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Abstract

We study fair machine learning (ML) under predictive uncertainty to enable reliable
and trustworthy decision-making. The seminal work of “equalized coverage”
proposed an uncertainty-aware fairness notion. However, it does not guarantee
equal coverage rates across more fine-grained groups (e.g., low-income females)
conditioning on the true label and is biased in the assessment of uncertainty. To
tackle these limitations, we propose a new uncertainty-aware fairness – Equal
Opportunity of Coverage (EOC) – that aims to achieve two properties: (1) coverage
rates for different groups with similar outcomes are close, and (2) the coverage rate
for the entire population remains at a predetermined level. Further, the prediction
intervals should be narrow to be informative. We propose Binned Fair Quantile
Regression (BFQR), a distribution-free post-processing method to improve EOC
with reasonable width for any trained ML models. It first calibrates a hold-out set
to bound deviation from EOC, then leverages conformal prediction to maintain
EOC on a test set, meanwhile optimizing prediction interval width. Experimental
results demonstrate the effectiveness of our method in improving EOC. Our code
is publicly available at https://github.com/fangxin-wang/bfqr.

1 Introduction

Machine Learning (ML) can bring bias and discrimination even with good intentions [1, 2, 3, 4, 5, 6].
Fair ML has been developed to counteract unfairness, but the practical use of fair ML models is limited
by predictive uncertainty. Predictive uncertainty is the extent to which ML can confidently predict
the future. Over- or under-confidence can cause an ML model to be unaware of its own knowledge
gaps and make inaccurate predictions [7, 8, 9]. This can lead to unfairness in decision-making. To
address this, we can produce predicted intervals for each sample and incorporate uncertainty into
fairness to make decisions more reliable and trustworthy.

The idea of “equalized coverage” – an uncertainty-aware notion of demographic parity [10] – was
introduced in a study [11] as a way to ensure that every group receives the same level of prediction
certainty. It works by generating prediction intervals that cover the true label Y with a specified
probability (e.g., 90%), while also reflecting uncertainty through interval width. However, even with
this approach, there are still disparities in coverage rates across groups when conditioning on Y .
For example, we observe from the empirical results (Fig. 1) for Adult dataset [4] that low-income
women are less likely to be covered than men in the same income bracket, and high-income men
are less likely to be predicted to earn as much as high-income women. Consequently, the widths of
prediction intervals for different groups, as an indicator of the uncertainty, are not comparable under
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different coverage rates. These disparities can lead to unfair risk assessment for domains like bank
loans and taxation. Further, equalized coverage may sacrifice the efficiency of uncertainty estimation
for ensuring coverage rate as it produces wider prediction intervals for the group it intends to protect
(See Section 5).

Figure 1: Evaluating equalized coverage [11] on the Adult dataset. The protected attribute is
gender. The test data is partitioned into 10 equal-mass bins based on the ascending order of salaries.
Significant variations in the coverage rates can be observed among different groups within the head
and tail bins.

To address the limitations of equalized coverage, we propose a novel uncertainty-based fairness
notion Equal Opportunity of Coverage (EOC), extending from the standard fairness notion of equal
opportunity [12]. EOC aims to achieve two properties: (1) similar coverage rates for different groups
(e.g., female and male) with similar outcomes Y (e.g., salaries), (2) achieve a desired level of coverage
rate (e.g., 90%) for the entire population. Ideally, to provide informative predictions, intervals should
be as narrow as possible while still satisfying EOC.

We consider the regression task as it is a more general fair ML setting [13, 14] with minimal
assumptions about the underlying data distribution.

Achieving EOC confronts various challenges. Firstly, the majority of prior fair ML approaches
are developed for classification problems [12, 15], with only a few for regression [14, 16]. This
necessitates developing effective techniques to measure and improve EOC in a regression setting.
Secondly, ensuring EOC and marginal coverage rate for test data is difficult when true labels are
unknown. Finally, prior works [11, 17, 18, 19] have primarily focused on improving fairness and
satisfying coverage rate guarantees, but often neglect the width of prediction intervals during the
optimization process. This often results in generating wider intervals that limit the amount of decision-
making information available. However, optimizing interval width with fairness constraints is a
non-convex problem, and coverage rates are difficult to guarantee on noisy data, making it challenging
to consider all these factors simultaneously.

To address these challenges, we propose Binned Fair Quantile Regression (BFQR), a distribution-free
post-processing method that improves EOC while maintaining a desired marginal coverage rate and
a narrow prediction interval. It consists of three major steps: First, a hold-out (calibration) dataset
is calibrated to improve EOC based on true label Y within discretized bins; second, we leverage
conformal prediction [20, 21] to achieve EOC for test data from the calibration results in the first
step; and finally, an efficient and robust optimization technique is developed to minimize the mean
width of prediction intervals. Experiments on both synthetic and real-world data show that BFQR is
more effective in improving EOC fairness than state-of-the-art methods.

