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Abstract—Recommender systems (RecSys) aim to predict
users’ preferences based on historical interactions and content
profiles, and they are vital components of many online services.
However, the strict cold-start (SCS) issue, i.e., users/items have no
prior interactions, poses significant challenges for RecSys. The ex-
isting methods seek to transfer content knowledge, collaborative
filtering (CF) knowledge, or combine the two from the warm-
start scenario towards the (strict) cold-start scenarios. However,
these approaches either ignore the available information or model
the information in rough manners such that the two types of
knowledge interfere with each other, leading to ineffective and
uncontrolled knowledge transfer. In this work, we propose a
novel dual-teacher knowledge distillation (DTKD) framework
that simultaneously and effectively transfers both content and
CF knowledge. The proposed DTKD framework contains two
teachers, one for each knowledge type, that is specifically designed
according to the characteristics of the content and CF data to
distill the knowledge fully. Soft scoring is calculated during the
distillation to denoise and augment the original hard-labeled
interactions. A knowledge fusion module is then proposed to
collect the consensus of the two teachers’ opinions. Finally, DTKD
transfers both content and CF knowledge into a student module
that learns the shared viewpoints of the teachers. We conduct
extensive experiments on real-world datasets under the warm-
start as well as three different SCS settings (i.e., strict cold users,
strict cold items, and strict cold users & items). Experimental
results show that DTKD outperforms strong baselines by large
margins under all settings, especially the SCS ones.

Index Terms—Recommendation, Strict cold-start recommen-
dation, Knowledge distillation

I. INTRODUCTION

As one of the most profound application areas in machine

learning, the recommender systems (RecSys) play a significant

role in many online services [1]–[3] and can be found in

almost every aspect of our lives [4]. Based on the historical

interactions and content profiles, RecSys aims to predict users’

preferences for items. It helps users find interesting items and

contributes to the success of many online platforms [1].

Despite the ongoing progress in RecSys, little attention

has been devoted to addressing the significant issue of strict

cold-start (SCS), which arises when users/items have no prior

interaction. The SCS issue is commonly observed in early-

stage online platforms and applications with a constant influx

of new items, such as news recommendation systems [5].

Effectively addressing SCS recommendations is crucial for

achieving business success. For instance, imagine an online

system that struggles to provide accurate product recommen-

dations to newly registered users. Without engaging these

Titanic

The Legend
of 1900

(a) CF knowledge

Avatar I

Avatar II

(b) Content knowledge

Fig. 1: Two types of knowledge in the RecSys. The solid

lines are the observed interactions, while the dashed

line represents potential interactions inferred from either

historical interactions or the content profiles.

users, they will likely lose interest and eventually abandon the

platform. From the sellers’ perspective, numerous new items

may remain in a state of zero comments if no appropriate

recommendations are presented to existing users. Therefore,

SCS is essential for RecSys.

RecSys leverages two types of knowledge for making rec-

ommendations, i.e., collaborative filtering (CF) [6] knowledge

and content knowledge. Figure 1 illustrates how RecSys ex-

plore these two types of knowledge. Specifically, in Figure

1a, based on the CF knowledge, one can infer that u2 may be

interested in “Titanic” as u2 and u1 share the same interest

in “The Legend of 1900”. Figure 1b, on the other hand,

recommends “Avatar II” to u3 because it is the same series

as “Avatar I” with similar content profiles (director, actors,

plots, etc.). Note that different from the warm-start scenario,

where we have the two types of knowledge available for

all the users and items, in SCS recommendation, the CF

knowledge about the cold users/items is missing, as they have

no previous interactions. Therefore, solving the SCS issue

is equivalent to asking the following two questions: 1) how

can we effectively model the available knowledge? 2) how to

transfer the knowledge from the warm-start scenario to the

SCS scenarios?

The existing recommenders, however, fail to fully answer

the above two questions. Specifically, the CF-based models

[1], [6]–[8] depend solely on the CF knowledge and cannot

work in the SCS scenarios in which the CF information is
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unavailable. The content-based models [2], [9]–[11], on the

other hand, merely leverage the content (auxiliary user profiles

and item descriptions) and ignore the CF knowledge. Though

able to recommend in the SCS scenarios, these models show

inferior performance in the warm-start scenario as compared

to the CF-based models, which suggests that their knowledge

modeling is ineffective due to the CF information loss. Hybrid

methods [12]–[15] that combine CF knowledge and content

knowledge are increasingly being adopted as a prevalent solu-

tion for addressing cold-start recommendation. These methods

typically leverage the warm data to train a model that aligns

the CF and the content embedding spaces. The trained model

is then used to reconstruct the CF knowledge about the

new users and items from their content knowledge. However,

directly aligning the CF and the content embedding spaces

with enforced similarity loss cannot guarantee how much

CF/content knowledge is preserved, leading to ineffective

knowledge modeling. Moreover, these methods transfer knowl-

edge uncontrolled: they rely on the neural network’s fitting

ability to implicitly conduct the knowledge transfer, in which

two types of knowledge can interfere. These methods didn’t

consider the fact that the two types of knowledge play distinct

roles and can complement rather than interfere with each other.

Consequently, a unified recommender that effectively models

the hybrid knowledge and explicitly transfers knowledge from

the warm-start to the SCS scenarios in a guided manner is

needed.

