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Machine learning has attracted widespread attention and evolved into an enabling technology for a wide
range of highly successful applications, such as intelligent computer vision, speech recognition, medical
diagnosis, and more. Yet, a special need has arisen where, due to privacy, usability, and/or the right to be
forgotten, information about some specific samples needs to be removed from a model, called machine
unlearning. This emerging technology has drawn significant interest from both academics and industry due
to its innovation and practicality. At the same time, this ambitious problem has led to numerous research
efforts aimed at confronting its challenges. To the best of our knowledge, no study has analyzed this complex
topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios. Accordingly,
with this survey, we aim to capture the key concepts of unlearning techniques. The existing solutions are
classified and summarized based on their characteristics within an up-to-date and comprehensive review of
each category’s advantages and limitations. The survey concludes by highlighting some of the outstanding
issues with unlearning techniques, along with some feasible directions for new research opportunities.
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1 INTRODUCTION

In recent years, machine learning has seen remarkable progress and wide exploration across every
field of artificial intelligence (AI) [1]. However, as Al becomes increasingly data-dependent,
more and more factors, such as privacy concerns, regulations, and laws, are leading to a new type
of request—to delete information. Specifically, concerned parties are requesting that particular
samples be removed from a training dataset and that the impact of those samples be removed
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Fig. 1. llustration of machine unlearning.

from an already-trained model [2-4]. This is because membership inference attacks [5] and model
inversion attacks [6] can reveal information about the specific contents of a training dataset.
More importantly, legislators around the world have wisely introduced laws that grant users the
right to be forgotten [7, 8]. These regulations, which include the European Union’s General Data
Protection Regulation (GDPR) [9], the California Consumer Privacy Act (CCPA) [10],
the Act on the Protection of Personal Information (APPI) [11], and Canada’s proposed
Consumer Privacy Protection Act (CPPA) [12], compel the deletion of private information.

1.1 The Motivation of Machine Unlearning

Machine unlearning (a.k.a. selectively forgetting, data deletion, or scrubbing) requires that the
samples and their influence can be completely and quickly removed from a training dataset and a
trained model [13-15]. Figure 1 illustrates an example of machine unlearning for a trained model.

Machine unlearning is not only motivated by regulations and laws; it also stems from the privacy
and security concerns of the data provider, as well as the requirement of model owners themselves.
In fact, removing the influence of outlier training samples from a model will lead to higher model
performance and robustness [16]. There are existing data protection techniques that are similar to
machine unlearning, but they differ in either objectives or rationales.

Here, we briefly discuss the main differences between current techniques and machine
unlearning.

e Differential Privacy. Differential privacy [17, 18] guarantees that by looking at a model
output, one cannot tell whether a sample is in the training dataset or not. This technique
ensures a subtle bound on the contribution of every sample to the final model [19, 20], but
machine unlearning is targeted on the removing of user-specific training samples.

e Data Masking. Data masking [21] is designed to hide sensitive information in the original
dataset. It transforms sensitive data to prevent them from being disclosed in unreliable en-
vironments [22]. In comparison, the objective of machine unlearning is to prevent a trained
model from leaking sensitive information about its training samples.

e Online Learning. Online learning [23] adjusts models quickly according to the data in a
feedback process, such that the model can reflect online changes in a timely manner. One
major difference between online learning and machine unlearning is that the former requires
a merge operation to incorporate updates, while machine unlearning is an inverse operation
that eliminates those updates when an unlearning request is received [24].

e Catastrophic forgetting. Catastrophic forgetting [25, 26] refers to a significant drop
in performance on previously learned tasks when a model is fine-tuned for a new task.
Catastrophic forgetting causes a deep network to lose accuracy, but the information of
the data it uses may still be accessible by analyzing the weights [27], therefore, it does not
satisfy the conditions required by machine unlearning.
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When users revoke permissions over some training data, it is not sufficient to merely remove
those data from the original training dataset, since the attackers can still reveal user information
from the trained models [28]. One straightforward approach to perfectly removing information
from the model is to retrain it from scratch (the retraining process in Figure 1). However, many
complex models have been built on an enormous set of samples. Retraining is generally a computa-
tionally expensive process [29, 30]. Moreover, in some specific learning scenarios, such as federated
learning [31, 32], the training dataset may not be accessible, and thus retraining cannot be con-
ducted at all. Therefore, to reduce the computational cost and make machine unlearning possible
in all circumstances, new techniques should be proposed (the unlearning process in Figure 1).

1.2 Contributions of This Survey

Machine unlearning has played an essential role in many applications [33, 34]. However, its imple-
mentation and verification strategies are still not fully explored. There are various concepts and
multiple verification schemes in this field, and the boundary between machine unlearning and
other techniques is vague. These phenomena motivate us to compile a comprehensive survey that
summarizes, analyzes, and categorizes machine unlearning techniques. In this survey, we aim to
find a clear way to present the ideas and concepts in machine unlearning, showing their character-
istics and highlighting their advantage. In addition, we propose a novel taxonomy for classifying
state-of-the-art literature. We hope this survey provides an in-depth overview to readers who wish
to know this field, and it also serves as a stepping-stone for advancing innovations and widening
research visions. The main contributions of this article are listed as follows:

e We proposed a novel taxonomy of current machine unlearning techniques based on their
rationale and unlearning strategy.

o We comprehensively summarized state-of-the-art unlearning methods based on the pro-
posed taxonomy, showing their benefits and shortcomings.

e We summarized the verification methods of machine unlearning within the taxonomy and
reviewed their implementations with related unlearning techniques.

e We provided critical and deep discussions on the open issues in machine unlearning and
pointed out possible further research directions.

1.3 Comparison to Existing Surveys in Machine Unlearning

There are some works that have been conducted to summarize machine unlearning. However, few
of them provide deep and comprehensive insight into current research. Here, we introduce some
relevant works for reference. Table 1 summarizes the comparison of those references.

e Thanh et al. [35] summarized the definitions of machine unlearning, the unlearning request
types, and different designing requirements. They also provided a taxonomy of the existing
unlearning schemes based on available models and data.

e Saurabh et al. [36] analyzed the problem of privacy leakage in machine learning and
briefly described how the “right-to-be-forgotten” can be implemented with the potential
approaches.

e Anvith et al. [37] discussed the semantics behind unlearning and reviewed existing unlearn-
ing schemes based on logits, weights, and weight distributions. They also briefly described
partial validation schemes of machine unlearning.

In addition to the difference in Table 1, this survey also differs from the above references in
several aspects. First, we provide a comprehensive analysis of each unlearning scheme together
with corresponding verification strategies, since the verification problem is an important metric
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Table 1. Comparison between Existing Machine Unlearning Surveys
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in future studies. This is the significant difference between the above reference, as existing works
have only reviewed the unlearning schemes used in each work. Second, each unlearning scheme
is reviewed and compared through several dimensions, such as whether original training data is
required, whether intermediate data needs to be cached, which classes and models are supported
for unlearning requests, and so on. In addition, we analyze the commonalities and problems within
each category in our taxonomy scheme, summarizing the trends, shortcomings, and potential so-
lutions, which have not been fully discussed in the above works [35-37].

Our work also involves multiple key areas of privacy preserving and optimization, covering
topics of differential privacy, data masking, convex optimization, and so on. In contrast, existing
surveys mainly focus on summarizing the methods employed in machine unlearning, ignoring
the relationship between unlearning strategy and verification technique. The most similar work
to ours is Reference [35], however, it elaborates more on the unlearning framework and its appli-
cation scenario, while we particularly emphasize unlearning strategy and verification. Moreover,
we explore the possible trends of machine unlearning and summarize the latest research progress
and possible techniques involved, including universality, security, and so on, and suggest several
specific research directions. Those are also not provided in the above references [35-37] in Table 1.

2 PRELIMINARIES
2.1 Definition of Machine Unlearning

Vectors are denoted as bold lowercase, e.g., x;, and space or set as italics in uppercase, e.g., X. A
general definition of machine learning is given based on a supervised learning setting. The instance
space is defined as X C RY, with the label space defined as Y C R. D = {(x;,y:)}-; € RY xR
represents a training dataset, in which each sample x; € X is a d-dimensional vector (x;, j)]‘il,
y; € Y is the corresponding label, and n is the size of D. Let d be the dimension of x; and let x; ;
denote the jth feature in the sample x;.

The purpose of machine learning is to build a model M with the parameters w € H based on a
specific training algorithm A(-), where H is the hypothesis space for w. In machine unlearning, let

D, C D be a subset of the training dataset, whose influence we want to remove from the trained
model. Let its complement D, = Z)L[,: = D /D, be the dataset that we want to retain, and let R(-)
and U (-) represent the retraining process and unlearning process, respectively. w, and w, donate
the parameters of the built models from those two processes. P(a) represents the distribution of
a variable a, and K (-) represents a measurement of the similarity of two distributions. When
considering K (-) as a Kullback-Leibler (KL) divergence, K (-) is defined by KL(P(a)||P(b)) :=
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Table 2. Notations

Notations Explanation Notations Explanation
X The instance space Yy The label space
D The training dataset D, The remaining dataset
Dy, The unlearning dataset X; One sample in D
i The label of sample x; n The size of D
X; The jth feature in x; d The dimension of x;
A() The learning process U(-) The unlearning process
R(-) The retraining process W The parameters of learned model
Wy The parameters of unlearned model W, The parameters of retrained model
P() The distribution function K(-) The distribution measurement
I(") The Shannon Mutual Information The hypothesis space for w
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Fig. 2. Machine unlearning and its ecosystem.

