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Abstract. In this paper we discuss quantitative (pointwise) decay estimates for solutions to
the 3D cubic defocusing nonlinear Schrodinger equation with various (deterministic and random)
initial data. We show that nonlinear solutions enjoy the same decay rate as the linear ones. The
regularity assumption on the initial data is much lower than in previous results (see [C. Fan and
Z. Zhao, Discrete Contin. Dyn. Syst., 41 (2021), pp. 3973-3984] and the references therein), and,
moreover, we quantify the decay, which is another novelty of this work. Furthermore, we show that
the (physical) randomization of the initial data can be used to replace the L!-data assumption (see
[C. Fan and Z. Zhao, Proc. Amer. Math. Soc., 151 (2023), pp. 2527-2542] for the necessity of the
L'-data assumption).
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1. Introduction.

1.1. Background and motivations. Linear dispersive estimates on unbounded
domains play a fundamental role in the study of nonlinear dispersive PDEs. It is in
some sense the starting point for studying local well-posedness of nonlinear problems.
In the Schrodinger case, the dispersive estimate in R reads as

- _d
(1) ||€1mf||L;°(Rd) Szl ey

where d is the spatial dimension.

For the defocusing nonlinear Schrodinger equation (NLS), great progress has been
made in recent years to understand the scattering behavior of solutions; see, for
example, [5], [12], [15], [38]. Those results say that, given an initial datum in a
certain (critical) Sobolev space H#<, there exists a unique global solutions u to the
NLS, and the solution scatters in the sense that there exists some u™, so that

(2) ||'H.(t) - B“&ui ||H‘9r-‘ (R4) — 0, as t — +o0.
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Here the critical space H®< is chosen to be invariant under the scaling invariance of
the NLS.

From (1) and (2) one may then conjecture for the nonlinear solutions u an estimate
similar to (1), for example, for d=3

(3) [w(t) [ g0 ey < Cluo) [t 2.

Note that conclusion (3) is not a priori obvious since, for example, it is not known
whether u* in (2) is in L', and moreover the convergence in (2) is not a priori in L>
and certainly the rate is also not known. Indeed, the study of a decaying estimate
for nonlinear solutions is related to the asymptotic convergence rate in (2) (see the
appendix of [22]).

Decay estimates for nonlinear dispersive equations have been studied widely. In
[45], Lin and Strauss studied the decay of the L®-norm of solutions to the 3D NLS
based on the Morawetz estimate. (See also Corollary 3.4 in [28] for the cubic Hartree
case.) It is also possible to apply the vector field methods and use commutator-type
estimates to derive decay estimates; see, for example, [42]. (See also [43], [54], [34].)

For the Schrodinger case, in particular, before the work in [5], decay estimates
(3) were key steps in proving scattering results; see also [25], [26], [27]. We also refer
the reader to [57], and the references therein, for results on decay estimates regarding
NLSs without decay rates.

In the present article, as in previous works of the first and third authors [21], [22],
the starting point is whether, given the fact that scattering behaviors have by now been
studied extensively, one can further improve the understanding of (3). Conceptually,
one wants to understand how quickly or how slowly scattering behaviors can happen.
The answer to this question will give more quantitative estimates for C'(ug) in (3) as
well.

To make the question more concrete, let us focus on the defocusing cubic NLS
in 3D,

(4) iug + Au=|u|?u, u(0,z)=uo(z).

It has been proved in [21], [22] that, for all ug € H*N L', (3) holds and C(ug) only
depends on the size ||ug|| g4nr1 rather than the profile of up. This follows from some
concentration compactness consideration. But it was not clear how this C' depends
on the ||ug|,,,.,, in a quantitative way. See also [30].

It has also been proved in [22] that to obtain estimates of the form (3) for the
solution to (4), it is not enough to place the initial data only in some Sobolev-type
space H®, even if one is aiming at a weaker decay rate. To be more precise, for any
g(t) >0 that goes to infinity as ¢t — oo, we can construct, for instance, H'% solutions
to (4) such that

(5) limsup g(¢) u(t) — e*Au || 11,2 = oo.
t—oo

Compared to [21], [22] and other previous results, to the best of our knowledge,
the main three new points in the current paper are the following: 1. To obtain
an estimate such as (9) below we can considerably lower the regularity assumption
of the solution to almost the critical level (see Theorem 1.5). 2. We can obtain
the quantitative decay results by characterizing the implicit constant in the decay
estimates (see Theorems 1.1, 1.4, 1.5, and 1.7). 3. We discuss the randomized case
and show that (physical) randomization of the initial data can be used to replace
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the L!-data assumption (see Theorem 1.7 and [22] for the necessity of the L!-data
assumption).

One may ask why the L' assumption for the initial data is important in the quan-
titative study of decaying estimates for the NLS. One may also ask why randomization
in physical space can replace such an assumption. To answer the above two questions,
recall that for every scattering solution u to (4), there holds the following.

For any given 4 > 0, one can find L > 0, so that

(6) lu) | 512,00y 25 <6

However, it is impossible to characterize this L in any quantitative way if one considers
initial data ug € H*, since, for any given g, one can evolve backwards (nonlinearly) for
a long time and get a new initial data, which delays the L so that (6) holds. To be more
precise, let us fix a Schwarz initial data ug, with ||ug||g= < 1. Let u be the associated
solution. We know that ||u||,r‘§m[0m) > 0 > 0 for some &y, and sup, ||u(t)||g- < M for
some M > 0, since such a solution scatters. Let ug ,(z) :=u(—n,z) and let u, be the
associated solution with initial data ug,. Note that |ug | g: <M. Now fix § = dy/2
and evaluate L, so that (6) holds. One has that L, > n and cannot be bounded
by M. The problem lies in the time translation symmetry in the cubic NLS. Both
L' assumption and randomization in physical space play a role in removing the time
translation symmetry in cubic NLSs.

Where the topic decay estimates for Schridinger equations is concerned, there is
an important type of problem, that is, studying the decay estimate associated with
linear Schriodinger operator —A + V' (where V is usually called a potential). Such
problems have been studied widely in recent decades. We refer the reader to [36], [53]
and the references therein. In the current paper, we are mainly concerned with the
difficulties that come from the nonlinear evolution, since the linear part of our model
is the free evolution and well known. We remark that one can also apply the methods
in the current article to study a nonlinear model of type iu; + (—A + V)u= N(u).

We believe that the methods in this paper can be applied to derive decay esti-
mates for other dispersive models with suitable modifications. See section 6 for more
discussions.