In this work, we propose a novel dual-teacher knowledge

distillation (DTKD) framework that simultaneously transfers

both content and CF knowledge. We first seek to address the

challenge of effective knowledge modeling. The proposed

DTKD framework contains two teachers, one for each knowl-

edge type, that is designed according to the characteristics

of the content and CF data to distill the knowledge fully.

Specifically, one teacher leverages the GNN [7] to model

the CF interactions that are represented as edges in a user-

item bipartite graph. The other teacher leverages a linear layer

and focuses on extracting useful information from each first-

order embedded content field. In addition, we observe that the

original hard-labeled interaction data is noisy and sparse. To

address this, soft scoring is performed during the knowledge

distillation process to denoise and augment the data. Such

dual-teacher design and soft score distillation guarantee effec-

tive modeling of both types of knowledge. To this end, though

the CF and content models may be directly used for warm-

start and SCS recommendation separately, it is infeasible

to explicitly define a boundary of cold-start and warm-start

users/items and partition them in real-world recommendations

and a universal model that consists of hybrid knowledge and

is capable of performing on all settings is required for efficient

RecSys. Then, towards the second challenge of controlled

knowledge transfer, we propose a soft score knowledge

fusion module that collects the consensus of the two teachers’

opinions. Specifically, the fusion module calculates a weighted

sum of the soft scores provided by the two teachers, with

tunable weights that control the levels of authority of the

teachers. This allows more comprehensive knowledge to be

transferred and thus contributes to a wiser student. Upon

the agreement of the two teachers, DTKD then transfers

both content and CF knowledge into a multi-layer perceptron

(MLP) student module that learns the shared viewpoints of the

teachers. In this way, DTKD manages to transfer both types

of knowledge in an explicit and controlled manner and avoid

the student’s confusion raised by the chaotically combined

knowledge. We conduct extensive experiments on real-world

datasets under the warm-start as well as three different SCS

settings (i.e., strict cold users, strict cold items, and strict

cold users & items), demonstrating that DTKD outperforms

strong baselines by large margins under all settings, especially

the SCS ones. We empirically verify the effectiveness of

the components of DTKD, especially the soft scoring KD

mechanism, and also find that DTKD enables the student to

surpass its master teachers on large sparse datasets. Finally,

we analyze the effects of changing hyper-parameters, i.e., the

weights of the teachers and the distillation temperature. Our

code and preprocessed data are publicly available 1. Our main

contributions are summarized into three folds:

• We propose a dual-teacher-designed framework DTKD that

simultaneously learns both content and CF knowledge for

warm-start and SCS recommendations.

• We propose the soft score knowledge fusion strategy, in-

cluding the soft score augmentation/denoising and a fusion

module that effectively transfers the hybrid knowledge into

a single unified model in a controlled manner.

• We conduct extensive experiments on three real-world

datasets to verify the effectiveness of DTKD, especially

under different SCS settings.

II. PROBLEM FORMULATION

In this section, we formalize the warm-start recommen-

dation and three strict cold-start recommendation problems.

Formally, assume we are given a set of warm users and items

U = {u1, u2, . . . , um}, V = {v1, v2, . . . , vn}, where m and

n represent the number of users and items, respectively, and

each of user/item gains at least one interactions. Then we also

have a list of p strict cold-start users Û = {u1, u2, . . . , up}
and q strict cold-start items V̂ = {v1, v2, . . . , vq} with zero

interaction records. During training, the SCS model can learn

from both interaction history ω and corresponding content

information φ of warm users/items. Then in the testing phase,

the model can only take the content information of the cold

users or items to make recommendations. Specifically, to

thoroughly evaluate the effectiveness of DTKD, we define one

warm-start and three SCS recommendation tasks.

• Warm-start (Warm user, Warm item). The task is to

recommend warm items vj ∈ V to warm users ui ∈ U ,

regarding interactions ωi, ωj and the attribute φi, φj .

• User SCS (Cold user, Warm item). Given a cold user

ui ∈ Û , the goal is to make personalized recommendations

of warm items vj ∈ V to ui based on the attribute φi, φj .

1https://github.com/DavidZWZ/DTKD SCS
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• Item SCS (Warm user, Cold item). When cold items

vj ∈ V̂ appear with side information φj , the goal is to

recommend such items vj to warm users ui ∈ U .

• User-item SCS (Cold user, Cold item). In the condition

where both when users ui ∈ Û and items vj ∈ V̂ appear

without any interaction, we have to recommend these cold

items to cold users with attributes φi and φj .

III. METHODOLOGY

In this section, we introduce our proposed DTKD frame-

work. Section III-A presents the overview of DTKD. Sections

III-B - III-E illustrate its components, including a GNN-based

CF teacher model, a linear content teacher model, a soft score

knowledge fusion module, and an MLP student model.

A. Dual-Teacher KD Framework

As discussed in Section I, the content-based models lack CF

knowledge and existing hybrid methods may incur information

loss and lack a controlled way to integrate two types of

information. Therefore, we aim to extract more comprehensive

knowledge (preserve both CF and content information) to

enhance the model performance in SCS scenarios.

Knowledge distillation (KD) [16] presents a good way for

comprehensive knowledge transfer. It can leverage multiple

teachers with different initialization [16] or model architec-

tures [17] to obtain diverse views of prediction, thereby im-

proving the student performance. As demonstrated in Section

I, the recommendation task naturally has two different infor-

mation sources, i.e., CF data and content data, which allow

models to get distinct views. Motivated by this, we propose

a dual-teacher knowledge distillation framework to ensemble

both CF and content information. Specifically, our framework

mainly consists of two teacher models, a knowledge fusion

module followed by a student module, as shown in Figure 2.