Eq~p(a)[log(P(a)/P(b))]. Given two random variables a and b, the amount of Shannon Mutual
Information that a has about b is defined as I(a; b). The main notations are summarized in Table 2.
Now, we give the definition of machine unlearning.

Definition 2.1 (Machine Unlearning [29]). Consider a cluster of samples that we want to re-
move from the training dataset and the trained model, denoted as ©,. An unlearning process
U(A(D), D, D,) is defined as a function from an trained model A (D), a training dataset D, and
an unlearning dataset D, to a model w,,, which ensures that the unlearned model w,, performs as
though it had never seen the unlearning dataset D,,.

Figure 2 presents the typical concept, unlearning targets, and desiderata associated with ma-
chine unlearning. The infrastructure techniques involved in machine unlearning include several
aspects, such as ensemble learning, convex optimization, and so on [38]. These technologies pro-
vide robust guarantees for different foundational unlearning requirements that consist of various
types of models and unlearning requests, resulting in diverse unlearning scenarios and correspond-
ing verification methods. Additionally, to ensure effectiveness, the unlearning process requires
different targets, such as exact unlearning or strong unlearning. Each unlearning target ensures
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Fig. 3. Targets of machine unlearning.

different similarities in the distribution of the parameters between the unlearned model and that
of the retrained model. Machine unlearning also involves several unlearning desiderata, including
consistency, accuracy, and verifiability. Those desiderata, with the target constraint, simultane-
ously guarantee the validity and feasibility of each unlearning scheme.

2.2 Targets of Machine Unlearning

The ultimate target of machine unlearning is to reproduce a model that (1) behaves as if trained
without seeing the unlearned data and (2) consumes as less time as possible. The performance
baseline of an unlearned model is that of the model retrained from scratch (a.k.a., native retraining).

Definition 2.2 (Native Retraining [29]). Supposing the learning process, A(-), never sees the un-
learning dataset O, and thereby performs a retraining process on the remaining dataset, denoted
as O, = D\D,,. In this manner, the retraining process is defined as:

w, = A(D\D,). (1)

The naive retraining naturally ensures that any information about samples can be unlearned
from both the training dataset and the already-trained model. However, the computational and
time overhead associated with the retraining process could be significantly expensive. Further, a
retraining process is not always possible if the training dataset is inaccessible, such as federated
learning [39]. Therefore, two alternative unlearning targets have been proposed: exact unlearning
and approximate unlearning.

Exact unlearning guarantees that the distribution of an unlearned model and a retrained model
are indistinguishable. In comparison, approximate unlearning mitigates the indistinguishability
in weights and final activation, respectively. In practice, approximate unlearning further evolves
to strong and weak unlearning strategies. Figure 3 illustrates the targets of machine unlearning
and their relationship with a trained model. The different targets, in essence, correspond to the
requirement of unlearning results.

Definition 2.3 (Exact Unlearning [40]). Given a distribution measurement % (-), such as KL-
divergence, the unlearning process U (-) will provide an exact unlearning target if

KP(UAD), D, Du)), P(A(D\Du))) = 0, @

where P(-) denotes the distribution of the weights.
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Table 3. Summary and Comparison of Difference between Targets

Tartgets Aims Advantages Limitations
To make the distributions  Ensures that attackers
. of a natively retrained cannot recover any . .
B e model and an unlearned information from the eI St
model indistinguishable unlearned model
T.O cnsure that the . . Attackers can still
. distributions of two Easier to implement . .
Strong Unlearning ) . recover some information
models are approximately  than exact unlearning
Lo from the unlearned model
indistinguishable
To only ensure that Cannot guarantee
. the distributions of The easiest target for ~ whether the internal
Weak Unlearning R . .
two final activations machine unlearning parameters of the model
are indistinguishable are successfully unlearned

Exact unlearning guarantees the two output distributions are indistinguishable, thus preventing
an observer (e.g., attacker) to exact any information about D,,.

However, a less strict unlearning target is necessary, because exact unlearning can only be
achieved for simple and well-structured models [24]. As a result, approximate unlearning, which
is suitable to complex machine learning models, is proposed.

Definition 2.4 (Approximate Unlearning [37]). If K (P(U (A(D), D, D,)), P(A(D\D,))) is lim-
ited within a tolerable threshold, then the unlearning process U (-) is defined as strong unlearning.

Approximate unlearning ensures that the distribution of the unlearned model and that of a
retrained model are approximately indistinguishable. This approximation is usually guaranteed
by differential privacy techniques, such as (¢, §)-certified unlearning [41, 42].

Depending on how the distribution is estimated, approximate unlearning can be further clas-
sified into strong unlearning and weak unlearning. Strong unlearning is established based on the
similarity between the internal parameter distributions of the models, while weak unlearning is
based on the distribution of the model’s final activation results [42, 43].

Table 3 summarizes the main differences between each unlearning target.

2.3 Desiderata of Machine Unlearning

To fairly and accurately assess the efficiency and effectiveness of unlearning approaches, there are
some mathematical properties that can be used for evaluation.

Definition 2.5 (Consistency). Assume there is a set of samples X,, with the true labels Y,
vi,vs....,yp}t. Let Yy, = {yl,y7,...,yn} and Yy, = {yf,vy,...,yy} be the predicted labels pro-
duced from a retrained model and an unlearned model, respectively. If all y* = y¥,1 < i < n, then
the unlearning process U (A(D), D, D,) is considered to provide the consistency property.

Consistency denotes how similar the behavior of a retrained model and an unlearned model
is. It represents whether the unlearning strategy can effectively remove all the information of the
unlearning dataset D,,. If, for every sample, the unlearned model gives the same prediction result
as the retrained model, then an attacker has no way to infer information about the unlearned data.

Definition 2.6 (Accuracy). Given a set of samples X, in remaining dataset, where their true labels
are Y, : {yf,y5,...,yp}. Let Yy, : {y{,y;,...,y,) to denote the predicted labels produced by the
model after the unlearning process, w, = U (A(D), D, D,,). The unlearning process is considered
to provide the accuracy property ifall y;' = y{,1 <i < n.
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Fig. 4. Taxonomy of unlearning and verification mechanisms.

Accuracy refers to the ability of the unlearned model to predict samples correctly. It reveals the
usability of a model after the unlearning process, given that a model with low accuracy is useless in
practice. Accuracy is a key component of any unlearning mechanism, as we claim the unlearning
mechanism is ineffective if the process significantly undermines the original model’s accuracy.

Definition 2.7 (Verifiability). After the unlearning process, a verification function V (-) can make
a distinguishable check, that is, V(A(D)) # V(U(A(D),D,D,)). The unlearning process
U(AD), D, D,) can then provide a verifiability property.

Verifiability can be used to measure whether a model provider has successfully unlearned the
requested unlearning dataset ,,. Taking the following backdoor verification method as an exam-
ple [44], if the pre-injected backdoor for an unlearned sample x, is verified as existing in A (D)
but not U (A(D), D, D,,), thatis V(A(D)) = true and V(U (A(D), D, D,)) = false, then the
unlearning method U (A(D), D, D,,) can be deemed to provide verifiability property.

3 TAXONOMY OF UNLEARNING AND VERIFICATION MECHANISMS

Figure 4 summarizes the general taxonomy of machine unlearning and its verification used in
this article. The taxonomy is inspired by the design details of the unlearning strategy. Unlearning
approaches that concentrate on modifying the training data are classified in data reorganization,
while methods that directly manipulate the weights of a trained model are denoted as model manip-
ulation. As for verification methods, initially, we categorize those schemes as either experimental
or theoretical; subsequently, we summarize these methods based on the metrics they use.

3.1 Unlearning Taxonomy

3.1.1 Data Reorganization. Data reorganization refers to the technique that a model provider
unlearns data by reorganizing the training dataset. It mainly includes three different processing
methods according to the different data reorganization modes: obfuscation, pruning, and replace-
ment [30, 45]. Table 4 compares and summarizes the differences between these schemes.

e Data obfuscation: In data obfuscation, model providers intentionally add some chore-
ographed data to the remaining dataset, that is, Dpevy < Dy U Dypr, where Dyery and Do s
are the new training dataset and the choreographed data, respectively. The trained model is
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then fine-tuned based on D, to unlearn some specific samples. Such methods are usually
based on the idea of erasing information about 9, by recombining the dataset with chore-
ographed data. For example, Graves et al. [45] relabeled D,, with randomly selected incorrect
labels and then fine-tuned the trained model for several iterations for unlearning data.

e Data pruning: In data pruning, the model provider first segments the training dataset into
several sub-datasets and trains several sub-models based on each sub-dataset. Those sub-
models are then used to aggregate a consensus prediction collaboratively, that is, D —
D1UD, U UDy,, w; = A(D;) and f(x) = Agg(My,(x)), where D;, 0 < i < m are
the sub-datasets, and ND; = @, UD; = D, m is the number of sub-dataset, w; is the sub-
model, and Agg(-) is the aggregation function. After an unlearning request arrives, the model
provider deletes the unlearned samples from the sub-datasets that contain them and then re-
trains the affected sub-models. The flexibility of this methodology is that the influence of un-
learning dataset D, is limited to each sub-dataset after segmentation rather than the whole
dataset. Taking the SISA scheme in Reference [30] as an example, the SISA framework first
randomly divided the training dataset into k shards. A series of models are then trained sep-
arately at one per shard. When a sample needs to be unlearned, it is first removed from the
shards that contain it, and only the sub-models corresponding to those shards are retrained.

e Data replacement: In data replacement, the model provider deliberately replaces the training
dataset D with some new transformed dataset, that is, D;yqns — D. The transformed
dataset Dy, qps is then used to train a model that makes it easy to implement unlearning
after receiving an unlearning request. For example, Cao et al. [29] replaced the training
dataset with several efficiently computable transformations and used those transformations
to complete the training of the model. Those transformations can be updated much
more quickly after removing any samples from the transformed dataset. Consequently,
computational overheads are reduced, and unlearning operations are more efficient.

