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Abstract

Pre-training is known to generate univer-
sal representations for downstream tasks in
large-scale deep learning such as large lan-
guage models. Existing literature, e.g., Kim
et al. (2020), empirically observe that the
downstream tasks can inherit the adversar-
ial robustness of the pre-trained model. We
provide theoretical justifications for this ro-
bustness inheritance phenomenon. Our theo-
retical results reveal that feature purification
plays an important role in connecting the ad-
versarial robustness of the pre-trained model
and the downstream tasks in two-layer neu-
ral networks. Specifically, we show that (i)
with adversarial training, each hidden node
tends to pick only one (or a few) feature;
(ii) without adversarial training, the hidden
nodes can be vulnerable to attacks. This
observation is valid for both supervised pre-
training and contrastive learning. With puri-
fied nodes, it turns out that clean training is
enough to achieve adversarial robustness in
downstream tasks.

1 Introduction

Adversarial training is a popular way to improve
the adversarial robustness of modern machine learn-
ing models. However, compared to clean training,
the computation cost of adversarial training is much
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higher. For example, using a single GPU to train
ResNet18 for CIFAR-10, clean training takes 1 hour,
but adversarial training uses 20 hours for 200 epochs
(Rice et al., 2020).

One possible way to train an adversarially robust neu-
ral network with a lower cost is to utilize pre-trained
models. That is, we use a large amount of (possibly
un-labelled) pre-training data to first train a “general-
purpose” neural network model; then, for any specific
downstream task, we only need to adapt the last one
or two layers according to the (often labelled) down-
stream data. The computation burden is then moved
from downstream users to the pre-training phase. Such
a strategy has been widely adopted in the training of
large language models such as the GPT series. Please
see more discussions in the recent review on foundation
model (Bommasani et al., 2021).

If the statistical properties of pre-trained models can
be inherited, then the pre-training strategy can also
greatly simplify the training of robust downstream
models, as long as the pre-trained models possess
proper adversarial robustness. Recent literature, e.g.,
Zhao et al. (2022) shows that clean pre-training can
improve the sample efficiency of the downstream tasks,
while for adversarial training, it is empirically observed
such an inheritance of robustness from pre-training
models to downstream task training (Shafahi et al.,
2019; Chen et al., 2021; Salman et al., 2020; Deng
et al., 2021b; Zhang et al., 2021; Kim et al., 2020; Fan
et al., 2021). Unlike the existing works, this paper
aims to provide theoretical validation for this robust-
ness inheritance phenomenon.

While most theoretical studies of adversarial training
are from statistical/optimization perspectives, Allen-
Zhu and Li (2020) studies how adversarial training im-
proves supervised learning in neural networks via fea-
ture purification. The observed data can be viewed
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as a mixture of semantic features, and the response
is directly related to the features rather than the ob-
served data. It is justified that in clean training, each
node learns a mixture of features, i.e., no feature pu-
rification. Rather, the nodes will be purified in the
adversarial training in the sense that each only learns
one or a few features, i.e., feature purification happens.

Different from Allen-Zhu and Li (2020) which stud-
ies supervised learning, this work aims to know
whether the benefit of feature purification appear in
self-supervised pre-training methods, e.g., contrastive
learning. In addition, after obtaining a pre-trained ro-
bust model, we wonder how the downstream task in-
herits the robustness using adversarial pre-training.

Our contributions are as follows:

(1) We provide a theoretical framework to verify
that, the design of adversarial loss promotes feature
purification. Beyond the work of Allen-Zhu and Li
(2020) which studies the evolution of the training tra-
jectory given a specific optimizer, we directly consider
the optimal solution to focus on the best possible per-
formance of adversarial training regardless of the op-
timization algorithm. For the class of neural networks
we consider, there are many possible optimal models
to minimize the clean population risk, but only those
with minimal adversarial loss achieve feature purifica-
tion. (Section 4)

(2) We extend our analysis to contrastive learning and
verify that many non-robust models achieve the best
clean performance while the robust ones have purified
hidden nodes. An interesting observation is that ad-
versarial training purifies the neural network via nega-
tive (dissimilar) pairs of data, and the loss of positive
(similar) pairs of data is almost resistant to adversar-
ial attack. This is a different observation compared to
Allen-Zhu and Li (2020). (Section 5)

(3) Our results also show that when the pre-trained
model perfectly purifies the hidden nodes, we can
achieve good model robustness when the downstream
tasks are trained using clean training. (Section 6)

2 Related Works

Feature Purification and Better Representation
Some related literature touches on similar questions
as our targets but with a different purpose from ours.
Wen and Li (2021) shows that contrastive learning can
purify features using RandomMask. A detailed dis-
cussion on the advantages/disadvantages of adversar-
ial training and RandomMask can be found in Section
5.4. Another related work is Deng et al. (2021b), which
shows that adversarial training helps select better fea-
tures from individual tasks. This is different from ours

as it does not work on nonlinear neural networks.

Adversarial training There are fruitful studies in
the area of adversarial training. For methodology,
there are many techniques, e.g., Goodfellow et al.
(2015); Zhang et al. (2019); Wang et al. (2019b); Cai
et al. (2018); Zhang et al. (2020a); Carmon et al.
(2019); Gowal et al. (2021); Mo et al. (2022); Wang
et al. (2022). Theoretical investigations have also
been conducted for adversarial training from differ-
ent perspectives. For instance, Chen et al. (2020a);
Javanmard et al. (2020); Taheri et al. (2021); Yin
et al. (2018); Raghunathan et al. (2019); Najafi et al.
(2019); Min et al. (2020); Hendrycks et al. (2019);
Dan et al. (2020); Wu et al. (2020b); Javanmard and
Mehrabi (2021); Deng et al. (2021a); Javanmard and
Soltanolkotabi (2022) study the statistical properties
of adversarial training, Sinha et al. (2018); Wang et al.
(2019a); Xing et al. (2021b,a); Xiao et al. (2022a,b)
study the optimization aspect of adversarial training,
Zhang et al. (2020b); Wu et al. (2020a); Xiao et al.
(2021) work on theoretical issues related to adversar-
ial training with deep learning.

Contrastive learning Contrastive learning is a
popular self-supervised learning algorithm. It uses
unlabeled images to train representations that distin-
guish different images invariant to non-semantic trans-
formations (Mikolov et al., 2013; Oord et al., 2018;
Arora et al., 2019; Dai and Lin, 2017; Chen et al.,
2020b; Tian et al., 2020; Chen et al., 2020b; Khosla
et al., 2020; HaoChen et al., 2021; Chuang et al., 2020;
Xiao et al., 2020; Li et al., 2020). Beside empirical
studies, there are also many theoretical studies, e.g.,
Saunshi et al. (2019); HaoChen et al. (2021, 2022);
Shen et al. (2022); HaoChen and Ma (2022); Saun-
shi et al. (2022). Other related studies in adversarial
training with contrastive learning can also be found
in Alayrac et al. (2019); Ho and Nvasconcelos (2020);
Jiang et al. (2020); Cemgil et al. (2019); Petrov and
Kwiatkowska (2022); Nguyen et al. (2022).

3 Model Setups

This section defines data generation model, neural net-
work, and adversarial training for supervised learning.

3.1 Data Generation Model

We consider the following data generation model.
There exists some underlying true features X ∈ Rd,
such that Z = MX + ξ for a unitary matrix M , and
the response Y is directly determined by X. However,
instead of observing X, we observe transformed noisy
features Z ∈ Rd and the response Y ∈ R. An illustra-
tion can be found in Figure 1.

The relationship between X and Y is as follows:
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Figure 1: A proof-of-concept example of the Sparse
Coding Model. For the categorical features, one can
reshape it to a sparse feature vector.

(1) Regression: Y = θ⊤0 X + ε for Gaussian noise ε.

(2) Classification: Y ∼ Bern(1/(1 + exp(θ⊤0 X))).

We impose the following assumption on the data.

Assumption 3.1 (Sparse coding model). The model
of (X,Z, Y ) satisfies the following conditions:

(1) The coordinates of X are i.i.d. symmetric vari-
ables, and |Xi| ∈ {0} ∪ [1/

√
k, 1] for some sparsity pa-

rameter k. Moreover, P (|Xi| ̸= 0) = Θ(k/d), EX2
i =

Θ(1/d), E|Xi| = Θ(1/
√
k), and E|Xi|3 = Θ(1/(d

√
k)).

(2) The noise ξ follows i.i.d. N(0, ζ2Id/d) for ζ > 0.

(3) Each coordinate of θ0 satisfies (θ0)i = Θ(1).

In Assumption 3.1 (1), we assume X is a sparse sig-
nal. In general, there are O(k) active features (i.e.,
non-zero Xi) in a realization of X. In the later re-
sults, we always assume k ≪ d. In addition, together
with (2), we have ∥X∥ = Op(1), ∥Z∥ = Op(1), and
∥ξ∥ = Op(1), i.e., the total magnitudes of the features,
observed data, and noise are comparable. Assump-
tion 3.1 (3) indicates that all features are important
in determining Y .

Assumption 3.1 is similar to the model considered in
Allen-Zhu and Li (2020). We impose a constraint on
the third moment of Xi to use concentration bounds
in Lemma F.2, and assume a symmetric distribution
to ease the contrastive learning (Lemma 5.1). Similar
sparse coding models have a long history in literature,
e.g., Hyvarinen et al. (1998).

3.2 Two-Layer Neural Network

We use a two-layer neural network to fit the model. In
particular, given an input z,

fW,b(z) =
H∑

h=1

ahσ(z
⊤Wh, bh),

where ah = 1 for all h. In the pre-training stage, we
use lazy training and do not update ah. The vector

b = (b1, b2, . . . , bH) is the intercept1 term in each node,
and W = (W1 | . . . | WH) is the coefficient matrix. In
later sections, besides using Wh as the hth column of
W , we also define Wi,: as the ith row and use W:,h as
the hth column of W to avoid confusion when needed.
Similar notations will be used for other matrices.

To simplify the derivation, we mainly consider the fol-
lowing activation function, for v, e ∈ R,

σ(v, e) = v1{|v| ≥ e}. (1)

Compared to an identity mapping, (1) has an extra
“gate parameter” e to screen out weak signals. When
|v| > e, the hidden node is activated.

