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Abstract. Contemporary attention-based sequential recommendations
often encounter the oversmoothing problem, which generates indistin-
guishable representations. Although contrastive learning addresses this
problem to a degree by actively pushing items apart, we still identify a
new ranking plateau issue. This issue manifests as the ranking scores of
top retrieved items being too similar, making it challenging for the model
to distinguish the most preferred items from such candidates. This leads
to a decline in performance, particularly in top-1 metrics. In response
to these issues, we present a conditional denoising diffusion model that
includes a stepwise diffuser, a sequence encoder, and a cross-attentive
conditional denoising decoder. This approach streamlines the optimiza-
tion and generation process by dividing it into simpler, more tractable
sub-steps in a conditional autoregressive manner. Furthermore, we intro-
duce a novel optimization scheme that incorporates both cross-divergence
loss and contrastive loss. This new training scheme enables the model
to generate high-quality sequence/item representations while prevent-
ing representation collapse. We conduct comprehensive experiments on
four benchmark datasets, and the superior performance achieved by our
model attests to its efficacy. We open-source our code at https://github.
com/YuWang-1024/CDDRec.

Keywords: Sequential Recommendation · Diffusion Models ·
Generative Models

1 Introduction

Sequential Recommendation (SR) [10,13,24–26,28] has been intensively inves-
tigated because of its scalability and efficacy in capturing user temporal trends
from histories. Recent research in SR focuses on attention-based methods for
their promising results. Early attempts e.g., SASRec [10] and Bert4Rec [22]
utilize the attention-based transformer structure. However, the attention mech-
anism tends to lead to a condition known as oversmoothing [5,6], which results
in generating indistinguishable representations. Current methods predominantly
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address this complication from the item representation perspective, utilizing con-
trastive learning. These methods effectively counter the collapse of item represen-
tation learning [17,26,27,29]. The DuoRec model [17] proposes to use sequences
with the same predicted item as augmented views and implements the noise con-
trastive estimation objective for regularization. ContrastVAE [26] incorporates
variational augmentation and the contrastELBO objective into the attention-
based variational autoencoder for SR.

Despite the success of the above methods, we still observe a phenomenon we
term the ranking plateau, characterized by indistinguishable ranking scores, even
when the quality of item representation is commendable. Specifically, as shown
in Sect. 4.1, the ranking scores of the top-40 retrieved items are too similar to
allow the recommender to differentiate the best candidates among them. These
oversmoothed ranking scores result in performance degradation, especially in
top-1 metrics. For instance, the score assigned by DuoRec to the second-best
item is only 1% lower than that of the top item. (We will discuss such phe-
nomenon in detail in Sect. 4.1.) This suggests that the under-performance might
not be solely due to item representation degeneration, but also to the compli-
cated reasons beyond the user-item engagement. During our experiments, we
observe significant shifts in some user intents from their historical records. For
example, if a user regularly purchases collection kits but suddenly transitions to
buying printing-related items, the representation of such sequences can be easily
skewed by the user’s past behaviors. This results in continuously recommend-
ing collection-related items, as the sequence representations are essentially a
weighted sum of past item representations, regardless of the quality of candidate
item representations.

Intuitively, if such dynamic intent transitions cannot be captured during the
one-step dot-product, one might question whether it would be feasible to divide
the transition process into easier and more tractable multi-steps such that the
model could potentially correlate the intermediate transition steps and produce
high-fidelity results progressively. For these desiderata, we turn to diffusion mod-
els [3,8,18] for solutions, as they break the higher-order complicated transitions
into feasible sub-steps by removing certain noise stepwisely. Generally, the dif-
fuser of diffusion models gradually adds a certain scale of Gaussian Noise to
the data in the forward diffusion process, and the denoiser reconstructs such
intermediate states by learning to remove the added noise in the reverse denois-
ing process. In this way, the denoiser is able to learn fine-grained intermediate
transitions from these multi-step generations.

However, it is rather challenging to incorporate such a learning paradigm
into SR. One primary reason is that traditional diffusion models are designed
for continuous spaces like image generation, where input features are fixed and
contain substantial information. They are optimized by reconstructing original

images. In contrast, SR involves item input information that is randomly ini-
tialized based on item IDs and dynamically optimized. Original reconstruction
objective in discrete spaces could be adversely affected by representation collapse
that all embeddings collapse to a trivial solution [3,4,11]. Furthermore, the SR
is a retrieval task, which aims to generate user preferences reflecting the next
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item engagement. Merely reconstructing original item representations within a
sequence (Gaussian Noise vector from the beginning) does not contribute to
ranking performance but exacerbates the collapse issues of diffusion models.