3.1.2  Model Manipulation. In model manipulation, the model provider aims to realize unlearn-
ing operations by adjusting the model’s parameters. Model manipulation mainly includes the fol-
lowing three categories. Table 4 compares and summarizes the differences between these schemes.

e Model shifting: In model shifting, the model providers directly update the model parameters
to offset the impact of unlearned samples on the model, that is, w,, = w + §, where w are
parameters of the originally trained model, and § is the updated value. These methods are
usually based on the idea of calculating the influence of samples on the model parameters
and then updating the model parameters to remove that influence. It is usually extremely
difficult to accurately calculate a sample’s influence on a model’s parameters, especially with
complex deep neural models. Therefore, many model shifting-based unlearning schemes
are based on specific assumptions. For example, Guo et al’s [41] unlearning algorithms are
designed for linear models with strongly convex regularization.

e Model replacement: In model replacement, the model provider directly replaces some pa-
rameters with pre-calculated parameters, that is, W, < Wpoefrect U Wpre, where wy, are
parameters of the unlearned model, W ¢ fec: are partially unaffected static parameters, and
Wy are the pre-calculated parameters. These methods usually depend on a specific model
structure to predict and calculate the affected parameters in advance. They are only suitable
for some special machine learning models, such as decision trees or random forest models.
Taking the method in Reference [57] as an example, the affected intermediate decision nodes
are replaced based on pre-calculated decision nodes to generate an unlearned model.

e Model pruning: In model pruning, the model provider prunes some parameters from
the trained models to unlearn the given samples, that is, w,, < w/§, where w, are the
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Table 4. Summary and Comparison of Differences between Unlearning Schemes
Schemes Basic Ideas Advantages Limitations
Intentionally adds e(;l;rirrllots)f ;Il)rt)hegstg ¢
Data some choreographed P Not easy to completely
. models; not too much . .
Obfuscation dataset to the intermediate redundant unlearn information
[27, 45, 46] training dataset and from models
. data need to be
retrains the model .
retained
g Deletes the unlearned P
< samples from sub-datasets . . orag
8 Data . Easy to implement and space is required;
g . that contain those
g Pruning understand; completes accuracy can be
o unlearned samples. . .
I3 [29, 30, 47] . the unlearning process decreased with an
< Then only retrains the . .
[~ [48-50] at a faster speed increase in the
I sub-models that are affected
= number of sub-datasets
A by those samples
Deliberately replaces Supports completely Hard to retain all
Data .. . . . .
the training dataset unlearn information the information about
Replacement . ..
[29] with some new from models; easy to the original dataset
transformed dataset implement through replacement
Model Directly updates Does not require ;\Iri);eai}; t;)iftreli et
Shifting model parameters too much intermediate PPTOp
. value for complex
[24, 45] to offset the impact parameter storage; .
X . models; calculating
[40, 41, 51] of unlearned samples can provide theoretical .
. . offset value is
o [42, 43, 52, 53] on the model verification
g usually complex
3 . Reduces the cost .
2 Model Replaces part{al caused by intermediate OnIY applicable to
| . parameters with . . partial models; not
S Pruning re-calculated storage; the unlearning easy to implement
= [54-56] P process can be completed Y P
= parameters and understand
= at a faster speed
§ Only applicable to
Model Prunes some parameters Easy to completely partl:?l machine
. i . learning models;
Replacement from already-trained unlearn information original model
[57-60] models from models 8

structure is usually
changed

parameters of the unlearned model, w are the parameters of the trained model, and § are
the parameters that need to be removed. Such unlearning schemes are also usually based on
specific model structures and are generally accompanied by a fine-tuning process to recover
performance after the model is pruned. For example, Wang et al. [55] introduced the term
frequency-inverse document frequency (TF-IDF) to quantize the class discrimination
of channels in a convolutional neural network model, where channels with high TF-IDF

scores are pruned.

3.2 Verification Mechanisms

Verifying whether the unlearning method has the verifiability property is not an easy task. Model
providers may claim externally that they remove those influences from their models, but, in
reality, this is not the case [48]. For data providers, proving that the model provider has completed
the unlearning process may also be tricky, especially for complex deep models with huge training
datasets. Removing a small portion of samples only causes a negligible effect on the model. More-
over, even if the unlearned samples have indeed been removed, the model still has a great chance
of making a correct prediction, since other users may have provided similar samples. Therefore,
providing a reasonable unlearning verification mechanism is a topic worthy of further research.
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3.2.1  Empirical Evaluation.

e Retraining-based verification: Retraining can naturally provide a verifiability property,
since the retraining dataset no longer contains the samples that need to be unlearned. This
is the most intuitive and easy-to-understand solution.

o Attack-based verification: The essential purpose of an unlearning operation is to reduce
leaks of sensitive information caused by model over-fitting. Hence, some attack methods can
directly and effectively verify unlearning operations—for example, membership inference at-
tacks [5] and model inversion attacks [4]. In addition, Sommer et al. [44] provided a novel
backdoor verification mechanism from an individual user perspective in the context of ma-
chine learning as a service (MLaaS) [61]. This approach can verify, with high confidence,
whether the service provider complies with the user’s right to unlearn information.

e Relearning time-based verification: Relearning time can be used to measure the amount
of information remaining in the model about the unlearned samples. If the model quickly
recovers performance as the original trained model with little retraining time, then it is likely
to still remember some information about the unlearned samples [27].

e Accuracy-based verification: A trained model usually has high prediction accuracy for the
samples in the training dataset. This means the unlearning process can be verified by the
accuracy of a model’s output. For the data that need to be unlearned, the accuracy should
ideally be the same as a model trained without seeing D, [40]. In addition, if a model’s
accuracy after being attacked can be restored after unlearning the adversarial data, then we
can also claim that the unlearning is verified.

3.2.2 Theoretical Calculation.

e Theory-based verification: Some methods provide a certified unlearning definition [41,
53], which ensures that the unlearned model cannot be distinguished from a model trained
on the remaining dataset from scratch. This could also provide a verification method that
directly guarantees the proposed schemes can unlearn samples.

e Information bound-based verification: Golatkar et al. [40, 43] devised a new metric for
verifying the effectiveness of unlearning schemes, where they measured the upper bound of
the residual information about samples that need to be unlearned. Less residual information
represents a more effective unlearning operation.

Table 5 summarizes and compares each verification method’s advantages and limitations.

4 DATA REORGANIZATION

In this section, we review how data reorganization methods support the unlearning process. Since
proving the verifiability property of unlearning algorithms is also important and should be con-
sidered in machine unlearning research, we separately discuss it for each unlearning method.

4.1 Reorganization Based on Data Obfuscation

4.1.1  Unlearning Schemes Based on Data Obfuscation. In general, the majority of model attack
scenarios, such as membership inference attacks, arise from model overfitting and rely on observ-
ing shifts in the output based on known input shifts [62]. That is, for the vast majority of attackers,
it is easy to perform an attack on some trained models by observing the shifts of the output con-
fidence vectors. One optional machine unlearning scheme can be interpreted as confusing the
model’s understanding of samples so it cannot retain any correct information within models. This
method can further confuse the confidence vector of the model’s output [46]. As shown in Figure 5,
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Table 5. Summary and Comparison of Different Verification Methods

Methods Basic Ideas Advantages Limitations
Removes unlearned Tntnitive and Only applicable to
Retraining-based = samples and retrains special unlearning
easy to understand
models schemes

Based on membership -,
. Intuitively measures
inference attacks or

Attack-based the defense effect Inadequate verification

model inversion against some attacks capability

attacks

Measures the time when
Relearn the unlearned model Easy to understand and  Inadequate verification
time-based regains performance easy to implement capability

on unlearned samples

Same as a model trained Easy to understand and  Inadequate verification
Accuracy-based . . o

without unlearned samples  easy to implement capability

Ensures similarity Implementation is

between the unlearned Comprehensive and complex and only
Theory-based . . :

model and the retrained has theoretical support  applies to some

model. specified models

. Measures.the upper-bound . Hard to implement and

Information of the residual Comprehensive and has onlv applicable to some
bound-based information about the theoretical support Y app
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Request

Fig. 5. Unlearning schemes based on data obfuscation.

when receiving an unlearning request, the model continues to train w based on the constructed
obfuscation data D¢ giving rise to an updated w,.

In this vein, Graves et al. [45] proposed a random relabel and retraining machine unlearning
framework. Sensitive samples are relabeled with randomly selected incorrect labels, and then the
machine learning model is fine-tuned based on the modified dataset for several iterations to un-
learn those specific samples. Similarly, Felps et al. [46] intentionally poisoned the labels of the
unlearning dataset and then fine-tuned the model based on the new poisoned dataset. However,
such unlearning schemes only confuse the relationship between the model outputs and the sam-
ples; the model parameters may still contain information about each sample.

