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Abstract

This article investigates the nonlinear stability and dynamic transition involv-

ing the Marangoni convection of two superimposed immiscible fluids subject

to temperature gradient perpendicular to the plate. First, we obtain the criti-

cal value of the Marangoni number and verify the stability exchange principle

by adopting a hybrid method that combines theoretical analysis and numerical

calculations. Second, we use energy method to discuss the nonlinear stability

and to establish the nonlinear thresholds of the Marangoni number. Third, we

apply the technique of center manifold reduction to reduce the corresponding

infinite dimensional model to a finite dimensional ordinary di↵erential equa-

tions. According to the ordinary di↵erential equations, we establish nonlinear

transition theorem with a non-dimensional coe�cient that determines the tran-

sition type of the model. Finally, we determine the non-dimensional coe�cient

and present related temporal and flow patterns by numerical computation. The

existence and uniqueness of global weak solution to the model is also given in

the appendix.
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1. Introduction

Interfacial convection is a striking phenomenon that takes place any time

the interfacial tension is not uniform along the interface between two fluids.

This type of convection is a basic mechanism of fluid motion under micro-

gravity conditions [1, 2]. Interfacial convection is also crucial in microfluidic

systems, where it provides a mechanism for mixing [3, 4] and a reliable trans-

port mechanism [5, 6, 7]. Interfacial convection not only plays an important

role in modern engineering processes, such as mentioning laser welding [8, 9],

ordering of nanoparticles [10, 11] and fabrication of microporous polymer film

[12, 13, 14, 15], but also are significant for various biological processes [16, 17]

and materials processing [18]. These numerous applications of the interfacial

convection cause a need for physical and mathematical study.

The thermocapillary e↵ect is the dependence of the surface tension on the

temperature, which is the normal physical e↵ect that produce Interfacial con-

vection in fluids [19]. Typically, the surface tension decreases when the tem-

perature grows. This type of convection is called Marangoni convection, which

have been intensively studied by both applied mathematicians and physicists

[20, 21, 22, 23, 24, 25, 26, 27, 28] with linear and nonlinear analysis.

In reality, an interface between a liquid and a gas is a simplified as the free

surface, leading that one-layer model is generally applied to study the Marangoni

convection. Then, the full problem for the fluid motion and for the heat/mass

transfer involving Marangoni convection is formulated only in the liquid phase,

whereas the influence of the gas phase is described in a phenomenological way by

means of the Biot number. For detailed study involving Marangoni convection

with one-layer model, we refer readers to [29, 30, 31, 28, 32] and many other.

The one-layer approach is not su�cient for the description of many phe-

nomena caused by processes in fluids on both sides of the interface. These

phenomena can not be understood without an analysis of the interfacial hy-
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drodynamic and thermal interaction between both fluids. For example, for the

onset of Marangoni convection in a liquid-gas system, the one-layer approach

predicts the monotonic Marangoni instability only for heating from the side of

the liquid [33]. The two-layer approach reveals the appearance of the mono-

tonic Marangoni instability for both ways of heating, depending on the ratio of

layers thicknesses [34]. In addition, it is well-known that the stability problem

for the mechanical equilibrium state in a system with an interface is not self-

adjoint [35], which means that the one-layer approach is unable to reveal several

oscillatory instabilities in systems with a non-deformable interface [36].

Due to the applications of two-layer Marangoni convection in engineering

technology, chemical engineering, mechanical metallurgical engineering, micro-

electronics industry, this type of convection has been extensively studied from

di↵erent angles. Engel and Swift [37] investigated the convection pattern of

two layer Marangoni convection with non-deformable interface by using weakly

non-linear analysis. Mo and Ruan [38, 39] studied the linear stability analysis

of thermocapillary convection in an annular two layer system to radial temper-

ature. Madruga et al [40] discussed the linear stability problem of a two-layer

fluid with a non-deformable interface subject to horizontal temperature gradient.