To address these challenges, we propose Conditional Denoising Diffusion
Models for Sequential Recommendation (CDDRec), including a stepwise dif-
fuser, sequence encoder, cross-attentive conditional denoising decoder, and cross-
divergence objective. The stepwise diffuser introduces noise into target item rep-
resentations to construct corrupted targets, simulating the small stepwise noise
in the sequences. The sequence encoder learns sequence representations from
historical interactions, used as the conditioned information for a stepwise gen-
eration of next-engagement preference. The conditional denoising decoder aims
to generate high-quality next-engagement representation by removing the noise
of historical sequence representations step-by-step. To enhance the denoising
decoder’s awareness of each denoising step, we adopt the cross-attention mech-
anism with the denoising step as input. Additionally, We introduce a cross-
divergence loss, enabling the model to construct high-fidelity sequence/item
representations while being attuned to next-engagement preferences and pre-
venting learning collapse. Furthermore, we leverage the In-view and Cross-view
contrastive optimization to prevent item representation degeneration. Our con-
tribution can be summarized as follows:

– To the best of our knowledge, we are the first to propose the novel condi-
tional denoising diffusion models for sequential recommendation CDDRec in
the conditional autoregressive generation paradigm.

– We first observe the ranking plateau issue and propose the multi-step next-
engagement generation to address this issue.

– We introduce cross-divergence to equip the CDDRec with ranking capability.
– We conduct comprehensive experiments on the SR dataset, the substantial

improvement across all metrics in four datasets indicates the effectiveness
of CDDRec. We also conduct ablation studies to examine each key design’s
effectiveness further.

2 Related Work

Denoising Diffusion Probabilistic Models (DDPMs) have shown great success
in continuous spaces, such as image generation [8,9,15,18]. Recently, several
attempts have been made to apply DDPMs to discrete tasks, such as text gen-
eration. SUNDAE [21] is one of pioneers that use DDPMs for text generation.
They introduce a step-unrolled denoising autoencoder that reconstructs cor-
rupted sequences in a non-autoregressive manner. Diffusion-LM [11] gradually
reconstructs word vectors from Gaussian noise guided by attribute classifiers and
introduces a rounding process that maps continuous word embeddings to dis-
crete words. DiffSeq [4] introduces a forward process with partial noise that uses
the question of a dialog as the uncorrupted part and the answer of the dialog as
the corrupted part and adds partial noise to the answer part during the forward
pass. The backward pass reconstructs the answer in a non-autoregressive way.
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There are also several concurrent attempts to introduce DDPMs for rec-
ommender systems. [23] introduces noise and reconstructs information for user
interactions, and introduces L-DiffRec resembling latent diffusion, and T-DiffRec
to encode temporal information to reweight user interactions respectively. [12]
adds Gaussian noise on target items and reconstructs them through an approx-
imator, which inputs the corrupted target item representations and histori-
cal interactions. [2] introduces the partial noise only on the target items that
resemble DiffSeq and reconstructs them in a non-autoregressive way. Unlike the
above methods, we introduce conditional generation in an autoregressive manner,
which equips the model with the ability to generate high-fidelity sequence/item
representations without too many generation steps.

3 Methodology

In this section, we present the methodology of CDDRec and illustrate it in
Fig. 1. CDDRec consists of 1) stepwise diffuser that gradually corrupts target
item embeddings via adding Gaussian noise; 2) sequence encoder that learns
historical sequence representation, serving as conditional information for step-
wise preference generation; 3) cross-attentive conditional denoising decoder that
learns the stepwise user preference transition from conditional historical sequence
representation to next target preference via stepwise removing noise from condi-
tional sequence embeddings; 4) cross-divergence objective that enables the model
with ranking capability while preventing model from collapsing.

