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Abstract

This article investigates the nonlinear stability and dynamic transition involv-
ing the Marangoni convection of two superimposed immiscible fluids subject
to temperature gradient perpendicular to the plate. First, we obtain the criti-
cal value of the Marangoni number and verify the stability exchange principle
by adopting a hybrid method that combines theoretical analysis and numerical
calculations. Second, we use energy method to discuss the nonlinear stability
and to establish the nonlinear thresholds of the Marangoni number. Third, we
apply the technique of center manifold reduction to reduce the corresponding
infinite dimensional model to a finite dimensional ordinary differential equa-
tions. According to the ordinary differential equations, we establish nonlinear
transition theorem with a non-dimensional coefficient that determines the tran-
sition type of the model. Finally, we determine the non-dimensional coefficient
and present related temporal and flow patterns by numerical computation. The
existence and uniqueness of global weak solution to the model is also given in
the appendix.
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1. Introduction

Interfacial convection is a striking phenomenon that takes place any time
the interfacial tension is not uniform along the interface between two fluids.
This type of convection is a basic mechanism of fluid motion under micro-
gravity conditions [1, 2]. Interfacial convection is also crucial in microfluidic
systems, where it provides a mechanism for mixing [3, 4] and a reliable trans-
port mechanism [5, 6, 7]. Interfacial convection not only plays an important
role in modern engineering processes, such as mentioning laser welding [8, 9],
ordering of nanoparticles [10, 11] and fabrication of microporous polymer film
[12, 13, 14, 15], but also are significant for various biological processes [16, 17]
and materials processing [18]. These numerous applications of the interfacial
convection cause a need for physical and mathematical study.

The thermocapillary effect is the dependence of the surface tension on the
temperature, which is the normal physical effect that produce Interfacial con-
vection in fluids [19]. Typically, the surface tension decreases when the tem-
perature grows. This type of convection is called Marangoni convection, which
have been intensively studied by both applied mathematicians and physicists
[20, 21, 22, 23, 24, 25, 26, 27, 28] with linear and nonlinear analysis.

In reality, an interface between a liquid and a gas is a simplified as the free
surface, leading that one-layer model is generally applied to study the Marangoni
convection. Then, the full problem for the fluid motion and for the heat/mass
transfer involving Marangoni convection is formulated only in the liquid phase,
whereas the influence of the gas phase is described in a phenomenological way by
means of the Biot number. For detailed study involving Marangoni convection
with one-layer model, we refer readers to [29, 30, 31, 28, 32] and many other.

The one-layer approach is not sufficient for the description of many phe-
nomena caused by processes in fluids on both sides of the interface. These

phenomena can not be understood without an analysis of the interfacial hy-



drodynamic and thermal interaction between both fluids. For example, for the
onset of Marangoni convection in a liquid-gas system, the one-layer approach
predicts the monotonic Marangoni instability only for heating from the side of
the liquid [33]. The two-layer approach reveals the appearance of the mono-
tonic Marangoni instability for both ways of heating, depending on the ratio of
layers thicknesses [34]. In addition, it is well-known that the stability problem
for the mechanical equilibrium state in a system with an interface is not self-
adjoint [35], which means that the one-layer approach is unable to reveal several
oscillatory instabilities in systems with a non-deformable interface [36].

Due to the applications of two-layer Marangoni convection in engineering
technology, chemical engineering, mechanical metallurgical engineering, micro-
electronics industry, this type of convection has been extensively studied from
different angles. Engel and Swift [37] investigated the convection pattern of
two layer Marangoni convection with non-deformable interface by using weakly
non-linear analysis. Mo and Ruan [38, 39] studied the linear stability analysis
of thermocapillary convection in an annular two layer system to radial temper-
ature. Madruga et al [40] discussed the linear stability problem of a two-layer
fluid with a non-deformable interface subject to horizontal temperature gradient.
Simanovskii and Kabov [41] utilized numerical methods to study the oscillat-
ing convection with non-deformable interface. Tavener and Cliffe [42] described
numerical method of two-layer Marangoni convectoin with deformable interface
and linear stability of the model. Lyubimova and Parshakova [43] investigated
the long wave instability of two layer system with deformable interface. For
more works on two-layer Marangoni convection problems with non-deformable
and deformable interface , we refer readers to [44, 45, 46, 47, 48, 49|

In the paper, our main goal is to study Marangoni convection problem of
of two superimposed immiscible fluids by using a two-layer model from the
perspective of nonlinear stability and dynamic transition. The model is bounded
in the vertical direction and is infinite in the horizontal direction. The interface
between two fluid layers is assumed to be non-deformable, because short-wave

Marangoni instability is insensitive to the interface deformation, as pointed in



[19]. The mathematical tool that we use is the dynamic transition theory [50]
established to understand phase transition phenomena in nonlinear dissipative
systems. The primary idea of dynamic transition theory is to find a complete
set of transition states and give a complete description of instabilities and the
corresponding nonlinear dynamic transitions. The dynamic transition theory
has been used extensively to study phase transition phenomena in fluid sciences
[61, 28, 52, 53, 54]. Dijkstra, Sengul, et al [28] discussed dynamic transition
types of single layer fluid Marangoni convection system. Very recently, Han et
al [52] investigated dynamic transition for the Rayleigh-Bénard convection in
the superposed free flow and porous media. Additionally, to our knowledge,
there is little literature on the dynamic transitions of Marangoni convection of
two superimposed immiscible fluids. Physically, it is vey important to know
how the height ratio, density ratio and other parameters of the fluid layer affect
the phase transition type of Marangoni convection of he two-layer fluids.

Let us briefly describe the main conclusions of this article. First, we obtain
the critical values of Marangoni number, verifies that PES condition and estab-
lish nonlinear transition theorem. For the special case where the thickness of
the upper fluid is equal to the thickness of the lower fluid, the explicit expres-
sion of the critical values is derived. For generic cases, we use the Chebyshev
tau method to estimate the critical values, and discuss the influence of height
ratio, aspect ratio, density ratio, and heat capacity ratio on them. Second, we
reduce the infinite dimensional model to a complex-valued ordinary differen-
tial equations by utilizing the method of center manifold reduction. With the
help of the reduced equations, we deduce a transition theorem along with a
dimensionless coefficient @) used for determination of transition types. Finally,
Our numerical results show that both jump and continuous transition occur in
two superimposed immiscible fluids, which is different from single layer fluid
Marangoni-Bénard convection [28] . In the appendix, we give the existence and
uniqueness of global weak solution by using the Galerkin method.

The rest of this paper is organized as follows. In section 2, we present

the Boussinesq model which describes two superimposed immiscible fluids and



rewrite the model as an abstract equation. In section 3, we study the linear
eigenvalue and verify PES. In section 4, we analyze nonlinear stability. In
section 5, based on the PES and reduction on center manifold, the dynamic
transition theorem is given. In section 6, some numerical results are given to
illustrate the theoretical results. In section 7, the conclusions are summarized.

In section appendix, we discuss the existence and uniqueness of weak solution.

2. Governing Equations

2.1. Nondimensionalization

We consider Marangoni convection involving two immiscible fluids in finite
two-dimensional domains £ = Q1 Uy sketched in Figure 2.1, where 21 and €25
satisfy that Q; Ny = I'; which represents the interface between two immiscible
fluids. Because short-wave Marangoni instability is insensitive to the interface
deformation, as pointed in [19], we can disregard the interface deformations.