Simanovskii and Kabov [41] utilized numerical methods to study the oscillat-

ing convection with non-deformable interface. Tavener and Cli↵e [42] described

numerical method of two-layer Marangoni convectoin with deformable interface

and linear stability of the model. Lyubimova and Parshakova [43] investigated

the long wave instability of two layer system with deformable interface. For

more works on two-layer Marangoni convection problems with non-deformable

and deformable interface , we refer readers to [44, 45, 46, 47, 48, 49]

In the paper, our main goal is to study Marangoni convection problem of

of two superimposed immiscible fluids by using a two-layer model from the

perspective of nonlinear stability and dynamic transition. The model is bounded

in the vertical direction and is infinite in the horizontal direction. The interface

between two fluid layers is assumed to be non-deformable, because short-wave

Marangoni instability is insensitive to the interface deformation, as pointed in
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[19]. The mathematical tool that we use is the dynamic transition theory [50]

established to understand phase transition phenomena in nonlinear dissipative

systems. The primary idea of dynamic transition theory is to find a complete

set of transition states and give a complete description of instabilities and the

corresponding nonlinear dynamic transitions. The dynamic transition theory

has been used extensively to study phase transition phenomena in fluid sciences

[51, 28, 52, 53, 54]. Dijkstra, Sengul, et al [28] discussed dynamic transition

types of single layer fluid Marangoni convection system. Very recently, Han et

al [52] investigated dynamic transition for the Rayleigh-Bénard convection in

the superposed free flow and porous media. Additionally, to our knowledge,

there is little literature on the dynamic transitions of Marangoni convection of

two superimposed immiscible fluids. Physically, it is vey important to know

how the height ratio, density ratio and other parameters of the fluid layer a↵ect

the phase transition type of Marangoni convection of he two-layer fluids.

Let us briefly describe the main conclusions of this article. First, we obtain

the critical values of Marangoni number, verifies that PES condition and estab-

lish nonlinear transition theorem. For the special case where the thickness of

the upper fluid is equal to the thickness of the lower fluid, the explicit expres-

sion of the critical values is derived. For generic cases, we use the Chebyshev

tau method to estimate the critical values, and discuss the influence of height

ratio, aspect ratio, density ratio, and heat capacity ratio on them. Second, we

reduce the infinite dimensional model to a complex-valued ordinary di↵eren-

tial equations by utilizing the method of center manifold reduction. With the

help of the reduced equations, we deduce a transition theorem along with a

dimensionless coe�cient Q used for determination of transition types. Finally,

Our numerical results show that both jump and continuous transition occur in

two superimposed immiscible fluids, which is di↵erent from single layer fluid

Marangoni-Bénard convection [28] . In the appendix, we give the existence and

uniqueness of global weak solution by using the Galerkin method.

The rest of this paper is organized as follows. In section 2, we present

the Boussinesq model which describes two superimposed immiscible fluids and
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rewrite the model as an abstract equation. In section 3, we study the linear

eigenvalue and verify PES. In section 4, we analyze nonlinear stability. In

section 5, based on the PES and reduction on center manifold, the dynamic

transition theorem is given. In section 6, some numerical results are given to

illustrate the theoretical results. In section 7, the conclusions are summarized.

In section appendix, we discuss the existence and uniqueness of weak solution.

2. Governing Equations

2.1. Nondimensionalization

We consider Marangoni convection involving two immiscible fluids in finite

two-dimensional domains ⌦ = ⌦1 [⌦2 sketched in Figure 2.1, where ⌦1 and ⌦2

satisfy that ⌦̄1\ ⌦̄2 = �i which represents the interface between two immiscible

fluids. Because short-wave Marangoni instability is insensitive to the interface

deformation, as pointed in [19], we can disregard the interface deformations.