The trained model is always trained by minimizing the loss for all classes. If one can learn a kind
of noise that only maximizes the loss for some classes, then those classes can be unlearned. Based
on this idea, Tarrun et al. [27] divided the unlearning process into two steps, impair and repair.
In the first step, an error-maximizing noise matrix is learned that consists of highly influential
samples corresponding to the unlearning class. The effect of the noise matrix is somehow the
opposite of the unlearning data and can destroy the information of unlearned data to unlearn
single/multiple classes. To repair the performance degradation caused by the model unlearning
process, the repair step further adjusted the model based on the remaining data.
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Fig. 6. Unlearning schemes based on data pruning.

Similarly, Zhang et al. [63] considered the unlearning request in the image retrieval field. The
approach developed involves creating noisy data using a generative method to adjust the weights
of the retrieval model and achieve the unlearning purposes. They also proposed a new learning
framework, which includes both static and dynamic learning branches, ensuring that the generated
noisy data only affects the unlearning data being forgotten without affecting the contribution of
other remaining data. However, the above two schemes consume more time to generate noise for
unlearning process, which will affect the efficiency of the unlearning process [27, 63].

4.1.2  Verifiability of Schemes Based on Data Obfuscation. To verify their unlearning process,
Graves et al. [45] used two state-of-the-art attack methods—a model inversion attack and a mem-
bership inference attack—to evaluate how much information was retained in the model parameters
about specific samples after the unlearning process—in other words, how much information might
be leaked after the unlearning process. Their model inversion attack is a modified version of the
standard model inversion attack proposed by Fredrikson et al. [6]. The three modifications include:
adjusting the process function to every n gradient descent steps; adding a small amount of noise
to each feature before each inversion; and modifying the number of attack iterations performed.
These adjustments allowed them to analyze complex models. For the membership inference attack,
they used the method outlined by Yeom et al. in Reference [64]. Felps et al’s verifiability analysis
is also based on the membership inference attack [46].

In comparison, Tarrun et al. [27] evaluated the verifiability through several measurements. They
first assessed relearning time by measuring the number of epochs for the unlearned model to reach
the same accuracy as the originally trained model. Then, the distance between the original model,
the model after the unlearning process, and the retrained model are further evaluated.

4.2 Reorganization Based on Data Pruning

4.2.1  Unlearning Schemes Based on Data Pruning. As shown in Figure 6, unlearning schemes
based on data pruning are usually based on ensemble learning techniques. Bourtoule et al. [30]
proposed a “sharded, isolated, sliced, and aggregated” (SISA) framework, similar to the current
distributed training strategies [65, 66], as a method of machine unlearning. With this approach,
the training dataset O is first partitioned into k disjoint shards Dy, D,, . . ., D. Then, sub-models
Miv, M,ZA,, e, M‘Ij, are trained in isolation on each of these shards, which limits the influence of the
samples to sub-models that were trained on the shards containing those samples. At inference time,
k individual predictions from each sub-model are simply aggregated to provide a global prediction
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(e.g., with majority voting), similar to the case of machine learning ensembles [67]. When the
model owner receives a request to unlearn a data sample, they just need to retrain the sub-models
whose shards contain that sample.

As the amount of unlearning data increases, SISA will cause degradation in model performance,
making them only suitable for small-scale scenarios. The cost of these unlearning schemes is the
time required to retrain the affected sub-models, which directly relates to the size of the shard.
The smaller the shard, the lower the cost of the unlearning scheme. At the same time, there is less
training dataset for each sub-model, which will indirectly degrade the ensemble model’s accuracy.
Bourtoule et al. [30] provided three key technologies to alleviate this problem, including unlearning
in the absence of isolation, data replication, and core-set selection.

In addition to this scheme, Chen et al. [33] introduced the method developed in Reference [30]
to recommendation systems and designed three novel data partition algorithms to divide the rec-
ommendation training data into balanced groups to ensure that collaborative information was
retained. Wei et al. [68] focused on the unlearning problems in patient similarity learning and
proposed PatEraser. To maintain the comparison information between patients, they developed a
new data partition strategy that groups patients with similar characteristics into multiple shards.
Additionally, they proposed a novel aggregation strategy to improve the global model utility.

Yan et al. [69] designed an efficient architecture for exact machine unlearning called ARCANE,
similar to the scheme in Bourtoule et al. [30]. Instead of dividing the dataset uniformly, they split it
by class and utilized the one-class classifier to reduce the accuracy loss. Additionally, they prepro-
cessed each sub-dataset to speed up model retraining, which involved representative data selec-
tion, model training state saving, and data sorting by erasure probability. Nevertheless, the above
unlearning schemes [30, 33, 69] usually need to cache a large number of intermediate results to
complete the unlearning process. This will consume a lot of storage space.

SISA is designed to analyze Euclidean space data, such as images and text, rather than
non-Euclidean space data, such as graphs. By now, numerous important real-world datasets are
represented in the form of graphs, such as social networks [70], financial networks [71], biological
networks [72], or transportation networks [73]. To analyze the rich information in these graphs,
graph neural networks (GNNs) have shown unprecedented advantages [74, 75]. GNNs rely
on the graph’s structural information and neighboring node features. Yet, naively applying SISA
scheme to GNNs for unlearning, i.e., randomly partitioning the training dataset into multiple
sub-graphs, will destroy the training graph’s structure and may severely damage the model’s
utility.

To allow efficient retraining while keeping the structural information of the graph dataset, Chen
et al. [47] proposed GraphEraser, a novel machine unlearning scheme tailored to graph data. They
first defined two common machine unlearning requests in graph scenario—node unlearning and
edge unlearning—and proposed a general pipeline for graph unlearning, which is composed of
three main steps: graph partitioning, shard model training, and shard model aggravation. In the
graph partitioning step, they introduced an improved balanced label propagation algorithm
(LPA) [76] and a balanced embedding k-means [77] partitioning strategy to avoid highly unbal-
anced shard sizes. Given that the different sub-models might provide different contributions to the
final prediction, they also proposed a learning-based aggregation method, OptAggr, that optimizes
the importance score of each sub-model to improve global model utility ultimately.

Deterministic unlearning schemes, such as SISA [30] or GraphEraser [47], promise nothing
about what can be learned about specific samples from the difference between a trained model
and an unlearned model. This could exacerbate user privacy issues if an attacker has access to the
model before and after the unlearning operation [78]. To avoid this situation, an effective approach
is to hide the information about the unlearned model when performing the unlearning operation.
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In practical applications, Neel et al. [50] proposed an update-based unlearning method that
performs several gradient descent updates to build an unlearned model. The method is designed
to handle arbitrarily long sequences of unlearning requests with stable runtime and steady-state
errors. In addition, to alleviate the above unlearning problem, they introduced the concept of secret
state: An unlearning operation is first performed on the trained model. Then, the unlearned models
are perturbed by adding Gaussian noise for publication. This effectively ensures that an attacker
cannot access the unlearned model actually after the unlearning operation, which effectively hides
any sensitive information in the unlearned model. They also provided an (¢, §)-certified unlearning
guarantee and leveraged a distributed optimization algorithm and reservoir sampling to grant
improved accuracy/runtime tradeoffs for sufficiently high dimensional data.

After the initial model deployment, data providers may make an adaptive unlearning decision.
For example, when a security researcher releases a new model attack method that identifies a spe-
cific subset of the training dataset, the owners of these subsets may rapidly increase the number
of deletion requests. Gupta et al. [49] define the above unlearning requests as adaptive requests
and propose an adaptive sequential machine unlearning method using a variant of the SISA frame-
work [30] as well as a differentially private aggregation method [79]. They give a general reduction
of the unlearning guarantees from the adaptive sequences to the non-adaptive sequences using
differential privacy and max-information theory [80]. A strong provable unlearning guarantee for
adaptive unlearning sequences is also provided, combined with the previous works of non-adaptive
guarantees for sequence unlearning requests.

He et al. [48] developed an unlearning approach for the deep learning model. They first in-
troduce a process called detrended fluctuation analysis [81], which quantifies the influence of the
unlearned data on the model parameters, termed temporal residual memory. They observed that
this influence is subject to exponential decay, which fades at an increasing rate over time. Based on
these results, intermediate models are retained during the training process and divided into four ar-
eas, named unseen, deleted, affected, and unaffected. Unseen indicates that the unlearned sample has
not yet arrived. Deleted includes the unlearning dataset. Unaffected and affected indicate whether
temporal residual memory has lapsed or not. An unlearned model can be stitched by reusing the
unseen and unaffected models and retraining the affected areas. However, this scheme does not
provide any theoretical verification methods to ensure that the information about unlearning data
to be unlearned is indeed removed from the model.

4.2.2  Verifiability of Schemes Based on Data Pruning. The unlearning schemes proposed in Ref-
erences [29, 30, 33, 47, 68, 69] are essentially based on a retraining mechanism that naturally has
a verifiability property. As discussed in Section 2.3, a straightforward way to give an unlearning
scheme the verifiability property is to retrain the model from scratch after removing the samples
that need to be unlearned from the training dataset. The above schemes introduce distributed and
ensemble learning techniques, which train sub-models separately and independently to optimize
the loss function on each sub-dataset. The sub-models are then aggregated to make predictions. In
terms of the unlearning process, only the affected sub-models are retrained, which avoids a large
computational and time overhead and also provides a verifiability guarantee.