3.3 Adversarial Training

We consider L2 fast gradient attack (FGM) with at-
tack strength ϵ, i.e., given the current model f and loss
function l, for each sample (z, y), the attack is

δ2 = ϵ(∂l/∂z)/∥∂l/∂z∥,

where ∥ · ∥ is the L2 norm. In the models we consider,
when approaching the optimal solution to minimize
clean/adversarial loss, the FGM is the best attack.

Besides the adversarial attack, we also define the cor-
responding adversarial loss as lϵ(z, y; f) = l(z+δ, y; f).
Besides L2 attack, some discussions can also be found
in the appendix Section C if δ is the L∞ attack (i.e.,
Fast Gradient Signed Method (FGSM)). When ϵ = 0,
the loss l0 is reduced to l, and represents the clean loss.
Details of contrastive learning are in Section 5.

For clean and adversarial training in this paper, we
use “clean training” to minimize the clean loss and
“adversarial training” to minimize the adversarial loss.

4 Feature Purification

This section aims to provide basic intuitions on (i) why
the activation function (1) and ReLU are preferred
over linear networks, and (ii) why adversarial train-
ing can purify features. While the high-level ideas are
similar to Allen-Zhu and Li (2020), we restate them
via different technical tools so that it can be carried
over to the later sections of contrastive learning and
downstream study.

4.1 Screen Out Noise

The basic rationale of why the activation function in
(1) (or ReLU) is that it can screen out the noise ξ.
Intuitively, the noise ξ in Z only contributes to a neg-
ligible noise in hidden nodes, which can be screened
out by a proper “gate parameter” bh.

1We use the term “intercept” to describe b to avoid
confusion with “bias” in statistics.
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To explain more details, we introduce the notations
first. Based on the data generation model, assume z
is a realization of Z, then we can define U =M⊤W ∈
Rd×H and rewrite fW,b(z) as

fW,b(z) = σ(z⊤W, b)a = σ(x⊤U + ξW, b)a.

To interpret U , for each hidden node h, the column Uh

represents the strength of each feature in the hidden
node. Note that the noise ξ⊤Wh ∼ N(0, ζ2∥Uh∥2/d).
When bh ≫ ∥Uh∥/

√
d, the noise alone is not able to

activate the hidden node. On the other hand, for an
active feature Xi ̸= 0, we have |Ui,hXi| ≥ |Ui,j |/

√
k,

which can be much larger than ζ∥Uh∥/
√
d for proper

Uh. As a result, under a reasonably tuned bh, the
active features will survive the screening effect and ac-
tivate the hidden node. Noise may pass through the
screening of a node and corrupt the prediction only
when this node also contains other active features, but
the contribution of noise (W⊤

h ξ) will be negligible com-
pared with other active features.

To simplify our analysis, we impose the following as-
sumption to focus on strong features:

Definition 4.1. Define M as the set of two-layer neu-
ral networks such that, for any node h,

(1) The intercept is within a proper range, i.e. bh ≪
∥Uh∥/

√
k∥Uh∥0, and

(2) bh ≫ ∥Uh∥/
√
k∥Uh∥0/ log d≫ ∥Uh∥/

√
d.

(3) There are at most m∗ of features of X learned
by each hidden node, i.e., ∥Uh∥0 ≤ m∗ for all h =
1, . . . ,H , and m∗ = o(d/k). All hidden nodes are non-
zero and H ≫ d.

(4) Non-zero Ui,h’s have the same sign for the same i
and |Ui,h| = Θ(γ).

The conditions (1) and (2) in Definition 4.1 match the
intuition above to conduct screening. The conditions
(3) and (4) are for the simplicity of the derivation.

For the ReLU activation function, it is similar to the
activation we considered in 1, and the related discus-
sion is postponed to Section B.

4.2 Purified Nodes Lead to Robustness

To intuitively understand why feature purification im-
proves adversarial robustness, a graphical illustra-
tion can be found in Figure 2. With either puri-
fied/unpurified hidden nodes, the active features X1

and X3 will always be attacked. With purified fea-
tures, adding an attack does not impact the inactive
features. With unpurified features, the inactive fea-
tures can also be attacked.

The following is extended from the above intuition:

Figure 2: With purified hidden nodes, only the active
features will be attacked, and the resulting adversarial
loss is small. With unpurified hidden nodes, inactive
features will also be impacted. Note that we transform
the attack on the observable Z back to its features X,
to compare with θ0.

Lemma 4.2. Assume ϵ = O(1/(log(d)
√
m∗k)), and

(W, b) ∈ M. Denote X as the set of coordinate i where
|Xi| > 0. Assume Ua = θ, ∥θ∥∞ = Θ(1). With proba-
bility tending to 1 over the randomness of ξ and X,

∆W,b(z, y) = ϵ
∂l

∂fW,b

∥∥a⊤diag(I(W⊤z, b))W⊤∥∥
2
+ o, (2)

where “o” represents a negligible term caused by the
curvature of the loss. In probability,

∥θX ∥2 ≤ ∥a⊤diag(I(U⊤X, b))U⊤∥2 ≤ ∥θ∥2, (3)

the θX is the vector of the coordinates of the θ in X .

The left equation holds (i.e., highest robustness) only
when the matrix U is sparse, i.e., ∥Uh∥0 ≤ 1 for every
hidden node h. When all hidden nodes are activated,
the right equation holds.

Lemma 4.2 illustrates how the effectiveness of attack
(i.e.,.∆W,b) is affected by the neural network. If the
hidden nodes are purified, then the neural network is
more robust, and the increase from l0 to lϵ is small.
If not, more hidden nodes are activated, leaking more
weight information.

There are two key claims to prove Lemma 4.2: (i) to
show equation (2), we show that in probability, every
activated hidden node will not be deactivated by the
attack (Lemma F.4), and (ii) to show equation (3), we
show that in probability, every hidden node is acti-
vated as long as some of its learned features are non-
zero (Lemma F.3). The proof for Lemma 4.2 and all
the following theorems and propositions can be found
in Appendix F.

4.3 Purification in Supervised Learning

We use square loss and absolute loss for regression and
logistic loss for classification. Given the loss function
as l, the task is to minimize Elϵ(Z, Y ;W, b).

Thanks to Lemma 4.2, we are able to study the clean
and robust performance of neural networks. Since our
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main focus is on contrastive learning, we provide an
informal statement for supervised learning below, and
postpone the formal theorems to Appendix A.

Theorem 4.3 (Informal Statement). For some
(W, b) ∈ M satisfying Ua = θ0, for square loss, abso-
lute loss, and logistic regression, we define a vanishing
term ψ as

El0(Z, Y ;W, b) = El0(X,Y ; θ0) +O(ψ).

There exists many (W, b) ∈ M such that the clean loss
is O(ψ)-close to its minimum, while the adversarial
loss is Θ(ϵ

√
m∗k)-close to its minimum. When us-

ing adversarial training so that the adversarial loss is
O(ψ)-close to its minimum, the clean loss is Θ(ϵ

√
k)-

close to its minimum, and at most o(1) proportion of
hidden nodes learn more than 1 feature.

5 Purification in Contrastive Learning

In this section, we show that in contrastive learning,
clean training does not intend to purify the neural net-
works, and adversarial training does.

5.1 Model Setup

The contrastive learning aims to learn a g : Rd⊗Rd →
R to minimize the following loss

EZEY l(Z,Z
′(Y ), Y ; g) (4)

:= EZEY log (1 + exp[−Y g(Z,Z ′(Y ))])

where Z ′(Y ) := Z ′ = MX ′ + ξ′ for a noise ξ′ that is
i.i.d. to ξ, and Y determines whether the pair (Z,Z ′)
is similar or not, i.e., if Y = 1, X ′ = X, otherwise, X ′

is an independent copy of X. In other words, when
Y = 1, Z and Z ′ share the same true features, can be
interpreted as two views of the same object X; when
Y = −1, Z and Z ′ are independent and correspond to
different true features X and X ′. Note that the label
Y = ±1 in contrastive learning is not the class label in
the original data set. It is an artificial label, manually
generated following marginal distribution P (Y = 1) =
P (Y = −1) = 0.5. The label Y represents whether
the two views correspond to the same sample or not.
Given a neural network parameterized by W , b and A
that outputs multiple responses, the loss function l is
in the format of

l(z, z′, y;W, b) = log (1 + exp[−ygW,b(z, z
′)]) ,

where

gW,b(z, z
′) (5)

=

(
H∑

h=1

Ah,:σ(W
⊤
h z, bh)

)⊤( H∑
h=1

Ah,:σ(W
⊤
h z

′, bh)

)

with the output layer A ∈ RH×d with the same out-
put dimension as the data dimension. Note that pa-
rameter A is not a trainable parameter since we will
consider a lazy training scenario. The details will be
discussed later. Unlike the supervised task where the
neural network outputs a single value, in contrastive
learning, the neural network outputs a vector.

For adversarial attack, we again consider the FGM
attack, i.e., δ2 = ϵ(∂l/∂z)/∥∂l/∂z∥2, and the corre-
sponding adversarial loss can be written as

lϵ(z, z
′, y;W, b) = l(z + δ2, z

′, y;W, b).

5.2 Optimal Solution and Lazy Training

The optimal solutions for supervised learning loss and
contrastive learning loss are different. But for con-
trastive learning, by Tosh et al. (2021), the optimal
solution of contrastive learning (4) is

g∗(z, z′) = log

(
fZ,Z′(z, z′)

fZ(z)fZ′(z′)

)
,

where fZ , fZ′ , and fZ,Z′ are the marginal and joint
density functions and are not linear functions. Thus,
under our Definition 4.1, which imposes restrictions on
W and b such that σ(W⊤

h z, bh) has a linear function
behavior, we cannot achieve good contrastive loss with
the two-layer network modeling of gW,b.

Based on the following lemma, the best solution of
contrastive loss, among linear networks Tx, still enjoys
a nice and tractable form under simple settings.

Lemma 5.1 (Basic Properties of Contrastive Learn-
ing). Consider the class of functions gT (x, x

′) =
x⊤T⊤Tx′ using the ground-truth feature X for some
matrix T⊤T = PDP⊤ with an orthonormal matrix
P and a diagonal matrix D. Assuming tr(D) is
fixed, then the best model to minimize contrastive loss
EXEY log (1 + exp[−Y gT (X,X ′)]) satisfies D ∝ Id.

