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Abstract

Polygon representation learning is essential for diverse applications,
encompassing tasks such as shape coding, building pattern classi-
fication, and geographic question answering. While recent years
have seen considerable advancements in this field, much of the
focus has been on single polygons, overlooking the intricate inner-
and inter-polygonal relationships inherent in multipolygons. To
address this gap, our study introduces a comprehensive framework
specifically designed for learning representations of polygonal ge-
ometries, particularly multipolygons. Central to our approach is
the incorporation of a heterogeneous visibility graph, which seam-
lessly integrates both inner- and inter-polygonal relationships. To
enhance computational efficiency and minimize graph redundancy,
we implement a heterogeneous spanning tree sampling method.
Additionally, we devise a rotation-translation invariant geometric
representation, ensuring broader applicability across diverse sce-
narios. Finally, we introduce Multipolygon-GNN, a novel model
tailored to leverage the spatial and semantic heterogeneity inherent
in the visibility graph. Experiments on five real-world and synthetic
datasets demonstrate its ability to capture informative representa-
tions for polygonal geometries.
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Figure 1: Illustrations of building multipolygon patterns for
(a) houses, (b) townhouses, and (c) commercial buildings.
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1 Introduction

Polygon representation learning refers to the process of capturing
and encoding the essential features and characteristics of polygo-
nal geometries, including those with or without holes and ranging
from single to multipolygons. The learned embeddings can be lever-
aged directly for downstream applications such as urban planning
[22, 25, 36], shape coding [18, 29, 37], building pattern recognition
[2, 10, 30], cartographic generalization [5, 19, 27], and geographic
question answering (GeoQA) [4, 15, 24]. The accurate processing
and interpretation of these polygonal shapes are crucial for achiev-
ing a nuanced understanding of our physical environment.
Current approaches in polygon representation learning primar-
ily focus on individual polygon shapes [21], often neglecting the
critical inter-polygonal relationships. Such relationships are para-
mount in many scenarios but are inadequately addressed by existing
methods. Current strategies either simplify polygons to points to
consider inter-polygonal relations [29], losing valuable shape infor-
mation, or aggregate polygon representations without effectively
capturing their interrelations [26]. However, the geometries inside
and across the polygons are both important. Figure 1 showcases
how the shapes and spatial distributions of buildings suggest their
utility. Houses (Figure 1 (a)) feature irregular shapes with a loose
spatial arrangement along roads, aligning randomly with the road’s


https://orcid.org/0000-0003-2082-0834
https://orcid.org/0000-0003-3802-9039
https://orcid.org/0000-0002-3205-8464
https://orcid.org/0000-0002-2648-9989
https://doi.org/10.1145/3637528.3671738
https://doi.org/10.1145/3637528.3671738

KDD ’24, August 25-29, 2024, Barcelona, Spain

contour. Townhouses (Figure 1 (b)) are characterized by uniform
shapes and sizes, arranged tightly and parallelly to optimize land
use. Commercial buildings (Figure 1 (c)) vary in shape and size
based on business needs, often surrounding large customer parking
spaces, with orientations parallel to the street for visibility. These
diverse multipolygon patterns necessitate a holistic consideration
of both individual shapes and their interrelations for effective rep-
resentation learning, enabling the automated identification of area
functionality.

Developing a machine learning model that effectively captures
both the intricate details of individual polygons and their relation-
ships presents significant challenges. The first hurdle is devising
a data structure capable of conserving geometric details across
both the inner-polygonal relationships (shape details of individual
polygons) and the inter-polygonal relationships (broader spatial dy-
namics between different polygons). This requires an approach that
unifies details with the overarching spatial context, ensuring no
geometric information is lost. Furthermore, the intricate pairwise
relationships between multiple polygons introduce quadratic com-
plexity, which further calls for the efficiency of the representation
learning method. Additionally, a pivotal aspect of polygon represen-
tation learning is the generalizability of the derived representations.
Traditionally, multipolygons are represented by an ordered set of
coordinates, which inherently encode specific orientations and po-
sitions. This method, however, does not account for rotation and
translation invariance, limiting the ability to consistently interpret
polygonal geometries irrespective of their spatial orientation or
position. Finally, multipolygon inherently encompasses hierarchy
notions which are crucial yet not well explored. In particular, a
large multipolygon may consist of several small multipolygons,
each exhibiting distinct patterns. For instance, rows of townhouses
may collectively form a larger community structure. Recognizing
and effectively modeling these hierarchical relationships is crucial
for a comprehensive understanding of multipolygon configurations.
Consequently, advanced models are needed to characterize these
hierarchically organized patterns.

To tackle these challenges, we propose PolygonGNN, a new
framework that learns the representation of multi-polygons that
ensures the preservation of paramount geometric information and
characteristics of polygons. Firstly, to concisely encapsulate both
shape details and inter-polygonal relationships, we model a hetero-
geneous visibility graph. Here, graphs adeptly represent polygon
shapes through vertices and edges, while visibility connections
capture spatial relations between polygons. Secondly, to reduce the
redundancy in the heterogeneous visibility graph and boost train-
ing efficiency, we develop a heterogeneous spanning tree sampling
strategy that selectively samples visibility edges within a multipoly-
gon. Moreover, the randomness of edge sampling also enriches the
training dataset with various graph instances. To preserve the mul-
tipolygon’s geometric information with rotation and translation
invariance, we consider the two-hop path set within the graph and
propose a heterogeneous geometric representation for the nodes in
the heterogeneous visibility graph. This heterogeneous geometric
representation is proven to encapsulate the complete spatial and
semantic information present in the graph, ensuring the model’s
invariance to rotation and translation. To effectively learn hierar-
chical patterns of multipolygons, we develop Multipolygon-GNN,
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which is a new graph neural network that stacks multiple layers of
heterogeneous geometric message passing operators that aggregate
multipolygon patterns in different granularities.