1.2. Notation. Throughout this note, we use C' to denote the universal con-
stant, and C' may change from line to line. Also, «, 3 may change from line to line.
Wesay ASBIfTA<CB. Wesay A~Bif A< B and B < A. We also use the
notation C'g to denote a constant that depends on B. We use usual L? spaces and
Sobolev spaces H®. Since we will always work on R?, we will write LP(R3) as L? and
L} (I xR3) as Lf ,(I). We will also use S* to denote the Strichartz space,

(7) ||u||ss(f) = ”(D)su”LfL;U):

where (g,r) are admissible, % + % = %, qg,r > 2,(q,r,d) # (2,00,2). Here (D)* is
the usual multiplier operator in this sense: F({D)*f)(£) = (£)*F(f)(£), where (£) =
(1+¢€2)3.

1.3. Statement of main results. We are now ready to state our results. Con-
sider the Cauchy problem for the 3D cubic defocusing NLS,

(8) iug + Au=|u|?u, u(0,z)=uy(z).

The purpose of the current article is to present decay estimates of the form
kY

(9) lu®)llzee < C(lluollx)IE] 2.

Note that we are mainly interested in ¢ large.
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The constant C in (9) in this article will only depend on the size (but not the
profile) of the initial data, measured by a certain norm | - || x. We will characterize
how this C' depends on |lug||x. With different choices of || - || detailed below, we will
derive results involving polynomial dependence or exponential dependence.

Below, «,3,C are constants that may change from line to line. We have the
following.

THEOREM 1.1. For the initial value problem (8) with initial data uo € X = H* N
L', one has that (9) holds with

(10) C(lluollx) = C exp Clluox
for some 8> 0.

We also note that if one considers the asymptotic behavior, the implicit constant
in Theorem 1.1 can be improved from the exponential bound to the polynomial bound
as in the following corollary.

COROLLARY 1.2. We have

(11) limsup 2 [[u(t)]| . < C(1+||uo] x)”
t—oo

for some 8> 0.

We will give the proof for this corollary at the end of section 3.1 (after giving the
proof for Theorem 1.1). We note that the analogous statement also holds for (18) in
Theorem 1.7.

Remark 1.3. We note that the quantitative decay result, Theorem 1.1, immedi-
ately gives the quantitative scattering rate via direct integrations and the Strichartz
estimate, which describes how fast the solution scatters to the final states in the crit-
ical space. (See the appendix of [22] for more details.) To be more precise, one can
obtain the following: for u satisfying (8) with initial data up € X = H* N L! and for
t>1, we have

(12) ||U(t)—€mu+||ﬁé < C(Jluollx)t™?
and

_z
(13) lu(®)ll s , 1>y < Cllluollx)s™ 0,

where C(||uo||x) = Cexp C|luo||k-

If one further assumes zug € L? (i.e., the finite variance condition), we can improve
the exponential bound to the polynomial bound in the dispersive estimate (9) in the
following sense.

THEOREM 1.4. For the initial value problem (8) with initial data ug € H' N L}
and zug € L2, letting ||uo||x = |uol|srinz: + ||zuol| 22, one has that (9) holds for

(14) C(lluollx) =C(1 + |luollx)?
for some 8> 0.

It is often natural to consider NLSs in the H'! space since it is corresponding to the
energy conservation law. Sometimes, it is also of interest to lower the H*® regularit,
of the initial data, and we recall that the Schrodinger initial value problem (8) is H 2z
critical. We have the H %—type result as follows.
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THEOREM 1.5. For the initial value problem (8) with initial data ug € H® N L!
and zug € L?, letting ||lu| x = ||luoll zrenzr + |zuoll 2, where s > %, one has that (9)
holds for

(15) C(lluollx) = C exp(|luoll’x )

for some 8> 0.

Remark 1.6. We remark that reaching the end point case of Theorem 1.5, i.e.,
reaching the initial data uo € Hz NL! and zug € L2, would be as hard as reaching the
(quantitative) global well-posedness for (8) with initial data in H'/2?, which is a major
open problem. See, however, Dodson’s recent works [16], [17]. Indeed, it is also open
to prove global well-posedness of (8) with H®,s > % initial data. We will briefly point
out in the proof of Theorem 1.5 why zug € L? is of help here, i.e., it is not hard to
prove global well-posedness for initial data such that ||ug||gs + ||zugl|2 < 00,8 >1/2.

Sometimes, it is not favorable to have the L! condition. We remark below that one
can remove the L' assumption in Theorems 1.1-1.5 by performing a randomization in
physical space for the initial data. To be more precise, let ¢, (z) := ¢(z — n),n € Z3,
be a partition of unity of R®,

(16) 1= ¢.=) oé(z—n).
Let gn(w) be iid. standard Gaussian, and let

(17) uf (2) = ) ¢n(@)gn(w)uo(2).

We recall that randomization in physical space was also used in [49]; see also [6].
We assume ||ug||x = 1, where X = H! or H' N ||zug|[z2 or H* N ||zug| 2. Note
that the size of the data can be absorbed in the Gaussian. We then have the following.

THEOREM 1.7. Consider the initial value problem (8) with randomized initial data
uf. Let u be the associated global solutions. Let u¥;=u® — e'*Suy.
o If ||ugllz: <1, then exzcept for a small probability set of size exp A~ one has

(18) || zee < C(exp A7)t~

for some a, B> 0.
o If [|uollm + ||xua||L§ < 1, then except for a small probability set of size
expA~“, one has

(19) e < C1+ APt 3

for some a, 5> 0.
o If |uollms + |lzuollz <1, s > %, then up to small probability exp A=*, one
has

(20) lug ()] 2 < Cexp A%)[t|~2

for some o, B> 0.

Remark 1.8. Regarding the linear evolution of a random data as defined above,
though we cannot obtain the pointwise estimate for them, they behave in time av-
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erage like a linear evolution of L! data. Indeed, that is why one can remove the L1
assumptions by doing randomization in physical space.

Remark 1.9. We note that for any ug € L2 but not in L', one has that almost
surely [lug]|: = co. Indeed, ug ¢ L' implies 3, s [|uo@n||r» = co. And one computes
[f“Nler =¥ nezs lwo@n | 1|gn|. The desired result follows by applying Lemma A.1 in
the appendix.

It is also possible to perform randomization in frequency space to lower the reg-
ularity assumption. This is a very active research field ever since the seminal work
of Bourgain [2], [3] in the periodic setting; see also the recent breakthrough [14] and
references therein. We do not discuss this issue here.