Lemma 5.1 motivates us to utilize a new lazy-training
method in contrastive learning to simplify the analysis.
Unlike supervised pre-training, where we fix weight
a ≡ 1, in contrastive learning, we would ensure that
M⊤WAA⊤W⊤M ∝ Id is fixed, i.e., WAA⊤W⊤ ∝ Id.
As a result, instead of completely fixing last layer pa-
rameters, in contrastive learning, we take A = τW+

for a fixed τ while updating weight matrix W , where
W+ is the pseudo inverse of W .

5.3 Similar vs Dissimlar Pairs

For the above setting, adversarial training will help
feature purification. However, different from super-
vised adversarial training where the attack of all sam-
ples contributes to feature purification, in contrastive
learning, only the attack on dissimilar data pairs are
affected by feature purification.
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Figure 3: Adversary attacks on dissimilar pairs, but
have little effect on similar pairs.

Intuition To explain why adversarial training af-
fects more on the loss of dissimilar pairs, we use Figure
3 as an example. In Figure 3, we attack the left data
and keep the right data unchanged. Suppose that the
attack changes the inactive features from 0 to another
value of the left image, Given a similar pair (i.e., two
views of the same data via different data augmenta-
tion and their underlying features are the same), the
change of the left features is canceled when multiply-
ing the zero feature of the right data. However, for
dissimilar pairs, there is a mismatch between the fea-
tures. For example, the attack changes X2 of the left
data to another value, when multiplying with X2 = 1
on the right data, the product gets changed, leading
to a big change in the loss value.

Simulation We also conduct a toy simulation and
plot the result in the left panel of Figure 4.

To generate X, we consider the following distribu-
tion. First, each coordinate of X is independent of
each other, and has k/d probability to be non-zero.
Second, given Xi is non-zero, it has 1/2 probabil-
ity to be positive, and we take the distribution as
min(1, |ε|/

√
k + 1/

√
k) with ε ∼ N(0, 1). The dis-

tribution is symmetric to Xi < 0.

To generate Z, we randomly generate a unitary ma-
trix M , and take Z = MX + ξ, with ξ ∼ N(0, ζ2Id).
To generate M , we use library pracma in R. We take
(d, k, ζ) = (1000, 10, 0.005), and generate 1000 samples
in each simulation and repeat 30 times to obtain an av-
erage. To generate Y for supervised learning, we take
θ0 = 1, and Y = X⊤θ+N(0, σ2Id) with σ = 0.1. And
in terms of the neural network, we take H = 10000
hidden nodes.

We control the average ∥Uh∥0 and evaluate the clean
and adversarial loss. We plot four curves, representing
the change of clean and adversarial contrastive losses
for similar data pairs (i.e., Z and Z ′(1)) and dissimi-
lar data pairs (i.e., Z and Z ′(−1)), as the number of
features in each hidden node increases. As the number
of features in each hidden node gets larger, the adver-

sarial loss for dissimilar pairs gets larger. The detailed
setup, numbers in the figure, and standard errors can
be found in Appendix E.

Theory Based on the above simulation observation
and intuition, the following theorem demonstrates how
an adversarial attack impacts contrastive learning.

Theorem 5.2. Assume that (W, b) satisfies Definition
4.1 and |X | = Θ(k) where X denotes the set {i : |Xi| >
0}. Let A = τW+ for some fixed τ > 0. If

Ui,:diag(I(UX ,:,0))U
⊤(UU⊤)−1

:,j = Θ(α)

for i ∈ X c and j ∈ X , and

Ui,:diag(I(UX ,:,0))U
⊤(UU⊤)−1

:,j = Θ(α2)

for i ̸= j and i, j ∈ X cm and furthermore α =
o(1/

√
d), then when ϵ = Θ(1/(log(d)

√
m∗k)),

Elϵ(Z,Z ′(1), 1;W, b) (6)

= min
(W ′,b′)∈M

El0(Z,Z ′(1), 1;W ′, b′) + Θ(ϵ) + O(ψ),

and

Elϵ(Z,Z ′(−1),−1;W, b) (7)

= min
(W ′,b′)∈M

El0(Z,Z ′(−1),−1;W ′, b′) +O(ψ)

+Θ(ϵk3/2/d) + Θ(ϵα2
√
d).

To make a connection between α and the level of purifi-
cation of U , we perform a simulation in Figure 4 and
calculate the average Ui,:diag(I(UX ,0))U

⊤(UU⊤)−1
:,j

for (i ∈ X c,j ∈ X ) and (i ̸= j, i, j ∈ X c) respec-
tively, and denote γ1 and γ2 as the corresponding av-
erage value. From the right panel of Figure 4, one
can see that log(γ1) and log(γ2) are approximately lin-
early increasing functions of log(m). With a larger m,
α will be larger. In addition, one can also see that
log(γ2) ≈ log(γ21), which validates the appropriateness
of our assumption in Theorem 5.2.

To connect Theorem 5.1 and the intuition in Figure
4, when designing an attack on Z, Z ′(1) carries the
information of true features X. As a result, the best
attack on Z that aims to make Z + δ dissimilar to
Z ′(1), corresponds to the active features in X. For
similar pairs, α, which quantifies the associations be-
tween active and non-active features, will only have
negligible effect.

On the other hand, the effect of the adversarial attack
is different in (7) for dissimilar pairs. When α gets
larger, ϵα2

√
d can dominate the fixed ϵk3/2/d, indi-

cating that the neural network is more vulnerable to
adversarial attack for dissimilar data pairs.

The above theorems and simulation evidences together
answer our question: contrastive learning can also ben-
efit from adversarial training.
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Figure 4: Left: Clean/adversarial contrastive testing loss under different levels of purification of the hidden
nodes, for similar data pairs (i.e., Y = 1) and dissimilar data pairs (i.e., Y = −1). Note that the blue and yellow
curves overlap. Right: How α is related to m. The values of γ1 and γ2 are assumed to be in Θ(α) and Θ(α2)
respectively in Theorem 5.2.

5.4 Discussion

While we study how adversarial training purifies fea-
tures in contrastive learning, another work, Wen and
Li (2021), studies how random data augmentation im-
proves feature purification. This augmentation is sim-
pler to implement with a smaller computation cost,
but there are two advantages of adversarial training.

First, for random data augmentation, the intercept
term b in the hidden node is taken to purify features
only. For adversarial robustness, when ϵ gets larger,
we need a larger b to avoid the adversarial attack ac-
tivate/deactivate hidden nodes. The intercept b in ad-
versarial training can better improve the robustness.

Second, the random augmentation purifies features via
decoupling the features in similar pairs, rather than in
dissimilar pairs as in adversarial training. In Figure
4, the loss for similar pairs is smaller than dissimilar
pairs, implying that adversarial training is more sen-
sitive in purification.

The data augmentation in Wen and Li (2021) is also
used in our experiments, and the clean-trained con-
trastive models are vulnerable to adversarial attack.

6 Robustness in Downstream Tasks

After obtaining the pre-trained model (W, b), we fur-
ther utilize it in a downstream supervised task.

The downstream training aims to minimize the clean
loss of downstream data (Zdown, Ydown) w.r.t. a given
pre-trained weights (W, b)

LW,b(a) := EL(σ(Z⊤
downW, b)a, Ydown), (8)

where the loss function L can be different from the
one in pre-training, Zdown =MXdown+ ξdown uses the
same M but possibly different Xdown satisfying the
sparse coding model, Ydown can also be different from

Y . Denote Lϵ as the corresponding adversarial loss,
and a∗ as the corresponding optimal solution.

The following proposition indicates that the robust-
ness in pre-training can be inherited.

Proposition 6.1. When ϵ = Θ(1/(log(d)
√
m∗k)),

(1) There exists (W, b) that minimizes pre-training
clean (supervised or contrastive) loss s.t.

LW,b
ϵ (a∗)− LW,b

0 (a∗) ≫ ϵ
√
k +O(ψ).

(2) Assume (W, b) ∈ M minimizes the adversarial
pre-training loss and suph ∥Uh∥0 = 1, then

LW,b
ϵ (a∗)− LW,b

0 (a∗) = Θ(ϵ
√
k) +O(ψ).

The proof of Proposition 6.1 is similar to Theorem A.1.

Proposition 6.1 illustrates two observations. First, us-
ing clean loss in the pre-training, since one cannot pu-
rify the neural network, the corresponding downstream
training is not robust. Second, if we obtain a purified
neural network, the downstream model is robust.

7 Real-Data Experiments

Our experiments aim to justify (1) the robustness in-
heritance phenomenon in Section 6; (2) Adversarial
training purifies the features (Section 4.3 and 5).

7.1 Experimental Setups

We perform supervised learning Rice et al. (2020)2

and contrastive learningKim et al. (2020)3 pre-training
(i.e., pre-training consists of a clean training phase, fol-
lowed by an adversarial training phase) to verify that
the hidden nodes are purified. After pre-training the
neural network, we remove its last layer, train a new

2https://github.com/locuslab/robust_overfitting
3https://github.com/Kim-Minseon/RoCL

https://github.com/locuslab/robust_overfitting
https://github.com/Kim-Minseon/RoCL
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last layer using a supervised task (clean training), and
test the adversarial robustness.

Our tests are conducted on ResNet-18 He et al. (2016).
The attack method used for training and evaluation is
PGD under l∞ norm and ϵ = 8/255. We use CIFAR-
10, CIFAR-100, or Tiny-Imagenet in pre-training and
CIFAR-10 for downstream training and testing. De-
tails on training configurations are in Table 3 in the
appendix, and we retain the same configuration used
by the original GitHub repositories. We perform the
training on a RTX-2080 GPU with 12GB RAM.

Pre-train Pre-train Down Acc Robust

CIFAR10

Clean Clean 0.955 0.001
Clean Adv Sup 0.477 0.109

Adv Sup - 0.810 0.495
Adv Sup Clean 0.847 0.429
Adv Sup Adv Sup 0.836 0.484

Adv Contra Clean 0.831 0.393
Adv Contra Adv Sup 0.807 0.462

Table 1: Robustness and accuracy in CIFAR-10 down-
stream task for different pre-training setups. “Pre-
train” and “Downstream” indicate the method of pre-
training and the downstream task. “Adv” stands for
adversarial training. “Sup” and “Contra” stands for
supervised and constrastive learning.