Our contributions are summarized as follows:

e We propose an invertible process for transforming multipolygons
to heterogeneous visibility graphs to integrate polygon shape
details with inter-polygonal relationships.

e We propose heterogeneous spanning tree sampling that improves
training efficiency without sacrificing geometric fidelity.

o We develop a lossless rotation-translation-invariant heteroge-
neous geometric representation for the visibility graphs.

e We propose Multipolygon-GNN that capitalizes on the spatial
and semantic heterogeneity of the visibility graphs.

2 Related Work
2.1 Polygon Representation Learning

Recently, we have seen many research advancements in repre-
sentation learning for polygonal geometries [9, 13, 14]. Existing
approaches primarily fall into three categories: 1) traditional feature
engineering methods, 2) polygon shape encoding methods, and 3)
multipolygon representation learning. Each of these methodologies,
while contributing valuable insights and capabilities, faces its chal-
lenges: Traditional feature engineering methods [10, 23, 30] trans-
form polygon shapes into predefined shape descriptors for neural
network processing. However, these descriptors often oversimplify,
failing to capture the full spectrum of shape information and requir-
ing significant domain knowledge for their design. Their inability
to handle the variability and complexity of polygonal shapes limits
their generalizability. Polygon shape encoding methods mainly fo-
cus on encoding simple polygons without holes [21, 26, 29]. Veer
et al. [26] proposed two encoders for simple polygons based on
1D CNN and bidirectional LSTM, taking the exterior coordinate
matrix as input. Mai et al. [21] used a 1D ResNet architecture with
circular padding for loop origin invariance. In [29], authors treated
the polygon exterior as a graph and used a graph autoencoder for
embedding. These methods have shown effectiveness on tasks like
shape classification and retrieval. These methods though useful for
certain types of analyses, are not ideally suited for multipolygon
representation learning where capturing the intricate topological
relationships between polygonal geometries is needed.

For multipolygon representation learning, Jiang et al. [12] pro-
posed to use Non-Uniform Fourier Transform (NUFT) to first trans-
form polygons and 3D meshes into the Fourier domain before fea-
ture extraction with CNNs. On this basis, Mai et al. [21] developed
NUFTspec to directly learn embeddings in the spectral domain
instead of converting back to the spatial domain. NUFTspec has
shown promise in predicting spatial relationships such as topology
and cardinal direction relationships, which are useful in geographic
question answering [8, 16, 20]. Despite these advances, there re-
mains a gap in effectively handling the intricacies of multipolygon
geometries, especially in capturing both the inter-polygonal rela-
tionships and the nuances of individual polygon shapes.

2.2 Graph Neural Networks for Multipolygons

Graphs are inherently suited to model the complex spatial rela-
tionships and interactions within spatial systems [31-34], making
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them ideal for multipolygon analysis [1, 3, 7, 35]. He et al. [10]
develop a graph-centric method that utilizes graph representations
and combines graph partitioning with random forests to identify
and classify diverse building patterns. Yan et al. [2, 30] utilize graph
convolutional neural networks to classify urban building patterns
using spatial vector data, which is designed to distinguish regular
and irregular group patterns to enhance map generalization and
urban planning. However, while these homogeneous graph models
are effective in modeling spatial relationships among multiple poly-
gons, they are limited in handling diverse non-homogeneous data
types, such as the distinct types of entities and interactions within
multipolygons. Heterogeneous Graph Neural Networks (HGNN )
introduce advanced mechanisms to manage this diversity [6]. HAN
[28] leverages node-level attention and semantic-level attention to
learn the importance of nodes and meta-paths, respectively. HGT
[11] uses meta relation to decompose the interaction and transform
matrices to model heterogeneity. Yet, a bespoke HGNN solution
specifically designed for the multipolygon challenge is notably
absent from the literature, indicating a clear avenue for innovation.

3 Problem Formulation

In this section, we first introduce the definitions of polygon and
multipolygon, and then we formalize the problem of multipolygon
representation learning.

Definition 3.1. Polygon. A polygon p; is defined as a tuple (Bj, h; =

{Hj; }j\]:hl’ ), where B; € RNb:i %2 represents the coordinates of the
vertices on the exterior boundary of p;, arranged in a counter-
clockwise direction. h; denotes the set of holes within p;, with
H;; € RNk X2 indicating the coordinates of vertices for the j-
th hole, oriented in a clockwise direction. Np,, Np,; and Nj, denote
the number of holes in p;, the number of vertices on the boundary
of j-th hole and the number of vertices on p;’s exterior boundary,
respectively. Both B; and H; j create closed shapes which are de-
fined as polygon parts. Altering the starting vertex in B; and H; j
does not change the structure of the polygon.

Definition 3.2. Multipolygon. A multipolygon q is defined as a
collection of polygons {p; ?iql, where Ng denotes the number of

polygons. A multipolygon reduces to a single polygon if Ny = 1.

As depicted in Figure 1, individual polygons may possess similar
shapes across various scenarios, yet when aggregated into multi-
polygons, they exhibit a wide array of patterns. This observation
highlights the necessity of evaluating multiple single polygons
collectively to accurately identify group patterns, which is funda-
mental to understanding the concept of a multipolygon. This paper
aims to convert a multipolygon into a vector representation, de-
noted as ¢ — gy, where q, € R4 and d represents the dimension of
the vector. The learned representation should be able to be used to
discriminate different multipolygons they represent and maintain
necessary geometric information and properties in order to be used
in downstream applications.

Representation learning of multipolygon is an underexplored
yet highly challenging problem due to the key technical hurdles: 1)
Difficulty in unifying the modeling of the inner polygonal structure
and the relationships between multiple single polygons. 2) Difficulty

KDD ’24, August 25-29, 2024, Barcelona, Spain

in handling the scalability issue.3) Difficulty in learning a unique
representation for different input multipolygon. 4) Difficulty in
learning the heterogeneous relationships within a multipolygon.