The first teacher model is designed to learn the fruitful

collaborative filtering signals from the historical interaction

records. The second teacher model corresponds to learning

the content embedding from the content materials. Then a

soft score knowledge fusion module is proposed to refine and

combine the two teachers’ knowledge in a controlled manner.

Finally, the student model can distill the fused knowledge for

both warm-start and cold-start recommendations.

B. GNN-based CF Teacher

The CF teacher is designed to aggregate the neighborhood

information and learn the collaborative filtering knowledge,

and we utilize the graph mining power of GNN.

1) Light graph convolution.: Suppose given a randomly

initialized input user ID embedding h
0
u, and we adopt the

same graph convolution operation as in [7], by consistently

averaging the connected neighbors’ embeddings: h
k+1
u =∑

v∈Nu

h
k
u√

|Nu|
√

|Nv|
, where h

k
u and h

k
v are embeddings of

user u and item i at the k-th layer, respectively. 1√
|Nv|
√

|Nu|

is to normalize the embedding aggregation for each layer. Nv

is the neighbor set of node v. Afterward, the collaborative

filtering item embedding is obtained by combining the user

representation of different layers hu =
∑K

k=0
h

k
u

K . A similar

graph convolution process can be conducted for item repre-

sentation learning.

2) Teacher model pretraining.: In terms of ranking loss, we

use the negative log-likelihood:

Lrank = −
∑

v+∈V+
u

log(σ(hu·hv+))−
∑

v−∈V−

u

log(1−σ(hu·hv−)),

(1)

where V+
u and V−

u are the sets of interacted and non-interacted

items, and σ is sigmoid function. During training, 1 negative

item v−u is sampled for each positive item v+u .

In order to generate collaborative filtering embeddings with

high-quality representation while enabling efficient knowledge

distillation, we combine point-wise ranking loss with align-

ment (Lalign) and uniformity regularity (Luniform) as in [6],

[18]. And the training loss for our GNN teachers is:

Lcf = γLrank + (1− γ)(Lalign + Luniform), (2)

where γ is the loss balancing weight.

C. Linear Content Teacher

The objective of the content teacher is to acquire knowledge

from pertinent content profiles associated with users’ adop-

tion behavior. Despite the accomplishments attained through

incorporating auxiliary information in warm-start recommen-

dations, our empirical investigation in Table II reveals that

prevailing content models struggle to exhibit robust general-

ization capabilities when faced with strict cold-start scenarios,

despite being equipped with numerous content features. The

underlying reason might be that the complicatedly designed

DNN model is prone to prioritize memorizing historical in-

teractions rather than understanding the relationship between

key features and interactions.

1) First-order content learning: Towards the above-

mentioned limitation of the existing DNN-based content

model, instead of concatenating all the content features as

model input, we design a simple yet effective linear teacher

to focus on learning the first-order feature values for each

content material. Specifically, given a set of content features

of users/items, we first construct a content embedding look-up

table, where each element corresponds to a specific instance

of one feature. For example, for the gender of the user, both

male and female will be mapped to a content embedding. Note

that the content embedding table is randomly initialized, and

only the title/name features that contain meaningful semantic

information are fixed after processing by the sentence BERT

[19]. Then, the l-th content embedding inputs el are first

converted to the first-order value by the corresponding feature

transformation function F (el;u, v). Then a linear model is

constructed to produce the final preference score Rcont(u, v)
based on the first-order values of all features:

Rcont(u, v) =

|Fu,v|∑

l=1

wlF (el;u, v) + b, (3)
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Fig. 2: Framework of DTKD. (a) Hard-labeled input is provided for the two teachers. (b) Collaborative filtering teacher module,

where a well-trained GNN model generates the soft score based on the CF knowledge. (c) Content teacher module, where a

well-trained linear model produces the soft score from the view of the content knowledge. (d) The soft score knowledge fusion

module refines and combines two types of knowledge; The red dashed squares represent the augmented interactions, while the

black ones represent the denoised interaction. (e) MLP student, which distills the fused soft score for SCS recommendation.

where Fu,v is the combined feature set of u and v, b is the

bias and wl is the weight of each content feature.

2) Teacher model pretraining.: We directly use Equation 1

as the ranking loss function and adopt the sigmoid function

to convert the recommendation score Rcont(u, v) into the

probability of being relevant σ(Rcont(u, v)).

D. Soft Score Knowledge Fusion

The key motivation of DTKD to use knowledge distillation

is to incorporate additional prior of soft scores to smooth

the original hard targets (i.e., ‘1’ for positive interactions and

’0’ for missing interactions in the implicit feedback) so as to

maximize the information transferred from two well-learned

teachers. We propose this soft score knowledge fusion to distill

and fuse two types of knowledge to boost student model’s

performance. During the distillation process, the quantity (the

number of interactions with non-zero scores) and quality (the

correctness of interactions of high soft scores) of observed

interactions can be improved. Furthermore, the fusion can be

regarded as a voting process of two teachers, where they can

make an agreement/disagreement to complement each other,

thus contributing to a comprehensive knowledge transfer.