Related Work. In regression settings, equal opportunity [12] has been studied mostly by adversarial
training [22, 23]. For quantile regression, models with equal opportunity constraint [24, 25] are
proposed. However, all mentioned are in-processing methods and have trade-offs between accuracy
and fairness [26, 27]. There are several works on uncertainty-aware fairness in regression. The
pioneering work equalized coverage [11], is built on the validity of conditional coverage [28], and has
several follow-ups [17, 18]. [19] also proposes conformalized fair regression, imposing demographic
parity fairness on prediction interval bounds. However, neither of these methods considers the fine-
grained group (e.g., low-income females) fairness conditional on true labels as well as the increased
width of prediction intervals that provide little information.
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2 Preliminary

Conformal Prediction extends traditional ML by providing a set of prediction intervals around
the predicted value, which can be used to assess the level of confidence or uncertainty in the
prediction [20]. It is distribution-free and has a rigorous statistical guarantee. A commonly used
approach is split conformal prediction [20, 21]. To start, the training data is divided into two
sets: the training set Dtr and the calibration set Dc = {(X1, Y1), ..., (Xn, Yn)}. A prediction

model f̂ is trained on the training set Dtr. The key ingredient is the conformity score function
S(x, y) 2 R used to evaluate the model’s prediction performance. Given a desired error rate µ,

it then calculates the quantile Q̂1�α(S,Dc), denoting the (1 � µ)(1 + 1/|Dc|)-th quantile of the
empirical distribution of S on Dc. Finally, for a sample Xn+1 in the test set Dt, its prediction set

is CS(Xn+1) = {y : S(Xn+1, y) ÿ Q̂1�α(S,Dc)}. This set contains all possible values of y for
which the conformity score S(Xn+1, y) is less than or equal to the calculated quantile. Given a
mild assumption that the test and calibration set are exchangeable, the coverage rate in conformal
prediction is guaranteed with a probability of P (Yn+1 2 CS(Xn+1)) � 1� µ.

Equalized Coverage. Let V 2 V be the indicator of whether Y is covered in the prediction set Ĉ(X),

i.e., V = [Y 2 Ĉ(X)]. V = {0, 1}. Given a desired error rate µ 2 [0, 1], equalized coverage is
satisfied [11] when 8a 2 A, Pr{V |A = a} = Pr{V } � 1 � µ and Pr{V } � 1 � µ. Equalized
coverage guarantees equal conditional coverage, i.e., V is independent of A (denoted as V ?? A),
but fails to ensure equal coverage conditional on Y , especially for extreme values of Y (Fig. 1). This
is problematic as it can perpetuate discrimination against marginalized groups (e.g., females with low
income) in risk assessment.

3 Equal Opportunity of Coverage

Equal Opportunity of Coverage addresses the limitation of equalized coverage and is defined based
on the equal opportunity [12]:

Definition 3.1 (Equal Opportunity of Coverage (EOC)). EOC is satisfied when Pr{V |A = a, Y =
y} = Pr{V |Y = y}, i.e., V ?? A|Y and Pr{V } � 1� µ, 8y 2 Y and 8a 2 A.

The definition of EOC requires that (1) conditioned on the target variable Y , whether a sample is
covered in its prediction interval should be independent of its sensitive attribute A; (2) the marginal
coverage rate is above the desired level. Interestingly, the difference between equalized coverage and
EOC in their mathematical forms share similarities with the difference between demographic parity
and equalized odds. Note that our focus here is whether the true label is covered in the prediction

interval since even though the prediction interval contains false labels, V = I[Y 2 Ĉ(X)] = 1 is
still valid. Therefore, while EOC has a similar formation to equalized odds, it in fact describes equal
opportunity which focuses on Y = 1.

Preferably, both EOC and equalized coverage should be guaranteed. However, the mutual exclusivity
theorem below suggests that there is an inherent trade-off between EOC and equalized coverage:

Theorem 3.1 (Mutual Exclusivity). If A 6?? Y and V 6?? Y , then either equalized coverage or equal
opportunity of coverage holds but not both.

Proof. If V ?? A and V ?? A|Y , then either A?? Y or V ?? Y .

Unfairness often arises from the fact that features predictive of Y are also correlated to the protected
attribute due to e.g., historical bias in the data [29]. This indicates V ?? A. For the second condition,
though V 6?? Y is possible, V needs to depend on Y to ensure prediction intervals with reasonable
width. Predicting certain values (e.g., extreme values) of Y can be challenging due to representative
bias. If we enforce the predictor to provide high coverage for marginalized groups with these values,
it is highly likely to result in extremely wide intervals that offer little guidance in decision-making.