4 Methodology

To learn distinct representations for multipolygons by address-
ing the aforementioned challenges, we propose the PolygonGNN
framework as shown in Figure 2. First, in Figure 2-(a), to unify
the characterization of the inter-polygonal and inner-polygonal
relationships in multipolygon data, we propose a new transfor-
mation that turns a multipolygon into a heterogeneous visibility
graph, as elaborated in Section 4.1. This process is proven to be
invertible, which maintains necessary information in the multi-
polygon while converting it to a well-structured data format. In
Figure 2-(b), to reduce the redundancy in the visibility graph and
solve the scalability issue (introduced in Section 4.2), we propose
to sample out succinct graphs that are still sufficient to preserve
multipolygon information. (Section 4.2). Figure 2-(c) illustrates our
five-tuple heterogeneous geometric representation for each two-
hop path. This representation is designed to transform geometry
into vector form while still preserving all the information of the
visibility graph and achieving rotation and translation invariance
(Section 4.3). The representation further eliminates the redundancy
in the heterogeneous visibility graph. Finally, as shown in Figure
2-(d), to characterize the hierarchical patterns of the multipolygon,
multiple layers of heterogeneous two-hop message-passing mech-
anism are proposed in Section 4.4. It learns the contexts of nodes
hierarchically without losing geometric information and properties.
We demonstrate that this heterogeneous graph neural network is
capable of distinguishing between various input graphs.

4.1 Transforming Multipolygon to
Heterogeneous Visibility Graph

A multipolygon is characterized not only by the shape of its con-
stituent parts but also by the spatial relationships between these
parts. Developing a comprehensive representation of multipoly-
gons necessitates a unified data structure capable of encapsulating
both shape geometry and spatial interconnections. The geometry
of each part is delineated by an ordered set of coordinates, which
lends itself to graph representation. Each graph node represents a
polygon vertex, with its coordinates as node features, and edges
delineate the shape of the part. To model the spatial relationships
inherent in multipolygons, we calculate the visibility relationships
among the parts of the multipolygon, transforming abstract coordi-
nates into pairwise spatial relationships. This introduces a layer of
rich semantics essential for spatial applications in the real world.
To harmonize these dual aspects of multipolygon representation,
we propose the concept of a heterogeneous visibility graph, specifi-
cally tailored for multipolygon contexts. This graph incorporates
two distinct types of edges: inner edges that define the shapes of
individual parts and visibility edges that connect separate parts,
modeling their spatial relationships.

As shown in Figure 2-(a), given a multipolygon q = {p; Z"l

N,
pi= By, hi = {Hi,j}jzll’
fined as G(V, E, X, ¢). Here, each node v; € V represents a polygon

), the heterogeneous visibility graph is de-
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Figure 2: Illustration of the proposed framework.

vertex, the node set V comprises vertices recorded in B; and H; j,

with [V] = Nj, + zj?’:"li
a specific edge type. X represents the node attributes, which are
set initially using their respective coordinates. Let ¢ : E — R rep-
resent an edge type mapping function, where R = {Rinner, Reross }
denotes the set of edge types. Edges of the type Rinner are directed
inner edges which trace the shape of each closed polygon part. The
creation of inner edges involves a sequential connection of ver-
tices. Specifically, an inner edge is formed between two consecutive
nodes as recorded in Bj or H; j. Notably, there is also an inner edge
connecting the last and first vertices in B; and H; j, respectively,
to form a closed shape. Edges of the type Rcross are undirected
visibility edges that connect separated parts. Two nodes in G are
considered visible to each other if the line segment connecting
them does not intersect any polygon boundaries. For the visibility
edges, we iterate over V and build edges between pairs of nodes
that are visible to each other. This process ensures that the graph
not only represents the physical structure of the multipolygons but
also maintains connectivity, enabling a holistic understanding of
the spatial network. In addition, we have the following theorem
which shows that the transformation from a multipolygon to a
heterogeneous visibility graph is information lossless.

Theorem 4.1. Let q be a multipolygon and G(V,E, X, ¢) be the
heterogeneous visibility graph derived from q, the transformation to
the graph is invertible.

Ny .. Each edge e; ; € E is associated with
ij J

The detailed proof is in Appendix A. We prove it by using the
graph information to rebuild an equivalent multipolygon. Essen-
tially, we have successfully translated the challenge of representing
multipolygons into a graph representation problem without any
loss of crucial data.

4.2 Heterogeneous Spanning Tree Sampling

The concept of heterogeneous spanning tree sampling addresses
the redundancy in the heterogeneous visibility graph. By leveraging
the characteristics of heterogeneous visibility graphs, we developed
a linear complexity sampling strategy. Key to this approach is the
understanding that visibility edges serve to connect separated parts

of a polygon. To ensure effective message exchange between dif-
ferent parts, it suffices to maintain at least one path connecting
each distinct part. This requirement can be effectively handled by
solving a spanning tree problem. As shown in Figure 2-(b), we con-
ceptualize different polygon parts as supernodes interconnected
by visibility edges. By randomly sampling visibility edges, we con-
struct a spanning tree w € Q that guarantees the connectivity of
these supernodes.

Given a heterogeneous visibility graph G(V, E, X, ¢), we catego-
rize its edge set into two types: E = Ejnner U Ecross. Here Eémss’w
represents the subset of selected visibility edges forming a spanning
tree w. Consequently, the newly derived graphs are represented
as {G(V, Einner U E¢yoss 0y §)|w € Q} We also establish that the
sampled graphs can be inversely transformed back to their corre-
sponding original multipolygon, thus ensuring that no information
is lost during the sampling process.

Corollary 4.2. For a multipolygon q and its associated heteroge-
neous visibility graph G(V, E, §), each graph G’ € {G(V, Einner U
E. )|w € Q} uniquely identifies the original multipolygon q.

Cross,w:?