We then assume that the interface ⌃ is flat and lies in x axis.

o
Interface �i

d2

Fluid 2

�d1

Fluid 1

T̄2

T̄1

Figure 2.1: Sketch of the physical domain. ⌦1: the lower fluid region. ⌦2: the upper fluid

region. �i denotes the interface

The nonlinear equations of convection in the framework of the Boussinesq

approximation have the following form

divum = 0, (2.1)

⇢̄m(
@um

@t
+ (um ·r)um) = �rpm + µmr2

um � g⇢̄mj[1� ↵m(Tm � T̄ )], (2.2)
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⇢̄mcm(
@Tm

@t
+ (um ·r)Tm)) = kmr2

Tm, (2.3)

where the subscript m = 1, 2 denotes the lower and upper fluids, respectively,

the unknown function um = (um, vm) is the velocity, Tm is the temperature, pm

is the pressure, ⇢̄m denotes the density of liquid m, T̄ is a fixed reference temper-

ature, ↵m is the thermal expansion coe�cients, km is the thermal conductivity,

cm is the specific heat capacity, and µm is the molecular di↵usivity.

The boundary conditions at flat interface y = 0 are well-known, they are

v1 = v2 = 0, u1 = u2, T1 = T2, (2.4)

µ2
@u2

@y
� µ1

@u1

@y
+ �1

@T1

@x
= 0, (2.5)

k2
@T2

@y
� k1

@T1

@y
= 0, (2.6)

where the interfacial tension at the interface has been assumed to be a linear

function � = �0 � �1(T1 � T0). The first condition at interface means the con-

tinuity of the velocity field and the temperature field, the second condition at

interface represents the balance of tangential stresses, and the third condition

at interface means the continuity of the heat flux normal components.

We also utilize the following boundary conditions at the rigid boundaries

@u1

@y
= v1 = 0, T1 = T̄1, at y = �d1, (2.7)

@u2

@y
= v2 = 0, T2 = T̄2, at y = d2, (2.8)

with T̄1 � T0 > 0 for heating from below.

From the system of equations (2.1)-(2.8), it has the basic solution given by

u1b = u2b = 0, T1b = � T̄1 � T0

d1
y + T0, T2b = �T0 � T̄2

d2
y + T0, (2.9)

where T0 = T̄1k1d2+T̄2k2d2
k1d2+k2d1

, and the pressures satisfy the following equations

rpmb = �g⇢̄mj[1� ↵m(Tmb � T̄ )], (m = 1, 2).

To consider the stability of the above steady-state solution, we make the

following transformations

u0
m

= um, T
0
m

= Tm � Tmb, p
0
m

= pm � pmb, (2.10)

6



as well as

x = dx̃, y = dỹ, 1 =
k1

⇢̄1c1
, t =

d
2

1
t̃, p

0
m

=
µ11

d2
p̃m,

u0
m

=
1

d
ũm, T

0
m

= (T̄1 � T0)T̃m, m = 1, 2. (2.11)

Substituting (2.10) and (2.11) into (2.1)-(2.3), omitting the tilde and ignor-

ing the e↵ects of gravity, we derive the non-dimensional perturbation equations

@u1

@t
+ (u1 ·r)u1 = �Prrp1 + Prr2u1, (2.12)

@T1

@t
+ (u1 ·r)T1 = r2

T1 +
1

d̃1

v1, (2.13)

divu1 = 0, (2.14)

and

@u2

@t
+ (u2 ·r)u2 = �Pr

⇢r
rp2 +

Pr

⇢r
µrr2u2, (2.15)

@T2

@t
+ (u2 ·r)T2 =

kr

⇢rcr
r2

T2 +
1

kr

1

d̃1

v2, (2.16)

divu2 = 0. (2.17)

Substituting (2.10) and (2.11) into (2.4)-(2.8), we derive that the boundary

condition at the interface y = 0 are

v1 = v2 = 0, u1 = u2, T1 = T2, (2.18)

µr

@u2

@y
� @u1

@y
+Ma

@T1

@x
= 0, (2.19)

kr
@T2

@y
� @T1

@y
= 0. (2.20)

And, the boundary condition (2.7)-(2.8) are rewritten as

@u1

@y
= v1 = T1 = 0, y = �d̃1, (2.21)

@u2

@y
= v2 = T2 = 0, y = d̃2. (2.22)

It is natural to assume that perturbations are periodic in x-direction, i.e.

um(0, y) = um(l̃, y), Tm(0, y) = Tm(l̃, y), m = 1, 2. (2.23)
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where l̃ is the spatial period. For these nondimensional parameters appearing in

the equations (2.15)-(2.17)., let us give their explicit expressions. The Prandtl

number (Pr) and Marangoni number (Ma) are defined as follows

Pr =
⌫1

1
, ⌫1 =

µ1

⇢̄1
, Ma =

�1d(T̄1 � T0)

µ11
.