We then assume that the interface ¥ is flat and lies in z axis.

T

do 2
Fluid 2

Interface I';
0 ______________________________________

Fluid 1

—dy —

T

Figure 2.1: Sketch of the physical domain. ;: the lower fluid region. 2: the upper fluid

region. I'; denotes the interface

The nonlinear equations of convection in the framework of the Boussinesq

approximation have the following form

divuy, =0, (2.1)
_ ,Ouy, _ . —
Pm(w + (U - V)u) = —Vpy, + ,“mVQUm = gpmill — am(Tm — T)], (2.2)



+ (um ’ V)Tm)) = kaZTm, (2.3)

ﬁmcm(T:
where the subscript m = 1,2 denotes the lower and upper fluids, respectively,
the unknown function u,, = (um, v ) is the velocity, T, is the temperature, p,,
is the pressure, p,, denotes the density of liquid m, T is a fixed reference temper-
ature, oy, is the thermal expansion coefficients, k,, is the thermal conductivity,

¢m 18 the specific heat capacity, and g, is the molecular diffusivity.

The boundary conditions at flat interface y = 0 are well-known, they are

V1 = V2 = 07 uyp = u2, Tl = T27 (24)
Oup 0w 5 OTh

_ = 2.
2 T, +o1 0, (2.5)
o7, o1
= = 2.
kQ 83} kl ay Oa ( 6)

where the interfacial tension at the interface has been assumed to be a linear
function 6 = dp — 91(11 — Tp). The first condition at interface means the con-
tinuity of the velocity field and the temperature field, the second condition at
interface represents the balance of tangential stresses, and the third condition
at interface means the continuity of the heat flux normal components.

We also utilize the following boundary conditions at the rigid boundaries

8’[1,1

87y = :0, T1 :Tl, at Yy = —dl, (27)
OUs =0, Ty =Ty, at y—d (2.8)
8y_2_’ 2 = 12, Y = dg, .

with Ty — Ty > 0 for heating from below.
From the system of equations (2.1)-(2.8), it has the basic solution given by

Ty — Ty To — Ty
Ty, Top = —
d] y+ Lo, Lop d2

uy =ug =0, Ty = — y + To, (2.9)

_ Tikido+Tokods
where Ty = At od

, and the pressures satisfy the following equations
Vomb = —=9pmi[1 — am(Tonp — T)]v (m=1,2).

To consider the stability of the above steady-state solution, we make the

following transformations

u;n = U, T7/n =T — Do, p;n = Pm — Pmb, (210)



as well as

- . k
r=dzx, y=dy, mzf—l,t:—t, P
pici K1

Wy, = S, T, = (1 = To) T, m= 1,2, (2.11)

Substituting (2.10) and (2.11) into (2.1)-(2.3), omitting the tilde and ignor-

ing the effects of gravity, we derive the non-dimensional perturbation equations

0
% + (uy - V)uy = —PrVp; + Prv?uy, (2.12)
8T1 9 1
a7 -V)Th =V + = 1
5 T V)=V v g (2.13)
divuy = 0, (2.14)
and
du Pr Pr
87; + (ug - Viuy = *;VPQ + ;urv%% (2.15)
T, kv o 11
2 V)T, = Ty 4 —— 2.1
o + (u2 - V)T pTCTV 5+ P Vo, (2.16)
divuy = 0. (2.17)

Substituting (2.10) and (2.11) into (2.4)-(2.8), we derive that the boundary

condition at the interface y = 0 are

V1 = Vg = 07 U1 = ug, T1 = Tg, (218)
6’&2 8u1 8T1
24 Ma=— = 2.1
Hr By dy + Ma Oz 0, ( 9)
oT, J0T)
— — — =0. 2.2
"oy dy 0 (2.20)

And, the boundary condition (2.7)-(2.8) are rewritten as

= =T, =0. y=—d 2.21
8y (%} 1 y Y 1, ( )
8UQ ~
By V2 2 » Y 2 ( )

It is natural to assume that perturbations are periodic in z-direction, i.e.

um(07y) = um(lvy)7 Tm(07y) = Tm(l7y)’ m=1,2. (223)



where [ is the spatial period. For these nondimensional parameters appearing in
the equations (2.15)-(2.17)., let us give their explicit expressions. The Prandtl

number (Pr) and Marangoni number (Ma) are defined as follows

0 d(Ty — T,
pre="t =t = 24— To)
K1 P1 H1k1
Moreover, the ratios appearing in the equations (2.15)-(2.17) are

l

_ P2 _ h2 c2 ka2 !
d?

Pr — Cr = —, kr:*ai:

dy 5 dy
Wy = ) I
P1 M1 €1 k1

dy =

dy =2
YT d

For initial data for the equations (2.15)-(2.17), let us set
u; (0, z) = w0, T1(0,2) = To, u2(0,z) = uso, 12(0,z) = Txo. (2.24)

2.2. Abstract Form

In this subsection, we shall rewrite (2.12)-(2.24) as an abstract form. First,

let us introduce some relevant function spaces as follows
V={¢=(u,T1,uz,Tp) € [H'()]® x [H(2)]? : divuy = 0,divug = 0,
and ¢ satisfies (2.18) — (2.22)},
H = {¢ = (u1,T1,us,Ty) € [L*()]® x [L*(2)]? : divuy = 0, divug = 0,
u; -n; =0,uz -ny =0},

which are equipped with the following norms, respectively,

1
191l = [uallE @,y + Tl @) + Tu2llE a2 + T2l 0,)])2,
11l = [luallfzege,)e + I1T1lZ2 () + 020l 0,2 + 1720122 @]

It is not hard to see that V and H are separable Hilbert spaces. We denote

the inner product on Hilbert spaces H and V by (.,.)v = (., ) g1+ (- ) H1(02)

and (,..)v = (.,.)z2(Q,) + (- -)£2(0,), respectively.
For convenience, let us use (, ., ); to denote the inner product on the spaces

L2(Q;)(i = 1,2). For ¢ = (uy,T1,uz,Tz) € V, due to

(Vpi,w;); =0, i =1,2, (2.25)



by (2.25), we then define the linear operator Ly, : V — H as follows

(LMadja 'Jj)
. ~ 1 -~ Pru, -
= —Pr(Vu, Vi), — (VT1,VI1)1 + dT(Uth)l - (Vuz, Vi),
1 T
k, ~ 11 ~ Oouy . o1 -
- (VTQ, VTQ)Q + Ti(’UQ’TQ)Q + PT/ ﬂ’Ll,ldS + / 71T1d5
PrCr d1 k'r y=0 59 y=0 8?/
Pru, - k, T, ~
o / 02 s — / %2 7, 4, (2.26)
Pr y=0 dy Prlr Jy=0 dy

where 1) = (ﬁth, ﬁg,Tg) € V. We also define operator G : V. — H by

(G, ¥),¥) = ((u1 - V)uy, )1 + (1 - V)T1, 1)1 + (2 - V)ug, i)
+ ((uy - V)T, T)a. (2.27)

For simplicity, we will use the abbreviation G(¢) := G(¢,v). Therefore, com-
bining (2.26)-(2.27), the problem (2.12)-(2.24) can be rewritten as

% = LMaz/} + G(’l/))a
¥(0) = %o,

(2.28)

where 9y = (w19, T10, W20, Tao) is the initial condition.