He et al. [48] use a backdoor verification method in Reference [44] to verify their unlearning
process. They designed a specially crafted trigger and implanted this “backdoor data” in the sam-
ples that need to be unlearned, with little effect on the model’s accuracy. They indirectly verify the
validity of the unlearning process based on whether the backdoor data can be used to attack the
unlearned model with a high success rate. If the attack result has lower accuracy, then it proves
that the proposed unlearning method has removed the unlearned data. The other studies [49, 50]
did not provide a method for verifying the unlearning process.
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Fig. 7. Unlearning schemes based on data replacement.

4.3 Reorganization Based on Data Replacement

4.3.1 Unlearning Schemes Based on Data Replacement. As shown in Figure 7, when training
a model in a data replacement scheme, the first step is usually to transform the training dataset
into an easily unlearned type, named transformation 7. Those transformations are then used to
separately train models. When an unlearning request arrives, only a portion of the transformations
t;—the ones that contain the unlearned samples—need to be updated and used to retrain each sub-
model to complete the machine unlearning.

Inspired by the previous work of using MapReduce to accelerate machine learning algo-
rithms [82], Cao et al. [29] proposed a machine unlearning method that transforms the training
dataset into summation form. Each summation is the sum of some efficiently computable
transformation. The learning algorithms depend only on the summations, not the individual
data, which breaks down the dependencies in the training dataset. To unlearn a data sample, the
model provider only needs to update the summations affected by this sample and recompute the
model. However, since the summation form comes from statistical query (SQ) learning, and
only a few machine learning algorithms can be implemented as SQ learning, such as naive bayes
classifiers [83], support vector machines [84], and k-means clustering [85], this scheme has low
applicability.

Takashi et al. [86] proposed a novel approach to lifelong learning named “Learning with
Selective Forgetting,” which involves updating a model for a new task by only forgetting specific
classes from previous tasks while keeping the rest. To achieve this, the authors designed specific
mnemonic codes, which are class-specific synthetic signals that are added to all the training
samples of corresponding classes. Then, exploiting the mechanism of catastrophic forgetting,
these codes were used to forget particular classes without requiring the original data. It is worth
noting, however, that this scheme lacks any theoretical verification methods to confirm that the
unlearning data information has been successfully removed from the model.

4.3.2  Verifiability of Schemes Based on Data Replacement. Cao et al. [29] provide an accuracy-
based verification method. Specifically, they attack the LensKit model with the system inference
attack method proposed by Calandrino et al. [87] and verify that the unlearning operations
successfully prevent the attack from yielding any information. For the other three models, they
first performed data pollution attacks to influence the accuracy of those models. They then
analyzed whether the model’s performance after the unlearning process was restored to the
same state as before the pollution attacks. If the unlearned model was actually restored to its
pre-pollution value, then the unlearning operation was considered to be successful. Takashi et
al. [86] provided a new metric, named Learning with Selective Forgetting Measure (LSFM),
that is based on the idea of accuracy.
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4.4 Summary of Data Reorganization

In these last few subsections, we reviewed the studies that use data obfuscation, data pruning, and
data replacement techniques as unlearning methods. A summary of the surveyed studies is shown
in Table 6, where we present the key differences between each paper.

From those summaries, we can see that most unlearning algorithms retain intermediate pa-
rameters and make use of the original training dataset [30, 47]. This is because those schemes
usually segment the original training dataset and retrain the sub-models that were trained on the
segments containing those unlearned samples. Consequently, the influence of specific samples is
limited to only some of the sub-models and, in turn, the time taken to actually unlearn the samples
is reduced. However, segmenting decreases time at the cost of additional storage. Thus, it would
be well worth researching more efficient unlearning mechanisms that ensure the validity of the
unlearning process and do not add too many storage costs simultaneously.

Moreover, these unlearning schemes usually support various unlearning requests and models,
ranging from samples to classes or sequences and from support vector machines to complex deep
neural models [29, 47, 50]. Unlearning schemes based on data reorganization rarely operate on
the model directly. Instead, they achieve the unlearning purpose by modifying the distribution of
the original training datasets and indirectly changing the obtained model. The benefit is that such
techniques can be applied to more complex machine learning models. In addition to their high
applicability, most of them can provide a strong unlearning guarantee, that is, the distribution of
the unlearned model is approximately indistinguishable to that obtained by retraining.

It is worth pointing out that unlearning methods based on data reorganization will affect the
consistency and the accuracy of the model as the unlearning process continues [30, 47, 48]. This
reduction in accuracy stems from the fact that each sub-model is trained on the part of the dataset
rather than the entire training dataset. This phenomenon does not guarantee that the accuracy of
the unlearned model is the same as the result before the segmentation. Potential solutions are to
use unlearning in the absence of isolation, data replication [30].

Some of the studies mentioned indirectly verify the unlearning process using a retraining
method [30, 47], while others provide verifiability through attack-based or accuracy-based meth-
ods [27, 45, 46]. However, most unlearning schemes do not present further investigations at the
theoretical level. The vast majority of the above unlearning schemes verify validity through ex-
periments, with no support for the theoretical validity of the schemes. Theoretical validity would
show, for example, how much sensitive information attackers can glean from an unlearned model
after unlearning process or how similar the parameters of the unlearned model are to the retrained
model. Further theoretical research into the validity of unlearning schemes is therefore required.

In summary, when faced with unlearning requests for complex models, unlearning schemes
based on data obfuscation seldom unlearn information. This is because it is difficult to offset the
influence of the unlearning data completely. Data pruning schemes always affect the model’s ac-
curacy, since they usually train sub-models using a partial training dataset. For data replacement
schemes, it is impossible to find a new dataset that can replace all the information within an orig-
inal dataset to train a model. Thus, researchers should turn to design unlearning schemes that
strike more of a balance between the effectiveness of the unlearning process and model usability.

5 MODEL MANIPULATION

The model training stage involves creating an effective model replicating the expected relationship
between the inputs in the training dataset and the model’s outputs. Thus, manipulating the model
directly to remove specific relationships may be a good way to unlearn samples. In this section, we
comprehensively review the state-of-the-art studies on unlearning through model manipulation.
Again, the verification techniques are discussed separately for each category.
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Fig. 8. Unlearning schemes based on model shifting.

5.1 Manipulation Based on Model Shifting

5.1.1 Unlearning Schemes Based on Model Shifting. As shown in Figure 8, model-shifting meth-
ods usually eliminate the influence of unlearning data by directly updating the model parameters.
These methods mainly fall into one of two types—influence unlearning and Fisher unlearning—but
there are a few other methods.

(1) Influence unlearning methods

Influence unlearning methods are usually based on influence theory [38]. Guo et al. [41] pro-
posed a novel unlearning scheme called certified removal. Inspired by differential privacy [88],
certified removal first limits the maximum difference between the unlearned and retrained models.
Then, by applying a single step of Newton’s method on the model parameters, a certified removal
mechanism is provided for practical applications of L,— regularized linear models that are trained
using a differentiable convex loss function. Additionally, the training loss is perturbed with a loss
perturbation technique that hides the gradient residual. This further prevents any adversaries from
extracting information from the unlearned model. It is worth noting, however, that this solution
is only applicable to simple machine learning models, such as linear models, or only adjusts the
linear decision-making layer for deep neural networks, which does not eliminate the information
of the removed data sample, since the representations are still learned within the model.

Izzo et al. [51] proposed an unlearning method based on a gradient update called projection
residual update (PRU). The method focuses on linear regression and shows how to improve the
algorithm’s runtime given in Reference [41] from quadratic complexity to linear complexity. The
unlearning intuition is as follows: If one can calculate the values ;,, = wy(x;,, ), predicted by the
unlearned model on each of the unlearned samples x;,, in D, without knowing w,, and then min-
imize the loss of already-trained model on the synthetic samples (x;,, ,7;), then the parameters
will move closer to w,,, since it will achieve the minimum loss with samples (x;,, . Ji,, ). To cal-
culate the values 7;,, without knowing w,, they introduced a statistics technique and computed
leave-one-out residuals. Similar to the above, this method only considers the unlearning process
in simple models.

Information leaks may not only manifest in a single data sample but also in groups of features
and labels [53]. For example, a user’s private data, such as their telephone number and place
of residence, are collected by data providers multiple times and generated as different samples of
the training dataset. Therefore, unlearning operations should also focus on unlearning a group of
features and corresponding labels.

To solve such problems, Warnecke et al. [53] proposed a certified unlearning scheme for un-
learning features and labels. By reformulating the influence estimation of samples on the already-
trained models as a form of unlearning, they derived a versatile approach that maps changes of
the training dataset in retrospection to closed-form updates of the model parameters. They then
proposed different unlearning methods based on first-order and second-order gradient updates for
two different types of machine learning models. For the first-order update, the parameters were
updated based on the difference between the gradient of the original and the perturbed samples.
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For the second-order update, they approximated an inverse Hessian matrix based on the scheme
proposed in Reference [89] and updated the model parameters based on this approximate ma-
trix. Theoretical guarantees were also provided for feature and label unlearning by extending the
concept of differential privacy [88] and certified unlearning [41]. However, this solution is only
suitable for feature unlearning from tabular data and does not provide any effective solution for
image features.