1.4. A technical remark. In this subsection, we briefly explain why we can
lower the regularity assumption in this paper (see the proofs in the following sec-
tions for more details). For convenience, we compare Theorem 1.1 (H!-regularity
assumption) in this paper with Theorem 1.4 (H*-regularity assumption) in [21].

As in [21], we decompose the nonlinear solution u into several parts, and we want
to control all of them since we intend to use a bootstrap argument to show the decay
estimate. The most nontrivial term is

t
(21) Fy=i f (=) (|y|2y) (s)ds,
t—M

where M is a positive constant depending on the size of the initial data. This term
is part of the Duhamel expression of the nonlinear solution when the integral is close
to t.

We intend to control the L2°-norm of F3. However, to control this term, higher
regularity (H%-regularity) is required in [21]. The reason is that if one uses the
dispersive estimate directly, one has

t
(22) sl e = H/ e 8y Puds
= t M Lz
t
2 <[l
t—M *
t 3
(24) 5/ (t —5)~% || julu]|, ds
t—M =
¢ 3
(25) SJ/ [t—s)_%”u”mds.
t M =

We note that, for the integral over [t — M,t], the (t — s) 2-term is too singular
(nonintegrable), and thus it is not possible to control ||Fs||,.. by ct % in this way
for some ¢ small. In order to solve this issue, one can control the L-norm of Fj
by estimating its H*-, H'-, and L?-norms (see the proof of Theorem 1.4 in [21] for
details). However, doing this will inevitably cause higher-regularity requirements.
For the current paper, we observe that one trick, which is based on classical
Sobolev embedding, allows one to control the L°-norm of F3 in the following way:
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¢
Lo = H/ e 98y 2uds
= t—M L=
¢

/ eilt 3)A|Vm|(|u|2u)ds
t—M

13|

S

L

t
< f et 92, |(julw)|| ., ds
t—M x

t
5/ (t—s) 3(3 %)|||V£|(|u|2u)|| ads
t—M L2

s(f @s o oy ds)t I /;M(|||Vm|(|u|2U)||L§)2+ds)51:

We can see that the advantage of performing the Sobolev inequality first is to lower
the spatial exponent for the integrand from oo to 3; thus after using the dispersive
estimate, we end up with (t — 3)_%, which is not too singular near ¢ (i.e., it is in-
tegrable). Then, applying the Holder inequality, it suffices to deal with the second
term in the last line above, which is manageable via Strichartz-type control. Thus,
one can handle the F3-term based on the scattering result. We refer the reader to
sections 3, 4, and 5 for more proof details.

This observation has proved useful in lowering the regularity requirement for many
cases when one considers nonlinear decay problems. We note that assumptions with
quite high regularity were needed to obtain the pointwise decay estimate for NLSs;
see, for example, [21], [28], [30] and reference therein. Moreover, we note that similar
ideas are also useful for studying the long time dynamics for the stochastic NLS; see
the recent works [19], [20] for more information.

1.5. Structure of the paper. The rest of the article is organized as follows. In
section 2, we include the basic estimates and the global results for 3D cubic NLS; in
section 3, we give the proofs for Theorems 1.1 and 1.4; in section 4, we give the proof
for Theorem 1.5; in section 5, we give the proof for Theorem 1.7; and in section 6, we
give some further remarks on the applications of this method for other models.

2. Preliminaries. In this section, we collect some useful results and estimates,
including the standard dispersive estimate and Strichartz estimates for Schrédinger
equations and the global well-posedness theory for the 3D cubic NLS.

The standard dispersive estimates and Strichartz estimates for the free Schrodinger
operator e'*® when d = 3 reads as follows. We refer the reader to [8, 55| for details.

LEMMA 2.1 (dispersive estimate). The linear operator e'*® in R® satisfies the
bound

; 3
e fllz SIE=2 (£l

Moreover, by interpolation with the unitary relation ||e*2 f|| 12 = || f||L2, we have
; _d(l_1

(26) e fll gz S 9D £ L

for every p > 2.

DEFINITION 2.2. Let q,7 € [2,400]. We say (q,7) is an admissible Strichartz pair
in R3 if

+

b2
S lw

3
5"
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LEMMA 2.3 (Strichartz estimate). Let (g,r) be an admissible Strichartz pair in
R3. Then we have the bound

(27) ”B“Af”LfL;(Rx]Rﬂ S ||f||L2(R3)-

Also, for any two Strichartz pairs (q1,71) and (g2,7m2), we have

t
(28) \ [ e sy <IFl .,
0 L

3
2 L7 (RxR?)

LI LEY (RxR3)

where g5 and vy are conjugates of g2 and ra.
Then we turn to the global theory for 3D cubic NLS (8). If one works with initial

data in H1, the scattering result is indeed easier. Much stronger low regularity results

holds for equation (8), [11], [37]; see also and reference therein.
As a corollary of lower regularity results [11], [37], one has the following.

PROPOSITION 2.4. The initial value problem (8) is globally well-posed and scatters
in the H! space. More precisely, for any ug with finite energy, uyg € H', there exists
a unique global solution w e CP(H}) N LY , such that

(29) | [ o) dade < CCualn

for some constant C(||uo|| g1 ) that depends only on ||ug|| g2 . More precisely, C(||uo| ar)
is a polynomial of the H'-norm of the initial data.

Remark 2.5. We note that the scattering norm Li,t can be interpolated by the
interaction Morawetz bound in 3D,

1
(30) lullZs S lullZe - sup IV=2ulZ: S lullf,

and the a priori bound ||u| Lz 1 according to the conservation of energy. Thus it can
be expressed as a polynomial of the H'-norm of the initial data.

Strictly speaking, one first performs an interpolation between L , and L{°L§ to
obtain a control for some LY LY, so that % + % =1. This a priori bound plus the local
theory gives an a priori L?L5 bound.

Remark 2.6. We also note that, for the NLS with criticality s. larger than the
criticality of the interaction Morawetz estimate, i.e., ﬁ, if one assumes an a priori
bound higher than the critical level, ||u|zeq: < oo (s> s.), then the scattering can
be obtained directly via interpolation. Thus, generally speaking, studying the NLS
model with data in a critical space is highly nontrivial.

3. Proofs of Theorems 1.1 and 1.4.

3.1. Proof of Theorem 1.1. We start with Theorem 1.1. This is the most
nontechnical part of the five theorems, but the proofs of the other theorems build
upon this one.