3. Linear stability and principle of exchange of stabilities

3.1. Principle of exchange of stabilities

It is well known that the stability of the zero solutions to the system of
equations (2.12)-(2.24) are determined by the signs of eigenvalues of the corre-

sponding linear operator. The eigenvalue problem of (2.12)-(2.24) read

0
Pr(=22 4 V2ur) = By,
¢ o
Pr(= 24 4+520) = B, (5:0) € (0.) x (~d1,0), (3.)

1
V2T, + —v; = BT,
dy
8u1 8’1}1 - 07

Pz Ty



and

Pr, 0
(G V) = s
Pr, 0 7 7
-T2 V) = ua, () € (0] x (0., (3.2)
K, 11
2T2 + =2 5T2ﬂ
PrCr dl T
8u2 (91)2 o
ox + 873/ 0

Utilizing (2.25), the interface condition (2.18)-(2.20) and boundary condition

(2.23)-(2.22), the weak form of the preceding eigenvalue problem can be given

B(ur, 1)1 + B(T1, 1)1 + Bpr(u2, )2 + preyB(Ta, Ta)o

= —Pr(Vuy, Vi), — (VI1, VTy)1 — pr Pr(Vuy, Vig)s — ke (VTs, VT3)2

1 ~ 11 ~ oty .
+ dfl(vl,Tl)l + prcrdflk—r(vg,Tg)g + PrMa /y_o T;ulds. (3.3)

In fact, the equation (3.3) has an abstract form. Let us define the bilinear

operators A and B on V x V as follows

A, ) = —Pr(Vuy, Viy)y — (VTy, VT1)1 — Pri,(Vug, Viig)s

— kp(VTy, V), (3.4)

~ 1 - 11 ~ oty .
Baura(,9) = = (v, Th)1 + prey = — (va, T +PrMa/ ——1uids. (3.5
Ma (¥, ) d1( LT +p i kr( 2,1%)2 o Oz 1 (3.5)

Riesz represent theorem implies that there exist operators A, By, : V. — V*

such that Ay, ) = (A, ), Bara(¥,1) = (Bxth, ). We then define Lysqt) =
Atp + Bpratp. Hence, the abstract form of the eqation (3.3) can be given by

Larath = BM, (3.6)

10



where M is a matrix given by

00 0 0 0 cpr

Apparently, there exist countably infinitely many discrete eigenvalues to the

eigenvalue problem (3.6), which can be ordered as

Additionally, using the following definition of the dual operator L,

ReBi(Ma) > Refo(Ma) > ... — —o0.

(LMM/},?/J*) = (d}a }k\/law*)V

(3.7)

(3.8)

the eigenvalue problem associated with the dual operator L}, is given by

and

Op¥ —
Pr(— 2L 4 v2u5) = Bus,

ox
apT 2, % 1 * R4k 7 7
Pr(— oy TV b+ =i =i, (z,y) € (0,1) x (=d1,0),
1
V3Ty = BTy,
ou; =~ Ov}
bt ATl R
Oz + Ay ’
Pr, Op3 N = %
;(_87332 + 1 V>u3) = Buj,
PT a > * ]- ]- * . x 75 7
pf(*al; +LLTV21)2) + di*TQ = Bvs, (z,y) € (0,1) x (0,d2),
r 1 vr
k _
T V2T* — T*7
e 5 = P15

11

(3.9)

(3.10)



ous  Ovs
or oy

=0,

which subject to the same boundary conditions (2.23)-(2.22), but the interface

condition is different, which is given by

’UT = U; =0, pruT = U; pTCTTl* = T2*7 (311)
My Oup %7 (3.12)
pr Oy 0Oy
k. 0Ty  OTf ovy
— + PrMa =0. 3.13
prer Oy Oy y (3.13)
Denote v; = 2"1?” and D = d%. Using the method of separation of variables,

we look for the solutions to the equations (3.1)-(3.2) in the following forms:

u; = ¢;(y) exp(imx), v; = ¢;(y) exp(in1z), (3.14)

Tj = 0;(y) exp(iniz), pj = n;(y) exp(iniz),j =1,2. (3.15)

substituting (3.14)-(3.15) into (3.1)-(3.2) and eliminating p;, we have

Pr(D* = ~7)p1 = B(D* = 7)1, (3.16)
1 ~
(D* =761 + =1 =801, y € (=di,0), (3.17)
1
and
pr Pro;t(D? —7)% 02 = B(D? =47, (3.18)
11 ~
krpy te (D = 77)02 + 2= P02 Y€ (0.d2). (3.19)
1 Rr

By the interface conditions (2.18)-(2.20) and the boundary conditions (2.23)-
(2.22), we have

©1(0) = ¢2(0) =0, D1(0) = Di2(0), 61(0) = 62(0), (3:20)
11 D?95(0) — D%p1(0) +~7 Mab:(0) =0, (3.21)
k-DB2(0) — D6,(0) =0, (3.22)
D*p1(=d1) = ¢1(—di) = 01 (—d1) = 0, (3.23)
Dps(ds) = pa(da) = 05(da) = 0. (3.24)

12



Similarly, we obtain the equations to the adjoint problem

Pr(D? —42)%g; — ﬁ;ﬁ = B(D? =), (3.25)
(D2 —42)6; = 365, (3.26)

and
Pryuyp (D2 = 22)%5 — ”fk,.lczl"; —BDP—d)gs  (327)
krp; ey (D? = A7)05 = (63, (3.28)

with the following boundary condition and interface condition

©1(0) = 5(0) =0, p, D7 (0) = Dyp35(0),
prc,07(0) = 03(0), D2¢%(0) = %Dwo»
k,

PrCr
D2pi(—d1) = ¢i(—dy) = 0] (—dy1) = 0,
D23 (d2) = @5(dz) = 05(dz) = 0.

DB3(0) — DO (0) + PrMaDg;(0) = 0,

Assuming that the first eigenvalue 8;(Ma) € R. For the special case d; =
dy, we obtain the critical value Ma, of Marangoni number Ma by solving the
problem (3.16)-(3.24) with 8 = 0, which is

2(1 + py) sinh?(y1dy)
1 [Ch1 sinh(y1dy) + ¥11(0) sinh(vy1dy) + 112(0) cosh(y1dy) 7

Ma, = min
¥1>0

(3.29)
where

2(h1k, cosh(y1d1) + ho sinh(y1d1))
(14 k,) sinh(2y1d;)

hl = —’(/)11(0) Sinh(’yldvl) — ¢12<0) COSh(’}/ldl) — ’(/)22(621) COSh(’yl(L),

hy = k:ﬂ/}gg(d}) sinh(’ylcil) —111(0) cosh(’yldl) —112(0) sinh(’ylcil),

éll =

and

1 1 . s ~ -~
P11(0) = ——— { sinh(y1dy)dy sinh(2y1dy) 4 (1 — cosh(27y1dy))
11dy L4m

13



1 ~ 1 = ~ 1 . ~
. [8712 sinh(y1dy) + r%dl cosh(’yldl)] + de smh(’yldl)},

1 (1 | . . ~
P12(0) = — { sinh(y1dy)d; cosh(2y1dy) — sinh(27y1d;)
yidi U4m

1 ~ 1 - ~ 1~ .
. [S'y% sinh(y1dy) + r%dl cosh(wldl)} + §d% cosh(’yldl)},

~ Cr 1 . ~ ~ . -
Yoa(d) = 'ylpkfcﬁ {4% sinh(y1dy)d; cosh(2y1d;y) — sinh(27y1dy)

1 . 1 - . 1- .
. [87% sinh(y1dy) + Edl cosh(’yldl)] + §d% cosh(’yldl)}.