Meauring EOC. Given the underlying distribution p 2 ∆(VåAåY), where V , A, Y is the domain of
v, a, y respectively. We can determine how likely p satisfies EOC by measuring its distance to p0, the
closest distribution that perfectly achieves EOC. Formally, we denote PEOC as the property of EOC,
the set of all distributions in defined space that satisfy EOC, i.e., PEOC := {p 2 ∆(V åAå Y) :
(V,A, Y ) á p, V ?? A|Y } . p0 2 PEOC is the distribution with minimum total variation (TV)
distance to p, i.e., 8q 2 PEOC , dTV (p, p

0) ÿ dTV (p, q). The TV distance between p and p0 is
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formally defined as dTV (p, p
0) = 1

2

P

(v,a,y)2∆(VåAåY) |p(v, a, y) � p0(v, a, y)| = 1
2 kp� p0k1,

where k·k1 denotes the l1 norm of a distribution. Instead of the commonly-used Kolmogorov–Smirnov
(KS) distance [12, 30], TV distance is chosen as the measure due to the significant drawback of
the KS distance – its insensitivity to the deviations between p and p0 at the tails [31]. Whereas in
real-world data, we often confront such significant deviation (see e.g., Fig. 1).

It is challenging to directly measure the distance between p and p0 from observed data when the
target variable Y is continuous due to data sparsity issues for each value of Y . However, drawing
from previous works [32, 33], we can instead use an easy-to-compute statistic T as a surrogate
of dTV (p, p

0). T is the measure of independence, assessing the weighted summed violation of
independence within each discretized bin. The expectation of T , E[T ], has a fixed upper bound
when p satisfies EOC, and a lower bound that increases with the TV distance between p and p0. The
intuition here is that when Y is divided into sufficient bins and pY := Pr{V,A|Y }, the conditional
distribution of p on Y , is Lipschitz continuous, enforcing independence within each bin generates a
distribution that does not deviate far from PEOC in terms of TV distance.

Lemma 3.2. [33] Let d = dn2/5e be the number of bins Y is discretized into, with each bin having
an equal size of samples. Let T be a sum of independence measures within all discretized bins. Given
the Lipschitz continuity of pY in Assumption 2, L is the Lipschitz constant, we have:

1) When p satisfies EOC, E[T ] ÿ |D|L2

d2 ;

2) When dTV (p, p
0) = /, there exists a constant Z such that E[T ] � Z(/� 3L

d )
2.

Lemma 3.2 indicates that we can approximately evaluate EOC for p by measuring the independence
within each bin. If V ?? A almost holds in each bin, such that E[T ] is small enough, then it is highly
possible that V ?? A|Y , i.e., p satisfies EOC. Moreover, an increasing function of / is upper bounded
by E[T ]. As E[T ] increases, it is highly likely that p is further away from any p0 that satisfies EOC.
This lemma serves as a theoretical foundation for the proposed method below to improve EOC and
for adopting T as an evaluation metric in experiments.

In order to calculate E[T ] from data, we introduce unbiased estimators of T in Appendix 8.1.1.
According to the central limit theorem, we could estimate E[T ] through a sufficient number of
random samplings. Whereas for the sake of efficiency, we prefer to construct T with bounded
variance such that E[T ] could converge through limited repeated samplings.

4 Improving Equal Opportunity of Coverage

In this section, we introduce a post-processing approach where we have a trained ML model, a
calibration dataset, and a test dataset for which we aim to improve EOC. It consists of three steps.
First, we enforce the independence of A and V within each interval of Y (i.e., EOC) for the calibration
data, and then leverage conformal prediction to achieve EOC for test data. Lastly, we describe an
efficient and robust optimization approach that optimizes both EOC and widths of prediction intervals.

4.1 Improving EOC on calibration data

The first step aims to improve EOC on the calibration data where we have ground-truth labels. As the
target variable Y is continuous, the number of samples with certain values of Y can be extremely
small, thus calibrating for each distinct value of Y is almost impossible. Meanwhile, commonly used
methods designed for continuous variables such as adversarial learning [23, 22], which intend to
learn a near-optimal p, are computationally inefficient for post-processing approaches [34].

According to Lemma 3.2, E[T ] is an upper bound of an increasing function of dTV (p, p
0). Thus, this

indicates that if E[T ] decreases, the maximum distance between p and p0 is reduced, resulting in an
improvement in EOC. Informed by this idea, we first focus on enhancing EOC on the calibration data
Dc. For simplicity, we employ the framework introduced in [35] as the conformal prediction model,
though our post-processing method is applicable to any base model. Specifically, let q̂α denotes the
µ-th conditional quantile regression function, i.e., for i-th sample (Xi, Yi), q̂α(Xi) := inf{y 2 ∆Y :
Pr{Yi ÿ y|X = Xi} � µ}. Fix the lower and upper quantiles as µlo = µ/2 and µhi = 1� µ/2,
then q̂αlo

(Xi) and q̂αhi
(Xi) denote lower and upper quantile regression functions, respectively.

The base model is trained on the training data and used for inference on calibration and test data.
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Following the discretization idea in Lemma 3.2, we divide the continuous variable Y 2 [Ymin, Ymax]
in Dc into M bins with equal sample sizes, and the m-th bin is denoted as Bm = [Y �

m , Y +
m ).