The detailed proof is in Appendix B. In addition, the sampling not
only reduces computational complexity but also acts as a form of
data augmentation, generating more training graphs from which the
model can benefit. Our experiments demonstrate an improvement
in performance attributable to this augmentation.

4.3 Heterogeneous Geometric Representation

In a sampled heterogeneous visibility graph G’, the spatial infor-
mation is encapsulated by the relative positions of polygon parts
and the specific shape of each part, which are defined by the coor-
dinates of the polygon vertices. To effectively distinguish between
two different polygons, we need to account for these coordinates to
maintain spatial awareness during the update of node embeddings.
However, it is crucial to recognize that polygonal structures remain
unchanged under transformations like translation and rotation.
Therefore, achieving rotation and translation invariance becomes a
crucial goal, which is not inherently provided by the coordinates
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themselves. To address this, one approach is to transform the origi-
nal coordinates into distances between nodes, serving as features.
This method can achieve the desired invariance to translation and
rotation. However, relying solely on distances might not be suffi-
cient to preserve the complete spatial information. For instance, if
the edge connecting nodes v; and v; rotates around v;, the distance
between these nodes remains constant, hence not reflecting the
change in the polygon’s structure. This limitation indicates that
distance-only features are insufficient for a model to fully capture
the spatial dynamics of the polygon. Moreover, the heterogeneity of
the graph assigns different semantics according to whether we are
considering positions within a single polygon or the positions be-
tween multiple polygons. To overcome this limitation, we propose
a five-tuple heterogeneous geometric representation that is proven
to comprehensively represent the heterogeneous visibility graph
converted from a multipolygon. Specifically, consider Hg, the set of
all two-hop paths converging to node v;. In this context, 7; ; . € Hé
indicates a two-hop path v; < vj < vj. The heterogeneous visibil-
ity graph G’(V, E, X, ¢) can be expressed as a collection of tuples

(7 j k)

G’ = {s(m; ) mijx € Mhv; € VY, (1)
s(mijx) = (dij, djg. 0 j i Pleij), plejx))

where d; j denotes the distance between node v; and v, d; i is the
distance between node v; and vy, 0; ;x € [, 7) is the angle at
vj formed by the three nodes. ¢(e;,j), #(e; ) are the types of the
edges forming the path, as shown in Figure 2-(c). Importantly, the
representation is invariant under rotation and translation trans-
formations, ensuring that the structural integrity of the graph is
maintained regardless of its orientation or position. We further
affirm that this tuple format encapsulates all the heterogeneous
spatial information of the graph. In essence, utilizing the tuple rep-
resentation of the heterogeneous visibility graph, as detailed in
Equation 1, enables us to reconstruct a graph that is functionally
equivalent to the original.

Lemma 4.3. Given a tuple s(r; j ;) and the positions of v; and v;
within a two-hop path ;jx., we can determine the position of the third
node v, as well as the types of edges that constitute the path.

The detailed proof is in Appendix C. The lemma indicates that
the geometric configuration of a two-hop path 7; . is rigidly deter-
mined by the tuple s(7; j 1), akin to a rigid body. Concurrently, it
establishes the types of edges comprising the path, thereby clarify-
ing whether any two nodes originate from two polygon parts.

Theorem 4.4. Given the tuple representation of a heterogeneous
visibility graph G’, as articulated in Equation 1, we can reconstruct a
graph that is equivalent to G’.

The detailed proof is in Appendix D. The foundational concept
of Theorem 4.4 is that all parts within a multipolygon are intercon-
nected via undirected edges. So we can iteratively expand the rigid
structure, thereby reconstructing all nodes and their interconnec-
tivity to form an equivalent heterogeneous visibility graph.
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4.4 Multipolygon Graph Neural Network

To effectively learn the hierarchical representation of a multipoly-
gon, we propose Multipolygon-GNN with a focus on utilizing differ-
ent models to learn the different interactions in the heterogeneous
visibility graph. In each layer, we utilize a two-hop message-passing
scheme to update node embeddings leveraging the five-tuple hetero-
geneous geometric representation outlined in Section 4.3. As shown
in Figure 2-(d), a two-hop path ;. can connect nodes within the
same polygon part or between different parts, through various edge
types. The flow of information from one polygon part to another
is critical in learning the interrelation among multiple polygons,
while inner-part information flow enhances the understanding of
local context and spatial relationships within a single polygon. We
categorize possible path types based on the edge types involved as
four categories. Let ® be the two-hop path type mapping function,

(D(”i,j,k) € {Rinner; Rcross} X {Rinner,Rcross} (2)

To effectively utilize the graph’s heterogeneity and distinguish
between different message sources, we propose a heterogeneous
function for learning the message based on the path type. Let
(L2(71;k)) be an MLP model for path type ®(z; ;) at layer [,
the message m® (7, k) from path 7; ; ;. can be formulated as fol-
lows:

m(l)(”i,j,k) = W(q)(”i,j,k))\I](l»q)(”i,j,k))(hgl)’h;l)’hl(cl))g(l))) 3)

where w(®(7iik)) s the weight for path type O(7; j k) gh =
qo(l) (dijlld; kl6; k) is the geo-embedding calculated by an MLP
function ¢(!), and || denotes the concatenation operation. We initial-
ize node embeddings to zeroes. For a node v;, let hglﬂ) represent its

updated embedding in the [-th layer. The node embedding update
is formulated as follows:

l ‘
hf +1) _ Z{m<l>(ﬂi,j’k)|ﬁijk e T4} ()

To maximize discriminative power, the embeddings of all nodes are
summed to form a graph embedding, and the graph embeddings
from all layers are concatenated as the final graph representation
hg for downstream tasks:

hor =l (St ). g

where L is the number of GNN layers.