Fig. 1. Framework of CDDRec. Orange dots from top to bottom indicate the diffusion
phase that gradually adds Gaussian noise to target item embeddings xn

t , while blue
dots from the bottom up illustrate the reverse denoising phase that stepwisely removes
noise from estimated user preference x̂n

t at step t. (Color figure online)

3.1 Stepwise Diffuser

As shown in Fig. 1 with the orange dot box from top to bottom, the stepwise
diffuser is designed to incrementally introduce Gaussian noise to target item
embeddings. This process creates the corrupted target for each step, thereby
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facilitating the denoise learning of the denoiser. Given the predefined noise scale
added at diffusion step t: βt and the corresponding diffusion transition distri-
bution q(xn

t
|xn
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t
;
√
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n
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= en is target item representation as the initialization of the diffusion
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3.2 Sequence Encoder

Previous methods predominantly concentrate on denoising from a randomly ini-
tialized Gaussian noise and generating sentences non-autoregressively [3,4,11].
However, predicting the next item based on historical interaction records neces-
sitates a conditional autoregressive generation in the SR. Consequently, in this
paper, we utilize SASRec as our sequence encoder to learn hidden representations
of historical interactions es. These are used as the condition of the subsequent
conditional denoising decoder for the multi-step preference generation.

3.3 Cross-Attentive Conditional Denoising Decoder

Given the distribution of diffusion step q(xn
t
|xn
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), q(xn
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0
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as described in Sect. 3.1, we can compute the analytical form of posterior dis-
tribution using Bayes’ rule: q(xn
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|xn

t
,xn

0
), which is the reverse denoising dis-

tribution, with β̂t = 1−ᾱt−1

1−ᾱt

βt as the closed form of variance. We approximate

such reverse denoising step with distribution pθ(x̂
n
t−1

|x̂n
t
) ∼ N (μθ(x̂

n
t
, t), β̂tI),

parameterized by learnable parameter θ that learns the denoised representation
x̂n
t−1

at step t − 1 conditional on the previous denoising step x̂n
t
. For SR tasks,

the objective is to predict subsequent items based on historical interactions in
an autoregressive manner. Therefore, rather than generating sequence represen-
tations from uncontrollable randomly initialized Gaussian noise, we integrate
the denoiser within the conditional generation framework with a conditional
denoising decoder. Consequently, as shown in Fig. 1 blue dot box from bottom
up, we condition the reverse denoising phase on the preceding sequence repre-
sentations, expressed as pθ(x̂t|es, t) ∼ N (μθ(es, t), β̂t+1I), where es denotes the
encoded historical interactions using the sequence encoder. Given such proba-
bilistic modeling, we will discuss the corresponding model design to learn the
denoised mean μθ(es, t).

In contrast to earlier methods [19] that only maintain the final position’s
representation as the sequence representation, we strive to preserve as much
information as possible due to the sparse nature of SR. Hence, we select a cross-
attention architecture as the denoising decoder instantiation, which is capable



Conditional Denoising Diffusion for Sequential Recommendation 161

of taking the entire sequence representation and corresponding step indicator
as input. Formally, given a sequence embedding e1:n

s
and the corresponding

denoising step t, the conditional denoising decoder is designed to predict the
denoised mean of corrupted target item embedding at the corresponding diffusion
step. Initially, we acquire a learnable embedding et for the indicator t from a step
lookup embedding table and expand it to the dimension of R(n−1)×d, ensuring
that every previously hidden embedding is conscious of the same denoising step.
We define the cross-attention (CA) as follows:

μ1:n
θ (e1:n

s
, t) = CA(e1:n

s
, et) = Softmax

(

(etW
Q)(e1:n

s WK)�

√
d

)

(e1:n
s

WV ).

(3)
Given the predicted denoised mean and the precomputed posterior variance, we
can sample the generated user preference at step t:

x̂n

t
= μn

θ + β̂t+1ε, ε ∼ N (0, I). (4)

3.4 Optimization

Traditional DDPM is designed to reconstruct an image by removing the Gaus-
sian noise added to it. Consequently, the objective is to learn the denoising
function pθ(xt−1|xt) for the corresponding step, minimizing the KL divergence
DKL[q(xt−1|xt, x0)||pθ(xt−1|xt)] at each step. Such an objective maximizes the
similarity between the predicted and corrupted input data. However, since all
item embeddings are randomly initialized and optimized dynamically in SR, the
model may learn trivial item representations, where every pair of item embed-
dings is highly similar, resulting in high-ranking scores for all items. Furthermore,
the SR is a retrieval task requiring the model to effectively rank items, giving
higher scores to target items over non-interest items. Merely reconstructing the
input sequence does not contribute to the next-engagement prediction.