To enhance EOC on Dc, we can minimize E[T ] by enforcing the independence of A and V within
all discretized bins. In particular, we fix the coverage rates within each bin as �m 2 [0, 1], therefore
V ?? A|Y 2 Bm. Note that, although the coverage rates are equal across groups within the same bin,
the quantile value at �m are computed separately for each group, as illustrated in Figure 2. We first

calculate the vanilla prediction intervals Ĉ(Xi) = [q̂αlo
(Xi), q̂αhi

(Xi)] obtained from the trained
model, and get the conformity score S(Xi, Yi) = max(q̂αlo

(Xi)�Yi, Yi� q̂αhi
(Xi)) for all samples

in Dc. Then for different combinations of bins and protect groups, we calculate the quantile value of

conformity scores at coverage rate �m, Q̂β(S,Dc(a,m)), for data in Dc(a,m) = {i|i 2 Dc, Ai =

a, Yi 2 Bm}. To simplify notations, we substitute Q̂β(S,Dc(a,m)) by Ga,m(�m). Since each bin
has an equal sample size and coverage rate �m, the average coverage rate

P

m �m/M is then set to
1� µ to keep a coverage rate of 1� µ on the calibration data.

(a) Bin 1 (b) Bin 2 (c) Bin 10

Figure 2: Empirical Cumulative Distribution Functions (ECDF) of conformity scores of men (blue)
and women (red) within bins 1,2 and 10 on the Adult dataset. The desired coverage rates within
different bins could be set at different levels but should be equal across groups within the same bin, as
indicated by the overlapping horizontal dashed lines. Due to the distinct disparity between the ECDF
of men and women, the same coverage rate is mapped to different quantile values on the x-axis.

Through the reconstruction of prediction intervals C(Xi) with Ga,m(�m), i.e., 8i 2 Dc(a,m),
C(Xi) = [q̂αlo

(Xi) � Ga,m(�m), q̂αhi
(Xi) + Ga,m(�m)], EOC is enhanced and the marginal

coverage rate is guaranteed on the calibration data.

4.2 For Coverage and Independence Guarantees

This subsection seeks to preserve EOC and marginal coverage rate for test data based on results
for calibration data through conformal prediction. The key is to find out, for a test sample with
An+1 = an+1, which bin Bm it belongs to. We can then calibrate the test sample with the quantile
Ga,m(�). However, direct calibration based on the predicted bin would not improve EOC since the
prediction result can be biased due to, e.g., skewed distributions for different groups [29].

To address this issue, we propose Binned Fair Quantile Regression (BFQR) (see Algorithm 1 in
Appendix 8.2.1). Our method could be treated as a variant of Mondrian conformal prediction [36,
37], where the confidence in each bin is evaluated independently. Suppose that a new data point
with feature Xi and protected attribute a falls into a certain bin Bm, we calibrate it with the
corresponding quantile value Ga,m(�m). Then, we obtain a sub-interval of prediction within bin Bm,
i.e., Cm(Xi) = Bm \ [q̂αlo

(Xi)�Ga,m(�m), q̂αhi
(Xi) +Ga,m(�m)]. After computing Cm(Xi),

a union of all subsets C(Xi) =
S

m Cm(Xi) is then the prediction interval of Xi. Under a mild
exchangeability assumption similar to [11], our algorithm provides both the marginal coverage
guarantee and fair coverage guarantees within each bin.

Assumption 1 (Exchangeability). All calibration data (Xi, Yi), i = 1, ..., n and a sample of test data
(Xn+1, Yn+1) are exchangeable conditioned on An+1 = a and Yn+1 2 Bm, and conformity scores
{S(Xi, Yi), i 2 Dc(a,m) [ {n+ 1}} are almost surely distinct.

Theorem 4.1 (Bin Coverage and Independence Guarantee). Under Assumption 1, �m ÿ Pr{Yn+1 2
C(Xn+1)|An+1 = a, Yn+1 2 Bm} ÿ �m + 1/(|Dc(a,m)|+ 1). The expectation of max coverage
gap inside m-th bin is upper bounded by maxa{1/(|Dc(a,m)|+ 1)}.

Theorem 4.2 (Marginal Coverage Guarantee). If we have
P

m �m/M = 1�µ, under Assumption 1,
then Pr{Yn+1 2 C(Xn+1)} � 1� µ.
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Here we sketch the proofs. Take (Xi, Ai, Yi) as new sample from test data, i 2 Dt. Sup-
pose Yi 2 Bm, then the p-value of the null hypothesis Yi 2 Bm is given by ûAi,m =
1+|j2Dc(Ai,m):S(Xj ,Yj)ÿS(Xi,Yi)|

1+|Dc(Ai,m)| , which is the proportion of conformity scores that are less than

the score of the new sample among all calibration data that have the same protected attribute and

fall into the same bin. The prediction interval Ĉm(Xi) in Bm is the intersection of Bm and the
prediction interval calibrated by Ga,m(�m), which includes the part of Bm in the prediction interval
where the p-value ûAi,m is greater than �m. This guarantees the bin coverage of Bm at level �m in
Theorem 4.1. The complete proofs can be found in Appendix 8.2.2.