Our two-hop message-passing approach, incorporating distances
and angles, achieves rotation and translation invariance, while re-
taining the ability to distinguish different graphs. Assuming the
distance between any two nodes is bounded within a range, we
demonstrate that our method can aggregate complete graph infor-
mation with arbitrary precision:

Theorem 4.5. Suppose f : S — R be a continuous set function
with respect to the Hausdorff distance dg(-,-). Let S € S be the
set of all two-hop paths of a heterogeneous visibility graph G, S =
{s(m;j)lvi € V}, Ve > 0,3K € Z, such that forany S € S,

If(S) =L(f ()l <e, (6)

where { is a continuous function, and f’(S) € RX is the output of
our proposed method.
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The detailed proof is in Appendix E. Similar to PointNet, in the
worst case, our method divides the space into small granules. With
a sufficiently large output dimension, our method maps each input
into a unique granule.

5 Experiment

We first introduce the experimental settings. The implementation
details including hyperparameter tuning can be found in Appendix
F. Then we present the performance of PolygonGNN and compari-
son approaches across five distinct datasets for graph classification.
Then we perform ablation studies to show the contributions of
the sampling strategy and Multipolygon-GNN. We also include
analyses on efficiency, hyperparameter sensitivity, embedding visu-
alizations, and heterogeneous interaction weights, alongside a case
study to identify the strengths and limitations of our framework.

5.1 Experiment Setting

5.1.1 Datasets. Our experiments span five datasets featuring var-
ied types of spatial polygons, detailed as follows: MNIST-P-2: This
dataset comprises 10,000 samples of two-digit multipolygons, each
formed by combining two random digits from the MNIST-P dataset
[12]. The MNIST-P, a polygonal adaptation of the MNIST dataset
[17], represents each digit as a polygonal shape derived by tracing
the original images’ contours. The label for each two-digit sample
merges the individual digits’ labels, sequenced from left to right,
resulting in a classification task across 90 classes (digits 10-99).
Building-2-R: Containing 3,469 two-building multipolygons, each
entry in this dataset pairs two buildings from the OpenStreetMap
(OSM) building dataset [29]. A building’s label reflects its shape,
categorized into one of ten standard alphabetic shapes (H, I, E, Y,
T,F, U, L, Z, O). Buildings are coupled with their closest neighbor
on the OSM map, and the label for each pair accounts for their
relative positioning. Building-2-C: This dataset includes 5,000
samples of two-building multipolygons. Buildings are resized to fit
within a 1x1 area and randomly paired, with the composite label
reflecting the sequence of their individual labels from left to right.
Building-S: Features 5,000 single-building polygons for shape clas-
sification, focusing on identifying the buildings’ geometric shapes.
DBSR-cplx46K: Introduced by [21], this extensive dataset contains
46,567 complex polygonal geometry samples, each comprising two
polygons. The research objective is to predict spatial relations,
specifically classifying whether one of the two polygons partially
contains the other.

5.1.2  Comparison Method. In evaluating the proposed framework,
we benchmark it against several leading-edge baselines renowned
for their prowess in polygon encoding: ResNet1D: This model
adapts the 1D variant of the Residual Network (ResNet) architec-
ture, incorporating circular padding to effectively encode the ex-
terior vertices of polygons. VeerCNN: A Convolutional Neural
Network (CNN) designed for 1D inputs, VeerCNN employs zero
padding and concludes with global average pooling. NUFT-DDSL:
A spatial domain polygon encoder that uses NUFT features and the
DDSL model. NUFT-IFFT: A spatial domain polygon encoder that
utilizes NUFT features and the inverse Fast Fourier transformation
(IFFT). Additionally, to underscore the efficacy of our proposed
multipolygon graph neural network, we include comparisons with
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two heterogeneous GNNs: HAN: A GNN implements an attention
mechanism to manage the diverse relationships within heteroge-
neous graphs. HGT: A GNN adapts the transformer architecture
to leverage node and edge type-specific attention mechanisms to
capture complex patterns.

5.2 Effectiveness Analysis

Table 1 presents a performance comparison between the proposed
method and other competing models across five datasets. We utilize
a range of metrics to quantify the performance including Accuracy
(Acc), weighted precision (Prec), weighted F1 score (F1), and the
weighted ROC AUC score (AUC). The results reflect averages from
three independent trials for each configuration, with standard de-
viations noted alongside the + symbol. The highest-scoring result
for each dataset is denoted in boldface.

PolygonGNN distinguishes itself with the highest scores in ac-
curacy, precision, and F1 across all datasets, notably improving the
F1 score by 18.3% over the average of other methods in the MNIST-
P-2 dataset. This enhancement evidences the method’s superior
capability, especially when other models show sporadic comparable
performance across varied datasets. Particularly in the MNIST-P-2
dataset, PolygonGNN’s proficiency is unmatched, achieving the
highest scores in accuracy, precision, F1, and AUC, significantly
surpassing competing methods. In the Building-2-C dataset, despite
the seemingly modest absolute performance values, PolygonGNN’s
achievements are substantial, especially given the difficulty com-
peting methods face in making accurate predictions. This chal-
lenge arises from the random combination and scaling of buildings
within a unified grid, introducing variability in orientation and
inter-polygonal relationships even among samples with identical
labels. Such complexity underscores the critical need for a model
like PolygonGNN, capable of discerning the nuanced inter and in-
ner relationships within a multipolygon. The Building-2-R dataset
presents a scenario akin to Building-2-C but additionally considers
the relative positioning of buildings for labeling, which slightly im-
proves the performance of all models. PolygonGNN’s adaptability
is further demonstrated in the Building-S dataset, which focuses
on single polygons. Here, PolygonGNN’s top performance affirms
its robustness and flexibility, effectively handling both single and
multipolygon representations through a cohesive data structure.
DBSR-cplx46K is recognized as a complex and extensive dataset.
While various methods demonstrate commendable performance
on this dataset, PolygonGNN distinctly stands out by achieving the
highest scores across multiple metrics.