For the special case of dy = (ZQ, the principle of exchange of stability (PES)
for the eigenvalue problems (3.1)-(3.2) can be roughly proved.

Theorem 3.1 (Principle of exchange of stability). Assume that the first
eigenvalue $1(Ma) € R. There exists a critical value Ma. and a neighborhood
U of Ma. such that there exists an unique m with the property
<0, Ma< Ma,,
Bi(Ma) =0, Ma=Ma., 1<i<m, (3.30)
>0, Ma> Ma,,
ReBj(Ma;) <0, j>m+1. (3.31)

for Ma € U

Proof 3.1. Denoting 1 = (u§,Tf,u$,T5) as the vector corresponding to the
eigenvalue B;(Ma:)(i = 1,...m) and using (3.6), one can deduce that

ds 1, d 1 aT¢
BTy 7LMCLC¢7¢> - APT/y—O 8.’1}

dMa( ac) = Z<dMa ufds, (3.32)

wh676
A ||ucll|l/ ¢ ||T ||1/ 2 }:7 ||u2|‘1/ Q /( Cy HTQCHZ/ Q > :
2(21) 2(( 1) 2( 2) 2( 2)

With the help of (3.3) and setting 8 = 0, one obtain

C

oT
0= —Pr[Vusliaca,) - V65 [3aa, + Pridac [ auids. (339)
y:

14



Consequently, combing (3.32) and (3.33), one can obtain

ap
dMa

y=0 333

—(Ma.) >0 < ot ufds >0

& Pr||Vui[iz(o,) + prllVus|fi2 o, > 0.

Finally, from (3.7), we get (3.31) is valid.

For the generic case dy =+ do, using the same method, one can also obtain

the critical value and verify the PES condition.

3.2. Numerical solution of eigenvalue problem

In this subsection, we numerically estimate the critical values of Marangoni

number, which not only allow us to demonstrate the validity of the PES condi-

tion, but also can be used to calculate transition number.

pr |Exact Ma. (3.29) | Numerical Ma, Error
0.644 11782.41122 11782.41262 |[1.1867 x 10~7
0.664 5663.23635 5663.23828 |3.4100 x 107
0.684 3727.41159 3727.41239 2.1362 x 1077
0.704 2777.87118 2777.87121 1.2346 x 1078
0.724 2213.89256 2213.88151 4.9911 x 1076
0.744 1840.27071 1840.27070  |5.0262 x 10~?
0.764 1574.54646 1574.54653  |4.1779 x 1078
0.784 1375.87781 1375.87782 1.0374 x 1078
0.804 1221.72630 1221.72649 1.5620 x 107

Table 1:

15
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Choosing the parameter Pr = 4.38, p,. = 0.812, k. = 0.638, ¢, = 1.02,
=65, d = %, dy = %, the exact critical values of Marangoni number, their
numerical estimates and error for p, € [0.644,0.844] are shown in Table 1. From
the Table 1 we can see that the error range is around 10~ ~ 1076, This means
that our numerical method for the eigenvalue problem (3.16)-(3.24) is valid.

Keeping other parameters fixed, we plot the critical values of Marangoni
number as a function of height ratio Jl, aspect ratio l~, density ratio p, and
heat capacity ratio ¢, shown in Figure 3.1 and Figure 3.2. From Figure 3.1 and
Figure 3.2, one observes that the critical mode m. increases with the increasing
of the height ratio, aspect ratio, density ratio, but the heat capacity ratio has
no effect on the critical mode. At the point where the critical mode changes,
two real eigenvalues become critical, which are isolated degenerate cases and
beyond the scope of this article. From Figure 3.1, one also observe that the
critical values increases as the height ratio increases, which means larger height
ratio stablizes the basic state (2.9). Figure 3.2 shows that the critical values
decreases with increasing density ratio (heat capacity ratio), meaning that large

density ratio (heat capacity ratio) destablizes the basic state (2.9).

3000 1200
- me=3 .
2 2500 —me=d L B4000 Pr— 1 —
=} me=5|1 1 :/ = 1 1 1
3 p— T =] 1 1 =
E 2000 "0 i | E s00 ' | e
c 110 c 1 1 ——me=3
=) 1 i1 = 1 1 me=4
(=] (=]
c 1500 1 N c 600 1 1 me=5
o 1 /1 o 1 1 T
o 1/ 1 & 1 1 1
= 1000 111 = 400 1 1 1
c_g [ | g 1 1 1
8 1o = 1 1 1
5 500 1o 5 200 1 1 1
1o 1 1 1
0 L | I | 0 1 1 1
0.3 0.35 04 0.45 05 055 4 6 8 10
height ratio d; aspect ratio [

Figure 3.1: Plot of critical value of Marangoni number as a function of dy (left) and I (right),
respectively, where Pr = 4.38, p, = 0.844, p, = 0.812, k, = 0.638, ¢, = 1.02, [ = 6.5 for the
left panel, do = do = %, for the right panel
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Figure 3.2: Plot of critical values of Marangoni number as a function of p, and ¢, respectively,

where Pr = 4.38, k, = 0.638, pur = 0.812, [ = 6.5, d = %, ¢, = 1.02 (left) p, = 0.844(right)

4. Nonlinear Stability

In this section, we utilize the energy method to analyze the nonlinear stabil-

ity of (2.12)-(2.24). For the model (2.12)-(2.17), replacing T;(i = 1,2) by \/%
and omitting prime, we obtain
0
% + (u; - V)u; = —PrVp; + Prv2uy, (4.1)
oT; vM
P V)T = VT Y (4.2)
ot dy
divu; = 0, (4.3)
and
ou Pr Pr
aTQ + (ug - V)ug = f;vp2 + Z“’”Vzll% (4.4)
0Ty kr o vMa
— V)T, = —V-°T: — Vg, 4.5
8t+(u2 )T s 2+krdlvz (4.5)
divus = 0. (4.6)

The system of equations (4.1)-(4.6) subject to the same boundary condition
(2.23)-(2.22) and the interface condition (2.18),(2.20), but the interface condi-

tion (2.19) becomes

8u2 8U1 8T1
— — — +VMa— =0. 4.
oy ~ oy TVMag, =0 (47)
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We dot-multiply (4.1), (4.2) with u; and AT}, respectively, where A > 0 is a

free parameter, and Integrate over €2y to obtain

1d 5
5@”“1”@2(91))2 +/Q (u; - V)uy - uyde

1

0
= —Pr||Vu1H%L2(Ql))2 +/ Pr&iuds (4.8)
y=0 ay

T B + A / (w1 - V)wi Tyda

Q

VM oT
= MVT[F20,) + A vlTldxA/ LTyds. (4.9)
dl Qq y=0 6:’-/

2dt

Similarly, We dot-multiply (2.15), (2.16) with p,uy and Ap.c,.T1, respec-

tively, and integrate over 25 to have

1d
2.dt

Ous
= —P?“/LTHVIIQH%LQ(QZ))Q —/ Pryy—— 9y 2 ugds (4.10)
y:

,DTHUQH (L2(92))2 err/ (]_12 . V)HQ . l_lgdiL’
Q

1

1d
3 el Tl + dover | (- VT

2

T aT
= —)\k HVTQHLZ(Q + )\V p / ’Ungdl’ — )\k‘r/ 72T2d8. (4.11)
le Qs y=0 3y
A simple calculation can show that
/ (111 . V)u1 . uldx = / (111 . V)TlTldCE = 0, (412)
Ql Q1
/ (112 . V)UQ . llgdl‘ = / (112 . V)TQTQdI =0. (413)
QQ QZ

Therefore, making use of (4.12)-(4.13) and adding the equations (4.8)-(4.11)

together, we derive that

1d
2 dt

—[Prl[Vu |tz (o, + MVTilZ2 0, + PriellVuel[frzq,))

H|u1||(L2(Ql))2 + /\||T1||L2(Ql) +,0r||112|\ L2(Qo))2 T )‘pT”CTHTQHLQ(Qg)]

+ M |V T 1220 + A ”d Tlvldz+>\\/MaprCf/ Tyvada
1 Q Qo
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Ous ouq / o1, 0Ty
— Pru,—ug — Pr——uq|ds — \ k,—=Ty — —T|ds. (4.14
/y_o[ e s = Prg [y i (1

Making using of the interface conditions (2.18)-(2.20) and (4.7), we obtain

Ouo ouq / Ous 8u1
Pru,——us — Pr—u|ds = Pru,u — Pru ds
/y—o[ oy oy " wl y= 0[ : 161/ 6y}

= —PrvMa/ %ulds = —PrvMa %Tlds
y=0

y=0 Yy

= —-PrvMa Tla ! ‘nyds = —PrvMa VT - %dw (4.15)
Y

o0 dy ™
and
ol T / oT, 0T
ke S2T - Zimlds = [ kS22 — S Tds = 0. 4.16
J ey - Gy T = |l T (416

Substituting (4.15)-(4.16) into (4.14), we get

1d
2.dt

_[PV"HV‘11||%L2(91))2 + >\||VT1||2L2(521) +Prﬂr||vu2\|%L2(522))2

[||‘11H(L2(Q1 2+ /\HTIHL2(91 +pr|\u2|| L2(02))2 +)‘pTCTHT2HL2(QQ ]

1 Cr
+)\I<;,.HVT2H%2(QZ)}—&—\/Ma[/\T/ Tyvyda + A2 / Tovodx
1Jo krdy Ja,

+pPr| V- @dx} (4.17)
Q1 a

Let us denote

1
E(t) = §H|u1||%L2(Ql))2 + )‘||T1||%2(Ql) + pTHu?H%L?(QZ))? + )\Prcr||T2||2L2(Q2)]a
D= [PTHvuln%L?(Ql))? + )‘||VT1||2L2(§21) + PTIU‘THVUQH%L?(QQ))?

+ M|V T2 [72(60,))s (4.18)

1 rvr
I = /\T/ Tividx + /\p C~ / Tovodz + Pr A\ %do:
Q1 Qo 01 8

According to (4.18), (4.14) can be rewritten as

dE I
— =—-D+VMal =—-DVM 4.19
di * <\ﬁ a D) (4.19)
We define \/1\}7% as the maximum of the ratio of energies
1 1
= max —, (4.20)



which implies that

‘; < DF(F \/J\lm) (4.21)

The Poincaré inequality indicates D > cE for some constant c. As a result, we

deduce from (4.21) that

dE 1 1

— < —¢|——-——|F. 4.22

dt — <\/Ma \/MaA) ( )
Then, if vV Ma < v/May, the Gronwall lemma indicates that

E < e ®E(0), (4.23)

which yields that the system is nonlinearly stable as long as v Ma < v May,

where c-c(\/m \/1\317@)

Next, we shall solve the maximum (4.20), the Euler-Lagrange equations for

which read
2PrV3u; + A VA 7 1 — PryM a,\V =VL,,
V. u; = O» ((E,y) € (Ovl) X (_dlvo)a (424)
M
ov2Ty, + Y20, o,
dy
and

2Pru, Vus + A/ May, ZTZT Toj = VLo,

ra]
V- Uz = 07 (.T,y) € (O’i) X (O’dQ)’ (425)
e, V2T + /May 22 0y = 0,
rl

where L; is the Lagrange multiplier for the region Q;(i = 1,2).
Inserting (3.14)-(3.15) into (4.24)-(4.25) and replacing the p; by L; and re-

moving L;(i = 1,2), we derive

VM
2Pr(D? — 72)2p, — A= 20, — 0,
1
VM
2(D% — 42)0; + ; Do =0, (4.26)
1
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and

2Prp,(D? — 71)%ps — A/ Max L2426, — 0,
krdl
2 2 PrCr
2%k, (D? —12)85 + /Max 2"y = 0, (4.27)
krdy
where D = % and 7# = (227)2. Then, the critical linear eigenvalue problem
of (4.1)-(4.6) reads
Pr(D? —~7)*p1 = 0, (4.28)
vVMa, ~
(D2 - 712)01 + q 1 =0, y€ (—di,0), (4.29)
1
and
pr Prp; (D = 7) 2 = 0, (4.30)
vMa, ~
krop ey (D% = 21)6s + Ym0 =0, y € (0,dn). (4.31)
1hyr

Correspondingly, the condition (4.7) comes

i D?*02(0) — D%01(0) + 72 +/Max6:(0) = 0. (4.32)

The equations (4.26)-(4.27) along with these conditions (3.20), (3.22)-(3.24) and
(4.32) constitute a generalized eigenvalue problem for the parameter v May.
For each A > 0, one can solve v/May by using the Chebyshev-tau method. By

maximizing v May over A > 0, we obtain the threshold for nonlinear stability

vVMa=maxVv May.

A>0
The marginal stability curves involving linear and nonlinear stability are
shown in Figure 4.1 from which we see that when dl =0.51 and Jl = 0.54, the
critical value for nonlinear stability is smaller than that for linear stability. This

means that the problem (2.12)-(2.24) may undergoes a jump transition.

5. Nonlinear dynamic transitions

5.1. Main result
The Theorem 3.1 says that the system of equations (2.12)-(2.24) must un-

dergo one of three types transitions. In this section, we shall analyze the types
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Figure 4.1: Marginal stability curves with d; = 0.51(left) and d; = 0.54 (right), where
Pr = 4.38, p, = 0.844, u, = 0.812, kr = 0.638, [ = 6.5.

of transitions when m = 2, which is the generic case.

