert 0.0145 0.0249 0.0250 0.0304
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Figure 6: Performance Sensitivity of ġ-hop Neighbors on the

Knowledge Prediction Task.
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Figure 7: Performance Sensitivity of k-hop Neighbors on the

ZSIR task.

6 CONCLUSION

In this work, we investigate the challenging problem of pre-training

product knowledge graph to infer universal item representations

for zero-shot item-based recommendation. We propose four pre-

training tasks that comprehensively characterize PKG semantics

and improve the adaptation ability of the model to new tasks, includ-

ing knowledge reconstruction, feature reconstruction, high-order

neighbors reconstruction, and the meta relation adaptation tasks.

We also discuss how to leverage the recommendation task to �ne-

tune the novel task-oriented adaptation layers such that semantics

in PKG can be adapted to new tasks. Though in this paper, we only

discuss how to �ne-tune the model for ZSIR task, our framework

is a general pre-training paradiagm for PKG and adaptable to any

other new tasks.
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