4.3 Constrained Optimization

With improved EOC and coverage guarantee, we now need to identify �m for each bin so that
the mean width of prediction intervals for Dt is the smallest. As such, our goal is to solve a
constrained optimization problem, where the decision variables are the coverage rates in each bin �m,
m = 1, . . . ,M , and the objective function is the mean width of prediction intervals in test data:

min
X

m,i2|Dt|

|Cm(Xi)|/|Dt|

s.t.

ã
P

m �m/M = 1� µ,
�m 2 [0, 1], m = 1, . . . ,M.

(1)

An easy solution to the optimization problem Eq. 1 can be obtained by adjusting Ĉ(Xi), Xi 2 Dc

with split conformal prediction described in Section 2. However, it is not optimal since �m is

determined by Q̂1�α(S,Dc) calculated on all calibration data, but different bins have varying costs
of width associated with changes in their coverage rates. For instance, if a bin has a coverage rate of
0.98, increasing it to 0.99 would lead to a significant increase in its width, whereas increasing the
coverage rate of a bin from 0.50 to 0.51 would result in only a minor increase in width. Therefore,
we use the solution of split conformal prediction as the initialization and then optimize it.

Solving Eq. 1 is challenging in that it is computationally expensive or even infeasible to compute
the value and the gradient of the objective function. First, the computation of prediction interval
C(Xi) involves multiple intersection and union operations, which is a complex step function of
�m. Second, prediction interval C(Xi) is related to quantile value Ga,m, which is estimated from
data with noise. Directly using slopes of Ga,m as the gradient methods could result in over-fitting
to noise, as shown in Section 5.2.4. Third, We cannot assume the objective function’s convexity
or differentiability as the data may come from any possible distribution, and sorting is involved in
calculating Ga,m [38]. To address those obstacles, we propose an efficient and robust optimization
algorithm (detailed in Algorithm 2 in Appendix 8.3.2) that utilizes a relaxed upper bound and
optimizes through approximated subgradients [39].

The steps of our approach are described below. First, to accelerate computing, we use a dummy
continuous prediction interval Cd(Xi) = Convex(

S

m Cm(Xi)), i.e., the convex hull of all sub-
intervals, as an upper bound to substitute the original prediction interval C(Xi) in the objective

function. However, Cd(Xi) is still related to noisy Ga,m. To address this, in each iteration, we

compute the slope for each bin m in increasing and decreasing directions, denoted as t̂+m and t̂�m,
respectively. Since the objective function aims to decrease without changing the marginal coverage
rate, we take a greedy strategy by moving up a step ; in the bin with the steepest descendent direction

maxm{t̂�m}, meanwhile taking a step ; down the slowest ascendant direction minm{t̂+m}. We stop

until maxm{t̂+m} � minm{t̂�m}+ 2", where " is an appropriate estimation error bound related with
|Dc| [40, 41]. More details can be found in Appendix 8.3.1.

The proposed method can be viewed as a subgradient method, incorporating considerations for
quantile value estimation errors and maintaining a constant mean coverage rate. Combining the three
steps, we could get prediction intervals with improved EOC, guaranteed marginal coverage, and
decreased average width of prediction intervals.

5 Experiments

In this section, we conduct three sets of experiments on both synthetic and real-world data to evaluate
(1) the effectiveness of the proposed approach for achieving EOC (Section 5.2) ; (2) the impact of the
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key parameter M , the number of bins (Section 5.2.3); and (3) the effectiveness and efficiency of the
proposed optimization framework (Section 5.2.4).

5.1 Experimental Setup

We propose two metrics to evaluate the first property of EOC, i.e., whether coverage rates for different
groups with similar outcomes are close. With the M discretized bins in Section 4.1, the first metric
is the average of maximum difference in coverage rates between groups for all bins, similar to the
definition of conditional KS distance in [12]. In main experiments, M is set as 20. The second metric

T is introduced in Lemma 3.2, where T is calculated on d = d|Dt|
2/5e bins. Specifically, d 6= M for

fairness of evaluation, e.g., d = 100 for synthetic data. A smaller T implies a closer distance to the
ideal EOC distribution and, therefore a better EOC. Furthermore, for the second property of EOC,
we need to ensure the desired marginal coverage rates. The efficiency of uncertainty estimation is
measured by the width of the prediction interval. In addition, we check the conditional coverage rates
on groups to measure equalized coverage. All metrics related to coverage rates are multiplied by
100 in tables to exhibit significant differences. Every experiment is repeated 100 times on random
divisions of data with different seeds, with |Dtr| : |Dc| : |Dt| = 3 : 1 : 1.