Table 1 shows the training results for CIFAR-10. For
the results of using CIFAR-100 or Tiny-Imagenet in
the pre-training, we postpone them to Table 2 in the
appendix due to the page limit. In Table 1, we evalu-
ate the clean accuracy (Acc) and robust accuracy (Ro-
bust) in the testing dataset. For both supervised and
contrastive adversarial pre-training training + clean
downstream training, we observe higher robustness
against PGD attacks than clean pre-training, despite
minor losses in standard accuracy. This verifies the
robustness inheritance phenomenon.

We also provide benchmarks for comparison. First,
clean pre-training + clean downstream training to-
gether result in near-zero robustness. Second, clean
pre-training + adversarial downstream training in-
creased robustness by 10%, but at the cost of dras-
tically decreased clean accuracy (-47.8%), since the
learning capacity of downstream linear layer is limited.
Third, when the downstream tasks are also trained
in an adversarial manner, compared with clean down-
stream training, the robustness increases by 5.5% in
the task following supervised adversarial pre-training
and 6.9% in the task following adversarial contrastive
pre-training, which means that we are not losing too
much from using clean training in the downstream
tasks. Finally, the robustness is only slightly higher
compared to adversarial training from scratch (49.5%).

Table 1 also provides the results when using CIFAR-
100 in the pre-training. The observations are similar
to the case of CIFAR-10. Similar results can be found
in Table 4 in the appendix for a different input layer
kernel size. In contrast, Section D.3 shows that data
augmentation method (Wen and Li, 2021) solely can-
not effectively improve robustness.

Figure 5: Learned features in the input convolutional
layer trained on CIFAR-10.

In addition to the numerical robustness result, we also
visualize the trained neural networks to demonstrate
the feature purification effect. Figure 5 visualizes
the features in the input convolutional layer learned
from adversarial and clean pre-training. The features
learned from adversarial training tend to have fewer
types of colors in one cell, showing purification effects.
Features in multiple filters (see the blocks marked
with circles for examples) become highly concentrated,
reducing the small perturbations around the center
points. More figures of purification can be found in
Figure 6, 7 and 8 in Appendix D.

8 Conclusion

In this study, we consider the feature purification effect
of adversarial training in supervised/self-supervised
pre-training, and the robustness inheritance in the
downstream clean trained task. Both theory and ex-
periments demonstrate the feature purification phe-
nomenon. As for future direction, while we consider
adversarial pre-training and clean fine-tuning, it can
still be burdensome for the pre-trained model provider
to train a robust model. Thus, it is interesting to study
the performance of clean pre-training and adversarial
fine-tuning, which is needed when the pre-training is
expensive, e.g., foundation models. As mentioned in
Table 1, when simply using clean pre-training with
adversarial fine-tuning, the robustness cannot be ef-
fectively improved. Other methods may be considered
to improve the robustness.
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Below is a list of the contents in this appendix:

• Section A: detailed theorem for supervised learning.

• Section B: discussion on potential relaxations of the assumptions.

• Section C: discussion when using L∞ attack.

• Section D: real-data experiments.

• Section E: simulation details.

• Section F: the proof for theorems and lemmas using L2 attack.

A Details for Supervised Learning

Clean training does not purify features The following theorem indicates that clean training can achieve
good clean performance without feature purification.

Theorem A.1. For some (W, b) ∈ M satisfying Ua = θ0, for square loss, absolute loss, and logistic regression,

El0(Z, Y ;W, b) = El0(X,Y ; θ0) +O(ψ),

where ψ is a vanishing term induced by the noise ξ and the activation gate, i.e., the discrepancy between I(x⊤Uh, 0)
and I(x⊤Uh + ξ⊤Wh, bh). If Hk3(m∗)3 = O(d2−ε) for some ε > 0, then ψ → 0.

There are many choices of (W, b) ∈ M with good clean performance, i.e.,

El0(Z, Y ;W, b) = min
(W ′,b′)∈M

El0(Z, Y ;W ′, b′) +O(ψ) = El0(X,Y ; θ0) +O(ψ). (9)

Meanwhile, their robustness is poor: When taking ϵ = Θ(1/(log(d)
√
m∗k)),

Elϵ(Z, Y ;W, b)− min
(W ′,b′)∈M

Elϵ(Z, Y ;W ′, b′) = O(ψ) + Θ(ϵ
√
m∗k),

The notation Θ belongs to the family of Big-O notation, and it is the same as ≍. For two sequences {an}, {bn},
bn = Θ(an) (or bn ≍ an) means that when n → ∞, there exists some constants c0, c1 > 0 so that c0an ≤ bn ≤
c1an.

Note that when m∗ and k are small enough, and H ≫ d in a suitable range, ϵ
√
m∗k ≫ O(ψ).

The proof of Theorem A.1 and the following Theorem A.2 mainly utilize Lemma 4.2. In Lemma 4.2, the results
hold in probability. To prove Theorem A.1 and A.2, the main goal is to quantify the effect when the exceptions
happen.

Adversarial training purifies features Based on the idea in Lemma 4.2, the following theorem shows how
adversarial training improves robustness and how purification happens. One can purify the neural network using
adversarial training while achieving a good performance in both clean and adversarial testing.

Theorem A.2. Assume ϵ = Θ(1/(
√
km∗ log d)) and H = o(ϵd3/2), then if W, b ∈ M leads to a small adver-

sarial loss, i.e.,

Elϵ(Z, Y ;W, b) = min
W ′,b′∈M

Elϵ(Z, Y ;W ′, b′) +O(ψ),

then (1) its clean performance is also good:

El0(Z, Y ;W, b)− El0(X,Y ; θ0) = O(ψ) +O(ϵ
√
k),

and (2) when d/H ≫ ψ, (1− o(1))H hidden nodes satisfy ∥Uh∥0 = 1.
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B Potential Relaxations

Below is a list on the potential relaxations in the theory:

For the activation function, our choice (1) simplifies the analysis to highlight the feature purification. For other
activation functions, e.g., ReLU, if they can work as a gate to screen out noise, the idea of feature purification
still works.

In terms of the architecture of the neural network, under the sparse coding model, as long as the first layer
purifies the features, the neural network is always robust to adversarial attacks regardless of the number of
layers. Thus, one can extend our analysis to multi-layer neural networks.

For the sparse coding model, this is a key assumption of the feature purification phenomenon. If all features are
always active, there is no need to purify them in the hidden nodes to minimize adversarial loss. All features will
contribute to the adversarial loss together. For future study, one may consider better connecting sparse models
with real data distribution. In addition, one may also relax the linear model assumption between X and Y .
Intuitively, if the features are not purified, the attacker will attack the weights of the inactive features. Thus
from this perspective, feature purification will also work beyond linear data models.

C Using L∞ Attack

We consider fast gradient sign attack (FGSM)

δ∞ = ϵ sgn(∂l/∂z).

We have

fW,b(z + δ∞) = σ

((
z + ϵ sgn

(
∂l

∂f

)
sgn (MUdiag(I(x⊤U + ξ⊤W, b))a)

)⊤

W, b

)
a

= σ

((
x+ ξ⊤M + ϵ sgn

(
∂l

∂f

)
sgn (MUdiag(I(x⊤U + ξ⊤W, b))a)

)⊤

U, b

)
a

=
(
x+ ξ⊤M

)⊤
Udiag(I((z + δ2)

⊤W, b))a

+ϵ sgn

(
∂l

∂f

)
sgn (MUdiag(I(x⊤U + ξ⊤W, b))a)

⊤
MUdiag(I((z + δ2)

⊤W, b))a

= fW,b(z) + ϵ sgn

(
∂l

∂f

)
∥MUdiag(I(x⊤U + ξ⊤W, b))a∥1.

Assume the first coordinate of x is non-zero. Since with probability tending to 1 (Lemma F.3), all the hidden
nodes receiving x1 are activated, we have

a⊤diag(I(U⊤x+ ξ⊤W, b))U1,: = a⊤U1,: = θ1.

Assume the second coordinate of x is zero, since we minimized ∥U∥F , each non-zero element of U2,: has the same
sign as θ2, and

0 ≤ |a⊤diag(I(U⊤x+ ξ⊤W, b))U2,:| ≤ |θ2|,

and the left/right equation is satisfied if every node containing x2 is not/is activated.

For L2 attack, ∥MUdiag(I(x⊤U + ξ⊤W, b))a∥2 becomes ∥Udiag(I(x⊤U + ξ⊤W, b))a∥2, so the attack is directly
related to the each coordinate of θ.

For L∞ attack, we want to investigate ∥MDθ∥1 where D is a diagonal matrix with Di,i = a⊤diag(I(U⊤x +
ξ⊤W, b))Ui,:/θi.

One can see that the relationship between D and ∥MDθ∥1 is more complicated because of the existence of M .
To discuss about ∥MDθ∥1, one need some information about M .
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• Assume M is the identity matrix, then similar to L2 attack case, we have

∥θX ∥1 ≤ ∥Dθ∥1 ≤ ∥θ∥1.

• If the unitary matrix M satisfies ∥MDθ∥1 = Θ(∥Dθ∥1) for all D, θ, then although we cannot claim
sup ∥U:,h∥0 ≤ 1 lead to the minimal ∆W,b, we can still claim that a constant sup ∥U:,h∥0 is preferred than
dense mixtures.

Under these two cases, all the observations for L2 apply to L∞ attack.

D Real-Data Experiments

D.1 Experiment Results

Additional results can be found in Table 2, Figure 6, 7, 8. The settings of the experiments can be found in 3.

Pre-train Pre-train Down Acc Robust

CIFAR10

Clean Clean 0.955 0.001
Clean Adv Sup 0.477 0.109

Adv Sup - 0.810 0.495
Adv Sup Clean 0.847 0.429
Adv Sup Adv Sup 0.836 0.484

Adv Contra Clean 0.831 0.393
Adv Contra Adv Sup 0.807 0.462

CIFAR100
Clean Clean 0.786 0.000

Adv Sup Clean 0.649 0.108
Adv Contra Clean 0.749 0.185

Tiny-Imagenet
Clean Clean 0.840 0.001

Adv Sup Clean 0.323 0.131
Adv Contra Clean 0.774 0.150

Table 2: Robustness inheritance.

Further, Figure 9 illustrates how the learned features evolve during the contrastive pre-training. After 30 epochs
of adversarial training, the features show the same purification effects as in supervised learning. This purifying
process continues throughout the adversarial training.