(2) Fisher unlearning method

The second type of model-shifting technique uses the Fisher information [90] of the remaining
dataset to unlearn specific samples, with noise injected to optimize the shifting effect. Golatkar
et al. [40] proposed a weight scrubbing method to unlearn information about a particular class as
a whole or a subset of samples within a class. They first give a computable upper bound to the
amount of the information retained about the unlearning dataset after applying the unlearning
procedure, which is based on the Kullback-Leibler (KL) divergence and Shannon mutual infor-
mation. Then, an optimal quadratic unlearning algorithm based on a Newton update and a more
robust unlearning procedure based on a noisy Newton update were proposed. Both schemes can
ensure that a cohort can be unlearned while maintaining good accuracy for the remaining samples.
However, this unlearning scheme is based on various assumptions, which limits its applicability.

For deep learning models, bounding the information that can be extracted from the perspective
of weight or weight distribution is usually complex and may be too restrictive. Deep networks
have a large number of equivalent solutions in the distribution space, which will provide the same
activation on all test samples [43]. Therefore, many schemes have redirected unlearning operations
from focusing on the weights to focus on the final activation.

Unlike their previous work, Golatkar et al. [43] provide bounds for how much information can be
extracted from the final activation. They first transformed the bounding from a weight perspective
to final activation based on Shannon mutual information and proposed a computable bound using
the KL-divergence between the distribution of final activation of an unlearned model and retrained
model. Inspired by the neural tangent kernel (NTK) [91, 92], they considered that deep network
activations can be approximated as a linear function of the weights. Hence, an optimal unlearning
procedure is then provided based on a Fisher information matrix. However, due to the specific
structure of deep neural networks, considering unlearning process only in the final activation layer
may not satisfy the effectiveness of unlearning. Once an attacker obtains all model parameters in
a white-box scenario, they can still infer information from the middle layers.

Golatkar et al. [52] also proposed a mix-privacy unlearning scheme based on a new mixed-
privacy training process. This new training process assumes the traditional training dataset can
be divided into two parts: core data and user data. Model training on the core data is non-convex,
and then further training, based on the quadratic loss function, is done with the user data to meet
the needs of specific user tasks. Based on this assumption, unlearning operations on the user data
can be well executed based on the existing quadratic unlearning schemes. Finally, they also derived
bounds on the amount of information that an attacker can extract from the model weights based
on mutual information. Nevertheless, the assumption that the training dataset is divided into two
parts and that the model is trained using different methods on each of these parts restricts unlearn-
ing requests to only those data that are easy to unlearn, making it difficult to unlearn other parts
of the data.

Liu et al. [93] transferred the unlearning method from a centralized environment to federated
learning by proposing a distributed Newton-type model updating algorithm to approximate the
loss function trained by the local optimizer on the remaining dataset. This method is based on the
Quasi-Newton method and uses a first-order Taylor expansion. They also use diagonal empirical
Fisher Information Matrix (FIM) to efficiently and accurately approximate the inverse Hessian
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vector, rather than computing it directly, to further reduce the cost of the retraining process. How-
ever, this solution will result in a significant reduction in accuracy when dealing with complex
models.

(3) Other Shifting Schemes

Schelter et al. [24] introduced the problem of making trained machine learning models unlearn
data via decremental updates. They described three decremental update algorithms for different
machine learning tasks. These included one based on item-based collaborative filtering, another
based on ridge regression, and the last based on k-nearest neighbors. With each machine learning
algorithm, the intermediate results are retained, and the model parameters are updated based on
the intermediate results and unlearning data D,,, resulting in an unlearned model. However, this
strategy can only be utilized with those models that can be straightforwardly computed to obtain
the model parameters after the unlearning process, limiting the applicability of this scheme.

In addition, Graves et al. [45] proposed a laser-focused removal of sensitive data, called amne-
siac unlearning. During training, the model provider retains a variable that stores which samples
appear in which batch, as well as the parameter updates for each batch. When a data unlearning
request arrives, the model owner undoes the parameter updates from only the batches contain-
ing the sensitive data, that is, M,,, = M,, — > A,,, where M,, is the already-trained model and
A,, are the parameter updates after each batch. Because undoing some parameters might greatly
reduce the performance of the model, the model provider can perform a small amount of fine-
tuning after an unlearning operation to regain performance. This approach requires the storage of
a substantial amount of intermediate data. As the storage interval decreases, the amount of cached
data increases, and smaller intervals lead to more efficient model unlearning. Therefore, a tradeoff
exists between efficiency and effectiveness in this method.

The above methods mainly focused on the core problem of empirical risk minimization, where
the goal is to find approximate minimizers of the empirical loss on the remaining training dataset
after unlearning samples [41, 51]. Sekhari et al. [42] proposed a more general method of reducing
the loss of unseen samples after an unlearning process. They produced an unlearned model by
removing the contribution of some samples from an already-trained model using a disturbance
update calculated based on some cheap-to-store data statistics during training. In addition, they
proposed an evaluation parameter to measure the unlearning capacity. They also improved the
data unlearning capacity of convex loss functions, which saw a quadratic improvement in terms
of the dependence of d over differential privacy, where d is the problem dimension.

5.1.2  Verifiability of Schemes Based on Parameter Shifting. 1zzo et al. [51] provided two metrics
to measure the effectiveness: L, distance and feature injection test. L, distance measures the distance
between the unlearned model and the retrained model. If the L, distance is small, then the models
are guaranteed to make similar predictions, which could reduce the impact of output-based attacks,
like a membership inference attack. The feature injection test can be thought of as a verification
scheme based on a poisoning attack.

Golatkar et al. [40, 43, 52] verify the effectiveness of their unlearning schemes based on accuracy
and relearning time. They also developed two new verification metrics: model confidence and in-
formation bound [40]. Model confidence is formulated by measuring the distribution of the entropy
of the output predictions on the remaining dataset, the unlearning dataset, and the test dataset.
Then they evaluated the similarity of those distributions against the confidence of a trained model
that has never seen the unlearning dataset. The higher the degree of similarity, the better the ef-
fect of the unlearning process. The information bound metric relies on KL-divergence to measure
the information remaining about the unlearning dataset within the model after the unlearning
process.
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Fig. 9. Unlearning schemes based on model pruning.

Different from their previous work, Golatkar et al. [43] also evaluate the information remaining
within the weights and the activation. In their other work [52], they provided a new metric, acti-
vation distance, to analyze the distance between the final activations of an unlearned model and a
retrained model. This is a similar metric to model confidence [40]. In addition, they use attack-based
methods for verification [43, 52].

Guo et al. [41], Warnecke et al. [53], and Sekhari et al. [42] provide a method of theoretical
verification to verify the effectiveness of their proposed unlearning schemes. Based on the guaran-
tee provided by certified unlearning, they limit the distribution similarity between the unlearned
model and the retrained model. Warnecke et al. [53] also use the exposure metric [2] to measure
the remaining information after unlearning. Liu et al. [93] analyzed the validity of the unlearning
scheme through two aspects. The first metric, Symmetric Absolute Percentage Error (SAPE),
is created based on accuracy. The second metric is the difference between the distribution of the
model after the unlearning process and the distribution of the retraining model.

5.2 Manipulation Based on Model Pruning

5.2.1 Unlearning Schemes Based on Model Pruning. As shown in Figure 9, methods based on
model pruning usually prune a trained model to produce a model that can meet the requests of
unlearning. It is usually applied in the scenario of federated learning, where a model provider can
modify the model’s historical parameters as an update. Federated learning is a distributed machine
learning framework that can train a unified deep learning model across multiple decentralized
nodes, where each node holds its own local data samples for training, and those samples never
need to be exchanged with any other nodes [94]. There are mainly three types of federated learning:
horizontal, vertical, and transfer learning [95].

Based on the idea of trading the central server’s storage for the unlearned model’s construction,
Liu et al. [54] proposed an efficient federated unlearning methodology, FedEraser. Historical pa-
rameter updates from the clients are stored in the central server during the training process, and
then the unlearning process unfolds in four steps: (1) calibration training, (2) update calibrating,
(3) calibrated update aggregating, and (4) unlearned model updating, to achieve the unlearning pur-
pose. In calibration training and update calibration steps, several rounds of a calibration retraining
process are performed to approximate the unlearning updates without the target client. In the cal-
ibrated update aggregating and the unlearned model updating steps, standard federated learning
aggregation operations are used to aggregate those unlearning updates and further update the
global model. This eliminates the influence of the target data.

However, the effectiveness of this scheme will decrease dramatically as the number of unlearn-
ing requests increases; this is because the gradients are cached during the training phase, and the
unlearning process will not update these gradients to satisfy subsequent unlearning requests [54].
Second, this solution also requires caching of intermediate data, which will cost more storage.

Inspired by the observation that different channels have a varying contribution to different
classes in trained CNN models, Wang et al. [55] analyzed the problem of selectively unlearning
classes in a federated learning setting. They introduced the concept of term frequency-inverse
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document frequency (TF-IDF) [96] to quantify the class discrimination of the channels. Similar
to analyzing how relevant a word is to a document in a set of documents, they regarded the output
of a channel as a word and the feature map of a category as a document. Channels with high TF-IDF
scores have more discriminatory power in the target categories and thus need to be pruned. An
unlearning procedure via channel pruning [97] was also provided, followed by a fine-tuning pro-
cess to recover the performance of the pruned model. In their unlearning scheme, however, while
the parameters associated with the class that needs to be unlearned are pruned, the parameters
with other classes also become incomplete, which will affect the model performance. Therefore,
the unlearned model is only available when the fined-tuned training process is complete.