Moreover, the ratios appearing in the equations (2.15)-(2.17) are

⇢r =
⇢̄2

⇢̄1
, µr =

µ2

µ1
, cr =

c2

c1
, kr =

k2

k1
, l̃ =

l

d
, d̃1 =

d1

d
, d̃2 =

d2

d
.

For initial data for the equations (2.15)-(2.17), let us set

u1(0, x) = u10, T1(0, x) = T10, u2(0, x) = u20, T2(0, x) = T20. (2.24)

2.2. Abstract Form

In this subsection, we shall rewrite (2.12)-(2.24) as an abstract form. First,

let us introduce some relevant function spaces as follows

V = { = (u1, T1,u2, T2) 2 [H1(⌦1)]
3 ⇥ [H1(⌦2)]

3 : divu1 = 0, divu2 = 0,

and  satisfies (2.18)� (2.22)},

H = { = (u1, T1,u2, T2) 2 [L2(⌦1)]
3 ⇥ [L2(⌦2)]

3 : divu1 = 0, divu2 = 0,

u1 · n1 = 0,u2 · n2 = 0},

which are equipped with the following norms, respectively,

|| ||V = [||u1||2(H1(⌦1))2
+ ||T1||2H1(⌦1)

+ ||u2||2(H1(⌦2))2
+ ||T2||2H1(⌦2)

]
1
2 ,

|| ||H = [||u1||2(L2(⌦1))2
+ ||T1||2L2(⌦1)

+ ||u2||2(L2(⌦2))2
+ ||T2||2L2(⌦2)

]
1
2 .

It is not hard to see that V and H are separable Hilbert spaces. We denote

the inner product on Hilbert spacesH and V by (., .)V = (., .)H1(⌦1)+(., .)H1(⌦2)

and (, ..)V = (., .)L2(⌦1) + (., .)L2(⌦2), respectively.

For convenience, let us use (, ., )i to denote the inner product on the spaces

L
2(⌦i)(i = 1, 2). For  = (u1, T1,u2, T2) 2 V , due to

(rpi,ui)i = 0, i = 1, 2, (2.25)
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by (2.25), we then define the linear operator LMa : V ! H as follows

(LMa ,  ̃)

= �Pr(ru1,rũ1)1 � (rT1,rT̃1)1 +
1

d̃1

(v1, T̃1)1 �
Prµr

⇢r
(ru2,rũ2)2

� kr

⇢rcr
(rT2,rT̃2)2 +

1

d̃1

1

kr
(v2, T̃2)2 + Pr

Z

y=0

@u1

@y
ũ1ds+

Z

y=0

@T1

@y
T̃1ds

� Prµr

⇢r

Z

y=0

@u2

@y
ũ2ds�

kr

⇢rcr

Z

y=0

@T2

@y
T̃2ds, (2.26)

where  ̃ = (ũ1, T̃1, ũ2, T̃2) 2 V . We also define operator G : V ! H by

(G( , ),  ̃) = ((u1 ·r)u1, ũ1)1 + ((u1 ·r)T1, T̃1)1 + ((u2 ·r)u2, ũ2)2

+ ((u1 ·r)T2, T̃2)2. (2.27)

For simplicity, we will use the abbreviation G( ) := G( , ). Therefore, com-

bining (2.26)-(2.27), the problem (2.12)-(2.24) can be rewritten as

8
><

>:

d 

dt
= LMa +G( ),

 (0) =  0,

(2.28)

where  0 = (u10, T10, u20, T20) is the initial condition.