We compare our method with the following state-of-the-art methods: 1) Split Conformalized Quantile
Regression (CQR) [35, 21] with only marginal coverage guarantee; 2) Group-conditional Confor-
malized Quantile Regression (GCQR) [11] with both marginal and conditional coverage guarantee;
3) MultiValid Predictor (MVP) [18] with both marginal and conditional coverage guarantee. Note
that the base model for this algorithm is trained on the union of training and calibration data as
MVP does not require any calibration data; 4) Conformal Fair Quantile Prediction (CFQR) [19],
which guarantees marginal coverage and demographic parity on both upper and lower bounds of the
predicted intervals; 5) Label-conditional Conformalized Quantile Regression (LCQR) [42], which
is designed for classification problems to provide marginal coverage and equalized coverage for
each class. We adapt it to regression tasks. The base model for all compared conformal prediction
methods is set as the QR model at the level of 0.05 and 0.95, and the desired marginal coverage is
set to 0.9. Considering that for some real-world applications like scoring [43], disjoint prediction
intervals make little sense, we evaluate prediction intervals C(X) along with their dummy prediction

intervals Cd(X) in Section 4.3, represented as BFQR and BFQR*. In the comparison tables, the best
results and the second-best results are highlighted in bold and underlined, and undercovered groups
who fail to reject the null hypothesis at 0.05 level in one-tailed t-tests are emphasized in Italian.

5.2 Results

5.2.1 Synthetic data

We generate ten independent and exponentially distributed features with the scale of 1, X =
(X1, . . . , X10); protected attribute A is randomly selected from {0, 1, 2} with a probability of 0.1, 0.2,
0.7, respectively. The labels Y for A = 1 follow a random distribution, thus impossible to predict;
labels Y for the other two groups are the linear summations of X and A, plus noises that increase
with Y . A size of 100,000 samples are generated from this distribution and the data generating
process is detailed in Appendix 8.4.1.

We have the following observations from the results in Table 1: 1) All methods have marginal
coverage guarantee, which is attributed to statistical guarantee from conformal prediction. 2) Our
proposed methods, BFQR with disjoint intervals and BFQR* with joint intervals achieve the best
trade-off between EOC and equalized coverage. In particular, our method achieves the second-best
EOC (i.e., Mean Max Coverage Gap and T ), meanwhile, the conditional coverage rates are almost
equal across different groups. While CFQR has significantly better performance w.r.t. EOC, the
conditional coverage for A = 1 (the most challenging case) is extremely low compared to A = 0
and A = 2. This result aligns with the mutual exclusivity between EOC and equalized coverage
formulated in Theorem 3.1. 3) Among all methods, the average interval width of our method is the
smallest, validating the effectiveness of the optimization process in Section 4.3. One of the main
advantages of BFQR and BFQR* is optimizing through bin coverages. In this process, bins that
sacrifice interval width for an over-coverage rate are adjusted to a lower but satisfactory coverage
rate. Therefore, we are able to guarantee a smaller average interval width while improving the EOC.
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Table 1: Experiments results for synthetic data.

Method
EOC

Width #
Equalized Coverage

Mean Max
Coverage Gap #

T #
Marginal
Coverage

Coverage
(A = 0)

Coverage
(A = 1)

Coverage
(A = 2)

CQR 20.11±1.05 306.33±18.78 89.99±0.32 16.02±0.04 82.84±0.90 90.03±0.76 91.00±0.29
GCQR 14.48±1.36 386.81±35.60 90.00±0.33 16.21±0.06 90.08±0.99 89.92±0.64 90.01±0.37
MVP 9.03±1.43 71.27±6.70 89.98±0.32 16.31±0.13 89.35±0.94 90.11±0.54 89.96±0.24
CFQR 0.19±0.09 0.09±0.24 89.93±0.20 17.00±0.06 93.89±0.53 71.38±0.87 94.74±0.24
LCQR 6.38±0.26 18.64±6.71 90.41±0.29 17.32±0.09 91.37±0.84 90.55±0.68 90.23±0.37
BFQR* 3.15±0.58 2.78±3.79 91.74±1.28 16.24±0.21 93.81±1.03 91.19±3.13 91.60±0.90
BFQR 3.82±0.45 3.65±4.75 90.03±0.32 15.96±0.13 91.99±1.16 89.08±3.61 90.03±1.04

5.2.2 Real-world Data

We further evaluate our method on two benchmark datasets: Adult [44, 45] where gender is the
protected attribute and the outcome is salary; MEPS (Medical Expenditure Panel Survey) data [46, 11]
where race is the protected attribute and the outcome is the health care system utilization score.

We observe similar results: For Adult data (shown in Table 2), all methods achieve marginal coverage.
Our methods achieve the best EOC and smallest mean width of prediction interval while maintaining
competitive conditional coverage rates. CFQR with the best EOC on synthetic data does not have
consistently good performance, and the mean interval width is greatly larger compared with other
methods. The increased width of LCQR implies that as some bins are difficult to predict, enforcing all
bins to reach the same high coverage rates generates prediction results with little useful information.
For MEPS data (shown in Table 3), the results are similar to those in synthetic data: our method is the
second-best w.r.t. EOC, with marginal coverage rates guaranteed and a significantly smaller average
prediction width.

Table 2: Experiments results for Adult data.