1) Soft score definition: The soft score, denoted as Su,v ,

characterizes the likelihood of a favorable user-item interaction

for a given user-item pair (u, v).
2) Augment the unobserved interactions: In the recom-

mender system, the missing/unobserved items in the implicit

feedback are regarded as negative samples, which are marked

as ‘0’ in the point-wise loss and treated as the opposite of

positive items in the pair-wise ranking loss. However, most

datasets of the recommender system is collected in an implicit

manner. The massive part of the adjacency matrix is still blank,

not only because the users are not interested in those items but

also due to the missing interactions with those items.

The core idea of using the soft score for the unob-

served/missing interactions is that these unseen items could

be missing data instead of a dislike signal. Moreover, the

soft score can maintain meaningful correlation patterns among

user-item pairs and reflect the preference level. Technically,

for each positive user-item pair, we randomly sample an

unseen item for that user and replace the original hard label

‘0’ of the unobserved user-item pairs with the soft score.

Note that we only sample one corresponding unseen item

for unbiased learning on both observed and unobserved user-

item pairs. This sampling-based soft scoring strategy adds

additional supervisory signals for sampled instances, providing

better guidance to the student model learning.

3) Denoise the observed interactions: In [20], the authors

empirically find that in GNN-based recommendation, active

users with rich interactions are poorly modeled compared to

inactive users with scarce interactions. Arguably, one could

contend that the primary rationale behind this observation is

the presence of highly engaged users who exhibit a multitude

of noisy interactions, which, in turn, may potentially impede

the accurate modeling of user preferences. Additionally, the

introduction of additional layers of graph convolutions in the

graph model further exacerbates the influx of noise.

In this regard, using a soft score rather than the hard

label ‘1’ for the positive items can alleviate the noise from

some non-representative interactions. In particular, for every

observed user-item pair, we directly use the soft score to

replace the original hard label ‘1’. In the case of an active

user purchasing many items, the impact of redundant/noisy
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interactions could be weakened by replacing the hard labels

with reduced soft scores.

4) Voting via knowledge fusion: In the knowledge distil-

lation stage, the outputs of the two teachers are soft score

predictions Steacher(u, v) of positive and sampled negative

interactions, which are adjusted by the temperature T :

Steacher(u, v) =
1

1 + e−R(u,v)/T
, (4)

where R(u, v) = hu ·hv for CF teacher soft score (Scf (u, v)),
and R(u, v) = Rcont(u, v) for content teacher soft score

(Scont(u, v)).
The process of combining two types of knowledge can be

considered as the voting of two teachers’ predictions, i.e., the

weighted sum of two soft score outputs of two teacher models:

S(u, v) = λScf (u, v) + (1− λ)Scont(u, v). (5)

In Figure 2 (d), the collaborative filtering teacher generates

the soft score from the view of historical interactions. The

content teacher produces the soft score in regard to the

given users’ and items’ content features. The soft scores from

two teachers reach either consensus, e.g., for (u2, v1), or

disagreement, e.g., for (u4, v3). In both situations, the two

teachers’ predictions complement each other to make a more

comprehensive knowledge transfer. At the same time, the

number of observed interactions (with the non-zero soft score)

is increased to mitigate the data sparsity issue. DTKD also

calculates scores for existing links. E.g., for the given (u3, v4)
user-item pair, two teachers both output relatively lower soft

scores, suggesting it is a non-representative/noisy interaction,

and DTKD will distill lower scores for the student model.

The detailed algorithm design of knowledge fusion is shown

in Algorithm 1. Finally, the newly generated soft score matrix

will be the input of the student model.

Algorithm 1 Soft score knowledge fusion

Input: A well-trained CF-based teacher model θcf , a well-

trained content-based teacher model θcont, a randomly

initialized student model θs, a batch of interaction records

ωb, along with the content information φb.

Output: A batch of new interaction records with soft scores.

1: ω̂b ← ωb

2: for user-item pair (u, v) ∈ ωb do

3: Sample 1 unobserved items for user u into ω̂b.

4: end for

5: Generate CF soft score matrix Sbcf for ω̂b by θcf
6: Generate content soft score matrix Sbcont for ω̂b by θcont
7: Knowledge fusion: generate Sb by Equation 5

8: Update ω̂b with Sb
9: return ω̂b

E. Student Model

The student model is proposed to learn from both content

and CF teachers and is generalized for cold users/items. There-

fore, we construct a multi-layer perceptron (MLP) student

model, which is capable of learning the fused knowledge

from two teachers and generating recommendations in SCS

situations.

In the training stage, the knowledge distillation loss is

formed by minimizing the cross entropy between the MLP

student output soft score SMLP (u, v) = σ(MLP (u, v)/T )
and the fused soft score from two teachers S(u, v):

Lkd = −S(u, v) · log(SMLP (u, v))

−(1− S(u, v)) · log(1− (SMLP (u, v))),
(6)

After trained with Lkd, DTKD distills the fused knowledge

from both CF teacher and content teacher to the student model.

The MLP-based student model is able to learn from both

teachers and generalizes to the cold-start scenario.

IV. EXPERIEMNT

This section empirically evaluates the proposed DTKD over

one warm-start recommendation and three strict cold-start

recommendation tasks on three real-world datasets. The goal

is to answer 4 following research questions (RQ).

• RQ1: How does DTKD perform compared to other state-of-

the-art content models and cold-start models in 4 evaluating

settings (one warm-start and three cold-start scenarios)?

• RQ2: How effective are the two teacher models and the soft

score KD compared with other KD strategies?

• RQ3: How does the student model perform compared with

the two types of teacher models?