3. Linear stability and principle of exchange of stabilities

3.1. Principle of exchange of stabilities

It is well known that the stability of the zero solutions to the system of

equations (2.12)-(2.24) are determined by the signs of eigenvalues of the corre-

sponding linear operator. The eigenvalue problem of (2.12)-(2.24) read

Pr(�@p1
@x

+r2
u1) = �u1,

P r(�@p1
@y

+r2
v1) = �v1, (x, y) 2 (0, l̃)⇥ (�d̃1, 0), (3.1)

r2
T1 +

1

d̃1

v1 = �T1,

@u1

@x
+
@v1

@y
= 0,
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and

Pr

⇢r
(�@p2

@x
+ µrr2

u2) = �u2,

P r

⇢r
(�@p2

@y
+ µrr2

v2) = �v2, (x, y) 2 (0, l̃)⇥ (0, d̃2), (3.2)

kr

⇢rcr
r2

T2 +
1

d̃1

1

kr
v2 = �T2,

@u2

@x
+
@v2

@y
= 0.

Utilizing (2.25), the interface condition (2.18)-(2.20) and boundary condition

(2.23)-(2.22), the weak form of the preceding eigenvalue problem can be given

�(u1, ũ1)1 + �(T1, T̃1)1 + �⇢r(u2, ũ2)2 + ⇢rcr�(T2, T̃2)2

= �Pr(ru1,rũ1)1 � (rT1,rT̃1)1 � µrPr(ru2,rũ2)2 � kr(rT2,rT̃2)2

+
1

d̃1

(v1, T̃1)1 + ⇢rcr
1

d̃1

1

kr
(v2, T̃2)2 + PrMa

Z

y=0

@T1

@x
ũ1ds. (3.3)

In fact, the equation (3.3) has an abstract form. Let us define the bilinear

operators A and B on V ⇥ V as follows

A( , e ) = �Pr(ru1,rũ1)1 � (rT1,rT̃1)1 � Prµr(ru2,rũ2)2

� kr(rT2,rT̃2)2, (3.4)

BMa( , e ) =
1

d̃1

(v1, T̃1)1 + ⇢rcr
1

d̃1

1

kr
(v2, T̃2)2 + PrMa

Z

y=0

@T1

@x
ũ1ds. (3.5)

Riesz represent theorem implies that there exist operators A,BMa : V ! V
⇤

such that A( , e ) = hA , e i, BMa( , e ) = hB� , e i. We then define LMa =

A +BMa . Hence, the abstract form of the eqation (3.3) can be given by

LMa = �M , (3.6)
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where M is a matrix given by

M =

0

BBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 ⇢r 0 0

0 0 0 0 ⇢r 0

0 0 0 0 0 cr⇢r

1

CCCCCCCCCCCCCCCCCCCCCA

.

Apparently, there exist countably infinitely many discrete eigenvalues to the

eigenvalue problem (3.6), which can be ordered as

Re�1(Ma) � Re�2(Ma) � . . . ! �1. (3.7)

Additionally, using the following definition of the dual operator LMa

(LMa , 
⇤) = ( , L⇤

Ma
 
⇤), (3.8)

the eigenvalue problem associated with the dual operator L⇤
Ma

is given by

Pr(�@p
⇤
1

@x
+r2

u
⇤
1) = �u

⇤
1,

P r(�@p
⇤
1

@y
+r2

v
⇤
1) +

1

d̃1

T
⇤
1 = �v

⇤
1 , (x, y) 2 (0, l̃)⇥ (�d̃1, 0), (3.9)

r2
T

⇤
1 = �T

⇤
1 ,

@u
⇤
1

@x
+
@v

⇤
1

@y
= 0,

and

Pr

⇢r
(�@p

⇤
2

@x
+ µrr2

u
⇤
2) = �u

⇤
2,

P r

⇢r
(�@p

⇤
2

@y
+ µrr2

v
⇤
2) +

1

d̃1

1

kr
T

⇤
2 = �v

⇤
2 , (x, y) 2 (0, l̃)⇥ (0, d̃2), (3.10)

kr

⇢rcr
r2

T
⇤
2 = �T

⇤
2 ,
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@u
⇤
2

@x
+
@v

⇤
2

@y
= 0,

which subject to the same boundary conditions (2.23)-(2.22), but the interface

condition is di↵erent, which is given by

v
⇤
1 = v

⇤
2 = 0, ⇢ru

⇤
1 = u

⇤
2, ⇢rcrT

⇤
1 = T

⇤
2 , (3.11)