We denote

(31) My = ||uol|L: + (||uollm +1)*
and only consider M; large. It is enough to prove, for all £ >0,
(32) £ u(t)| e S exp My

for some a > 0.
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We recall that we have scattering for such data,
(33) Il < M7,
and by the laws of conservation of mass and energy, we have
(34) lw(t)||Loe gr S M.
We proceed with a bootstrapping argument for the quantity
(35) A(t):= sup TS/QHu(T)HLgo.
0<r<t

We only perform a priori estimates for A(t); i.e., we will assume A(t) is finite for
all t and prove estimates of form, for example,

(36) A(t) < C +€eA(t).
One can apply approximation and continuity arguments (bootstrapping argument) to
transfer those a priori estimates to desired estimates, i.e., get rid of the assumption

that A(t) is finite for all . We will need a large parameter M which will be determined
later. We write down the Duhamel formula of wu,

t
(37) u(t) = eitBug — i / il A (|u(s)[2u(s))ds,
0
and for notational simplicity, we’ll denote
(38) N(u) = |u|*u.
We first prove the following lemma.

LEMMA 3.1. For 0<t< M,

(39) |u(t)|| e < CMit=3/2 + Ct=12 M + %A(t)t_m.

This lemma, though simple looking, establishes the basis for the bootstrapping
argument for A(t); i.e., A(¢) is locally finite. But we note that this estimate is only
useful for a short time.

Proof of Lemma 3.1. By a classical dispersive estimate,
(40) ||E“ﬂu0||[,go < Mt 3/2,

and this handles the linear part in the Duhamel formula (37). For the nonlinear part
in (37), we may split the integral into fot = 0;/2 +f:/2. We estimate the first part by

(41)
tj2

f |t AN (u)||peds St 32 f
0 0

We use the Sobolev embedding, W31 L, and estimate via

[ etonwus)
¢/2

t/2 ¢
IN) s St 372 [l g St V203,

L& HY2 ~

ds

Lge

t
(12) S [ I @N @l e ds
/2 *

t
S =5 EONVIN@)| 5 ds,
t/2 L;

and we apply again a dispersive estimate in the last step.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/04/24 to 18.9.61.111 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ON DECAYING PROPERTIES OF NLS 3091

Applying the fractional Leibniz rule! when s < 1, Theorem A-12 in [39], or the
usual Leibniz rule when s =1, we have

I —

(43) VYN (u) 2 < llull e llw]l 2o [l o2 v_: , 1<p,g<oo.

=}
I.\Jl'—‘

One may now carry out the estimate (42) as

[ = EN@INWI 5 ds

t/2
/t;(t‘ )) ) ( / / V)N )ﬁ s

(44) < (

t IF
St‘Mf(// ()35 %t ds) .
t

1

Summarizing (42), (44), and letting (4+,6—) be an H'/2-admissible pair in the
sense of 2+ & =2 — 1, we have
1
t 2+
e mIAN (u(s))ds||  StM? / ()25 lull 7% ds
t/2 Leo /2
(45) - N
) ¢ ir
semzo ([ Julfhlullids)
t/2

Thus, we have, by (40), (41), (45), for t < M, %0,

1
i

i
(46)  lu(®)le <CMit */*+Ct V2MP + OMPt: A(t) (/ llull74- ds) :
t/2

which gives
3 1 =
(47) A(t) <CM; + CtM? + CM}EtzT17 A(t) (/ ||u||4+ ds) )
Lemma 3.1 now follows, since t < Ml_m'J and M, large. 0

Next step, we want to handle the case ¢t < 2M, and we need to refine the proof of
Lemma 3.1. We state the next lemma as follows.

LEMMA 3.2. Fort<2M,

(48) lu(®)ll e < CMit=%2 + MF 4 %A(t)t_m.
Proof. We observe that conservation laws give

(49) llu(t)] oo 1 < oo0.

It is somewhat important here that the Leibniz rule covering the end point involves LZ°.
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According to the standard argument (see Lemma 3.12 in [12], for example), one
can control all the Strichartz norms by the size of energy. Thus one has

(50) lu@)l o+ po- S My 1.
We still use the Duhamel formula, (37), and estimate the linear part as in (40).
—100
Then we split the nonlinear part into fut = 0: M and f:_ as-100. Now, for the first
1

part we proceed as in (41) via

t—M, 100 .
/ e =B N (u(s))ds

L

0

E Ml_ 100
sﬁ (t — 8)~%/2u(s) |2 ds
SMPOM,

and for the second part as in (42), (44), and we derive

/t L g AN (u(s))ds

—M] 100 Lee
(52 @ N
t
5wqmﬁmﬁ(/ mﬂmm@wﬁ;@).
t—M[ *
Thus, the proof of Lemma 3.2 is now complete. 0

Now we turn to another lemma for the case t > 2M (M is to be decided later).
The statement reads as follows.

LEMMA 3.3. Fort>2M,
1
53 u(t)||pe <CMyt 32 + CMTt 3/2 4+ ZA(t)t 2
ES 1 2

1
i ir
+ CMEH=3/2 ( A(3)4+||u(t)||if§_ ds) .
t—M £
Proof. To deal with this case, we need to, similarly as done in [21], further write
(37) into

M t—M
u(t) = eitBug — i / eilt AN (u)ds — i / ¢t VAN (u(s))ds
0 M

¢
—é/ e!*=A N (u(s))ds
t—M
= ezt&‘uo + F + Fy + F3.

The estimate of Fy will be straightforward, since ¢t — M 2 ¢, and we have, via the
simple Minkowski inequality and the usual dispersive estimate,

M
(54) nmhfy4ﬂ£|mm&@gerMi
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For Fy, it is crucial that we are in dimension? at least 3, and we have
t—-M
|72 e S/ AN (u(s)) || g ds
M
t—M
(55) S[ =9 Pl lulyds
M

t—M .
5/ (t —s)3/2A(s)s ™2 M2ds.
M

Thus, following as in [21], we have
1
(56) IF] e < SA@®E 2

for all M > C M} for some universal C large.
For F5, the main point here is that we use analysis similar to Lemmas 3.1 and 3.2
to refine the analysis in [21], and we gain further control via the Gronwall’s argument.
Now, similar to the proof of Lemma 3.2, in particular the part for (52), we derive

1
t ar
61 WFallaz 1Bl SMEME ([ fulo) Il ds)
—

To summarize, using (54) and choosing M ~ M{ so that (56) holds, and using
(57), we obtain Lemma 3.2. O

Based on the above three lemmas, we are now ready to prove Theorem 1.1.