To circumvent these issues, we require the KL divergence between the pre-
dicted and target item embeddings to be smaller than that between the predicted
and negative item embeddings. Consequently, we introduce the cross-divergence
loss using KL-divergence as a dissimilarity metric at each denoising step t:

Lt
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1

N

∑

n

log(Ã(−DKL[q(xn

t |xn
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n
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t
|es, t)]))],

(5)

where x′n
0

is the embedding of a randomly sampled negative item that has never
appeared in the user history. We sample both corrupted target item embeddings
xn
t and generated user preferences x̂n

t according to Eq. 2 and Eq. 4.

Contrastive Loss. To endow the model with robustness against the noisy inter-
actions and prevent item representation from collapsing, we incorporate a simple
yet effective in-view and cross-view contrastive learning using InfoNCE loss [16].
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The in-view InfoNCE minimizes the distance between user preferences and
target item embedding while enlarging inter-users/inter-item distance:

Lt
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1
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where x̂i
t

is the output of conditional denoising decoder, xi
t

is the output of
stepwise diffuser at diffusion step t of position i in the sequence.

The cross-view InfoNCE ensures the sequence encoder generates reasonable
sequence representation. It achieves this by minimizing the distance between the
same input sequence with a slight noise interpolation while pushing the in-batch
sequence representation away from each other:

Lt
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where x̃i
t is the output of conditional denoising decoder at diffusion step t, posi-

tion i of augmented view.

Step-Adaptive Objective. Since the noise added to target item embeddings
increases as the diffusion phase progresses, more information is lost at higher
diffusion steps. Intuitively, to avoid focusing too much on reconstructing non-
informative noise, we rescale the loss term of each diffusion step by dividing it
by the corresponding step indicator. Furthermore, unlike previous methods that
randomly sample step indicators for optimization, we explicitly calculate the loss
term for every diffusion step. The final optimization objective is formalized as:

L =

T
∑

t=0

1

t + 1
(Lt

cd + λ(Lt
in + Lt

cross)). (8)

4 Experiments

Dataset. In this paper, we conduct experiments on four Amazon datasets [14]:
Office, Beauty, Tools and Home, and Toys and Games. In line with common
practice [10,22,29], for each user, we sort the interactions chronologically. We use
the penultimate, last records as validation and test datasets, while all preceding
records as train datasets. We report the statistics of the datasets in Table 1.
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Table 1. Statistics of datasets.

Dataset #Users #Items #Interactions #Ints/item Avg. seq. len.

Beauty 22,363 12,101 198,502 16.40 8.3

Toys 19,412 11,924 167,597 14.06 8.6

Tools 16,638 10,217 134,476 13.16 8.1

Office 4,905 2,420 53,258 22.00 10.8

Baseline Models. We compare CDDRec with these three related types of state-of-
the-art (SOTA) methods: Generative Models: SAVE [20], ACVAE [28], Con-

trastVAE [26]. SVAE first introduces VAE into the SR. ACVAE introduces
the concept of adversarial variational Bayes and mutual information maximiza-
tion to optimize the VAE. ContrastVAE introduces the objective named Con-
trastELBO to maximize the mutual information among latent variables. Con-
trastive Models: CL4Rec [27], DuoRec [17], CBiT [1]. CL4Rec introduces the
data augmentation strategies: mask, shuffle, and crop, and optimizes the model
via InfoNCE [16] loss. DuoRec improves the performance via semantic augmenta-
tion considering sequences with the same target items as the positive views. CBiT
improves Bert4Rec by introducing the additional InfoNCE objective. Encoder
Models: GRU4Rec [7], SASRec [10], FMLP [30]. GRU4Rec first attempts the
RNN for the SR, while SASRec first employs a transformer-based encoder for SR.
FMLP replaces the multi-head self-attention layer of SASRec with the denoising
Fourier layer.

Metrics. To evaluate the performance of our model, we employ ranking-related
evaluation metrics, including Recall@N, NDCG@N, and MRR, following com-
mon practice [10,26,27].