µr

⇢r

@u
⇤
2

@y
=
@u

⇤
1

@y
, (3.12)

kr

⇢rcr

@T
⇤
2

@y
� @T

⇤
1

@y
+ PrMa

@v
⇤
1

@y
= 0. (3.13)

Denote �1 = 2m⇡
l̃

and D = d

dy
. Using the method of separation of variables,

we look for the solutions to the equations (3.1)-(3.2) in the following forms:

uj = �j(y) exp(i�1x), vj = 'j(y) exp(i�1x), (3.14)

Tj = ✓j(y) exp(i�1x), pj = ⌘j(y) exp(i�1x), j = 1, 2. (3.15)

substituting (3.14)-(3.15) into (3.1)-(3.2) and eliminating pj , we have

Pr(D2 � �
2
1)

2
'1 = �(D2 � �

2
1)'1, (3.16)

(D2 � �
2
1)✓1 +

1

d̃1

'1 = �✓1, y 2 (�d̃1, 0), (3.17)

and

µrPr⇢
�1
r

(D2 � �
2
1)

2
'2 = �(D2 � �

2
1)'2, (3.18)

kr⇢
�1
r

c
�1
r

(D2 � �
2
1)✓2 +

1

d̃1

1

kr
'2 = �✓2, y 2 (0, d̃2). (3.19)

By the interface conditions (2.18)-(2.20) and the boundary conditions (2.23)-

(2.22), we have

'1(0) = '2(0) = 0, D'1(0) = D'2(0), ✓1(0) = ✓2(0), (3.20)

µrD
2
'2(0)�D

2
'1(0) + �

2
1Ma✓1(0) = 0, (3.21)

krD✓2(0)�D✓1(0) = 0, (3.22)

D
2
'1(�d̃1) = '1(�d̃1) = ✓1(�d̃1) = 0, (3.23)

D
2
'2(d̃2) = '2(d̃2) = ✓2(d̃2) = 0. (3.24)
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Similarly, we obtain the equations to the adjoint problem

Pr(D2 � �
2
1)

2
'
⇤
1 � �

2
1
1

d̃1

✓
⇤
1 = �̄(D2 � �

2
1)'

⇤
1, (3.25)

(D2 � �
2
1)✓

⇤
1 = �̄✓

⇤
1 , (3.26)

and

Prµr⇢
�1
r

(D2 � �
2
1)

2
'
⇤
2 � �

2
1

1

krd̃1

✓
⇤
2 = �̄(D2 � �

2
1)'

⇤
2, (3.27)

kr⇢
�1
r

c
�1
r

(D2 � �
2
1)✓

⇤
2 = �̄✓

⇤
2 , (3.28)

with the following boundary condition and interface condition

'
⇤
1(0) = '

⇤
2(0) = 0, ⇢rD'

⇤
1(0) = D'

⇤
2(0),

⇢rcr✓
⇤
1(0) = ✓

⇤
2(0), D

2
'
⇤
1(0) =

µr

⇢r
D

2
'
⇤
2(0),

kr

⇢rcr
D✓

⇤
2(0)�D✓

⇤
1(0) + PrMaD'

⇤
1(0) = 0,

D
2
'
⇤
1(�d̃1) = '

⇤
1(�d̃1) = ✓

⇤
1(�d̃1) = 0,

D
2
'
⇤
2(d̃2) = '

⇤
2(d̃2) = ✓

⇤
2(d̃2) = 0.