Concluding the proof of Theorem 1.1. By Lemma 3.2, one has, for some 5; >0,
(58) Aty <CMP vi<COME,

and by Lemma 3.3, one has, for some 39, 83 > 0,

t =
At) < CM{82 + lCI'M{rjg (/ A(3)4+||u(t)||4+_ ds)
t—M

Lg

(59) 4

t iF

< CMP* + M ( / A(s) ™ [lul)l13E- ds)
0 T
Thus, for all ¢,
i
(60) A(t)™ < OMP + CMP / Als)**[lu(s) 4% ds.
0 T

Via Gronwall’s inequality and (33), one has
(61) A(t) < Cexp M},
This gives Theorem 1.1. ]

An explanation for Corollary 1.2. We now briefly explain the point of Corollary 1.2
as follows. We still define A(t) in the same way. In view of the scattering result

20ne can see that this scheme will have a log divergence if instead one considers cubic NLS in
dimension 2.
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(scattering norm is finite), letting ¢ be big enough, the quantity ( f:_ ar llu(t) ||‘;E ds) ar
can be made arbitrarily small, say € > 0.

Thus, consider the first inequality in (59), letting ¢ be big enough, we can drag
A(s)** out and, letting € be small enough to beat other constants,

1

t i+
Aﬁ)scmﬁ2+cmf“(/ A@fﬂm@m“lﬁ)
t—M

LY

t i
(62) < CMP* + CMPA(t) (/ y ||u(t)||i'£_ds)
t—
< CM* + CM® A(t)e
<oMP + %A(t).

Then moving the second term on the right-hand side to the left, this gives us a
polynomial bound for limsup,_, ., A(t) as desired. In many situations one may be
particularly interested in the asymptotic behavior of solutions for t large rather than
estimates that are uniform with respect to £. In our case we are, for example, inter-
ested in sup,qt>/2||u(t)|| L= rather than limsup,_,., t*/?|ju(t)|z=. Thus the above
observation may be useful for some problems. One may also understand this decay
result in the following manner: the exponential constant dependence is caused by the
finite time; for the long time, the constant dependence is essentially polynomial.
The proof of Corollary 1.2 is now complete. O

3.2. Proof of Theorem 1.4. One can obtain a polynomial-type control rather
than an exponential one with the extra assumption zu, € L2. This is because in
this case one can apply the pseudoconformal transformation to get a quantitative
control for the decay of L8. The argument below seems classical; see, for example,
[48]. Indeed, letting J(t) =z + 2itV, one has

(63) 1£llze St HIT@) £z
Furthermore, for u solving (8), the quantity
1
(64) SO + [ Pluttas
is monotonically decreasing in ¢, and when ¢ =0, it equals ||zu/|2,. Thus, letting
(65) My = (1+|lugl,)* + lzuollzz + lluoll L1,
one has
(66) lu(®)le St "M,

and a simple interpolation with mass conservation gives
(67) lu()l o~ St~ M.
Now we go back to (58), (59), and enhance (59) into

¢ ir
A(t) <CMP + oMpPe ( f t= (49 A(s)* ds)
t

(68) M

1
if

i
<CMP* + CMY* ( / (M + 3)—(4—)A(3)4+d3)
0
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Here we use the fact that for s € [t — M,t], s ~ t, since ¢ > 2M. Thus, rather than
(60), we have the estimate for A

t
(69) A)™ <C(My + M)Pr 4 CMP / (M +1t)~ ) A(s)*ds.
0
Here we need to choose M to be a large polynomial of My, so that
(70) M / (s +M)*ds <1,
0

and Gronwall’s inequality for (69) gives
(71) At) S MY

4. Proof of Theorem 1.5. We now turn to the proof of Theorem 1.5. We first
note that in general it is very hard to study unconditional scattering for (8) for initial
data up € H*,s>1/2, and it is a major open problem to study global well-posedness
for ug € H/2, Both are not hard if one further assumes that the initial data is in
zug € L2,

Assume u solves (8) with initial data

(72) l[uoller + llzuol| L2 < My < oo.
We have, for some §y > 0,

lull}; <CMe,
(73) S
||u||L?cHa SCB .,

The proof of the first estimate in (73) may be classical from the pseudoconformal
symmetry (see, for example, the textbook [55] and [4]); we briefly sketch it below for
the convenience of the reader. The second estimate in (73) follows from the first one
by classical persistence of regularity arguments; see, for example, [55] and Lemma
3.12 in [12] (by slightly changing the value of 8y if necessary).

Fixing s > 1/2, by the local theory, we have that there is a § > 0, with § ~ Ml_ﬁl,
so that u is well-posed, and

(74) lullzs 0,5 < 1.

Meanwhile, by the pseudoconformal transform, we may define

(75) i(s) = ﬁu (_21 _ib) e—ilzl?s/4

and note that if u solves (8) in [0, 4], then @ is well defined in (—o0,—1/4] and solves
(76) i, + At = — s .

Consider

H(a(s)) = %/|Vﬁ(s)|2d:r+/i(—s)|ﬂ|“d¢r

(77) 1 2 1 2 4
= S TOu; +§ [ Pluttas,
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where one makes the change of variable t = —1, and recall that we have J(t) = 2+2itV.
Then we see that H is monotonically decreasing, and

. N | 2 L [o 4, 2
8 lim @) = lin 1O+ [ lultds = louls.

Thus, we have

(79) H(ﬂ(—%))SCmﬁ,

and hence @ is a global solution with ||u[| =1 < CM;. Moreover, the standard H*
local theory for the usual cubic NLS gives

(%0) lillg 3.0 < OME,
since (—s) is bounded by —% ~ M{"* for s € [~2,0]. Thus, one further obtains
(81) ”u”L‘E‘,xI%‘O) SCM{%-

This gives (73).
Furthermore, we still derive |[.J(¢)u[ 2z < CM;, and thus, by (63), we obtain

(82) lu)lze < CMit *.

We can now plug (73), (82) into the scheme of the proof of Theorem 1.4. We will
sketch the argument highlighting the modifications that need to be made. We still
focus on a priori estimates for A(t), (35), and we pose

(83) (luoll s + 1)% + [Juol| 2 + [0 2 = M.

We start with an analogue of Lemma 3.1,

LEmMA 4.1. There exists 8, >0, B4 large, so that for t <M, Bt one has
(34 [u@®)llo= < OMut—92 + CMI.