4.1 Plateau of Ranking Prediction

As previously mentioned, traditional generative models often encounter rank-

ing plateau, where the ranking scores of top-40 candidate items are too simi-
lar. This smoothness makes it difficult for models to distinguish the best from
these candidates, resulting in degraded top-1 metrics. To study such a phe-
nomenon, we conduct experiments comparing the average absolute percentage
change (Avg.Change) of the top-40 ranking scores. The metric is defined as
follows:

Avg.Change =
N

∑

i=1

1

N − 1

|ranki+1 − ranki|
ranki

× 100, (9)

where rank is the ranking score calculated using dot-product between predicted
and candidate item embeddings.

We utilize this metric to evaluate the descending speed of the ranking scores,
which can reflect the smoothness of the ranking prediction. We report the
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results in Fig. 2. In general, baseline models tend to provide more similar rank-
ing scores among the top-40 candidates. Interestingly, we observe a positive
correlation between Recall@1 and Avg.Change when comparing Avg.Change
on ‘ALL’ sequences. Specifically, the Recall@1 is 0.012, 0.0194, 0.0224, and
0.0271 for DuoRec, ContrastVAE, FMLP, and CDDRec, and the Avg.Change
is 0.99%, 1.0928%, 1.2269%, and 5.7765% respectively. The Avg.Change of
CDDRec decreases with increasing sequence length, indicating that the model
is less certain for longer sequences. We also evaluate the Avg.Change w.r.t. the
denoising stage (inverse process w.r.t diffusion step t, i.e., denoising stage is T−t).
One observation is that the Avg.Change increases with the denoising stage. At
the beginning of the denoising stage, the model shows uncertainty in ranking
predictions, but it gradually gains clarity as the denoising phase progressively
removes noise from the preference predictions. This also reveals the relationship
between the noise level in the generated user preference and the ranking score
smoothness. Specifically, a noisier preference correlates with a smoother rank-
ing score, which supports our intuition of adding a denoiser after the sequence
encoder.

4.2 Overall Experiments

In this paper, we conduct a comprehensive comparison between CDDRec and
SOTA models, reporting the numerical results in Table 2. Our model CDDRec

consistently outperforms others on these four datasets, demonstrating the effec-
tiveness of CDDRec. Specifically, in terms of Recall@1, CDDRec shows substan-
tial improvements with gains of 20.98%, 16.67%, 17.59%, and 18.42% compared
to the second-best models on Office, Beauty, Tools, and Toys, respectively. We
attribute these improvements to the high-quality next-item-engagement repre-
sentations generated by CDDRec. The sequence representation generated from
the multi-step denoising process can reveal the user preference from a fine-
grained level, thus, being more distinguishable among top-rated candidate items.
This approach avoids the ranking plateau phenomenon, and obtaining high per-
formance w.r.t top-1 metrics and MRR. On the contrary, baseline methods

(a) Length (b) Frequency (c) Denoising Stage

Fig. 2. The Avg.Change for CDDRec and baseline methods across various subset
sequences and denoising stage on Office dataset.
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Table 2. Overall Comparison. The best is bolded, and the runner-up is underlined

Dataset Metric SVAE ACVAE ContrastVAE CL4Rec DuoRec CBiT GRU4Rec SASRec Bert4Rec FMLP CDDRec Imp

Office R@1 0.0088 0.0139 0.0194 0.0094 0.0120 0.0198 0.0051 0.0198 0.0137 0.0224 0.0271 20.98%

R@5 0.0316 0.0457 0.0642 0.0294 0.0330 0.0593 0.0241 0.0656 0.0485 0.0593 0.0765 16.62%

R@10 0.0597 0.0742 0.1052 0.0430 0.0559 0.0917 0.0510 0.0989 0.0848 0.0901 0.1091 3.71%

N@5 0.0202 0.0300 0.0411 0.0194 0.0223 0.0396 0.0149 0.0428 0.0309 0.0414 0.0521 21.73%

N@10 0.0292 0.0392 0.0544 0.0237 0.0296 0.0500 0.0234 0.0534 0.0426 0.0513 0.0627 15.26%

MRR 0.0249 0.0351 0.0463 0.0207 0.0264 0.0437 0.0204 0.0457 0.0408 0.0455 0.0548 18.36%

Beauty R@1 0.0014 0.0167 0.0161 0.0045 0.0107 0.0174 0.0079 0.0129 0.0119 0.0154 0.0203 16.67%