Theorem 5.1. Under the conditions of Theorem 3.1 and assuming m = 2, the

exists a coefficient Q defined by (5.16) and depending on the critical values Ma,.

and other parameter such that the following assertions hold true

(1)

If Q(Ma.) < 0, then the problem (2.12)-(2.24) undergoes a continuous
transition from (0, Ma.). As a result, it bifurcates from (0, Ma.) to a

local attractor Anrq with the following approzimation

A = {xRewl + yImapy |2 + % = —%} +0< |%|> yMa > Ma,.

The attractor Ayrq is homological to unit circle S*, which attracts H — T,

where I' is the stable manifold of ¥ = 0 with codimension 2.

IfQ(Ma.) > 0, then the problem (2.12)-(2.24) undergoes a jump transition
from (0, Ma.). Namely, there exists an open and dense set U of ¥ = 0 in
H such that for any 1o € U and for every Ma € (Ma. — €, Ma. + €) with

some € > 0, the solution b satisfies

lim sup ||¢(¢, ¥0)|| > 01 > 0,
t—o0

where o1 is independent of Ma and Q(Ma).
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Proof 5.1. This proof is divided into three parts.
Step1: Space decomposition. According to the spectral theory of linear com-

pletely continuous field [55, 50], the spaces V and H can be decomposed into
H=FE ®E,, V=E&E;,

where El = {771¢1 +ﬁ%|771 € 0}7 E2 = E‘lL and ¢1 = (ui‘aTlc7u5aT2c) is the
eigenvector corresponding to B1(Ma.). Therefore, the solution of (2.12)-(2.24)

s expressed as

Y =¢+h(¢), ¢ =mi1+T, € Ex, (5.1)

where h : E1 — FEs is the corresponding center manifold function associated with
the PES (3.30) condition. In the vicinity of Ma., the center manifold function

h can be approximated as

h(¢) = ha(¢) + o(|nl?). (5.2)

Then, we derive from (2.12)-(2.24) that

o Ouy

(G ui) = PrWul,Vul)ﬁP?‘/ 5y Uids = (w - V)uups, (5.3)
oT oT;

( 61&1 Ti) = —(VT1, VT + 'U1,T1 / v T

= ((ug - V)Tlle*)la

Ouy _ Pry, . Pru, Oug .
( ot s 112)2 = or (VUQ, Vu2)2 o / . 8y dS ((112 V)UQ7 u2)2,
(5.5)
Ty k- 1 k.. / 0Ty
2Ty = — VT, VT ) + —— (9, T3 )y — —2 21 ds
( ot 2 )2 PrCr ( 2 2 )2 k’/’dl ( ? 2 )2 PrCr 0 8?] 2 (56)

= ((u2 - V)T, T5)2,

where Y] = (uj, T, u3,Ty) is the eigenvector of L} corresponding to .

For convenience, we denote

ha(¢) = (ha(9), h3(¢), h3(9), h3(9)).
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Multiplying (5.5), (5.6) by p, and p,c,, respectively, then adding these results
together with (5.3) and (5.4), one deduce that

d - " X *
SR, ui) + (TF, 7)1+ pr(ug, ub)a + pren (15, 75):)
= [-Pr(Vu{,Vui); — (VIT,VI{)1 — ur Pr(Vus, Vul)s — kr(VTy, VT3 )o

1 PrCr / o1y
7, vi) + T5,v5)2 + MaPr
1( G krdl( 5 U3)2 o 63: uilm

= m((uf - V)hy(¢) + (hy(6) - V)usg, up)s + ((ha(e) - V)TY

+ (uf - V)h3(9), T7)1 + pr (G - V)R5(¢) + (h3(¢) - V)us, u5)s

+ pecr((h3(9) - VTS + (u - V)h3(9), T3)2] = ml((u§ - V)hy(¢)
+ (hy(¢) - V)uf, ui)y + ((uf - V)h3(9) + (hy(9) - V)TT, T

+pr((u5 - V)h3(9) + (h3(9) - V)ug, u3)z + pre,((ug - V)h3(9)

+(h3(0) - V)T, T5)2] + oI [*).

With the help of (3.3), one can obtain

d R
D g+ Z o), (57)

where

A= (uf, up)y + (T3, T7)1 + pr(uz, u3)e + prep (13,152,
R(n) = —m[((uf - V)h3(9) + (ha(¢) - V)ug, ui)1 + ((hy(¢) - V)TT
+(uf - V)R5(6), T)1 + pr((us - V)A3(6) + (h3(0) - V)us, u3)s
+ pecr((h3(9) - V)T5 + (u - V)ha(9), T3)2] — ml((u§ - V)hy(¢)
+ (hy(¢) - V)ug, up)y + ((uf - V)h3(9) + (ha(9) - V)TT, T
+pr((u5 - V)R3(9) + (h3(9) - V)us, u3)s + prey((ug - V)h3(9)
+(h3() - V)T5, T3)a].

Step 2: Center manifold functions. In the following, we calculate the center

manifold function hao(¢) by following the method used in [56, 52]. Apparently,
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the solution of the system
d 1 1
LMY = Ly U,
a (5.8)

TH0) = mepr + e,

18 given by
\Ill — nleﬂl(l\/fa)t,(/)l + nfleﬁl(]\/fa)tm. (59)
Furthermore, we consider the following system
d 2 2 1 gl
LEMU? = Ly 0% + G, T,
a (5.10)

limt_>_oo \IIZ(t) = 0,

where
G(V', ) =nfexp(26:(Ma)t)(Gy(¢1, ¢1), Ga(¥1,¥1))"
+ [mPexp(Refy (Ma)t)[(G1(¢1,91), Ga(vr,91))"
+ (G1 (1, ¥1), G2 (1, 101)) "]
+ m2exp(261 (Ma)t)(Gl (%7 E)? G2 (Ea %))T7
and
im¢7 + o1 D
G1(Y1,91) .
exp(2imiz) ime1p1+ e1Der
iv1¢101 + 01.D0;
pr (17103 + 02 Do)
G2(¢1,¢1) _p .
exp(2iy1z) pr(iv1¢202 + 2Dpa) |
prer(iy191601 + 1 Db1)

—im|¢1]? + o1 D1
Gi(¢1,91) =P —impi1p1 + 1 Doy |

—iv1¢161 + 1 DO
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pr(—imi|@2]? + @2 D)
Ga(¢1,91) =P pr(—=iv10202 + 2 DP2) |
prer(—imi¢afa + p2D05)

G1(Y1,¥1) = G1(Y1,91)  Ga2(¥1, 1) = Ga(¢h1,¢1),

G1(1,01) = G1(¥1,1)  Go(¥1,91) = Go(1b1, ¥1),

from which one can obtain the solution W2(t) has the following expansion

U2(t) = n? exp(261 (Ma)t + 2imx)ao(y) + |m|*exp(2ReS1 (Ma)t) 1 (y)

+ 712 exp(261 (Ma)t — 2iv12) Yoz (y), (5.11)

where we denote

P20 = {u1,20(y), T1,20(%), u2,20(¥), T2,20(%) }5 Wm,20(¥) = (U 20, Vm,20),
P11 = {u11(y), T (¥), w2101 (¥), To11 (V) Yy W1 () = (W11, Vmoa1), m = 1,2,
Yoo = {u1,02(4), T1.02(¥), 02.02(4), To.02(1)}, Wm.02(Yy) = (.02, Vrm.02)-