Proof of Lemma 4.1. Recall the Duhamel formula, (37); the linear part is still
controlled via (40). By the local theory of (8), we have

(85) ”u”L?‘:H-’[O,Ml_mn] 5M1.
For the nonlinear part, we still split fnt = ;/2 + 32. The first part is still controlled
via
/2 t/2
(86) / d-DAN(ds|| <32 / u(s)|30ds < Y203,
0 0 *
Lg

In the last step of (86) we applied (85). For the second term, we are in some sense at
the end point case when s approaches % Before we present more details, we want to
mention that one will see, since we are fixing s > %, that we just stay away from the
end point and we always have some room.?

3The easiest way to do a first check of the computation is to neglect log convergence and pose
all the k; below as zero.
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We now analyze the second term. We pick 0 < k1, k2 << 1 small and fix them. We
will decide their relative size later.

We may assume k1 < 3(s — 3).

We use Sobolev embedding,

(87) Witrup g0

where p; = 6 — ko, satisfying

3 1
(88) p—1<§+.‘£1.

(It is enough to further assume ; > 3k2 for (88) to hold.) We now estimate

t
eI N (u(s))ds

—

z L
i
(89) <c / |e“AN (w)ds| 4., ,, ds
t/2
t — 2K
<C [ (t— )" N (W)l 0.0 ds.

t/2

In the last step we apply the dispersive estimate and recall [e*®| .1 ,,, <

—(1-5257) : :
t 2(6-+2)/, Now, we plug in the estimate

(90) INC N yoer S CNF ezl Fllzee 1| 22
where - + § = -, and one computes py = ;3—52- = 3—, where we have used the

fractional Leibniz rule, Theorem A-12 in [39]. We now continue the estimate (89) as

t L3
<C [ (t—8)"7 7D |lul| g |lul| e || p22 ds
t/2
(91) ¢ . N
< CA(t)t_s'ﬂ/ (t — )17 T |[u(t)||4.ds < CA(t)t 3/ 2T M2,

t/2
since t < M, ”*, and thus when 84 is large enough, one has (89) bounded by 1 A(t)t 3/2.
Combining this with (86) and (40), Lemma 4.1 follows. O

We now cover the part when t <2M, and again M is a large number which will
be chosen later.

LEMMA 4.2. For t <2M, one has, for some 35 large,

1
(92) u(t)lpee < Mit™% 4+ (M 4+ In M)e3Mrho 5A(t)t—%.
Proof of Lemma 4.2. We may assume t > Ml_ﬂ"; otherwise we use Lemma 4.1.
6
Recalling again (37), this time we split the nonlinear part as fot = 0: —¢ "' and
t
ft—e Migﬁ '
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Now, one estimates the first part as

Ag

t e
(93) f ||e*<*--“>N(u)||Lgods
< c/ (t — ) full. ds

<o(M + lnM)eSMfO.

In the last step we have plugged in (73). For the second part, we estimate similarly
as (89), (91) (choosing &1,k2 as in the proof of Lemma 4.1),

t
‘ / ﬁs a(t s)AN( ( ))ds
t Lgo

(94) <C/ (t—s)' "5 "D |lul|}.ds

<Ce™ 7—2—“ k ME° M 4 (1)4=3/2,

. __*2 _arf% Bo .
Thus, when Sq is large enough, so that Ce™ 2@ <2171 21" <1 then one can combine

it with (93) and (40) to obtain the desired estimate. O
We now present an analogue of Lemma 3.3.

LEMMA 4.3. For t>2M, one has
. 1 .
95)  [lu(t)| e < Ct3/2MeSM 4 SABE + CA(t)t 8eM° M-

Proof of Lemma 4.3. We write again

t—M

M
u(t) = e Pug —i / e IAN (u)ds — i / e "IN (u(s))ds

0 M
¢
—é/ eI N (u(s))ds
t M
= eit&‘uo + Fy + Fy + Fy

and estimate Fy, Fy, F5. The terms F, F5 will be estimated similarly as in the proof
of Lemma 3.3. We have for F}

(96)

M ) 80

IFslizds < [ 1 PN (u)lir <Ot Mlfullrr. <Ct 2Me".
0

We have for F;, exactly as in the proof of (56),
1
(o7) IBolle < 5 A 2.

For F3, compared to the proof of Lemmas 4.1 and 4.2, it is important now for us to
also apply (82) in the estimate of F;3. Recalling 0 < k1, k2 < 1 defined as in the proof
of Lemma 4.1, and p; =6 — ko, pz = 1;—_;’2:;, we estimate F3 via
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t
f AN (u(s)) | oo ds
t—M

t
<C [N s
M

t_
t
98 ___k3
(98) <c [ (t—s) O T || e ] o2 [l oo ds
t—M

i t H
<CA(t)t 3%t *ﬂMler“/ (t—s) & Tw)ds
t— M

<CA()t™ $-(3—r2) o o)
Above we used a simple interpolation to conclude that
1
3=

L4 1
lull 22 = llull o~ < Cllull7z lullzs <t & =M,

for some 1 > 0 and we plug the result into (73).
Now, given t > 2M, one summarizes estimate (98) as

(99) |FsllLe < CA(t)t 3eMPM (), q

Summarizing Lemmas 4.1, 4.2, and 4.3, choosing M = eMi® 5o that (97) holds,
we have that (98) reads as

(100) Iy (@)l < o A@E .

As a consequence we have

(101) u(t) < OMyt=3/2 4+ MPoeCM 1% 4 gA(t)t—m,
ie.,

(102) A(t) < CMPoCM° < MY

for some 8 > 0. This concludes the proof of Theorem 1.5.

5. Proof of Theorem 1.7. What we want to present here is that one can sys-
tematically remove the L' assumptions in Theorems 1.1, 1.4, and 1.5 by randomizing
the initial data. We will only prove the case for estimate (18); the other two cases
can be generalized from Theorems 1.4 and 1.5, respectively.

We will fix a constant A, large. We will use the terminology A-certain in [13];
i.e., we say an event is A-certain if it holds up to a set with small probability e 4.
(The exact value of a may change from line to line, but at the end, one only chooses
the smallest o involved.)

Note that we cannot conclude? that A-certainly

(103) e Aug || e S AP v >o0.

However, we can prove, in some sense, a time average version of (103). We present
more details below. We need to introduce a weight,

thD

= — s t3E )
1+ ¢100

(104) Vp,e

4We cannot even conclude (103) if one replaces %— for %
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LEMMA 5.1. For all 2 < p < oo and for all €1 > €3, then A-certainly’

(105) 1¥p.ereugll o < 4
L% L2[0,00)

similarly, one also has

(106) .2 Vug || 2 <A
L

+2 LE[0,00)

Remark 5.2. Regarding the weight in (104), one notes that if for some ¢t f(t) <
+=3(2=%) then

(107) @ F@I 2 S1 Ve <e.