Baumbhauer et al. [56] provided a machine unlearning scheme based on linear filtration. They
first transformed the existing logit-based classifier models into an integrated model that can be
decomposed into a (potentially nonlinear) feature extraction, followed by a multinomial logistic
regression. Then, they focused the unlearning operation on the logistic regression layer, proposing
a “black-box” unlearning definition. To unlearn the given samples, four different filtration methods
are defined, namely, naive unlearning, normalization, randomization, and zeroing. These effectively
filter the outputs of the logistic regression layer. On the contrary, they only considered the un-
learning process within the last layer, which will lead to a potential risk that if an attacker gets
access to the model parameters of the middle layer, then the information of unlearning data may
also be leaked.

5.2.2  Verifiability of Schemes Based on Model Pruning. Liu et al. [54] present an experimental
verification method based on a membership inference attack. Two evaluation parameters are spec-
ified: attack precision and attack recall, where attack precision denotes the proportion of unlearned
samples that is expected to participate in the training process. Attack recall denotes the fraction of
unlearned samples that can be correctly inferred as part of the training dataset. In addition, a pre-
diction difference metric is also provided, which measures the difference in prediction probabilities
between the original global model and the unlearned model. Wang et al. [55] evaluate verifiability
based on model accuracy.

Baumbhauer et al. [56] defined a divergence measure based on a Bayes error rate for evaluating
the similarity of the resulting distributions P(Lgeen ) and P(L- seen ), Where Lgeen and L geen are
the pre-softmax outputs of the unlearned model and a retrained model. When the result of the
Bayes error rate is close to 0, it indicates that P(Lgeen ) and P(L_seen ) are similar and the unlearning
process has unlearned the sample’s information from the model. In addition, they use a model
inversion attack to evaluate verifiability [6].

5.3 Manipulation Based on Model Replacement

5.3.1 Unlearning Schemes Based on Model Replacement. As shown in Figure 10, model
replacement-based methods usually calculate almost all possible sub-models in advance during
the training process and store them together with the deployed model. Then, when an unlearn-
ing request arrives, only the sub-models affected by the unlearning operation need to be replaced
with the pre-stored sub-models. This type of solution is usually suitable for some machine learn-
ing models, such as tree-based models. Decision tree is a tree-based learning model, in which each
leaf node represents a prediction value, and each internal node is a decision node associated with
an attribute and threshold value. Random forest is an integrated decision tree model that aims to
improve prediction performance [98, 99].

To improve the efficiency of the unlearning process for tree-based machine learning models,
Schelter et al. [57] proposed Hedgecut, a classification model based on extremely randomized
trees (ERTs) [100]. First, during the training process, the tree model is divided into robust splits
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Fig. 10. Unlearning schemes based on model replacement.

and non-robust splits based on the proposed robustness quantification factor. A robust split indi-
cates that the subtree’s structure will not change after unlearning a small number of samples, while
for non-robust splits, the structure may be changed. In the case of unlearning a training sample,
HedgeCut will not revise robust splits but will update those leaf statistics. For non-robust splits,
HedgeCut recomputes the split criterion of the maintained subtree variants, which were previously
kept inactive, and selects a subtree variant as a new non-robust split of the current model.

For the tree-based models, Brophy et al. [58] also proposed DaRE (Data Removal-Enabled)
forests, a random forest variant that enables the efficient removal of training samples. DaRE is
mainly based on the idea of retraining subtrees only as needed. Before the unlearning process,
most k randomly selected thresholds per attribute are computed, and intermediate statistics data
are stored within each node in advance. This information is sufficient to recompute the split cri-
terion of each threshold without iterating through the data, which can greatly reduce the cost of
recalculation when unlearning the dataset. They also introduced random nodes at the top of each
tree. Intuitively, the nodes near the top of the tree affect more samples than those near the bottom,
which makes it more expensive to retrain them when necessary. Random nodes minimally depend
on the statistics of the data, rather than the way greedy methods are used, and rarely need to be
retrained. Therefore, random nodes can further improve the efficiency of unlearning.

The above two schemes need to compute a large number of possible tree structures in advance,
which would cost a large number of storage resources [57, 58]. Besides, this replacement scheme
is difficult to be applied to other machine learning models, such as deep learning models, since it
is difficult to achieve partial model structure after removing each sample in advance.

Chen et al. [59] proposed a machine unlearning scheme called WGAN unlearning, which re-
moves information by reducing the output confidence of unlearned samples. Machine learning
models usually have different confidence levels toward the model’s outputs [101]. To reduce con-
fidence, WGAN unlearning first initializes a generator as the trained model that needs to unlearn
data. Then, the generator and discriminator are trained alternatingly until the discriminator can-
not distinguish the output difference of the model between unlearning dataset and third-party data.
Until this, the generator then becomes the final unlearned model. However, this method achieves
unlearning process through an alternating training process, which brings a limited improvement
in efficiency compared to the unlearning method of retraining from scratch.

Wu et al. [60] proposed an approximate unlearning method based on intermediate parameters
cached during the training phase called DeltaGrad, which could quickly unlearn information from
machine learning models that are based on gradient descent algorithms. They divided the retrain-
ing process into two parts. One part computes the full gradients exactly based on the remaining
training dataset. The other part uses the L-BGFES algorithm [102] and a set of updates from some

ACM Computing Surveys, Vol. 56, No. 1, Article 9. Publication date: August 2023.



Machine Unlearning: A Survey 9:25

prior iterations to calculate Quasi-Hessians approximating the true Hessian-vector. These Quasi-
Hessians are then used to approximate the update in the remaining process. These two parts train
cooperatively to generate the unlearned model. This approach will reduce the performance of the
model, however, after unlearning process, since part of the model update is calculated based on the
approximative methods. In addition, the number of iterations required for the model to converge
will also increase, which will reduce the efficiency of the unlearning process.

5.3.2  Verifiability of Schemes Based on Model Replacement. Chen et al. [59] verified their pro-
posed scheme with a membership inference attack and a technique based on false negative rates
(FNRs) [103], where FNR: FNR = %, TP means that the membership inference attack test
samples were considered to be training dataset and FN means the data was deemed to be non-
training data. If the target model successfully unlearns the samples, then the member inference
attack will treat the training dataset as non-training data. Thus, FN will be large, while TP will
be small, and the corresponding FNR will be large. Indirectly, this reflects the effectiveness of the
unlearning process.

Schelter et al. [57], Brophy et al. [58], and Wu et al. [60] only provide evaluations in terms of
runtime and accuracy, and they do not provide reasonable experimental or theoretical verifiability
guarantees of their unlearning processes.

5.4 Summary of Model Manipulation

In these last subsections, we reviewed studies that apply model shifting, model pruning, and model
replacement techniques as unlearning processes. A summary of the surveyed studies is shown in
Table 7, where we list the key differences between each paper.

Compared to the unlearning schemes based on data reorganization, we can see that few of the
above papers make use of intermediate data for unlearning. This is because the basic idea of those
unlearning schemes is to directly manipulate the model itself, rather than the training dataset.
The model manipulation methods calculate the influence of each sample and offset that influence
using a range of techniques [38], while data reorganization schemes usually reorganize the training
dataset to simplify the unlearning process. For this reason, model manipulation methods somewhat
reduce the resource consumption used by intermediate storage.

Second, most of the above schemes focus on relatively simple machine learning problems, such
as linear logistic regression, or complex models with special assumptions [40, 41, 43, 51]. Removing
information from the weights of standard convolutional networks is still an open problem, and
some preliminary results are only applicable to small-scale problems. One of the main challenges
with unlearning processes for deep networks is how to estimate the impact of a given training
sample on the model parameters. Also, the highly non-convex losses of CNNs make it very difficult
to analyze those impacts on the optimization trajectory. Current research has focused on simpler
convex learning problems, such as linear or logistic regression, for which theoretical analysis is
feasible. Therefore, evaluating the impact of specific samples on deep learning models and further
proposing unlearning schemes for those models are two urgent research problems.

In addition, most model manipulation-based methods will affect the consistency or prediction
accuracy of the original models. There are two main reasons for this problem. First, due to the
complexity of calculating the impact of the specified sample on the model, manipulating a model’s
parameters based on unreliable impact results or assumptions will lead to a decline in model
accuracy. Second, Wang et al’s [55] scheme pruned specific parameters in the original models,
which will also reduce the accuracy of the model due to the lack of some model prediction
information. Thus, more efficient unlearning mechanisms, which simultaneously ensure the
validity of the unlearning process and guarantee performance, are worthy of research.
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It is worth pointing out that most schemes provide a reasonable method with which to eval-
uate the effectiveness of the unlearning process. Significantly, model manipulation methods
usually give a verifiability guarantee using theory-based and information bound-based meth-
ods [40, 41, 43]. Compared to the simple verification methods based on accuracy, relearning, or
attacks, the methods based on theory or information bounds are more effective. This is because
simple verification methods usually verify effectiveness based on output confidence. While the
effects of the samples to be unlearned can be hidden from the output of the network, insights
may still be gleaned by probing deep into its weights. Therefore, calculating and limiting the max-
imum amount of information that may be leaked at the theoretical level will be a more convincing
method. Overall, however, more theory-based techniques for evaluating verifiability are needed.