Substituting (5.11) into (5.10), we deduce that oo satisfies the following

equations

2B1(D? — 497)v1,20 = Pr(D? — 473)%vy 20 + F1,

1 .
261T1 00 = (D? — 4797)T1 20 + dfm,zo +G1, y € (—d1,0), (5.12)
1

and

r

Pr
261(D? — 477)v2.20 = p—ur(Dz — 493)vg.99 + Fa,

k. 1
(D? — 497) T2 20 + 1, U220 + G2, y € (0,d2), (5.13)

T rWl

2817520 =

which subjects to the interface conditions and boundary condition (3.20)-(3.24),

and where
Fi = 2im[D(in1¢3 + p1D¢1) — 2iv1 (iv19101 + 1 De1)],
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G1 = —(im1¢161 + ¢1D61),
Fo = 2im[D(in1¢5 + p2D2) — 2im1 (imdapa + @2 D3],
Go = —(i71¢202 + w2 D03),

Furthermore, with the help of the divergence-free condition and boundary

condition, we deduce that

As a result, we deduce that T,y 11(m = 1,2) are determined by the following

equations
2R€51T1711 = D2T1711 — 2(DQ0101 =+ g01D91),
and

kr
2R€ﬁ1T2711 = D2T2711 — 2(D(p292 =+ (PQDQQ),

PrCr

which subjects to the following interface conditions and boundary condition
Ti11(0) = T2.11(0), kDT511(0) — DTy 11(0) =0, T111(—dy) = Ta.11(d2) = 0.
Finally, using the fact
G (01, 91) = G (1, 91), m =12,

we deduce that

1/;0,2 = 77/;2,0-
Consequently, the approzimation center manifold function is given by

ha(¢) = U2 (t)]i—0 = 17 exp(2iv12) a0 (y) + [m [*¥11(y)

+ 1 exp(—2ima)voa(y) + olm ). (5.14)
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Step 3: Equations reduction. Next, we shall calculate the coefficient R in the
reduced equation (5.7). With the help of (5.14), one can deduce

7
R(my) = m|m[* Y i,
i—1
where
0 L _ pda o
ry = —l/ } <P1DT1,119Tdy—PrCrl/ 2 DT 1105dy
—d 0

Y _ I _
T = —— ~ DprDvy 20 Deidy — = . <p1D2v1’20D<p’{dy
2
’Yl —dq ’Yl —dq
~ O —_ ~ O PR
-2l | Dgrvgopidy —1 / _ P1Dv120p7dy
7(11 7d1

l 0 _ I [ _
T3 = —(—ﬁ) _ Dvy20D@1Dypidy — (—*2)/ ~v120D*P1 Dt dy
’Yl —dq 71 —dq

i o o 0 o
i D’Ul,zoﬁﬂdy*l/ v1,20DP107dy

2 /-4 —d,
ry = —21 } DﬁTLQoery — l/ } ﬁDTLQOGi‘dy
—d1 —dq
i o - 0 L
- = Dv1’20010fdy — l/ U1?20D919>1kdy
2J 4 —dy
l~ ds s l~ do ) .
rs = _pr[ﬁ D@D’UQ’QQD(P;dy + 5.9 @D 'UQ’QODSDEdy
2
71 Jo 71 Jo
+ 21 Dipavz,2005dy + l/ P2 Dva 2005 dy]
0 0
[ N _
16 = —pr[(—53) Dw3 20 Dz D3 dy + (—ﬁ)/ v2,20D* B3 DS dy
2717 Jo 7 Jo
i do o _ pda o
t3 Dy 20p2p3dy + l/ v2,20 D@25 dy]
0 0

7T = —pPrCr [2l D@Tg)goggd'y + l/ @DTQ’QOGEdy]
0 0
i da L _ pdz L
— prc,«[§ Dvg,20920§dy + l/ ’l}g’goDeQede].
0 0

Then the reduce equation (5.7) can be rewritten as

d
=0 =B+ Quulm P+ ol ), (5.15)
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where
1 J
Q= ;r (5.16)

Consequently, by Theorem 2.3.1 in [50], one can obtain the assertions.

6. Numerical results

In the preceding section, we establish the nonlinear dynamic transition the-
orem of (2.12)-(2.24). The transition type of (2.12)-(2.24) is determined by

the sign of the transition number Q. For the purpose of illustration, we give

some numerical results on the transition number @) . In Figure 6.1, we plot
100 100
me=3 me=2
—_m.=4 i . me=3
(@) me=>5 (@] 0 1 I me=4
@ 50 me=6|, i > : : me=>5
B el g 1 1 1
E if\_1 1 5 -100 1 1 1
= 0 | TH— © i p p
= i = 1 1 1
S 118200 1 1 |\
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g 50 I £ -300 1 1 1
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11 1 1 1
1
-100 -400
0.3 0.35 04 0.45 0.5 0.55 4 6 8 10
height ratio d; aspect ratio [

Figure 6.1: Plot of the transition number as a function of d (left) and [ (right), respectively.
The parameters are: Pr = 4.38, p, = 0.844, p, = 0.812, k- = 0.638, ¢, = 1.02, [ = 6.5 for the
left panel, d; = % for the right panel

the transition number as a function of height ratio d; (left) and aspect ratio [
(right), respectively. It can be seen from Figure 6.1 that when the value range of
height ratio is [0.3, 0.5], the sign of transition number Q is negative. However,
when the value range of height ratio is (0.5, 0.55], the sign of transition num-
ber Q is positive. By the assertions of Theorem 5.1, the problem (2.12)-(2.24)
undergoes a continuous transition for d, € [0.3,0.5] and a jump transition for
dy € (0.5,0.55]. As a result, the problem (2.12)-(2.24) bifurcates a local attrac-

tor from (0, Ma,) for dy € [0.3,0.5]. Tt is worth pointing out jump transition is
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Figure 6.2: Plot of the transition number as a function of p, (left) and ¢, (right), respectively.
The parameters are: Pr = 4.38, k, = 0.638, i, = 0.812, [ = 6.5, d1 = %, ¢, = 1.02, for the
left panel, p, = 0.844, for the right panel

not observed in the classical Marangoni convection problem in a single domain
[28]. Similarly, it can be deduced from Figure 6.1that the problem (2.12)-(2.24)
has a continuous transition for [ € [6,10]. In Figure 6.2, we plot the transition
number as a function of density ratio p, (left) and heat capacity ratio ¢, (right),
respectively, it shows that when the density ratio p, € [0.3,0.9] or the heat ca-
pacity ratio ¢, € [0.6,1.4], the problem (2.12)-(2.24) will undergo a continuous
transition at the critical value Ma = Ma..