5.3 Ablation Study

In this section, we explore the advantages of incorporating our
sampling method and the Multipolygon-GNN within our frame-
work. To assess the impact of the augmentation introduced by the
sampling strategy, we conduct experiments without the sampling
technique, labeling this variant as "PolygonGNN w/o S." For the
GNN component, we substitute our proprietary GNN with HAN
and HGT. The results, presented in Table 1, indicate that the sam-
pling method substantially enhances performance across nearly all
datasets by enriching the training data. Additionally, our custom
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Table 1: The performance of the proposed model (including ablation variants) and the comparison methods. The best results

are in bold.

Dataset ‘ Metric ‘ ResNet1D VeerCNN  NUFT-DDSL  NUFT-IFFT ‘ HAN HGT PolygonGNN w/0 S PolygonGNN

MNIST-P-2 Acc 0.794 £.012  0.667+.019  0.559+.014 0.357+.029 | 0.865+.013  0.872+.016 0.880+.009 0.897+.004

Prec 0.810+.018  0.709+.017  0.593+.013 0.391+.027 | 0.871+.012  0.877+.010 0.885+.012 0.901+.010

F1 0.794+.012  0.667+.018  0.561+.014 0.357+.028 | 0.865+.012  0.872+.012 0.879+.010 0.897+.007

AUC | 0.995+.001  0.986+.008  0.964+.005 0.908+.010 | 0.996+.001  0.996+.001 0.996+.001 0.997+.000

Building-2-C Acc 0.146+.020  0.121+.005  0.088+.023 0.059+.031 | 0.318+.027  0.347+.023 0.536+.013 0.537+.025

Prec 0.175+£.026  0.125+.007 0.108+.030 0.072+.034 | 0.331+.045 0.367+.041 0.568+.014 0.578+.026

F1 0.145+.021  0.111+.006  0.086+.024 0.060+.038 | 0.310+.033  0.339+.029 0.530+.013 0.537+.025

AUC 0.860+.055  0.836+.010 0.738+.051 0.703+.055 | 0.932+.014 0.944+.015 0.984+.003 0.985+.008

Building-2-R Acc 0.464+.014  0.372+.060 0.244+.028 0.244+.013 | 0.599+.079 0.637+.071 0.659+.020 0.663+.011

Prec 0.505+.014  0.375+.111  0.278+.029 0.287+.015 | 0.623+.083  0.651+.077 0.679+.020 0.696+.021

F1 0.451+.014  0.352+.079  0.223+.023 0.229+.025 | 0.585+.080 0.625+.076 0.642+.019 0.646+.015

AUC | 0.855+.005 0.843+.025  0.736+.008 0.710+.009 | 0.917+.039  0.946+.026 0.969+.010 0.964+.008

Building-S Acc 0.749+.016  0.643+.059 0.847+.005 0.814+.002 | 0.898+.007 0.950+.004 0.984+.009 0.984+.007

Prec 0.773£.015  0.658+.073  0.861+.005 0.846+.001 | 0.901+.006 0.951+.004 0.984:+.009 0.983+.007

F1 0.748+.018  0.644+.055 0.847+.006 0.817+.001 | 0.898+.006 0.950+.004 0.984+.009 0.984+.007

AUC | 0.954+.005 0.934+.021  0.986+.001 0.984+.000 | 0.992+.000  0.998+.000 0.999+.000 0.999+.000

DBSR-cplx46K | Acc 0.955+.012  0.986+.001  0.990+.001 0.990+.001 | 0.983+.001  0.990+.002 0.990+.001 0.992+.001

Prec 0.956+.010  0.986+.001 0.990+.001 0.987+.001 | 0.983+.001  0.990+.002 0.990+.001 0.992+.001

F1 0.955+.012  0.986+.001  0.990+.001 0.990+.001 | 0.983+.001  0.990+.001 0.990+.001 0.992+.001

AUC 0.995+.001  0.997+.000 0.997+.000 0.997+.000 | 0.997+.000 0.997+.000 0.998+.000 0.998+.000

Multipolygon-GNN outperforms the alternative HAN and HGT, un-
derscoring the importance of developing a specialized GNN tailored
for multipolygon encoding.

5.4 Efficiency Analysis

To assess the efficiency of our proposed sampling method relative
to traditional one-hop and two-hop-based message-passing neural
networks, we conducted a comparative analysis of the total num-
ber of messages processed by each method. This comparison was
performed using the datasets employed in our experiments, exclud-
ing the Building-S dataset, which exhibits uniform message counts
across all methods due to its singular closed shape structure. The
comparative data is presented in Table 2. Furthermore, to quantify
the efficiency gains, we computed the ratio of messages processed
by the two-hop and our sampling method to those processed by the
one-hop method. These ratios, illustrating the relative change in
message processing load, are depicted in Figure 3. Our findings re-
veal that the conventional two-hop message-passing approach can
result in a message count up to 9.3 times higher than the one-hop
method. In contrast, our sampling method significantly reduces this
overhead, achieving an average ratio of reduced two-hop to one-
hop messages across the datasets at approximately 2.33, thereby
demonstrating a substantial improvement in efficiency.

Dataset One-hop Two-hop Reduced Two-hop
MNIST-P-2 4482 11666 6410
Building-2-C 2814 7520 3848
Building-2-R 2743 7799 3959
DBSR-cplx46K 4712 43796 23856

Table 2: Numbers of calculated messages
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Figure 4: Hyperparameter sensitivity

5.5 Hyperparameter Sensitivity

This section delves into the sensitivity analysis of two critical hy-
perparameters within our proposed framework: the hidden dimen-
sion and the number of graph neural network layers, utilizing the
MNIST-P-2 dataset for evaluation. The impact of the hidden dimen-
sion on model performance is illustrated in Figure 4 (a). Generally,
the model exhibits low sensitivity to the hidden dimension size once
it surpasses a certain threshold (in this case, 512 for the MNIST-P-2
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dataset). Nonetheless, dimensions that are too small may constrict
the model’s expressive capacity, resulting in suboptimal perfor-
mance. These findings are consistent with the principles outlined in
our Theorem 4.5. Regarding the number of GNN layers, Figure 4 (b)
reveals a concave curve, indicating a point of diminishing returns.
An optimal performance is achieved with approximately 4 GNN
layers, suggesting a balance between model depth and efficiency.