• RQ4: What are the impacts of the two hyper-parameters:

the CF teacher weight λ and distillation temperature T ?

A. Dataset

In this section, we consider three real-world datasets to

evaluate our proposed DTKD and other baselines. MovieLens

dataset 2 is widely adopted in cold-start recommendation tasks

since both ML-1M and ML-100K datasets (summarized in

Table I) contain useful auxiliary information about users and

items, such as users’ age and items’ classes/genres. Note that

we use sentence BERT [19] to generate content embedding

based on the item title as it comprises more meaningful

textual information. According to our problem formulation,

we separate the original data concerning the states of users

and items. For both the user and item sides, we divide 80% of

the users/items to warm states and treat the rest 20% of them

as in SCS condition. Therefore, we obtain four sub-dataset

partitions corresponding to a warm-start and three cold-start

conditions. Next, we respectively randomly sample 5% and

20% of user-item interactions of each user as the validation and

testing data from the warm state and leave the remaining data

as the training dataset. In all four evaluations, if the number of

positive items of one user in testing exceeds 5, we only retain

five of them for the convenience of performance comparison

in different scenarios.

The Yelp dataset 3 is adopted from the Yelp challenge of

2018. Wherein local businesses such as restaurants and bars

2https://grouplens.org/datasets/movielens/latest/
3https://www.yelp.com/dataset
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are regarded as the items. To ensure data quality, we follow [7]

to use the 10-core setting [21] (i.e., filtering out users and

items with less than ten interactions) to pre-process the data.

The statistics of the Yelp dataset after the preprocessing are

summarized in Table I. We generate fixed content embeddings

only for the item name via sentence BERT [19]. The same

data-splitting strategy is adopted as the MovieLens dataset. We

only keep at most 20 positive items for each user in testing.

TABLE I: Statistics of the Datasets

Dataset ML-1M ML-100K Yelp

Users 6,040 943 31,668
Items 3,952 1,682 38,048

Features 7 7 16

Interactions 1,000,209 100,100 1,561,406
Sparsity 95.81% 93.7% 99.87%

B. Experimental Setup

1) Baselines: We first consider four state-of-the-art content-

based models to highlight the performance of the proposed

DTKD on warm-start and different strict cold-start settings.

Only a few cold-start methods can work under strict cold-start

conditions. Thus we only select two hybrid-based methods to

emphasize the effectiveness of our proposed knowledge distil-

lation framework. In addition, a GCN model incorporating the

content side information is selected to validate the superiority

of the knowledge fusion strategy. We do not choose any meta-

learning cold-start algorithm for comparison since they only fit

normal cold-start scenarios under the few-shot setting. Due to

the design of rank distillation [22]–[24], they cannot directly

learn from two teacher models, and we only compare with the

embedding-based KD [16] in the ablation study to show the

advantages of soft score KD strategy.

• Wide&Deep [2] jointly trains wide linear models and deep

NNs for the benefits of memorization and generalization.

• XDeepFM [10] jointly learns explicit and implicit high-

order feature interaction by generating them in an explicit

fashion and at the vector-wise level.

• PNN [9] is specially designed with a product layer for

capturing representation interactive patterns and a fully

connected layer to explore high-order feature interactions.

• DCNV2 [11] keeps the benefits of a DNN of learning im-

plicit features and introduces an improved cross-network.

• DropoutNet [13] involves dropout on CF input during

training so as to transfer the hybrid knowledge implicitly

via enhanced model robustness.

• Heater [12] utilizes embedding alignment and randomized

training to incorporate hybrid knowledge.

• ContGCN is a content-enhanced version of LightGCN [7],

which can learn user/item content embeddings via linearly

propagating content information on the bipartite graph.

2) Evaluation Metrics: We conduct full ranking for cor-

responding items in different evaluation scenarios and adopt

ranking evaluation metrics, including NDCG@K and Re-

call@K. Since in 4 evaluation settings of ML-1M, we only

retain at most 5 positive items for each user, and thus we

set the K as 3 to better evaluate the ranking performance.

Similarly, we set the K as 10 in Yelp as the maximum positive

item number is 20.

3) Parameter Settings: We implement all the methods using

Pytorch [25] and RecBole [26] for a fair comparison. We

use Adam [27] as the default learning optimizer and set

the maximum number of training epochs as 300. An early

stop strategy is adopted if the validation NDCG@K does not

increase for 10 epochs. We search the learning rate among [1e-

4, 5e-4, 1e-3, 5e-3]. To align with the sentence BERT’s output

size [19], the content embedding size is set to 384 for each

feature. The training batch size is set as 1024 for all datasets.

For the CF teacher training loss, we set the weight γ as 0.9.

During knowledge distillation, the distillation temperature T
is tuned ranging in [2, 4, 6, 8], and the teacher weight λ is

tuned within [0.5, 0.6, 0.7, 0.8, 0.9].

C. RQ1: Performance Evaluation

We conducted experiments on 1 (1) warm-start scenario and

3 cold-start scenarios: (2) user SCS, (3) item SCS, (4) and

user-item SCS. Three kinds of cold-start scenarios are com-

monly seen in online recommender systems. The first type can

be considered as a recommendation to newly registered users.