Furthermore, we observe from Figure 6.1 and Figure 6.2 that the transition
number Q is discontinuities at those values of height ratio di, aspect ratio !
and density ratio p,, where the critical mode m. changes its value and two
eigenvalues become critical eigenvalues. At these points, we cannot apply the
reduced equation (5.15) to discuss the transition type of the model (2.12)-(2.24).
As mentioned in [52], the change of the critical mode m, leads to the change
of the number of convection rolls. To illustrate this phenomena, we plot the
streamline of flow field with height ratios d; = 1/3,1/2,0.53,0.54, respectively,
shown in Figure 6.3-Figure 6.6. From Figure 6.3-Figure 6.6, it is clear that the
flow changes from six rolls for d; = 1/3 and eight rolls for d; = 1/2 to ten rolls
for Jl = 0.53 and twelve rolls for cil = 0.54, which is consistent with the change
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of critical mode m, shown in Figure 6.1 (lelft). We have similar conclusions

from Figure 6.1 (right) and shown in Figure 6.2 (left)
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Figure 6.3: The approximate bifurcated solutions-temperature(left), streamline of flow field

(right). The parameters are: Pr = 4.38, k. = 0.638, p, = 0.812, p, = 0.844, [ = 6.5, d1 = 3,
er = 1.02
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Figure 6.4: The approximate bifurcated solutions-temperature (left), streamline of flow field
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(right). The parameters are: Pr = 4.38, k. = 0.638, p, = 0.812, p, = 0.844, [ = 6.5, d1 = 3,
er = 1.02

7. Conclusion

In this article, we study nonlinear stability and transition types involv-

ing Marangoni convection of two superimposed immiscible fluids with a non-
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Figure 6.6: The approximate bifurcated solutions-temperature (left), streamline of flow field
(right). The parameters are: Pr = 4.38, k, = 0.638, pr = 0.812, p, = 0.844, | = 6.5,

dy =0.54, ¢ = 1.02
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deformable interface by using a hybrid analytical calculation method. Perform-
ing careful numerical calculations, we find that the nonlinear stability threshold
is less than linear stability threshold, which suggests that a jump transition
may exists in the two-layer Marangoni convection. To determine the specific
types of nonlinear dynamic transition arising in Marangoni convection of two
superimposed immiscible fluids, we establish a transition theorem based on the
center manifold reduction. The theorem says that if the sign of a dimensionless
coeflicient is positive, then a jump transition occurs in the two-layer Marangoni
convection. Our numerical calculations show that when the height ratio is be-
tween 0.5 and 0.55, the sign of the dimensionless coefficient is positive, which
guarantees the existence of a jump transition in two-layer Marangoni convection.
The results in this paper can be extended in serval directions which we shall
consider in our future works. First, we only consider the dynamic transition from
real eigenvalues. It would be interesting to consider the the dynamic transition
from complex eigenvalues. Secondly, we would like to investigate the dynamic
transition of two-layer Marangoni convection with deformable interface.
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8. Appendix

In this section, we discuss the existence of global weak solution by using the

Galerkin method. Firstly, we give the definition of weak solution.

Definition 8.1. We say ¢ = (uy,Ti1,uz,Ty) € L2(0,7;V) N L>®(0,7; H), (0 <
T < 00) is a weak solution of (2.12)-(2.24), if

d - d - - -
%(ulaul)l + %pr(uz, 2)2 + (w1 - V)uy, 1)1 + Pr(Vuy, Vi )1

33



- - o1 .
+ pr((ug - V)ug,ia)2 + Pru,(Vug, Viig)s = PrMa/ a—;qus, (8.1)
y=0

and
d ~ d - - -
a(Tth)l + %prcr(TQ; Ty)o+ ((uy - V)T1,Th)1 + (VT1, VI )1

3 3 1 - ¢, 3
+ prer((ug - V)T, To)2 + kp (VT2 VI)y = dT(thl)l + 2 yi (v, T2)2, (8.2)
1 ray

for any b = (1, Ty, 09, Ta) € V and satisfies the initial data (2.24).

8.1. Ezistence and uniqueness of weak solution

To show existence of weak solution, we need a prior estimate of the problem

(8.1)-(8.2), which is given as follows.

Lemma 8.1. Suppose that 1 € L?(0,7;V) N L*(0,7;H),(0 < 7 < 00) is a
weak solution of (2.12)-(2.22), then the following inequalities satisfied

oiltlg [||u1||%L2(Ql))2 + )\||T1||2L2(Ql) + Pr||u2||%L2(92))2 + )\Prcr||T2||2L2(92)]
< 6«’1”10(]\47)“\1110||%L2‘(Ql))2‘ + )‘||T10||%2(szl) + pr||u20”%L2(522))2

+ )\prCTHTQOH%Z(Qz)] (8.3)

and
| Il + 19T ey + Priecl| Vel
+ k|| VT2 |12 0y)ldt
< (1 + Teap(M))|[usollfz2(0,))2 + Y1 T10ll22(,) + orlluzolfre ()
+prcr|[T2ol 72 () (8.4)
where A = max{1, PrMa®} and M = max{1, %)\,CT)\, led?}
Making use of the standard Galerkin method and Lemma 8.1, we can prove the

existence and uniqueness of weak solution for the model (2.12)-(2.24)

Theorem 8.1. Given vy = (u1g, T10, U0, I20) € H, the equations (2.12)-(2.24)
possess a unique weak solution ¥ = (uy,Th,ug,T) € L=(0,7; H) N L2(0,7;V)

for any 0 < 71 < o0.
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8.2. Proof of Lemma 8.1
Choosing ¢ = 1 in (8.1)-(8.2) and from (4.17), we get

1d
2 dt

+ [P7”||VU1||%L2(QI))2 + )‘HVT1H%2(§21) + PWTHVUZH%B(QQ))?

[HU1H(L2(91))2 + /\HT1HL2(91) + pTHu2H(L2(Qg))2 + /\[’7(37“||T2||L2(Q2 J

+ Akr||VT2||%2(Qg)]

1 Cr B
- TA/ Trordz + 2r° A/ Tyvoda + PrMa | VTi - T2de.  (8.5)
1 (931 kr 1 Qo 01 ay

Utilizing the Young’s inequality, we obtain

1 rCr
T)\/ Tlvld:c + prc / TQ’UQdiL’
dl Q4 del Qo

1
< df/\|\Tl|\L2(Ql)|\u1||(L2(Ql))2 +

lL2(0s) l[02]l(£2(01))2

ril
A A )\prcr PrCr A
*||T1||L2Q + = llwlFe )2 + —2— ||T2||L29 + = ualf2 0,2
> @ T o Mlitzn) @) T g P2llan)
M
7[||u1|| L2(Q1))2 T )‘||T1|IL2 (1) +pr||u2||(L2(Ql))2 + Aorce || To| |72 @)
(8.6)
and
0
PrMa e B VTidx
of dy
1 1
< §PTHVU1H%L2(QI))2 + §PTMGQ||VT1||i2(Ql) (8.7)

1 1
< §PT|\VU1|\%L2(91))2 + 5/\||VT1||2L2(91)-

Substituting (8.6)-(8.7) into (8.5), one can get

d

%Hluln%L?(Ql))? + )‘||T1H%2(Ql) + pTHuZH%L?(Sb))? + )\Prcr||T2||%2(92)]
+ [PT||VU1||%L2(91))2 Jr)‘||VT1||%2(91) JrP7’#r||VU12||%L2(92))2
+ /\erVT2H2L2(92)]

< M|Jual[Epz (a2 + AT 720, + orlluzlfrzi,)z + Aorer I T2| 720,
(8.8)

Consequently, (8.3)-(8.4) can be derived by the Gronwall’s Lemma.
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