Assuming that the first eigenvalue �1(Ma) 2 R. For the special case d̃1 =

d̃2, we obtain the critical value Mac of Marangoni number Ma by solving the

problem (3.16)-(3.24) with � = 0, which is

Mac = min
�1>0

2(1 + µr) sinh
2(�1d̃1)

�1


C̃11 sinh(�1d̃1) +  11(0) sinh(�1d̃1) +  12(0) cosh(�1d̃1)

� ,

(3.29)

where

C̃11 =
2(h1kr cosh(�1d̃1) + h2 sinh(�1d̃1))

(1 + kr) sinh(2�1d̃1)
,

h1 = � 11(0) sinh(�1d̃1)�  12(0) cosh(�1d̃1)�  22(d̃1) cosh(�1d̃1),

h2 = kr 22(d̃1) sinh(�1d̃1)�  11(0) cosh(�1d̃1)�  12(0) sinh(�1d̃1),

and

 11(0) = � 1

�1d̃1

⇢
1

4�1
sinh(�1d̃1)d̃1 sinh(2�1d̃1) + (1� cosh(2�1d̃1))
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·


1

8�21
sinh(�1d̃1) +

1

4�1
d̃1 cosh(�1d̃1)

�
+

1

4
d̃
2
1 sinh(�1d̃1)

�
,

 12(0) =
1

�1d̃1

⇢
1

4�1
sinh(�1d̃1)d̃1 cosh(2�1d̃1)� sinh(2�1d̃1)

·


1

8�21
sinh(�1d̃1) +

1

4�1
d̃1 cosh(�1d̃1)

�
+

1

2
d̃
2
1 cosh(�1d̃1)

�
,

 22(d̃) =
⇢rcr

�1k
2
r
d̃1

⇢
1

4�1
sinh(�1d̃1)d̃1 cosh(2�1d̃1)� sinh(2�1d̃1)

·


1

8�21
sinh(�1d̃1) +

1

4�1
d̃1 cosh(�1d̃1)

�
+

1

2
d̃
2
1 cosh(�1d̃1)

�
.

For the special case of d̃1 = d̃2, the principle of exchange of stability (PES)

for the eigenvalue problems (3.1)-(3.2) can be roughly proved.

Theorem 3.1 (Principle of exchange of stability). Assume that the first

eigenvalue �1(Ma) 2 R. There exists a critical value Mac and a neighborhood

U of Mac such that there exists an unique m with the property

�i(Ma)

8
>>>><

>>>>:

< 0, Ma < Mac,

= 0, Ma = Mac, 1  i  m,

> 0, Ma > Mac,

(3.30)

Re�j(Mac) < 0, j � m+ 1. (3.31)

for Ma 2 U

Proof 3.1. Denoting  1 = (uc

1, T
c

1 ,u
c

2, T
c

2 ) as the vector corresponding to the

eigenvalue �i(Mac)(i = 1, . . .m) and using (3.6), one can deduce that

d�

dMa
(Mac) =

1

A
h d

dMa
LMac , i =

1

A
Pr

Z

y=0

@T
c

1

@x
u
c

1ds, (3.32)

where

A = ||uc

1||2L2(⌦1)
+ ||T c

1 ||2L2(⌦1)
+ ⇢r||uc

2||2L2(⌦2)
+ ⇢rcr||T c

2 ||2L2(⌦2)
> 0.

With the help of (3.3) and setting � = 0, one obtain

0 = �Pr||ruc

1||2L2(⌦1)
� ⇢r||ruc

2||2L2(⌦2)
+ PrMac

Z

y=0

@T
c

1

@x
u
c

1ds. (3.33)

14



Consequently, combing (3.32) and (3.33), one can obtain

d�

dMa
(Mac) > 0 ,

Z

y=0

@T
c

1

@x
u
c

1ds > 0

, Pr||ruc

1||2L2(⌦1)
+ ⇢r||ruc

2||2L2(⌦2)
> 0.

Finally, from (3.7), we get (3.31) is valid.

For the generic case d̃1 6= d̃2, using the same method, one can also obtain

the critical value and verify the PES condition.

3.2. Numerical solution of eigenvalue problem

In this subsection, we numerically estimate the critical values of Marangoni

number, which not only allow us to demonstrate the validity of the PES condi-

tion, but also can be used to calculate transition number.