R@5 0.0068 0.0428 0.0491 0.0160 0.0278 0.0512 0.0266 0.0416 0.0396 0.0433 0.0542 5.86%

R@10 0.0127 0.0606 0.0741 0.0250 0.0403 0.0762 0.0421 0.0633 0.0595 0.0627 0.0770 1.05%

N@5 0.0041 0.0299 0.0327 0.0103 0.0193 0.0343 0.0172 0.0274 0.0257 0.0297 0.0376 9.62%

N@10 0.0060 0.0356 0.0407 0.0131 0.0233 0.0424 0.0222 0.0343 0.0321 0.0360 0.0447 5.42%

MRR 0.0046 0.0310 0.0345 0.0111 0.0201 0.0359 0.0191 0.0291 0.0294 0.0305 0.0387 7.80%

Tools R@1 0.0055 0.0090 0.0108 0.0060 0.0058 0.0066 0.0047 0.0103 0.0059 0.0089 0.0127 17.59%

R@5 0.0118 0.0242 0.0315 0.0189 0.0182 0.0214 0.0154 0.0284 0.0189 0.0251 0.0359 13.97%

R@10 0.0204 0.0364 0.0483 0.0293 0.0361 0.0347 0.0242 0.0427 0.0319 0.0359 0.0522 8.07%

N@5 0.0086 0.0166 0.0212 0.0123 0.0120 0.0139 0.0102 0.0194 0.0123 0.0170 0.0244 15.09%

N@10 0.0114 0.0206 0.0266 0.0156 0.0148 0.0182 0.0129 0.0240 0.0165 0.0204 0.0297 11.65%

MRR 0.0098 0.0178 0.0227 0.0132 0.0128 0.0154 0.0113 0.0207 0.0160 0.0174 0.0253 11.45%

Toys R@1 0.0022 0.0156 0.0228 0.0067 0.0099 0.0195 0.0066 0.0193 0.0110 0.0189 0.0270 18.42%

R@5 0.0057 0.0349 0.0591 0.0180 0.0258 0.0525 0.0226 0.0551 0.0300 0.0516 0.0665 12.52%

R@10 0.0098 0.0492 0.0823 0.0259 0.0360 0.0747 0.0363 0.0797 0.0466 0.0674 0.0935 13.61%

N@5 0.0038 0.0255 0.0414 0.0124 0.0179 0.0364 0.0148 0.0377 0.0206 0.0357 0.0472 14.01%

N@10 0.0038 0.0301 0.0489 0.0149 0.0212 0.0435 0.0192 0.0456 0.0260 0.0408 0.0559 14.31%

MRR 0.0044 0.0270 0.0422 0.0132 0.0182 0.0373 0.0165 0.0385 0.0244 0.0347 0.0479 13.51%

encounter ranking plateau, where the ratings of top-rate items are indistinguish-
able. From another perspective, metrics like NDCG@5, NDCG@10, and MRR,
which take the ranking position of target items into account, show impressive
improvements. This indicates that our model CDDRec ranks target items rela-
tively higher than other models.

4.3 Ablation Study

In this section, we conduct experiments to examine the contributions of the
denoising and diffusion phases. Notably, the model is designed to predict the
denoised mean of the corrupted target item embedding. By employing this sam-
pling procedure (Eq. 4) with the predicted mean, the model is able to mimic
the corrupted target items. Accurate prediction of the mean for these perturbed
items, devoid of noise, confers the denoising ability upon the model. On the other
hand, the diffusion step also follows a sampling process as described by Eq. 2.
To scrutinize the impact of these dual processes, we substitute the two sampling
steps with the predicted mean and the original item embedding, respectively,
and present the experimental findings in Table 3.

Firstly, the diffusion and denoising processes generally contribute positively
to the overall performance across all datasets, as evidenced by the performance
decline in comparison to our model CDDRec. Moreover, the significance of dif-
fusion and denoising varies among datasets. Specifically, the denoising process
demonstrates greater importance in the Office and Toys datasets, while the dif-
fusion phase is more crucial for the Beauty and Tools datasets, when we compare
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the performance drop within each row. An explanation for this variation could
be attributed to the differences in sequence length across the datasets. Office and
Toys datasets exhibit relatively longer sequences, which could result in a higher
likelihood of noisy interactions, thereby rendering the sampling process on the
target sequence less effective. Conversely, when dealing with shorter sequences,
the diffusion phase that introduces noise may serve as an augmentation strategy,
bolstering the model’s robustness to noisy interactions.