The second one is used for frequently incoming new items

such as news recommendation [5]. The third and most chal-

lenging condition is used for starting a new platform, where

users and items are all new to each other. Table II demonstrates

the performance of our proposed DTKD compared to baseline

methods on ML-1M, ML-100K, and Yelp. Beyond empirical

results, we calculate the improvements based on DTKD and

the strongest baseline. We can observe that:

• In the warm-start evaluation, our DTKD performs the best

compared with all the other baselines. It is noteworthy to

see the benefits of DTKD on the Yelp dataset, with 57.61%

and 38.03% increases on NDCG@10 and Recall@10,

respectively. This result reveals that DTKD can effectively

distill knowledge from the CF teacher to the student model.

• In the user SCS experiments, DTKD still achieves the

best performance in most cases. DropoutNet, Heater, and

ContGCN can adapt to those cold users and surpass most

content-based baselines on ML-100K and Yelp. These

three methods are specially designed with techniques

(dropout for DropoutNet, randomized training for Heater,

and graph convolution for ContGCN) to enhance the ro-

bustness of user-side representation. Therefore, the model

design to increase the generalization capability plays an

important role in adapting to strict cold users.

• In two cold-item scenarios (item SCS and user-item SCS),

it can be found that the DTKD undoubtedly outperforms

the alternatives in all cases, yielding dramatic performance

improvement on ML-1M and Yelp datasets. In particular,

for the item SCS, DTKD surpasses the best baseline

by 138.24% and 158.55% regarding the NDCG@3 and

Recall@3 on ML-1M, and in the meanwhile, makes large

improvements on NDCG@10 by 113.56% and Recall@10
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TABLE II: Performance comparison on three datasets (ML-1M, ML-100K, and Yelp) in 4 scenarios (warm-start, user SCS,

item SCS, and user-item SCS). The best results are in boldface, and the second-best ones are underlined.

Scenarios Methods
ML-1M ML-100k Yelp

NDCG@3 Recall@3 NDCG@3 Recall@3 NDCG@10 Recall@10

Warm user warm item
(Warm-start)

Wide&Deep 0.1395 0.0825 0.1756 0.1073 0.0324 0.0394
xDeepFM 0.1086 0.0644 0.1454 0.0919 0.0359 0.0447
PNN 0.1107 0.066 0.1511 0.0917 0.0356 0.0427
DCNV2 0.1394 0.0827 0.1805 0.1109 0.0357 0.0436
DropoutNet 0.0985 0.0587 0.1811 0.1127 0.0284 0.034
Heater 0.1035 0.0627 0.1498 0.0912 0.0343 0.0409
ContGCN 0.1277 0.0774 0.1837 0.1113 0.0368 0.0394
DTKD 0.1499 0.089 0.2088 0.1261 0.058 0.0617

Improvement 7.46% 7.62% 13.66% 11.89% 57.61% 38.03%

Cold user warm item
(User SCS)

Wide&Deep 0.0504 0.0273 0.0985 0.0543 0.0071 0.0067
xDeepFM 0.051 0.0298 0.0872 0.0436 0.0003 0.0003
PNN 0.0566 0.0315 0.1063 0.0574 0.0033 0.0024
DCNV2 0.0574 0.0318 0.0844 0.0521 0.0068 0.0059
DropoutNet 0.054 0.0305 0.1029 0.0553 0.0083 0.0079
Heater 0.0444 0.0262 0.1123 0.0617 0.0102 0.0098

ContGCN 0.0565 0.0313 0.1091 0.0585 0.018 0.0087
DTKD 0.0586 0.0329 0.1135 0.0628 0.0194 0.0092

Improvement 2.09% 3.46% 1.07% 1.78% 7.78% -6.12%

Warm user cold item
(Item SCS)

Wide&Deep 0.0384 0.0233 0.0273 0.016 0.0162 0.0199
xDeepFM 0.0358 0.0206 0.0567 0.0348 0.0058 0.0065
PNN 0.0387 0.0234 0.0663 0.0381 0.0059 0.0053
DCNV2 0.0252 0.0156 0.0515 0.0321 0.0142 0.0162
DropoutNet 0.0224 0.0133 0.0151 0.0099 0.0058 0.0064
Heater 0.0152 0.009 0.0351 0.0204 0.0031 0.0031
ContGCN 0.022 0.0138 0.0272 0.0159 0.0177 0.0175
DTKD 0.0922 0.0605 0.0673 0.0402 0.0378 0.0379

Improvement 138.24% 158.55% 1.51% 5.51% 113.56% 90.45%

Cold user cold item
(User-item SCS)

Wide&Deep 0.0037 0.0025 0.0078 0.0053 0.0006 0.0008
xDeepFM 0.0177 0.0113 0.0395 0.0266 0.0004 0.0005
PNN 0.0071 0.0042 0.0094 0.0064 0.0135 0.0108
DCNV2 0.0069 0.0038 0.0304 0.0194 0.0005 0.0005
DropoutNet 0.0145 0.0095 0.0173 0.0117 0.001 0.0009
Heater 0.0228 0.0119 0.0169 0.0096 0.0012 0.0017
ContGCN 0.0077 0.0048 0.0225 0.0138 0.0007 0.0006
DTKD 0.0877 0.0613 0.058 0.0372 0.0279 0.0273

Improvement 284.65% 415.13% 46.84% 39.85% 106.67% 152.78%

by 90.45% on Yelp. In the extreme case where the histori-

cal interaction of both users and items is not presented,

the DTKD shows surprisingly boosting performance on

all three datasets, and we highlight the improvement on

ML-1M of 284.62% and 415.13% for NDCG@3 and

Recall@3, respectively. The results validate the efficiency

of our proposed DTKD model in transferring two types of

knowledge into the extremely strict cold-start scenario.