Method
EOC

Width #
Equalized Coverage

Mean Max
Coverage Gap #

T #
Marginal
Coverage

Coverage
(Men)

Coverage
(Women)

CQR 5.01±0.40 67.31±10.56 89.98±0.29 93,951.11±409.25 90.01±0.42 89.94±0.37
GCQR 4.97±0.50 67.30±10.63 89.99±0.29 93,994.10±435.35 89.98±0.41 89.99±0.46
MVP 5.50±0.34 211.01±19.44 90.05±0.28 98,229.81±1,723.82 90.07±0.13 90.08±0.27
CFQR 3.57±0.53 18.17±6.02 90.08±0.14 147,253.27±499.47 90.02±0.42 90.08±0.40
LCQR 3.91±0.45 5.03±4.42 90.50±0.30 160,107.96±8929.07 90.46±0.37 90.54±0.46
BFQR* 2.90±0.37 3.60±3.29 91.08±0.46 93,689.33±976.76 91.89±0.74 90.11±0.43
BFQR 3.05±0.35 3.55±3.14 90.32±0.28 91,969.66±996.63 90.97±0.42 89.56±0.47

Table 3: Experiments results for MEPS data.

Method
EOC

Width #
Equalized Coverage

Mean Max
Coverage Gap #

T #
Marginal
Coverage

Coverage
(White)

Coverage
(Non-white)

CQR 6.47±1.22 7.62±4.28 89.85±0.77 32.06±1.85 89.81±0.99 89.90±0.88
GCQR 6.54±1.79 9.50±8.35 89.91±0.74 32.08±1.90 89.91±0.95 89.93±1.11
MVP 8.27±2.37 8.78±3.47 89.95±0.84 41.08±6.87 90.97±0.71 90.75±0.97
CFQR 0.94±0.39 0.28±0.55 90.88±0.51 36.55±1.85 87.93±1.06 93.18±0.78
LCQR 5.29±0.97 3.29±2.52 91.97±0.69 160.65±30.71 91.59±0.94 92.57±1.02
BFQR* 3.04±0.64 1.20±1.70 92.33±0.75 23.95±2.53 93.83±0.84 89.94±1.16
BFQR 3.99±0.76 2.27±2.08 91.05±0.80 23.11±2.41 92.66±0.85 88.46±1.34

5.2.3 The Impact of M

The number of bins, M , is the only primary parameter in our method. Using synthetic data that
ideally satisfies Assumption 1, we evaluate how M influences EOC. In our experiment, M varies
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among {1, 5, 10, 20, 50}. When bin size is 1, our method degenerates to GCQR. The results are
shown in Fig. 3, where the best EOC for BFQR and BFQR* is achieved with 10 bins. When the
number of bins is small, the sample size of Da,m increases. According to Theorem 4.1, the upper
bound of the expectation of max group coverage rate gap is decreased. However, this only suggests a
decrease in the expectation, not for every Y within bins. When the quantile value is calculated on
large samples, it fails to characterize the conformity scores of individuals. BFQR* with continuous
intervals exhibits better EOC compared to BFQR as its coverage gaps are primarily influenced by
the quantile values of the first and last bins, involving less randomness. As M greatly affects the
performance of our methods, it should be cautiously chosen for various problem settings.

5.2.4 Comparisons of Optimization Methods

Figure 3: Impact of M on EOC.

To demonstrate the efficiency of the proposed optimiza-
tion method, we compare it with three recent optimiza-
tion methods: 1) BFGS-SQP [47, 48], a constrained non-
smooth optimization method, 2) Augmented Lagrange
(AL) [49], another method to solve constrained non-
smooth optimization problems, and 3) Bayesian optimiza-
tion [50, 51], a global optimization method for solving
problems with noisy objective functions. We evaluate
these methods based on their performance in terms of EOC,
width, and running times. The results on synthetic data
are in Table 4. The Bayesian method has extremely slow
computational speed and cannot guarantee marginal cov-
erage. In comparison to BFGS-SQP and AL, our method
achieves similar EOC performance but with slightly lower prediction interval widths, which confirms
the effectiveness of our subgradient approximation. Additionally, our method is more efficient as it
significantly reduces running times.

Table 4: Optimization results on synthetic data.

Optimzation
Method

EOC
Width #

Running Time
(seconds)#

Mean Max
Coverage Gap #

T #
Marginal
Coverage

BFQS-SQP 4.86±0.75 3.89±3.71 90.08±0.16 16.15±0.06 78.11±41.98
AL 4.81±0.73 3.83±3.67 90.18±0.18 16.16±0.06 77.57±1.50

Bayesian 8.41±1.96 4.47±5.63 88.18±10.08 18.80±2.51 805.81±152.05
BFQR 3.82±0.45 3.65±4.75 90.03±0.32 15.96±0.13 33.62±14.78