Table 3. Ablation Study

-Diffusion -Denoising CDDRec

R@1 MRR avg.drop R@1 MRR avg.drop R@1 MRR

Office 0.0236 0.0496 11.20% 0.0222 0.0490 14.33% 0.0271 0.0548

Beauty 0.0154 0.0342 17.88% 0.0179 0.0365 8.75% 0.0203 0.0387

Tools 0.0112 0.0226 11.24% 0.0116 0.0243 6.31% 0.0127 0.0253

Toys 0.0267 0.0464 2.12% 0.0264 0.0462 2.89% 0.0270 0.0479

Table 4. Case Study

Denoising Stage 10 15 20

Rank 1 Swivel Tower Sorter Swivel Tower Sorter Wristbands

Rank 2 Desk Tray Paper Clip Holder Erase Markers

Rank 3 Paper Clip Holder Desk Sorter Pencil Sharpener

Rank 4 Desk Sorter Desk Tray Graphite Pencils

Rank of target item >40 7 1

4.4 Hyperparameter Sensitivity

In this section, we investigate the sensitivities of CDDRec’s hyperparameters.
Due to space constraints, we focus on reporting the experimental results for key
hyperparameters, including the maximum diffusion step and maximum noise
schedule. As depicted in Fig. 3, the optimal maximum diffusion steps are 10 and
30 for Office and Beauty datasets, respectively. The possible reason is that the
Beauty dataset has a higher number of items, presenting a greater challenge for
CDDRec to learn meaningful item embeddings. Consequently, a greater number
of denoising steps is required to refine intermediate states of item representations.
We observe that the optimal maximum noise levels for Office and Beauty are
0.04 and 0.1, respectively. A possible explanation is that longer sequences may
inherently contain noisy interactions, thus necessitating less added noise.

10 20 30

5.2

5.4

5.6

(a)

10 20 30

3.6

3.8

(b) Beauty T

0.05 0.10
5.0

5.2

5.4

(c) β

0.05 0.10

3.55

3.60

3.65

(d) Beauty β

Fig. 3. The evaluation of CDDRec on MRR through two datasets with different max-
imum diffusion step T and noise schedule β.

4.5 Case Study for Stepwise Generation

In the effort to demystify the intermediate generation of CDDRec, we execute
item retrieval utilizing the intermediate-generated preference and item repre-
sentations. The top-4 retrieved items along with the rank of the actual target
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item are presented in Table 4. Prior interacted items encompass Desk Organizer,

Organization Cube, Pencil Cup, Wristbands, with the target item also being
wristbands. A notable observation from history is that the sequence is domi-
nated by collection-related kits, with a sudden shift in user engagement towards
wristbands. After the initial ten denoising stages, the system continues to sug-
gest collection kits, and the target item’s rank falls outside the top 40. As the
system undergoes more stepwise denoising, CDDRec begins to acknowledge the
significance of the most recent purchase behavior, subsequently improving the
ranking of the target items. After 20 stages of denoising, CDDRec manages to
place the target item at the top position, and the recommended items display
greater diversity, including items such as pencil sharpener, graphite pencil, etc.

5 Conclusion

In summary, we highlight the ranking plateau issue and underline the impor-
tance of stepwise generation as an effective solution. We introduce CDDRec,
a model characterized by a cross-attentive conditional denoising decoder. This
decoder makes use of the denoising step indicator and sequence encoder output
as input, predicting the denoised mean at each denoising step. We also pro-
pose the cross-divergence objective with contrastive loss, tailored for sequence
recommendation. These objectives guard against representation collapse while
enabling the model to exhibit ranking capacity. Consequently, CDDRec can gen-
erate high-fidelity sequence/item representations and provide fine-grained rank-
ing predictions, thus addressing ranking plateau issues. Thorough experimental
results indicate CDDRec’s superior performance, outshining contemporary SOTA
methods, especially in top-1 metrics.
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