D.2 Experiment on Resnet-18 with a different input layer

To better visualize the purification effect in the learned features, we repeat our real data test with an input
convolutional layer with a larger kernel size. Specifically, the input layer in this test has Kernel Size = 7,
Stride=2, Padding=3. All other layers used the same configuration. We pre-train this modified network using
clean training and then adversarial supervised learning on CIFAR-10 dataset. Then we fine-tune the downstream
task on CIFAR-10 dataset.

Table 4 shows the standard and robust accuracy. We observe the same inherited robustness in the downstream
tasks. Figure 10 shows the learned features in the filter. In addition to the reduction of the number of colors,
the shapes of features are also simplified, often from multiple parallel lines to one single line, demonstrating
purification effects (see blocks marked with blue circles, in which a feature with 4 lines becomes 2 lines.)

D.3 Effect of Augmentation on Inherited Robustness

Our primary experiments employ crop&resize and color distortion augmentations, as highlighted in Wen and
Li (2021), to enhance feature learning. We evaluate their impact on downstream robustness by comparing
test outcomes both with and without these augmentations. As demonstrated in Table 5, although omitting
augmentations diminishes robustness, their presence alone does not substantially improve it. This underscores
the pivotal role of adversarial training in achieving robustness.
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Figure 6: Learned features in the first convolutional layer with and without the adversarial supervised pre-
training. The training is performed on CIFAR-100 dataset. Parameters in each filter are normalized to [0,1]
separately.

Figure 7: Learned features in the input convolutional layer with and without the adversarial contrastive pre-
training. The training is performed on CIFAR-10 dataset. Parameters in each filter are normalized to [0,1]
separately.
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Figure 8: Learned features in the input convolutional layer with and without the adversarial contrastive pre-
training. The training is performed on CIFAR-100 dataset. Parameters in each filter are normalized to [0,1]
separately.

Figure 9: Changes of learned features in the input convolutional layer over adversarial contrastive training on
CIFAR-10. Parameters in each filter are normalized to [0,1] separately.

E Simulation Studies

E.1 Controlling Feature Purification

Neural network for supervised learning To control the average number of features m in each hidden node,
we

• Calculate the number of times each coordinate of X appears: Hm/d.

• For each coordinate of X, we randomly pick H ∗m/d hidden nodes out of the total H hidden nodes, and
take the corresponding elements in U as d/(Hm).

• Transform U to W via W =M⊤U .

• Take b as (ζ(log d)/
√
d)(d

√
m/H), where ζ(log d)/

√
d is a probability bound to screen out ξ, and d

√
m/H

is the adjustment based on the strength of the features.
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Pre-train Data Pre-train Downstream Acc Robust

CIFAR-10
Clean Clean 0.888 0.024

Adv Sup Clean 0.783 0.363
Adv Sup Adv Sup 0.789 0.401

Table 4: Adversarial robustness and accuracy in CIFAR-10 downstream task. In this test, the input convolutional
layer is changed to have Kernel Size = 7, Stride=2, Padding=3.

Figure 10: Learned features in the input convolutional layer with and without the adversarial contrastive pre-
training. The training is performed on CIFAR-100 dataset. Parameters in each filter are normalized to [0,1]
separately.

Neural network for contrastive learning To control the average number of features m in contrastive
learning, we

• Follow the above procedure the generate the hidden layer.

• Calculate A as the pseudo inverse of W , and take A =
√
5A.

E.2 Detailed Numbers for Figure 4

We list all the exact numbers (both average and the corresponding standard error) of Figure 4 in Table 6, 7, and
8.

F Proof for L2 Attack

In this section, we present the proofs using L2 adversarial training for all the theorems and lemmas in Section
4, 4.3, 5, and 6.
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Pre-train Data Pre-train Augmentation Acc Robust

CIFAR-10

Clean ✓ 0.955 0.001
Adv Contra ✓ 0.831 0.393
Adv Contra × 0.822 0.389
Clean Contra ✓ 0.897 0.004
Clean Contra × 0.889 0.001

CIFAR-100

Clean ✓ 0.786 0.000
Adv Contra ✓ 0.749 0.185
Adv Contra × 0.741 0.167
Clean Contra ✓ 0.801 0.005
Clean Contra × 0.797 0.000

Table 5: Downstream Task Robustness on Different Augmentation Settings.

# Features Clean Loss, Similar Adv Loss, Similar Clean Loss, Dissimilar Adv Loss, Dissimilar
1 0.05 0.08 73.98 82.86
2 0.05 0.08 74.11 87.87
5 0.05 0.08 74.06 91.17
10 0.05 0.08 74.17 98.69

Table 6: The exact average loss (×100) corresponding to Figure 4.

# Features Clean Std, Similar Adv Std, Similar Clean Std, Dissimilar Adv Std, Dissimilar
1 0.02 0.03 1.98 2.13
2 0.02 0.03 1.92 2.04
5 0.02 0.03 1.80 1.92
10 0.02 0.03 2.00 2.64

Table 7: The exact standard error (×100) corresponding to Figure 4.

# Features Average γ1 Average γ2 Std γ1 Std γ2
1 8.86E-04 5.39E-06 8.56E-05 1.81E-06
2 1.87E-03 7.42E-06 1.15E-04 2.42E-06
5 4.62E-03 1.05E-05 1.32E-04 3.52E-06
10 8.87E-03 1.51E-05 3.32E-04 5.52E-06

Table 8: The average and standard error of γ1 and γ2.

F.1 Some Lemmas and Probability Bounds

Lemma F.1. Denote a vector m ∈ Rd with ∥m∥2 = 1 and a random vector ξ ∼ N(0, Id/d), then for any t > 1,

P

(
|m⊤ξ| > t

√
1

d

)
≤
√

2

π

1

t
exp(−t2/2), (10)

and

E

[
|m⊤ξ|

∣∣∣∣|m⊤ξ| > t

√
1

d

]
=

2√
d

ϕ(t)

Φ(t)
. (11)

Proof of Lemma F.1. Observe that
√
dm⊤ξ follows N(0, 1). One can directly bound |m⊤ξ| using Gaussian tail

bound.

F.2 Proof for Section 4

To prove Lemma 4.2, we show the following things:
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• The distribution of X⊤Uh. (Lemma F.2)

• Without attack, whether the hidden nodes are activated as long as corresponding features are non-zero.
(Lemma F.3)

• Further adding attack, whether the nodes are not activated/deactivated additionally by the attack. (Lemma
F.4)

• After proving Lemma F.2, F.3, and F.4, we finally present the proof of Lemma 4.2.

Lemma F.2. Consider the case where ζ = 0, i.e., Z is a linear transformation of X. Denote m = suph ∥Uh∥0 ≤
m∗. Given at least one feature received by the hidden node h is non-zero, for v = o(∥Uh∥∞/

√
k), the conditional

distribution of X⊤Uh satisfies

P
(
|X⊤Uh| < v | X1 = x1, |U1,h| > 0

)

=



0 m = 1

O
(

vk3/2

d∥Uh∥ +
(
k
d

)2)
m = Θ(1)

Φ

(
v−U1,hx1√

σ2∥U−1,h∥2/d

)
+ c′u

1

1+

∣∣∣∣∣ v−U1,hx1√
σ2∥U−1,h∥2/d

∣∣∣∣∣
3

√
d

mk m→ ∞
.

As a result,

P (∃h = 1, . . . ,H, s.t.|X⊤Uh| ∈ (0, v/∥Uh∥) and ∃|XiUi,h| > 0) (12)

=



0 m = 1

O
(
vH k5/2

d2 +H
(
k
d

)3)
m = Θ(1)

O

mkH
d Φ

(
v∥Uh∥−U1,h/

√
k√

σ2∥U−1,h∥2/d

)
+ c′u

H

1+

∣∣∣∣∣ v∥Uh∥−U1,h/
√

k√
σ2∥U−1,h∥2/d

∣∣∣∣∣
3

√
mk
d

 m→ ∞
,

and when taking v such that v/∥Uh∥ ≫ 1/
√
d and v = o(1/

√
mk), if H = o(d2/(k2m3)) when m→ ∞,

P (∃h = 1, . . . ,H, s.t.|X⊤Uh| ∈ (0, v/∥Uh∥) and ∃|XiUi,h| > 0) → 0.

Proof. We consider three regimes: (1) ∥Uh∥0 = 1, (2) ∥Uh∥0 = m for some constant m, and (3) ∥Uh∥0 → ∞.

Case 1, ∥Uh∥0 = 1 If a node only contains a single feature, then the conditional distribution of X⊤Uh given
the feature is non-zero is a single value.

Case 2, ∥Uh∥0 = m If there are m features for some constant m, then the probability that all features are zero
is (1− k/d)m, and the probability that only one of the features is non-zero is in O(mk/d).

Given at least one feature is non-zero in the node, the probability of two or more features being non-zero is
1− (1− k/d)m−1, and the probability of exactly two features being non-zero is (m− 1)(1− k/d)m−2(k/d).

When there are two features activated, denoting X as the set of non-zero features, under Assumption 4.1, the
probability of |X⊤Uh| < v for v = o(∥(Uh)X ∥) is in O(v

√
k/∥Uh∥).

As a result, for v = o(∥Uh∥), since m is a constant, we have

P (|X⊤Uh| < v | At least one feature is non-zero)

≤ P ( Two features are non-zero , |X⊤Uh| < v | At least one feature is non-zero)

+P ( Three or more features are non-zero | At least one feature is non-zero)

= O

(
v
√
k

∥Uh∥
(m− 1)

k

d

(
1− k

d

)m−2
)

+ 1−
(
1− k

d

)m−1

− (m− 1)
k

d

(
1− k

d

)m−2

= O

(
vk3/2

d∥Uh∥
+

(
k

d

)2
)
.
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Case 3, ∥Uh∥0 → ∞ If there are m → ∞ features and m = o(d/k), then assuming the first coordi-
nate X1 = x1 is nonzero and U1,h ̸= 0, U⊤

h X conditionally approximately follows a normal distribution
N(U1,hx1, σ

2∥U−1,h∥2/d). In this case, denoting Φ and the probability function of the standard Gaussian dis-
tribution, using non-uniform Berry-Esseen bound in Grigor’eva and Popov (2012), for some universal constant
cu,

P (X⊤Uh < v | X1 = x1, U1,hx1 > 0)

≤ Φ

(
v − U1,hx1√
σ2∥U−1,h∥2/d

)
+ cu

∑
E|XiUi,h|3(

1 +

∣∣∣∣ v−U1,hx1√
σ2∥U−1,h∥2/d

∣∣∣∣3
) 1

(
∑

E|XiUi,h|2)3/2
,

where ∑
i>1

E|XiUi,h|2 = σ2∥U−1,h∥2/d,

∑
i>1

E|XiUi,h|3 = O

(∑
i>1

|Ui,h|3
1

d
√
k

)
.