5.6 Embedding Visualization

We present the visualization of the learned embeddings for mul-
tipolygons by different methods in the test set of the Building-S
dataset. Each point corresponds to the embedding of an input multi-
polygon after PCA dimensionality reduction. As depicted in Figure
5, the embeddings generated by our proposed model, including
those from its ablation variants, form distinct clusters correspond-
ing to the input categories. In contrast, the embeddings produced by
traditional methods appear intermixed. This demonstrates the effi-
cacy of our proposed framework in differentiating between various
input multipolygons.

5.7 Heterogeneous Interaction Weights

We present the relative weights of the four types of interactions
within multipolygons across four datasets in Figure 7. Generally,
the significance of each interaction varies in accordance with the
unique characteristics of each dataset. Specifically, in the DBSR-
cplx46K dataset, the weight attributed to the inner-inner interaction
is notably higher, whereas the inner-cross interaction is assigned a
lower weight. Furthermore, a consistent pattern observed across
the datasets is that the cross-cross interaction typically receives
the lowest weight, whereas the inner-inner interaction tends to
have the highest weight. This is reasonable, given that in the tasks,
accurately recognizing the shape of each individual polygon is
crucial, and understanding the relationships between polygons is
comparatively easier.

5.8 Visualization of Prediction Cases

We delve into the predictive performance of PolygonGNN in the
MNIST-P-2 dataset by showcasing several cases in the test set. In
Figure 6, the predictions from all the methods are listed. We notice
PolygonGNN adeptly handles minor imperfections and downsam-
pling artifacts. The first type of noise consists of irregular distor-
tions that result in non-standard shapes. For example, in case "24",
the hole in the digit "4" is reduced to a line. The second type of
noise involves broken parts, as observed in cases "53", "37", "60", and
"11", where a digit is fragmented into several disjointed pieces. This
fragmentation confounds comparison methods due to their limited
capacity to interpret the relationships among multiple polygons,
rendering them unable to identify the digit once it is segmented.
In the last two cases, the inputs exhibit extensive damage and are
challenging to categorize. However, the unsampled version of our
method PolygonGNN w/o S still makes correct predictions. This
indicates that adding more visibility edges between multiple poly-
gons may enhance the robustness of the model. Future work could
focus on exploring the balance between efficiency and robustness
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6 Conclusion

This work advances representation learning for polygonal geome-
tries, with a particular focus on multipolygons, through the intro-
duction of a novel framework named PolygonGNN. Central to this
framework is the heterogeneous visibility graph, a unified data
structure for polygonal geometries, coupled with the development
of a heterogeneous geometry representation for these graphs and
a custom-designed graph neural network, Multipolygon-GNN. To
ensure processing efficiency without compromising the integrity of
multipolygon information, a unique heterogeneous spanning tree
sampling method is introduced. The effectiveness of PolygonGNN
has been rigorously validated through extensive experiments on
both synthetic and real-world datasets, showcasing its robust per-
formance across a variety of scenarios. The representations learned
by PolygonGNN are highly discriminative, making them valuable
for a wide range of applications.
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Figure 5: Visualization of learned embeddings in Building-S dataset after PCA dimensionality reduction.
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A Proof for Theorem 4.1

Proor. The nodes in graph G have a one-to-one correspondence
with the vertices of the multipolygon g. To reconstruct q from G, we
need to group the nodes of the graph into their corresponding poly-
gons. For each polygon, we then identify its boundaries and holes.
Since The inner edges are directed, we can reconstruct the bound-
aries and holes by initiating traversal from any node and following
the inner edges until the starting node is reached. This traversal
allows us to group the nodes into either boundaries or holes of
the polygons. Furthermore, nodes along the boundaries of poly-
gons are arranged in a counterclockwise direction, whereas nodes
in holes follow a clockwise arrangement. This distinction allows
for straightforward discrimination between boundaries and holes
through basic geometric computations. Each identified boundary
corresponds to a distinct polygon, and the holes identified within
these boundaries are allocated to their respective polygons. Conse-
quently, every polygon is reconstituted with its correct shape and
internal structure. Hence, from graph G, we can uniquely recon-
struct the original multipolygon ¢, ensuring that no information
about the polygon’s structure is lost. O

B Proof for Corollary 4.2

ProoFr. In the transformation from a multipolygon to a graph,
each vertex and edge of the polygon is uniquely mapped to a
node and edge in the graph, respectively. The addition of visibility
edges does not alter the inherent structure of the original poly-
gon but rather adds supplementary connections between nodes.
The reconstruction process involves tracing the inner edges to
reform the exterior boundaries and holes of the multipolygon, as
detailed in the proof of Theorem 4.1. Now, consider the set of graphs
{G(V, Einner U E¢yoss o )@ € Q}, where each G’ is a variant of
G with a unique subset E, g, of visibility edges. Despite the
variation in E, s, ., across different G’, the core structure of g is
preserved in Ejpper. Therefore, regardless of which G’ is considered,
the original multipolygon can be uniquely reconstructed. O

C Proof for Lemma 4.3

Proor. We establish a local Cartesian coordinate system with
node v; as the origin and the ray ZTZ)J) as the positive x-axis. Define
the angle 0; ; x. as the clockwise rotation from the ray ZTZ)I) to the ray
m . A positive value of 0; ; ;. indicates a clockwise rotation, while
a negative value indicates a counterclockwise rotation. Given this
setup, the coordinates of node v} relative to v; can be calculated
using trigonometric relations:

{ xg = —dj i cos(0; j 1),
Yk = dj i sin(0; )

Therefore, by applying these trigonometric relations, we can uniquely
determine the coordinates of vy in the local coordinate system. To

obtain the global coordinates, it is essential to first determine the

angle of rotation from the global coordinate system to the local one.