In summary, the unlearning methods based on model shifting usually aim to offer higher effi-
ciency by making certain assumptions about the training process, such as which training dataset
or optimization techniques have been used. In addition, those mechanisms that are effective for
simple models, such as linear regression models, become more complex when faced with advanced
deep neural networks. Model pruning schemes require far-reaching modifications of the existing
architecture of the model in the unlearning process [55, 56], which could affect the performance
of the unlearned models. It is worth noting that model replacement unlearning methods usually
need to calculate all possible parameters and store them in advance, since they unlearn by quickly
replacing the model parameters using these pre-calculated parameters. Thus, more effective un-
learning schemes, that simultaneously consider model usability, storage costs, and the applicability
of the unlearning process, are urgent research problems.

6 OPEN QUESTIONS AND FUTURE DIRECTIONS

In this section, we will analyze current and potential trends in machine unlearning and summa-
rize our findings. In addition, we identify several unanswered research directions that could be
addressed to progress the foundation of machine unlearning and shape the future of AL

6.1 Open Questions

As research continues to evolve, machine unlearning may expand further in the following areas,
and this potential trend has already begun to take shape:

6.1.1 The Universality of Unlearning Solutions. Unlearning schemes with higher compatibility
need to be explored. As development progresses, machine unlearning schemes supporting
different models and unlearning data types have been proposed in various fields. For example,
Zhang et al. [63] provided an unlearning scheme in image retrieval, while Chen et al. [47]
considered graph unlearning problem. However, most of the current unlearning schemes are
limited to a specific scenario. They are mostly designed to leverage the special characteristics of
a particular learning process or training scheme [24, 47, 54]. Although it is feasible to design an
appropriate unlearning scheme for every model, this is an inefficient approach that would require
many manual interventions [104, 105].

Therefore, universality unlearning schemes should be not only applicable to different model
structures and training methods, but also to different types of training datasets, such as graphs,
images, text, or audio data. The data pruning-based scheme is an existing and effective approach
that could achieve universality unlearning purposes based on ensemble learning techniques [30].
However, this method breaks the correlation relationships in some scenarios, which is not suitable
for models that require correlation information to complete training.

6.1.2 The Security of Machine Unlearning. Unlearning schemes should ensure the security
of any data, especially the unlearned dataset. Recently, existing research has shown that the
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unlearning operation not only does not reduce the risk of user privacy leakage but actually
increases this risk [106, 107]. These attack schemes mainly compare the models before and after
the unlearning process. Thus, a membership inference attack or a poisoning attack would reveal
a significant amount of detailed information about the unlearned samples [78, 108]. To counteract
such attacks, Neel et al. [50] have proposed a protection method based on Gaussian perturbation
in their unlearning scheme.

In addition, many previous unlearning schemes rely on the remaining dataset, intermediate
cached model’s parameters. However, they do not consider the security of this intermediate infor-
mation and whether an attack would recover any information about the unlearned samples [30, 57].
Therefore, the design of further unlearning schemes needs to consider that any before and after
models should not expose any information about the samples that need to be unlearned. Further,
the security of the data cached during the unlearning process also needs to be explored.

6.1.3  The Verification of Machine Unlearning. Verification methods should be easy to imple-
ment and applicable to users. Most current simple verification schemes, such as those based on
attacks, relearning time, and accuracy [45, 52], are derived from existing learning or attack metrics.
Those one-sided methods seldom provide strong verification of the unlearning process’s effective-
ness [44, 109, 110]. Meanwhile, unlearning methods with a theoretical guarantee are usually based
on rich assumptions and can rarely be applied to complex models, since complex deep models
usually make those assumptions invalid [41, 53]. In addition, these verification schemes are not
user-friendly and easy to implement.

Therefore, the verification schemes should consider the feasibility and acceptability, that is,
users should be able to understand and verify whether their unlearning request has been completed
based on some simple operations. There are already some relevant schemes, such as the backdoor-
based verification mechanism in Reference [44] and the encryption-based verification scheme
in Reference [111]. However, these schemes are still quite difficult for ordinary users. Therefore,
an easy-to-implement and understanding verification scheme is a topic worthy of research.

6.1.4 The Applications of Machine Unlearning. While promoting individual data privacy, ma-
chine unlearning has also gradually emerged as a solution for other applications. Regulations and
privacy issues have resulted in the need to allow a trained model to unlearn some of its train-
ing data. Apart from these, there are several other scenarios where efficient machine unlearning
would be beneficial. For instance, it could be used to accelerate the process of leave-one-out-cross-
validation, removing adversarial or poisoning samples, and identifying significant and valuable
data samples within a model [13]. As of now, some relevant applications have emerged [53, 112].
For example, Alexander et al. [53] proposed a feature unlearning scheme that could be used to
address fairness issues.

At the same time, the machine unlearning scheme can also serve as an effective attack strategy to
strengthen the robustness of the model. One potential attack scenario to consider is as follows: The
attacker first introduces pre-designed malicious samples into the dataset, which are subsequently
used by the model provider to train the model. After that, the attacker initiates unlearning requests
to remove the information about those pre-designed samples from the model, which will affect the
performance and fairness of the model, or unlearning efficiency [108]. Therefore, in addition to
strengthening data protection, machine unlearning has enormous potential in other areas.

6.2 Future Directions

Information synchronization: Similar to process synchronization in operating systems, ma-
chine unlearning may create information synchronization problems [113, 114]. Since machine un-
learning is usually computationally costly, the model provider may not be able to complete the
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unlearning process immediately. In the interim, how to handle incoming prediction requests de-
serves careful consideration. Consider that, if predictions continue to be returned prior to the
model’s update, then unlearned data may be revealed. However, if all requests for prediction are
rejected until the unlearning process is completed, then model utility and service standards will
surely suffer. Therefore, how to handle prediction requests within this interval needs comprehen-
sive consideration.

Federated unlearning: Federated learning is a special kind of distributed learning that is char-
acterized by various unstable users distributed in different places, each of whom has control over
their devices and data [115, 116]. Imteaj et al. [95] show that model providers are more likely to
receive requests to remove specific samples from a model trained in a federated learning setting.
For example, when a user quits the collaborative training process, they may ask for their contri-
bution to be removed from the collaborative model. Therefore, how to efficiently realize machine
unlearning in a federated learning setting, considering the limitations of such a setting, such as
unacceptable training data, unstable connections, and so on, is worthy of research [111].

Disturbance techniques: Problems with privacy leaks before and after machine unlearning,
are mainly caused by the differences between the two models. A feasible solution is to interfere
with the training process or adjust the model parameters so the model is different from what it
should have been. Data disturbance techniques have the ability to interfere with specific data while
ensuring overall data availability [117]. For example, Guo et al. [41] hide information about the
unlearned samples using a loss perturbation technique [118] at the time of training. The technique
involves perturbing the empirical risk through a random linear term. As such, a useful direction
for future research may be to incorporate data disturbance into machine unlearning problems and
to develop new mechanisms to support more sophisticated analyses.

Feature-based unlearning methods: Unlearning based on model shifting usually removes
the impact of the unlearning dataset by calculating the influence on the model [40, 43]. However,
calculating the influence of the samples directly may be too complex [38]. Can we shift the cal-
culation of influence from the original training samples to a group of specific features? When
an unlearning request arrives, influence can be calculated based on the features instead of the
original training samples. Technologies that may be relevant to this question include feature ex-
traction [119], feature generation [120], and feature selection [121], which could be integrated into
unlearning operations.

Game-theory-based balance: Game theory has been a booming field with several representa-
tive privacy-preserving techniques coming out in the past decade [122]. There are many schemes
involving privacy-preserving solutions based on game theory that trade off data privacy and util-
ity issues [123, 124]. For a model provider, machine unlearning is also a tradeoff between model
performance and user privacy, where an over-unlearning strategy may lead to performance degra-
dation, while insufficient protection may lead to privacy leaks. Can we formalize the unlearning
problem as a game between two players: a model provider and a data provider? If so, then we could
provide a game model between these two entities and determine a set of strategies and utilities
to figure out how to perform unlearning operations that maintain the model’s performance to the
maximum extent possible. Such an approach could also protect the user’s sensitive data from being
leaked. These are open issues that need to be explored further.

7 CONCLUSION

Machine learning methods have become a strong driving force in revolutionizing a wide range of
applications. However, they are also bringing requests to delete training samples from models due
to privacy, usability, or other entitlement requirements. Machine unlearning is a new technology
that can cater to these requests for deletion, and many research studies have been carried out in
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this regard. In this survey, we provided a comprehensive overview of machine unlearning tech-
niques with a particular focus on the two main types of unlearning processes: data reorganization
and model manipulation. First, we provided the basic concept and different targets of machine
unlearning. By analyzing typical approaches, we proposed a novel taxonomy and summarized
their basic principles. We also reviewed many existing studies and discussed the strengths and
limitations of those studies within each category. In addition, we emphasized the importance of
verifying machine unlearning processes and reviewed the different ways in which machine un-
learning can be verified. Finally, we discussed several issues that would merit future research and
provided some feasible directions that need to be explored in the future. Our future work will focus
on exploring the potential of machine unlearning in intriguing areas such as federated learning
with a verifiability property.
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