Under Assumption 4.1, we have

∑
i>1

|Ui,h|3 = O

(
m

(
∥U−1,h∥2

m

)3/2
)

= O

(
∥U−1,h∥3√

m

)
.

As a result, we conclude that for some constant c′u > 0,

P (X⊤Uh < v | X1 = x1, U1,hx1 > 0)

≤ Φ

(
v − U1,hx1√
σ2∥U−1,h∥2/d

)
+ c′u

∥U−1,h∥3/(d
√
km)(

1 +

∣∣∣∣ v−U1,hx1√
σ2∥U−1,h∥2/d

∣∣∣∣3
) 1

(∥U−1,h∥2/d)3/2

= Φ

(
v − U1,hx1√
σ2∥U−1,h∥2/d

)
+ c′u

1(
1 +

∣∣∣∣ v−U1,hx1√
σ2∥U−1,h∥2/d

∣∣∣∣3
)√ d

mk
.

We use Berry-Esseen bound rather than Hoeffding/Berstein bounds because the latter ones involve the range
M = sup |X⊤Uh| − inf |X⊤Uh| which is too broad.

The final (12) is a union bound taken for the m features in each node for all H hidden nodes.

After discussing the distribution of X⊤Uh, we further add the noise ξ (Lemma F.3) and the attack (Lemma F.4)
into the model.

Lemma F.3. For any v ≥ 1/
√
d,

P

(
sup
h

|ξ⊤Wh|/∥Wh∥ > v

)
= O

(
H
√
d

v
exp(−v2d/(2ζ2))

)
.

When taking v ≫
√
(log d)/d and H = poly(d), the probability bound goes to zero.

Furthermore, under the conditions of Lemma F.2, when taking bh such that bh ≫
√
(log d)/d∥Uh∥ and bh =

o(1/
√
k suph ∥Uh∥0),

P (∃h = 1, . . . ,H, s.t. Node h is activated by ξ or deactivated) → 0.
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Proof of Lemma F.3. Since ξ ∼ N(0, ζ2Id/d), we have ζ⊤Wh/∥Wh∥ ∼ N(0, ζ2/d). From Lemma F.1, we obtain

P

(
sup
h

|ξ⊤Wh|/∥Wh∥ > v

)
≤ HP (|ξ⊤Wh|/∥Wh∥ > v) = O

(
H
√
d

v
exp(−v2d/(2ζ2))

)
, (13)

which provides the tail distribution of |ξ⊤Wh|/∥Wh∥. When taking v ≫
√
(log d)/d, the above probability goes

to zero, i.e., with probability tending to 1, no extra nodes are activated due to ξ.

Furthermore, for the nodes which are activated by non-zero features, we have

P (∃h = 1, . . . ,H, s.t., Node h is deactivated) = O(HP (Node h is deactivated)),

and

P (Node h is deactivated)

≤ P (Node h is deactivated | One feature in node h is non-zero)

×P (One feature in node h is non-zero)

+P (Two or more features in node h is non-zero),

where taking m = ∥Uh∥0,

P (Node h is deactivated | One feature in node h is non-zero)

= O
(
mP (|X⊤Uh| < bh + |ξ⊤Uh| | X1 = x1, U1,hx1 > 0)

)
= O

(
mP (|X⊤Uh| < 2bh | X1 = x1, U1,hx1 > 0)

)
+O

(
mP (|ξ⊤Uh| > bh)

)
.

Therefore, taking bh ≫
√
(log d)/d∥Uh∥ and bh = o(∥Uh∥/

√
k suph ∥Uh∥0), when taking proper H, one can show

that

P (∃h = 1, . . . ,H, s.t. Node h is activated by ξ or deactivated)

= P (∃h = 1, . . . ,H, s.t., Node h is activated by ξ) + P (∃h = 1, . . . ,H, s.t., Node h is deactivated)

≤ O

(
H
√
d∥Uh∥
bh

exp(−b2hd/(2ζ2∥Uh∥2))

)

+O
(
HmP (|X⊤Uh| < 2bh | X1 = x1, U1,hx1 > 0)

)
+O

(
Hm

√
d∥Uh∥
bh

exp(−b2hd/(2ζ2∥Uh∥2))

)
+O(HP (Two or more features in node h is non-zero in node h)),

where all the four terms go to zero based on Lemma F.2 and (13).

Lemma F.4. Under the conditions of Lemma F.2, when taking bh such that bh ≫
√
(log d)/d∥Uh∥ and bh =

o(1/
√
k suph ∥Uh∥0), and ϵ = o(infh bh/∥Uh∥) for L2 attack,

P (∃h = 1, . . . ,H, s.t. Node h is activated by ξ and the attack or deactivated) → 0.

For L∞ attack, when ϵ = o(infh bh/∥Uh∥/
√
∥Uh∥0), the above inequality also holds.

Proof of Lemma F.4. Since ϵ = o(infh bh/∥Uh∥), if all the features in node h are zero, then we have

P

(
sup
h

|ξ⊤Wh|/∥Wh∥+ ϵ > v

)
= O

(
H
√
d

v − ϵ
exp(−(v − ϵ)2d/(2ζ2))

)
= O

(
H
√
d

v
exp(−v2d/(2ζ2))

)
,

Thus with probability tending to 1, all the nodes will not be additionally activated by ξ and the attack.

Furthermore, if a node h is activated by non-zero features, then we have the following decomposition:

P (Node h is deactivated)
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≤ P (Node h is deactivated | One feature in node h is non-zero)

×P (One feature in node h is non-zero)

+P (Two or more features in node h is non-zero),

where taking m = ∥Uh∥0,

P (Node h is deactivated | One feature in node h is non-zero)

= O
(
mP (|X⊤Uh| < bh + ϵ∥Uh∥+ |ξ⊤Uh| | X1 = x1, U1,hx1 > 0)

)
= O

(
mP (|X⊤Uh| < 2bh | X1 = x1, U1,hx1 > 0)

)
+O

(
mP (ϵ∥Uh∥+ |ξ⊤Uh| > bh)

)
,

and the final steps are the same as in Lemma F.3.

For L∞ attack, |δ⊤∞Uh| = ϵ∥Uh∥1 = O(ϵ∥Uh∥
√
m), and one can replace the ϵ in the derivations of L2 attack case

with ϵ
√
m to go through the proof.

Proof of Lemma 4.2. For L2 attack, since we consider the FGM attack, we first calculate the gradient of l w.r.t.
z. Denote fW,b as the non-linear neural network, then

∂

∂z
l0(z, y;W, b) =

∂l0
∂f

∂f

∂z
,

where

∂f

∂z
=

∂

∂z
σ(z⊤W, b)a =Wdiag(I(z⊤W, b))a =MUdiag(I(x⊤U + ξ⊤W, b))a.

As a result, the attack becomes

δ2(z, y, fW,b, l) = ϵ sgn

(
∂l

∂f

)
MUdiag(I(x⊤U + ξ⊤W, b))a

∥MUdiag(I(x⊤U + ξ⊤W, b))a∥
,

and

δ2(z, y, fW,b, l) = ϵ sgn

(
∂l

∂f

)
sign

[
MUdiag(I(x⊤U + ξ⊤W, b))a

]
.

Using L2 attack, the attacked fitted value becomes

fW,b(z + δ2) = σ

((
z + ϵ sgn

(
∂l

∂f

)
MUdiag(I(x⊤U + ξ⊤W, b))a

∥MUdiag(I(x⊤U + ξ⊤W, b))a∥

)⊤

W, b

)
a

= σ

((
x+ ξ⊤M + ϵ sgn

(
∂l

∂f

)
Udiag(I(x⊤U + ξ⊤W, b))a

∥Udiag(I(x⊤U + ξ⊤W, b))a∥

)⊤

U, b

)
a

=

(
x+ ξ⊤M + ϵ sgn

(
∂l

∂f

)
Udiag(I(x⊤U + ξ⊤M, b))a

∥Udiag(I(x⊤U + ξ⊤W, b))a∥

)⊤

Udiag(I((z + δ2)
⊤W, b))a.

In order to cancel some terms in the above representation, we need that I((z+δ2)⊤W, b) = I(z⊤W, b) in probability
when ϵ = o(b∗), which has been shown in Lemma F.4.

As a result, with probability tending to 1,

fW,b(z + δ2) = fW,b(z) + ϵ sgn

(
∂l

∂f

)
∥Udiag(I(x⊤U + ξ⊤W, b))a∥.

Thus we have

∆W,b(z, y) = lϵ(z, y;W, b)− l0(z, y;W, b)
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= l0(z + δ2, y;W, b)− l0(z, y;W, b)

=
∂l0
∂fw,b

(fW,b(z + δ2)− fW,b(z)) +O(ϵ2)

= ϵ
∂l

∂fW,b

∥∥a⊤diag(I(W⊤z, b))W⊤∥∥
2
+ o,

where o represents the remainder term.

Assume the first coordinate of x is non-zero. Since with probability tending to 1 (Lemma F.3), all the hidden
nodes receiving x1 are activated, we have

a⊤diag(I(U⊤x+ ξ⊤W, b))U1,: = a⊤U1,: = θ1.

Assume the second coordinate x2 of x is zero, when (W, b) ∈ M, all non-zero elements in U2,: have the same sign
as θ2, and

0 ≤ |a⊤diag(I(U⊤x+ ξ⊤W, b))U2,:| ≤ |θ2|,

and the left/right equation holds if every node containing x2 is not/is activated.

As a result, we conclude that, with probability tending to 1,

∥θX ∥2 ≤ ∥a⊤diag(I(U⊤X + ξ⊤W, b))U⊤∥2 ≤ ∥θ∥2.

F.3 Proof for Supervised Pre-training

Denote

ψ =
Hm3k3 log2 k

d2
+

√
k

d
. (14)

Before we start the proof of the theorems, we provide an additional lemma to characterize X⊤θ0. Different from
the results in Section 4, since we directly work on the risk, rather than probability bounds, we need to know the
distribution of X⊤θ0.