Meanwhile, if ||y,,(t) f(t)|| 1 S1, then in the time average sense, v, f(t) St <, and
Ly
thus in the time average sense, f(t) <t 3(3—p)—ete’

We now turn to the proof of Lemma 5.1, which is merely a combination of Min-
kowski’s inequality and some standard large deviation estimate for Gaussian.

Proof. It is enough to prove, for p large and for ug =), gn(w)dn(z)uo(z), that

(108) o e Cugll 1 S V/pluollze.

LEL2LE

Then the desired A-certain claim comes from the usual Chebyshev inequality. Recall
that one has (see, for example, Lemma 3.1 in [7])

(109) D agn(W)(w)

T

1/2
son(xa)
T

LE
Thus, by Minkowski’s inequality, we have
|

L
LELELE

Z '-)(p.e(t)eét&‘;bnuﬂgn(w)

||F)(IJ,E_1 (t)e

S

(110) el

1/2
S 91/2 (Z hp,el (t)eit& (¢nuﬂ)|2) )

L
€
L2 LE

where in the last step we apply (109). By applying Minkowski's inequality again, we
have

5The a depend on p, €1, €2 though.
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1/2
(Z Vp.ei (t)e "% (pnuo)|? )

n A

L2 L%

1/2
< (E 17p.ex (£ (bnuo) [l pllz)
(111) n b La

1/2
r\<.r (Z ||¢nu0||ip’)
n @
1/2
< (||Z¢nuo||ig) ,
T

where in the second inequality we use Remark 5.2 and the dispersive estimate.
Estimates (110), (111) give (108), and Lemma 5.1 thus follows. O

We also note that A-certainly
(112) lug || 2 < A.
Thus, we have that A-certainly, for some 5y > 0,
||Uw||fz,5 < AP, [ Loe gt < A,

(113)

[y S APo, [usill oo 1 < A,

where u¥, = u® — e""®uf.

We will later only rely on w-wise estimate (105), (106), (113). For notational
convenience, we fix w and omit this w, denoting v = e"*®u% and w = uy,. We write
down the Duhamel formula,

¢ t
(114) w(t)= —i/ e =8y () [Pu(s)ds —i/ e )2 (jw 4 v|2(w + v) — |v|?v)ds
0

0

At this time, we focus on the bootstrap estimate for

(115) A(t) :=sup s/ |lw(s) e
s<t

We explain the heuristic why such a generalization will work. If v satisfies the
exact estimates for some linear solution e f, f € H' N L', then this is exactly
the same proof (for the same problem) as that of Theorem 1.1. Here, however, all
v involved in (114) are in the integral. Thus, for our problem, it is enough for v
to satisfy the estimates e f in the time average sense; see Remark 5.2. There is
some t—¢ loss but it does not matter since we are never in a critical situation in our
setting. We remark that it remains a very interesting problem to understand from a
quantitative viewpoint the long time dynamic for initial data randomized in physical
space H1/2,

We carry out the a priori estimate for w and A(t), and later we will also need a
parameter M. We write (114) as

(116) w=G1+ G2+ G3 + Gy,
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where®
t .
Gy =—i / it DAy (g)[20(s)ds,
0

¢
Gy = —i/ e =98 w2 wds,
(117) )
ngé/ eI (0O(wu(s)))ds,
0

Gi—i /.3 =92 (O (wv?(s)))ds.

The G, part will be addressed in Lemma 5.3. The G2 can be estimated exactly as
in the proof of Theorem 1.1, i.e., Lemmas 3.1, 3.2, and 3.3. But if one thinks more
carefully, one sees that G3 can also be estimated exactly as in the proof of Theorem 1.1.
. . . L 2 . .
The only different part may appear in the estimate for [, , O(w?v), which involves
the estimate for V(w?v), but in this part, there is still one free w left for us to apply
the bootstrap control of A(t), and thus one can still estimate it similarly. For the G4
part, as discussed above, one only needs to estimate the part

i
(118) / ¢ (O(wi?(s)))ds, t>2M,
t—M
and more precisely, one only needs to handle the part

t
(119) f (t—s8) /29| Vo] a [0 (5)]| e ds,
t—M

and the other parts follow the same estimate as (57). The estimate for (119) will be
treated in Lemma 5.4.
For G4, one has the following lemma.

LEMMA 5.3.
(120) G (t) S A3t73/2,

Proof. One again splits the integral fnt = 0:/ gt f:ﬂ For the first part, one
estimates

t2
(121) / =8 (2 () ds
0

<t / lo(s) 2 ds.

Lge

Note that locally [|v||Ls < |lv||z: < A, and for ¢ large, by choosing €1, € small, we
have, thanks to (105),

i
(122) Voo () 173,62 (8)0(3) 758 S v Il o 3.0 (8)0() | prrea g S A
1 x Lt 2 t 3

_ “Her§ we are slightly abusing the O notation. O(fg) means the term can be estimated by fg,
fa, fg, fg, and similarly for O(fgh).
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This handles the fot /2 part. For the second part f:ﬁ’ when t is small, one estimates
as

t
/ et=)8y(s)|%v(s)ds
t/2

Lg

t
[ 12 u(e)Pu(s) 1 ds
Jey2

t
< i(t—s) 2
(123) M£/2 lle Alv[*v||yy 2.0+ ds

t
1l
< [/Q(t—s) ) o]l g Joll 12 0] o- ds
t

t
<t/ 4 [/ 2 a0l ds
t/2 t "‘
<21 44)"G), o

For the estimate for (119), one has the following.
LEMMA 5.4. For M large, t > 2M, one has

t
(124) / (t_3)_(%+)Hw“Hl”U2”L2d5,€M1/2+A2(1+t)—(5/2—).
t—M

Proof. This computation is a parallel of the last part of the proof of Lemma 5.3.
Note that ||f?||zs < | f||%.2, and we have

¢
[ @ 9wl o2z
t M “

t
1
29 | =9l ol ol s
i

t
1/2— 2 2
5Mf A 12— 51”’?12 .el"”” 1/er p12-d8
t/2 ' L L

To summarize, similarly to (60), with also Lemmas 5.3 and 5.4, choosing M ~ A%,
we have

A(t) <CA® + CMY?H A%(1 4 1)~ /270320 AP-

(126) L . 1/4
+oan ( A% el + ol )

Note that the first two terms in (126) come from Lemmas 5.3 and 5.4. Applying
Gronwall’s inequality, the desired estimate (18) follows.