Once this angle is calculated, we can proceed to apply the necessary

rotation and translation operations. These procedures are standard

and straightforward in the field of coordinate transformations. To
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maintain the focus on the central aspect of the lemma, the intricate
details of these operations are not elaborated here. The edge types
can be directly determined using the type information provided in
the tuple. Hence, the lemma is thereby proven. O

D Proof for Theorem 4.4

PROOF. An equivalent heterogeneous visibility graph is one that
represents the same multipolygon, under any translation or rotation
transformations. Without loss of generality, we fix the coordinates
of two nodes as delineated in Lemma 4.3, then the Cartesian coor-
dinates of a node vy in a two-hop path 7; ; ;. and the edge types
can be determined. Given that the heterogeneous visibility graph
G’ converted from multipolygon g exhibits strong connectivity, we
can iteratively apply this process to determine the coordinates of
all nodes in the graph. Starting from any two-hop path, we can
progressively solve for the coordinates of adjacent nodes that are
directly connected to the already solved nodes. By sequentially
solving for the coordinates of each connected node and expand-
ing the set of nodes with determined coordinates, the Cartesian
coordinates of the entire graph can be established.

Accordingly, leveraging the five-tuple heterogeneous geometric
representation along with the robust connectivity inherent in the
heterogeneous visibility graph, it becomes feasible to ascertain both
the coordinates of all nodes in G’ and their connectivity details.
This process can be initiated from any selected two-hop path within
the graph, provided that the initial two nodes have fixed coordi-
nates. These starting coordinates can be arbitrarily assigned while
adhering to the constraints of the five-tuple heterogeneous geo-
metric representation. It’s noteworthy that different initializations,
which might lead to varying orientations or positions of the graph
due to rotation or translation transformations, still correspond to
the same multipolygon. Consequently, despite these transforma-
tions, the reconstructed graph retains its equivalence to the original
heterogeneous visibility graph. Hence, the theorem is proven. O

E Proof for Theorem 4.5

Proor. Since f : & — R is a continuous set function with
respect to Hausdorff distance, Ve; > 0,351 > 0 such that for any
S,8" € Swithdy(S,8") < 1, we have |f(S)— f(S’)] < €1. Assume,
without loss of generality, that S is a one-dimensional finite set
contained within an interval[a, b]. Denote this interval as & =
[a, b], we can divide E into K = [l’?T“T + 1 equal subintervals
[a+ (k=1)A,a+kAlLk = 1,2,...,K, where A = bI}—“. Define a
function r : R — Roas r(x) = a+ [ *32]A, which maps each
x € S to the lower bound of its respective subinterval. Let $* =
{r(x) : x € S}. By this construction, dg (S, S’) < % < 61, hence
If(S) = f(S)] < er.

Next, define o : R — [0, +0c0) as the Hausdorff distance from
any point x to the complement of the k-th subinterval in =. Specif-
ically, ox (x) = dg(x,E\[a + (k — 1)A,a + kA]). Let symmetric
function vg (S) = Y xes ok (x), indicating whether points of S fall
within the k-th subinterval.

With these definitions, we construct a mapping function 7 :
[0,+00)K — S as 7(v) = {a+ (k — 1)A : v > 0}, which maps
the vector v = [v1,...,vK] to a set consisting of the lower bounds
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of the subintervals occupied by S, which exactly equals the set S’
constructed above, i.e., 7(v(S)) = §’.

Let  : RK — R be a continuous function so that { (v) = f(z(v)).
Denote o = [01,...,0k]. Then we have

F($) =D {o(x) : x € S}

=If($) —f(T(Z{U(x) :x € S})I

=f(S) = fFz(v(S)I

=If () - f(Sl < e
The continuous function o can be approximated by a multilayer per-
ceptron, according to the universal approximation theorem. There-
fore, We have |f(S)—{ (2 {m(x) : x € S})| < €, where m is the MLP
function. Considering the method described in Section 4.4, we can
set L = 1, making our proposed function f” a sum of the messages
from an MLP function. The sum operator is a special case of our
method when L = 1 and the message function is the MLP used

above. Thus, we arrive at the conclusion that [f(S) — {(f'(S))| < e.
Hence, the theorem is proven. m]

F Implementation details

Each dataset is randomly split into 60%, 20%, and 20% for training,
validation, and testing respectively.

KDD ’24, August 25-29, 2024, Barcelona, Spain

We use CrossEntropyLoss as the loss function for all classifi-
cation tasks. Adam optimizer and ReduceLROnPlateau scheduler
are used to optimize the model. The learning rate is set to 0.001
across all tasks and models. The training batch is set to 64 and the
test batch is 128 for datasets except for the DBSR-cplx46K dataset.
The training and test batch are 8 for the DBSR-cplx46K dataset.
The downstream task model is a four-layer MLP function with
batchnorm enabled across all tasks. All models are trained for a
maximum of 500 epochs using an early stop scheme.

For the comparison method ResNet1D, VeerCNN, NUFT-DDSL,
and NUFT-IFFT, we follow the original settings provided by the
authors. For HAN and HGT, we use the implementation of PyG.

For the message encoding function ¥, we use a four-layer MLP
function with batchnorm enabled across all tasks. For the geo-
embedding function ¢, we leverage a one-layer MLP function with
batchnorm enabled across all tasks. The hyperparameters we tuned
include hidden dimension in 128,256,512,1024, and the number of
GNN layers in 1,2,3,4,8. We found the best hyperparameters for
different datasets are: MNIST-P-2: [1024,4]; Building-2-C: [512,4];
Building-2-R: [512,4]; Building-S: [1024,4]; DBSR-cplx46K: [512,2].
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