Lemma F.5. Under Assumption 3.1,

P (|X⊤θ0 − E(X⊤θ0)| > v) = O (Φ(−v)) +O

(
1√

k(1 + v3)

)
.

Proof of Lemma F.5. Using Berry-Esseen bound, we have

P (X⊤θ0 − E(X⊤θ0) < v)

≤ Φ

(
v − 0√
σ2∥θ0∥2/d

)
+ cu

∑
E|Xiθi|3(

1 +

∣∣∣∣ v√
σ2∥θ0∥2/d

∣∣∣∣3
) 1

(σ2∥θ0∥2/d)3/2
,

where ∑
E|Xiθi|3 = Θ

(
d
k

d

1

k3/2

)
= Θ

(
1√
k

)
.

As a result, for v < 0,

P (X⊤θ0 − E(X⊤θ0) < v) = O (Φ(v)) +O

(
1√

k(1 + v3)

)
.
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Similarly, we also have for v > 0,

P (X⊤θ0 − E(X⊤θ0) > v) = O (Φ(−v)) +O

(
1√

k(1 + v3)

)
,

and merging the two sides we have

P (|X⊤θ0 − E(X⊤θ0)| > v) = O (Φ(−v)) +O

(
1√

k(1 + v3)

)
.

Proof of Theorem A.1. The proof idea is to design some (W, b) such that (W, b) ∈ M with good clean performance
but poor adversarial performance.

There are two claims for clean performance in Theorem A.1. In the proof, we merge the two proofs together,
and finally figure out what is ψ.

Construction Assume in each node, there are m learned features. Here we can take any m ≤ m∗. Then since
there are H hidden nodes, every feature appears in Hm/d nodes.

To design a (W, b), we split the total d features into groups of m features. For each group, we randomly pick
Hm/d hidden nodes and assign non-zero weights for all features in this group. Thus ∥Uh∥ = Θ(d/(H

√
m)). The

intercept bh can be determined correspondingly.

Through the above construction, one can obtain a neural network with good clean performance. The adversarial
performance is related to m.

Clean performance We first analyze how the noise ξ affects the performance.

Based on Lemma F.3, when taking all bh as the same value bh = tζ
√

(log d)/d∥Uh∥ = tζ
√
d log d/(H

√
m) such

that t2/2 > 1, we have

P

(
sup
h

|U⊤
h ξ| > bh

)
= O

(
H

dt2/2

)
.

Besides the noise ξ, another error is caused by the event that the hidden nodes are deactivated when more than
one feature is active. Based on Lemma F.2, since we are constructing neural networks whose m→ ∞, we have

P (∃h = 1, . . . ,H, s.t. |X⊤Uh| ∈ (0, bh) while ∃|XiUi,h| > 0) = O

(
k2m2H

d2

)
,

while we want the above union bound to be small enough, we also require km/d→ 0 so that for each node, the
probability goes to zero.

Denote E(h) = 1{|ξ⊤Wh| > bh or (|X⊤Uh| ∈ (0, 2bh) while ∃|XiUi,h| > 0)}. If node h is activated/deactivated
by noise or the non-zero features cancel with each other, we always have E(h) = 1. As a result, we use E(h) as
the upper bound of the event I(Z⊤Wh, bh) ̸= I(X⊤Uh, 0). When taking t large enough, we have

P (∃h = 1, . . . ,H, s.t. E(h) = 1) = O

(
k2m2H

d2

)
+O

(
H

dt2/2

)
= O

(
k2m2H

d2

)
.

For each hidden node, if E(h) = 1, then it leads to at most bh of error. For square loss, when there is only one or
several nodes activated/deactivated by the noise, then there will only be Θ(bh) error in the fitted value, which is
negligible and leads to O(bh) increase in loss. In the worst case, when all hidden nodes are activated/deactivated
by the noise, the fitted value could involve ∆ error, leading to an increase of (∆+ Y )2 −Y 2 = ∆(∆+2Y ) in the
loss.

Since each hidden node has at most m features and m≪ d, when there are k features are nonzero and E(h) = 1
for some h, there are O(kHm/d) hidden nodes which are mistakenly deactivated in the worst case. We ignore
the effect of the noise ξ because it is negligible.
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We have

El0(Z, Y ;W, b)

≤ El0(Z, Y ;W, b)1 {∀h = 1, . . . ,H, s.t. E(h) = 0}
+El0(Z, Y ;W, b)1 {∃h = 1, . . . ,H, s.t. E(h) = 1} 1{∃O(k log k) choices of i, s.t. Xi ̸= 0}
+El0(Z, Y ;W, b)1{∃ ≥ k log k choices of i, s.t. Xi ̸= 0}1{|Y | < d}
+El0(Z, Y ;W, b)1{|Y | > d}.

We bound the above terms one by one. Denote bmax = maxh bh. Since we use the same upper bound for all
hidden nodes to bound the probability that the hidden node gets unexpected zero/nonzero, we have

El0(Z, Y ;W, b)1 {∀h = 1, . . . , c, s.t. E(h) = 0}
+El0(Z, Y ;W, b)1 {∃h = 1, . . . ,H, s.t. E(h) = 1} 1{∃O(k log k) choices of i, s.t. Xi ̸= 0}

≤ El0(X,Y ; θ0) + O(
√
k/d)︸ ︷︷ ︸

Noise in the active features

+O
(
E(|X⊤(θ0 − Ua)|+ k log k(Hm/d)bmax)

21{∃O(k log k) choices of i, s.t. Xi ̸= 0}
)
+ o

= El0(X,Y ; θ0) +O(
√
k/d) +O(∥θ0 − Ua∥/

√
d) +O

(
b2max

(
k2m2H

d2

)(
Hmk log k

d

)2
)

+ o,

where o is a negligible term and is caused by the noise ξ. We ignore this term in the following derivations.

Second,

El0(Z, Y ;W, b)1{∃ ≥ k log k choices of i, s.t. Xi ̸= 0}1{|Y | < d} = o.

And finally,

El0(Z, Y ;W, b)1{|Y | > d}
= O(E(bmaxH + Y )21{|Y | > d})

= O

(
EXEY

[
(bmaxH +X⊤θ0 + (Y −X⊤θ0))

21{|Y | > d}
∣∣∣∣X = x

])
= O

(
E(bmaxH + ∥θ0 − Ua∥+X⊤θ0)

21{|X⊤θ0| > d}
)

= O
(
E(bmaxH + ∥θ0∥1)21{|X⊤θ0| > d}

)
= O

(
(bmaxH + d)2

1√
k(1 + d3)

)
,

where the second line is because of the distribution of the noise Y −X⊤θ0, and the last line is based on Lemma
F.5.

Since bmax = o(d/(H
√
mk)) when k ≫ log d, we have

El0(Z, Y ;W, b)

= El0(X,Y ; θ0) +O(∥θ0 − Ua∥/
√
d) +O(

√
k/d) +O

(
b2max

(
k2m2H

d2

)(
Hmk log k

d

)2
)

+O

(
(bmaxH + d)2√

kd3

)
+ o

= El0(X,Y ; θ0) +O(
√
k/d) +O(∥θ0 − Ua∥/

√
d) +O

(
b2max

(
k2m2H

d2

)(
Hmk log k

d

)2
)

+ o,

and

El0(Z, Y ;W, b) = El0(X,Y ; θ0) +O(∥θ0 − Ua∥/
√
d) +O

(
Hm3k3 log2 k

d2

)
+O(

√
k/d), (15)

from which we define ψ.

For absolute loss and logistic regression, the error ϕ still holds.
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Adversarial performance There are on average Θ(k) active features in each data point, which is far less
than the total d features. As a result, each data point on average activates Θ(kHm/d) hidden nodes, and

E∥a⊤diag(I(U⊤X, b))U⊤∥2 = Θ(E
√
m∥θX ∥2) = Θ(

√
mk).

One the other hand, when we bound the error in clean model, we consider |Y | < d and |Y | > d cases. In the
worse case, the increase of loss caused by the attack is ϵ∥θ∥, which is much smaller than d. As a result, whether
or not we have the attack or not does not affect ψ.

As a result,

Elϵ(X,Y ;W, b) = El0(X,Y ; θ0) +O(ψ) + Θ(ϵ
√
mk).

On the other hand, taking m = 1, one can also design a neural network such that

inf
W ′,b′∈M

Elϵ(X,Y ;W ′, b′) ≤ Elϵ(X,Y ;W, b) = El0(X,Y ; θ0) +O(ϵ
√
k) +O(ψ), (16)

which finally indicates that

Elϵ(X,Y ;W, b) = inf
W ′,b′∈M

Elϵ(X,Y ;W ′, b′) +O(ψ) + Θ(ϵ
√
mk).

Proof of Theorem A.2. When (W, b) ∈ M, the minimal non-zero value of |Ui,j | is in Θ(d/(Hm∗)). Assume on
average there are m features in each hidden node, then on average, there are Θ(Hkm/d) nodes are activated. In
addition to the activated features, there are Θ(Hkm(m− 1)/d) elements of Ui,h leaked to the attacker.

When these additional elements are all from different features, the increase of the loss is the smallest, which
means that

ϵ

∥∥∥∥∥ ∑
activated h

Uh

∥∥∥∥∥ ≥ Θ

ϵ
√
k +

(
d

Hm

)2(
Hkm(m− 1)

d

) = Θ

(
ϵ

(√
k +

1

2

d(m− 1)

Hm

))
+ o.

When H = o(ϵd3/2), ϵd/H ≫ ψ. As a result, when an solution (W, b) has an adversarial loss O(ψ)-close to
minW ′,b′∈M Elϵ(Z, Y ;M ′, b′), it also purifies most features, i.e, m = 1 + o(1).

In terms of the clean performance, the result holds as

El0(Z, Y ;W, b) ≤ min
W ′,b′∈M

Elϵ(Z, Y ;W ′, b′) + Θ(ϵ
√
k) +O(ψ) ≤ El0(X,Y ; θ0) + Θ(ϵ

√
k) +O(ψ) + o.