• Interestingly, the two cold-start methods (DropoutNet,

Heater) and the ContGCN are the least competitive in

most of the strict cold-item scenarios. These cold-start

methods aim to incorporate different modules for trans-

ferring CF knowledge and overlook the importance of

content information, while the ContGCN cannot preserve

all meaningful content knowledge during the CF graph

convolution process. This observation differs from the user

SCS scenario and highlights the importance of effectively

utilizing and transferring content features in item SCS. In

situations where the item-side content features are more

meaningful and useful, finding ways to leverage these

features and transfer content knowledge to address the

strict cold-start problems becomes crucial.

D. RQ2: Ablation Study

We conducted the ablation study to investigate the impacts

of the distillation strategy and different components of the

DTKD framework and to gain deep insight into the perfor-

mance improvement from DTKD. The complete version of

the proposed DTKD is compared with four types of variants:

(i) The student MLP model without the linear content teacher

(denoted as w/o content teacher), wherein the student model

only learns from soft score matrix from CF teacher; (ii) The

student MLP model without the GNN-based CF teacher (noted

as w/o CF teacher), which learns from the soft score matrix

from the content model directly; (iv) The student MLP model

learn from the embedding-based KD [16] (denoted as w/o soft

score KD) via matching logits layer from the teacher model

combined with the hard-labeled learning in Equation 1; (iv)
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TABLE III: Ablation study on Movielens-1M dataset. We report DTKD’s performance when removing each teacher and the

soft score component. The best results are in boldface, and the second-best ones are underlined. Note that we also report the

averaged results of the four evaluations to show the trade-offs. N@3 and R@3 represent NDCG@3 and Recall@3, respectively.

Methods
Warm-start User SCS Item SCS User-item SCS Average

N@3 R@3 N@3 R@3 N@3 R@3 N@3 R@3 N@3 R@3

DTKD 0.1499 0.089 0.0586 0.0329 0.0922 0.0605 0.0877 0.0613 0.0971 0.0609

w/o content teacher 0.1568 0.0931 0.0585 0.0325 0.0039 0.0026 0.0004 0.0002 0.0549 0.0321
w/o CF teacher 0.0646 0.0406 0.0628 0.0374 0.0758 0.0524 0.0724 0.0495 0.0689 0.0450
w/o soft score KD 0.1275 0.0756 0.0532 0.0316 0.022 0.013 0.0013 0.0008 0.051 0.0303
w/o KD 0.1411 0.0832 0.0534 0.0301 0.0295 0.0182 0.0035 0.002 0.0569 0.0334

The student MLP model without the knowledge distillation

(denoted as w/o KD), which learn from the hard labels via

the point-wise ranking loss as in Equation 1.

As shown in Table III, the DTKD generally outperforms

other variants in most evaluation settings, especially in achiev-

ing the best performance on average of all four scenarios.

This indicates the effectiveness of the proposed two teacher

modules and soft score knowledge fusion method. To be

noted that, it is hard to classify and divide users/items in

warm or cold situations in real-life applications. The average

performance of all scenarios best matches real-life situations. It

is noted that learning solely from the CF teacher (w/o content

teacher) obtains the best results on warm-start recommenda-

tions, whereas the NDCG@3 and Recall@3 are extremely low

(less than 0.001) on two cold item scenarios. In comparison,

learning only from the content teacher (w/o CF teacher) gains

the strongest performance on user SCS and the second-best

on two cold-item evaluations while performing poorly on the

warm state, with a large value gap in terms of NDCG@3

and Recall@3. The DTKD can well balance its performances

on both warm-state and cold-state conditions and achieves a

trade-off to be the average best model. In comparison with

MLP model learning from embedding-based KD, the DTKD

beats the pure MLP (w/o KD) on all four evaluation settings,

while the embedding-based KD brings adverse effects on

recommendation performance, demonstrating the significance

of the soft score KD and the effectiveness of fusion strategy.

E. RQ3: Student Model vs. Teacher Models

We compare the performance of two teachers and the

student model and further investigate the benefits of DTKD.

In Figure 3, we demonstrate the MLP student performance

compared to two teacher models on ML-1M and Yelp datasets.

In the ML-1M, it is observed that the GNN-based CF teacher

achieves the best results in the warm state and the lowest

results in the cold state, which is vice versa for the content

teacher. The student model is competitive with the content

teacher on three SCSs and performs close to the CF model

in warm conditions, thereby being the best on average of

4 evaluation settings. On the Yelp dataset. our student out-

performs the two teachers on all warm-start and cold-start

recommendation tasks. It shows the advantage from soft score

knowledge distillation of DTKD. Yelp dataset is much sparser

than ML-1M, and the soft score knowledge distillation can

augment the interaction graph for better student performance.
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Fig. 3: The comparison with two teachers and student model.

F. RQ4: Impacts of Hyperparameters

On ML-1M, we study the impacts of two key hyper-

paramters, including the CF teacher weight λ, which controls

the voting weight of two teachers during knowledge fusion,

and the distillation temperature T , which determines the soft

level of the soft score distribution.
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Fig. 4: The impact of CF teachers’ weight λ on ML-1M.