We briefly mention a technical point if one wants to further generalize Theo-
rems 1.4 and 1.5. One again applies the pseudoconformal energy trick to prove

(127) lu®llze St

and we only need this estimate for ¢ large.
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It should be noted that in the proof of Theorems 1.4 and 1.5, it is enough to have
(128) lu(t) e St~

for ¢ large, and one only needs the decay estimate (128) to hold in the time average
sense. Thus, we again split u =v+w, and (105) will replace estimate (128) for v, and
w =u — v also a priori satisfies (128) in the time average sense, and this is enough.
One will also need an H*® version of (112). We will prove A-certainly that

(129) <A

Hs=

Z gra(w)¢nu0

It is enough to prove the deterministic inequality

(130) 117 S D gnf e

It is enough to prove, for all n,

(131) 6n(V) Fll22 S Do D ldnr fli3re,

[n—n'|<10 n’
which is obvious.

6. Further remarks. In this section, we make a few more remarks on the decay
results for other well-known dispersive equations. We will list some results that are
expected to be obtained by using the methods in this paper with suitable modifica-
tions. We leave them for interested readers. We emphasize that these decay results
are based on corresponding scattering results, and we will provide the appropriate
references. Moreover, we remark here that the implicit constants appearing are de-
pendent of the size of the initial data and the size of the scattering norm (for some
models, the scattering norm can be expressed by a function of the size of the initial
data according to existing results).

1. The 3D, energy critical defocusing NLS case. The 3D energy critical NLS is
an important and well-studied model in the area of dispersive equations. We refer
the reader to the seminal work [12] for the global well-posedness and scattering result
for this model (see also [5], [29] for the radial case). We write the Schrodinger initial
value problem as follows:

(132) (10, + Ags)u =ulu|*, u(0,z) =up(z) € L' N H'*(R3).
Assume ¢ is a solution to (132). We expect that one could show
(133) lé(2) |z < Cuo)lt| 2.

Moreover, the constant dependence is triple exponential of the initial data since the
scattering norm is double exponential, and we have Gronwall’s inequality to use.
This result obviously improves Theorem 1.1 in [21] since the regularity requirement
is much lower (from H?3 to H'*). We also note that one may also consider the higher
dimensional case; see [52, 56] for the global results.

We emphasize that if one only considers LP-decay (p < 00), in the sense of showing

(134) 6(t)]| 2 < C(uo)|t| >G5,
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then assuming H!-regularity instead of H1*-regularity for the initial data is already
enough, which is more natural. This e-requirement is caused by a log-divergence
problem when one considers the L3°-decay case.

2. The energy supercritical NLS case. We note that this method can be modified
to handle the energy supercritical case once the scattering result is known. For this
case, we focus on a typical model as an example: 4D cubic defocusing NLS. The model
is Hz critical, which is above the energy critical level. See [18] and the references
therein for the corresponding scattering result and background. We consider the
Schrodinger initial value problem,

(135) (i8, + Aga)u=ulul®, u(0,z)=uo(z) € L' N HIt(RY).

Assume ¢ is the solution to (135) and the a priori bound limsup,, [[ul 2. = M1 < oo,
where I is the maximal interval of existence. We expect that one couﬁfd show

(136) 6(t)[| oo < Clug)t™2.

Here the constant depends on the size of the initial data, M4, and the scattering norm.

As a comparison, we also note that, for certain defocusing supercritical NLS
problems, one has blow-up-type results; see the recent result of Merle et al. [46] and
the references therein for more information.

3. The fourth-order NLS case. There are many different specific fourth-order NLS
models. We consider a typical case as an example: the cubic fourth-order Schrédinger
equation (4NLS) on R? (5 < d < 8). We refer the reader to [51] for the correspond-
ing global result and the references therein for the background. We consider the
Schrodinger initial value problem, for 5 < d <8,

(137) (i0; + (Aga))u=wululP, u(0,z) =uo(z) € L' N H**(R?).
Assume ¢ is the solution to (137). We expect that one could show
(138) l6(t) 125 < C(uo)ltl %

Here the constant depends on the size of the initial data and the scattering norm.
This result improves [59] in the sense of the regularity requirement.

4. The fractional NLS case. We also consider a typical model and refer the reader
to [31] for the scattering result. We consider the fractional Schrédinger initial value
problem for d > 2 and ﬁ <a<l,

(139) (10 + (Aga)®)u = ulu| ™3, w(0,z) =uo(z) € L' N H**.
Assume ¢ is the solution to (139). We expect that one could show
(140) ()]l < Cluo)lt|™ 2.

Here the constant depends on the size of the initial data and the scattering norm. One
may also consider other fractional NLS cases; see [23], [24], [44] and the references
therein.

5. Some other cases. There are more models one may consider for an analysis
similar to the one we conducted above: cubic-quintic NLS (see [50], [41] and the ref-
erences therein), inhomogeneous NLS (see [47] and the references therein), NLS on
waveguides (see [32], [35], [60] for examples), NLS with a partial harmonic potential
(this case is similar to the waveguide case; see [1], [9], [33]), Schrodinger resonant sys-
tems (see [10], [58]), nonlinear wave equations (see [55]), the Klein Gordon equation
(see [55]), and NLS with a nice potential such that the dispersive estimate and the
scattering hold (see [40] for an example and the references therein).
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Appendix A. A technical lemma. Though the following probabilistic lemma
is probably classical, we include it with a proof for the convenience of the reader.

LEMMA A.l. Let aj,as,...an,... be positive numbers and ) a; = co, and let g,
be i.i.d. Gaussian. Then almost surely one has

(141) Zan|gn|:oo.

Proof. One may, without loss of generality, assume a,, — 0; otherwise the (141)
clearly holds. It will be enough to prove

(142) ]E(B—Z,,anlgnn =0,
which follows from
(143) IL, (E(e~%"19n1)) = 0.

To simplify the notation, let b, =1 —E(e *»l921). One may only consider n large,
thus a,, small.
We will prove

(144) bn"“"an:
thus b, > ca,, for some ¢ > 0,
(145) Hn(E(E_aﬂlgﬂl)) S Hn(]_ — Cﬂ.n) E D,

since )" a, = oc.
To see (144), one starts with

o
(146) E(eolon)) :/ o= b1z g—lzlan_

One computes

= el el
1_/ / e zlz |ty
0 V2T J oo

147 =/ e~zlel* (1 eanlzl) £ O / e~ zlel?
(147) | ( : el >a/*

1
z|< g
A

= e_%lxlzan|x|+0(ai)~an.
|z| <az/*

Thus, (144) has been proved. O
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