F.4 Proof for Contrastive Learning

Proof of Lemma 5.1. Given g(z, z′) = x⊤1 T
⊤Tx2, the contrastive loss becomes

E log(1 + exp(−X⊤T⊤TX)) + E log(1 + exp(X⊤T⊤TX ′))

= E log(1 + exp(−X⊤PDP⊤X))︸ ︷︷ ︸
:=V1

+E log(1 + exp(X⊤PDP⊤X ′))︸ ︷︷ ︸
:=V2

.

To prove Lemma 5.1, the key is to show that, fixing tr(D), both V1 and V2 are minimized when D ∝ Id.

For V1, as log(1 + exp(−v)) is a convex function w.r.t. v, to show that D ∝ Id, we would like to show that for
any v ≥ 0,

E
[
X⊤PDP⊤X

∣∣∥P⊤X∥2 = v
]
= tr(D)v/d. (17)
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Based on the distribution of X, i.e., the distribution of each coordinate is symmetric and identical, we have

E
[
X⊤PDP⊤X

∣∣∥P⊤X∥2 = v
]

= E

[
d∑

i=1

X2
i (PDP

⊤)i,i

∣∣∣∣∥P⊤X∥2 = v

]

= E

[
X2

1

d∑
i=1

(PDP⊤)i,i

∣∣∣∣∥P⊤X∥2 = v

]

= E
[
X2

1 tr(D)

∣∣∣∣∥P⊤X∥2 = v

]
= tr(D)v/d.

Consequently,

E
[
log(1 + exp(−X⊤PDP⊤X))

∣∣∣∣∥X∥2 = v

]
≥ log

(
1 + exp

(
E
[
−X⊤PDP⊤X

∣∣∥X∥2 = v
]))

= log (1 + exp (−tr(D)v/d)) ,

the equation holds when D ∝ Id.

Similarly, for V2, log(1 + exp(v)) is a convex function w.r.t. v, and

E
[
log(1 + exp(X⊤PDP⊤X ′))

∣∣∣∣X⊤X ′ = v

]
≥ log

(
1 + exp

(
E
[
X⊤PDP⊤X ′∣∣X⊤X ′ = v

]))
= log (1 + exp (tr(D)v/d)) .

As a result, fixing tr(D), both V1 and V2 are minimized when taking D ∝ Id.

Proof of Theorem 5.2, loss for similar pairs. For A = τW+, we have

A = τW+ = τW⊤(WW⊤)−1 = τU⊤M⊤(MUU⊤M⊤)−1 = τU⊤(UU⊤)−1M⊤,

which indicates that with probability tending to 1, σ(Z⊤W, b)A = τX⊤UU⊤(UU⊤)−1M⊤ + o = τX⊤M⊤ + o,
where the term o is negligible and is caused by the noise ξ.

With probability tending to 1, we have

gW,b(z + δ2, z
′)

= gW,b(z, z
′) + ϵ sgn

(
∂l

∂f

)
∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + ξ⊤W, b))(U⊤x+M⊤ξ)∥,

where with probability tending to 1, diag(I(x⊤U + ξ⊤W, b)) = diag(I(x⊤U,0)), and

∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + ξ⊤W, b))(U⊤x+W⊤ξ)∥
≤ ∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + ξ⊤W, b))U⊤x∥

+∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + ξ⊤W, b))W⊤ξ∥
= ∥Udiag(I(x⊤U + ξ⊤W, b))AMx∥+ ∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + ξ⊤W, b))W⊤ξ∥.

Now we look into ∥Udiag(I(x⊤U + ξ⊤W, b))AMx∥.

Active features Assume the first coordinate of x is non-zero. Since with probability tending to 1, all hidden
nodes involving x1 are activated, we have U1,:diag(I(x⊤U + ξ⊤W, b)) = U1,:, and

U1,:diag(I(x⊤U + ξ⊤W, b))AMx = U1,:AMx = τx1. (18)
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Inactive features Assume the second coordinate of x is zero. We have for any active feature i ∈ X ,

|U2,:diag(I(x⊤U + ξ⊤W, b))AM:,ixi| (19)

= |τU2,:diag(I(x⊤U + ξ⊤W, b))U⊤(UU⊤)−1M⊤M:,ixi|
= |τU2,:diag(I(x⊤U + ξ⊤W, b))U⊤(UU⊤)−1

:,i xi|
= Θ(τ |xi|α).

For i ∈ X c, the value of the ith element of U2,:diag(I(x⊤U + ξ⊤W, b)) does not matter because xi = 0, i.e.,

U2,:diag(I(x⊤U + ξ⊤W, b))AM:,ixi ≡ 0. (20)

As a result, we have

|U2,:diag(I(x⊤U + ξ⊤W, b))Ax| = O(τα),

and thus the adversarial loss does not affected by whether the neural network is purified or not.

Noise We now look into ∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + ξ⊤W, b))W⊤ξ∥.

From the assumptions, we know that

Ui,:diag(I(x⊤U + ξ⊤W, b))A:,j =


τ i = j ∈ X
0 i ̸= j, i ∈ X
Θ(α) i ̸= j, i ∈ X c, j ∈ X
Θ(α2) otherwise

. (21)

Consequently, taking proper value of α, we get

E∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + ξ⊤W, b))W⊤ξ∥2 = o(k),

which indicates that the attack is dominated by ∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤Mx∥.

Next, we examine the performance of gW,b(z, z
′). We know that

gW,b(z, z
′) = (x⊤U + ξ⊤W )diag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + (ξ′)⊤W, b))(U⊤x+W⊤ξ′)

= x⊤Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + (ξ′)⊤W, b))U⊤x

+ξ⊤Wdiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + (ξ′)⊤W, b))W⊤ξ′

+ξ⊤Wdiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + (ξ′)⊤W, b))U⊤x

+x⊤diag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + (ξ′)⊤W, b))W⊤ξ′.

Based on (21), one can see that with probability tending to one over the randomness of (x, ξ, ξ′),

gW,b(z, z
′) = x⊤Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I(x⊤U + (ξ′)⊤W, b))U⊤x+ o.

Finally, when diag(I(x⊤U + ξ⊤W, b)) ̸= diag(I(x⊤U,0)), if the eigenvalues of UU⊤ are bounded and bounded
away from zero, we have

EgW,b(Z,Z
′)1{∃E(h) = 1} = O(∥UU⊤∥P{∃E(h) = 1}) = O(ψ).

Different from supervised learning, in contrastive learning, we only care about the nodes which are related to
the non-zero features in x′, so we only need to consider O(Hk/d) hidden nodes rather than all the H nodes. As
a result, the value of ψ gets smaller.

Proof of Theorem 5.2, loss for dissimilar pairs. Similar to Theorem 5.2, loss for similar pairs, we have

∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I((x′)⊤U + (ξ′)⊤W, b))(U⊤x′ +W⊤ξ′)∥
≤ ∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I((x′)⊤U + (ξ′)⊤W, b))U⊤x′∥

+∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I((x′)⊤U + (ξ′)⊤W, b))W⊤ξ′∥
= ∥Udiag(I(x⊤U + ξ⊤W, b))AMx′∥+ ∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I((x′)⊤U + (ξ′)⊤W, b))W⊤ξ′∥.

We look into ∥Udiag(I(x⊤U + ξ⊤W, b))AMx′∥.
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Active features Assume the first coordinate of x is non-zero. Since with probability tending to 1, all hidden
nodes involving x1 are activated, we have U1,:diag(I(x⊤U + ξ⊤W, b)) = U1,:, and

U1,:diag(I(x⊤U + ξ⊤W, b))AMx′ = U1,:AMx′ = τx′1.

Consequently,

EX′∥UXdiag(I(x⊤U + ξ⊤W, b))AMX ′∥/τ = E
√∑

i∈X
|X ′

i|2

= P(Only one X ′
i for i ∈ X is nonzero)/

√
k

+
√
2P(Only two X ′

i for i ∈ X are nonzero)/
√
k

+
√
3P(Only three X ′

i for i ∈ X are nonzero)/
√
k

+ . . . ,

As a result,

E
√∑

i∈X
|X ′

i|2 ≥ P(Only one X ′
i for i ∈ X is nonzero)/

√
k

≥ 1

cl
√
k

k2

d

= Θ(k3/2/d),

where cl > 0 is some constant number. Meanwhile,

E
√∑

i∈X
|X ′

i|2 = P(Only one X ′
i for i ∈ X is nonzero)/

√
k

+
√
2P(Only two X ′

i for i ∈ X are nonzero)/
√
k

+
√
3P(Only three X ′

i for i ∈ X are nonzero)/
√
k

+ . . . ,

≤ P(Only one X ′
i for i ∈ X is nonzero)/

√
k

+2P(Only two X ′
i for i ∈ X are nonzero)/

√
k

+3P(Only three X ′
i for i ∈ X are nonzero)/

√
k

+ . . . ,

≤ 1√
k

(
k2

d
+ 2

(
k2

d

)2

+ 3

(
k2

d

)3

+ . . .

)

=
1√
k

k2/d

1− k2/d
+

1√
k

(k2/d)2

1− k2/d
+ . . .

= Θ(k3/2/d).

Since both the upper bound and lower bound are in Θ(k3/2/d), we have EX′∥UXdiag(I(x⊤U+ξ⊤W, b))AMX ′∥ =
Θ(τk3/2/d).

Inactive features Assume the second coordinate of x is zero. From the assumption, we have

(Udiag(I(x⊤U + ξ⊤W, b))U⊤(UU⊤)−1)i,j =


1 i, j ∈ X
O(α) i ̸= j, i ∈ X c, j ∈ X
O(α2) otherwise

.

As a result, given x,

U2,:diag(I(x⊤U + ξ⊤W, b))AMX ′ = Op

(
k

d
α+ α2

)
,

and ∥UX cdiag(I(x⊤U + ξ⊤W, b))AMX ′∥ = Op(α
2
√
d+ αk/

√
d).
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Noise Taking a proper value of α, we get E∥Udiag(I(x⊤U + ξ⊤W, b))AA⊤diag(I((x′)⊤U + (ξ′)⊤W, b))W⊤ξ′∥2
is negligible.

When diag(I(x⊤U + ξ⊤W, b)) ̸= diag(I(x⊤U,0)), the bound follows that same as Theorem 5.2.

F.5 Proof for Downstream Task

Proof of Proposition 6.1 . The arguments for Lemma 4.2 holds for any θ, not limited to θ0. As a result, when
applying the neural network in new tasks, feature purification still preserves the adversarial robustness.