6 Discussion

EOC or equalized coverage? The results in Section 5.2 clearly demonstrate that perfect EOC
and equalized coverage are mutually exclusive, empirically verifying Theorem 3.1. In real-world
applications, it becomes crucial to trade off between EOC and equalized coverage. We recommend
placing a higher emphasis on EOC when certain labels are considered more favorable, e.g., when
individuals labeled as low-salary are the most important subpopulation for decision-making. Under
EOC, each group with the same label is treated equally, not only in terms of equal coverage rates
(i.e., equal probability of being included in the prediction result) but also in terms of comparable
prediction interval widths as a measure of uncertainty. For example, under equalized coverage, the
coverage rate for men is around 0.65 but 0.55 for women in the first bin, low-income population. We
cannot conclude that the model is more confident in the prediction results for low-income men solely
based on the larger prediction intervals of men: this discrepancy might arise from the over-coverage
of men. In this sense, our designed metric EOC, not only contributes to evaluating and enhancing
fairness under uncertainty but also serves for fair uncertainty quantification, discovering model bias
in uncertainty quantification. A possible application of EOC is for guiding sample selection in active
learning [52, 53], allowing the applied model to label the most uncertain samples in a fair manner.

Discretizition into equal-mass bins is a favorable strategy to avoid excessively small sizes of D(a,m).
While this guarantees a tighter upper bound for the expectation of the maximum coverage gap within
bins according to Theorem 4.1, our method can be extended beyond equal-mass bins. When the
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number of samples in each bin is unequal, we adjust the constraints in Eq. 1 by incorporating a

weighted sum of �m, i.e.,
P

m∈[M ]
βm

M |D(m)| = 1� µ. Consequently, in Algorithm 2, the gradient in

the direction of each bin also should be weighted by |D(m)|. These adaptations allow our method
to maintain its effectiveness when the sample sizes in each class are uneven, e.g., in imbalanced
classification problems. Moreover, our method is able to address certain coverage rate concerns within
particular bins, such as low-income females, by assigning specific coverage rates to the corresponding
bins while allowing flexibility in adjusting the coverage rates of other bins.

Why Better EOC? Our methods have been empirically shown to have better EOC than methods
designed for equalized coverage, and here we elucidate the reasons behind this improvement. Given
the underlying distribution of the µ-quantile conformity scores in group a conditioned on y as
Qa,y(µ). For every y and a, calibrating with Qa,y(µ) would generate perfect EOC. However, due to
the limitations of available calibration samples, the estimation of Qa,y(µ) is subject to bias. Since the
base model cannot perfectly capture the underlying distribution, the conformity score, as a measure
of disagreement, must correlate with Y . While equalized coverage methods generally ignore this
correlation, our method tries to handle it. In Section 4.1, we used Ga,m(�m) to estimate Qa,y(�m)
for all y 2 Bm, which is the �m-quantile value of conformity scores whose y belong to bin Bm.
The localized estimation within discretized bins is upper-bounded by the largest �m-quantile value
of score conditioned on any y and lower-bounded by the smallest one, regardless of the unknown
distribution of Y . Consequently, we could better characterize the conditional distribution within each
bin. This enhancement is especially evident when the Lipschitiz constant L in Lemma 3.2 is small,
such that the deviation from perfect EOC to the distribution generated by bins is negligible.

Possible Extension. For future work, we aim to further improve our method by seeking a tighter
bound to achieve optimal EOC. Possible direction may follow [14, 54], by discretizing Y into finite
values and bounding deviation in EOC of the discretized predictor. Additionally, our conformalized
method leverages statistical properties to ensure coverage rates in each bin and optimize prediction
interval widths, making it particularly appropriate for large datasets. With a better discretization
strategy that better utilizes the calibration samples, e.g., ensemble sampling, our method may maintain
its effectiveness on a small calibration set.

Potential Exploration beyond the Current Scope. The context of this paper is situated in post-
processing fairness. Though post-processing methods typically underperform in-processing methods,
in-processing methods are not applicable in many situations, e.g., the prediction model is a pre-trained
black-box regression model, or a flexible and computationally efficient method is required. Whereas,
adapting the proposed method to an in-processing setting to obtain better EOC is a possible extension.
It would also be interesting to extend our method to the context that sensitive attributes are not
available in the test data, possibly through missing data augmentation for the calibration set [55] or
prediction-powered inference [56].

7 Conclusion

In this paper, we introduce a new uncertainty-aware fairness notion, equal opportunity of coverage
(EOC), which addresses the limitations of the seminal work of equalized coverage [11]. EOC has
several desired properties: It guarantees equal coverage rates for groups with the same labels and
marginal coverage rate at a pre-determined level. It also ensures a small prediction interval. The
theoretical analyses and empirical findings indicate that EOC and equalized coverage are generally
incompatible. We suggest using EOC as an alternative to equalized coverage when equal coverage
rates and assessment of uncertainty are needed for more fine-grained demographic groups. To
improve EOC, we propose a distribution-free post-processing method, BFQR, based on discretization.
Experimental results on synthetic and real-world datasets show that BFQR achieves competitive EOC
and ensures guaranteed marginal coverage rates with small mean prediction interval widths compared
to the state-of-the-art. Moreover, BFQR is adaptable to various settings, such as classification and
other decision-making tasks.
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