1) CF teacher weight λ: We first vary the CF teacher

weight λ to adjust the ratio of two teachers’ knowledge during

the fusion process. Specifically, the weight λ varies from 0.1

to 0.9 with an interval of 0.1. We report the NDCG@3 and

Recall@3 results on the ML-1M dataset in Figure 4. Since the

CF-based teacher can behave well on the warm-start recom-

mendation compared to the content teacher, it is reasonable

that a large weight of CF teacher can bring positive effects. In

the warm-start scenario, we can observe that with the increase

of CF teacher weight λ, the recommendation quality can be

improved and then converge to a level. For user SCS, the

performance of DTKD only fluctuates with minor variance.

In two cold item scenarios, with an increase of the CF teacher

weight T , the NDCG@3 and Recall@3 first oscillate and then

start to drop sharply as the ratio of the CF teacher is higher
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than 0.7. It is interesting to see a larger ratio of CF knowledge

can sometimes enhance the cold item recommendation quality.

In a nutshell, the above results suggest that a relatively high

weight of CF can maintain high performance on both warm-

start and cold-start recommendations.
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Fig. 5: The impact of distillation temperature T on ML-1M.

2) Knowledge distillation temperature T : During the MLP

student model training process, one of the most significant

factors influencing the knowledge distillation quality is the

predefined temperature T . As observed in Figure 5, though

the temperature value does not affect the recommendation per-

formance much on warm items, for the cold item evaluations,

the NDCG and Recall scores start to increase with the rise

of distillation temperature T and reach the maximum value at

around T of 4 and then drop to a lower level quickly when

T is higher than 6. It makes sense because a small value

of temperature generates a soft score approximating the hard

label, which cannot bring additional information on user-item

correlations, and a large temperature leads all the soft scores

to 0.5 losing much preference information.

V. RELATE WORKS

A. Cold-Start Recommendation

Current machine learning online platforms suffer from the

data sparsity issue [28], [29], and the cold-start recommenda-

tion is one of the most challenging problems. Towards building

the cold-start RecSys, existing methods mostly focus on the

few-shot cold-start setting and still demand a few interactions

for the cold users/items for further adaptation. Inspired by the

success of meta-learning algorithms in the few-shot settings,

many cold-start methods [14], [30]–[35] follow the learning-

to-learn [36] paradigm to improve the cold-start recommen-

dation by improving the learning strategy. They try to exploit

the meta-knowledge gained from the warm-start by mimicking

the cold-start scenario in the meta-training and then apply such

knowledge to the cold-start meta-testing stage. On another line,

from model design perspectives, many hybrid approaches are

proposed to either learn a mapping function from the content

input to the CF embedding [12], [14], [37] or try to implicitly

align the content and interaction embedding space jointly

[13], [15], aiming at transferring the useful CF and content

knowledge towards the cold-start scenarios. Nevertheless, most

of these works, especially those meta-learning-based models,

fail to work in the SCS conditions [38]. In contrast, pure

content-based methods such as Wide&Deep [2] and its variants

[9]–[11] can be directly applied in the SCS settings since

they merely depend on the user profiles and item contents.

Some specific hybrid-based cold-start recommender systems

are also enabled to work on SCS settings, as they only take

CF input during training, or they can generate CF embedding

in the SCS testing. For instance, DropoutNet [13] randomly

drops the CF input in the training stage, and the model can

adapt to the SCS with improved robustness. Heater [12], on

the other hand, is trained to directly convert the content input

to the CF embedding in SCS recommendation. However, both

the pure content-based models and hybrid-based methods lack

an explicit and efficient knowledge transfer design to balance

and exploit the complicated knowledge gained in the warm-

start scenario. Moreover, they have some inherent limitations

during the knowledge encoding process, such as CF/content

information loss. By contrast, we explicitly construct a novel

knowledge transfer framework DTKD and fully encode and

fuse both content and CF information via two separately

trained teachers and the soft score knowledge fusion module.

B. Knowledge Distillation in Recommendation

KD has been adopted as an effective method to transfer and

compress knowledge from a large teacher model to a smaller

student model. It has shown success in various domains,

including computer vision [16] and text generation [39]. In

the recommendation tasks, it is hard to utilize the KD directly

due to the task difference between ranking and classification,

and only a few research [22]–[24] focus on how to compress

the recommender system model size. With the help of KD, the

student model can achieve a similar performance compared to

the large teacher model but cannot learn from multiple teachers

due to the ranking distillation design. In comparison, we

employ the KD as an explicit way to conduct the knowledge

fusion and transfer, and we design a dual-teacher structure

for the purpose of learning from diverse information sources.

Beyond that, this work is the first attempt to use knowledge

distillation to resolve the cold-start issue.

VI. DISCUSSION AND CONCLUSION

In this work, we propose a novel dual-teacher knowledge

distillation framework to address the strict cold-start recom-

mendation problem. Specifically, to fully utilize the historical

interactions and the content profiles, we teach the student

model from both GNN-based CF teacher and a linear content

teacher. We design a soft scoring mechanism to augment

and denoise the original observed interaction graph, which

further improves the knowledge modeling quality. Then a

score fusion module is proposed to distill and combine the

CF and content knowledge to the student model. Extensive

experiments conducted on three real-world datasets show that

the proposed DTKD significantly outperforms the other state-

of-the-art baselines in both warm-start and strict cold-start

recommendations. We expect that our solution to exploit the

content and interaction information may also bring some

positive extensions in different recommendation tasks that

suffer from the data sparsity issue.
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