⇢r Exact Mac (3.29) Numerical Mac Error

0.644 11782.41122 11782.41262 1.1867⇥ 10�7

0.664 5663.23635 5663.23828 3.4100⇥ 10�7

0.684 3727.41159 3727.41239 2.1362⇥ 10�7

0.704 2777.87118 2777.87121 1.2346⇥ 10�8

0.724 2213.89256 2213.88151 4.9911⇥ 10�6

0.744 1840.27071 1840.27070 5.0262⇥ 10�9

0.764 1574.54646 1574.54653 4.1779⇥ 10�8

0.784 1375.87781 1375.87782 1.0374⇥ 10�8

0.804 1221.72630 1221.72649 1.5620⇥ 10�7

Table 1: Exact critical Maragoni number and numerical critical Marangoni number
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Choosing the parameter Pr = 4.38, µr = 0.812, kr = 0.638, cr = 1.02,

l̃ = 6.5, d̃1 = 1
2 , d̃2 = 1

2 , the exact critical values of Marangoni number, their

numerical estimates and error for ⇢r 2 [0.644, 0.844] are shown in Table 1. From

the Table 1 we can see that the error range is around 10�9 ⇠ 10�6. This means

that our numerical method for the eigenvalue problem (3.16)-(3.24) is valid.

Keeping other parameters fixed, we plot the critical values of Marangoni

number as a function of height ratio d̃1, aspect ratio l̃, density ratio ⇢r and

heat capacity ratio cr shown in Figure 3.1 and Figure 3.2. From Figure 3.1 and

Figure 3.2, one observes that the critical mode mc increases with the increasing

of the height ratio, aspect ratio, density ratio, but the heat capacity ratio has

no e↵ect on the critical mode. At the point where the critical mode changes,

two real eigenvalues become critical, which are isolated degenerate cases and

beyond the scope of this article. From Figure 3.1, one also observe that the

critical values increases as the height ratio increases, which means larger height

ratio stablizes the basic state (2.9). Figure 3.2 shows that the critical values

decreases with increasing density ratio (heat capacity ratio), meaning that large

density ratio (heat capacity ratio) destablizes the basic state (2.9).

Figure 3.1: Plot of critical value of Marangoni number as a function of d̃1(left) and l̃ (right),

respectively, where Pr = 4.38, ⇢r = 0.844, µr = 0.812, kr = 0.638, cr = 1.02, l̃ = 6.5 for the

left panel, d̃2 = d̃2 =
1
2 , for the right panel

.
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Figure 3.2: Plot of critical values of Marangoni number as a function of ⇢r and cr, respectively,

where Pr = 4.38, kr = 0.638, µr = 0.812, l̃ = 6.5, d̃1 =
1
3 , cr = 1.02 (left) ⇢r = 0.844(right)

.

4. Nonlinear Stability

In this section, we utilize the energy method to analyze the nonlinear stabil-

ity of (2.12)-(2.24). For the model (2.12)-(2.17), replacing Ti(i = 1, 2) by T
0
ip

Ma

and omitting prime, we obtain

@u1

@t
+ (u1 ·r)u1 = �Prrp1 + Prr2u1, (4.1)

@T1

@t
+ (u1 ·r)T1 = r2

T1 +

p
Ma

d̃1

v1, (4.2)

divu1 = 0, (4.3)

and

@u2

@t
+ (u2 ·r)u2 = �Pr

⇢r
rp2 +

Pr

⇢r
µrr2u2, (4.4)

@T2

@t
+ (u2 ·r)T2 =

kr

⇢rcr
r2

T2 +

p
Ma

krd̃1

v2, (4.5)

divu2 = 0. (4.6)

The system of equations (4.1)-(4.6) subject to the same boundary condition

(2.23)-(2.22) and the interface condition (2.18),(2.20), but the interface condi-

tion (2.19) becomes

µr

@u2

@y
� @u1

@y
+

p
Ma

@T1

@x
= 0. (4.7)

17



We dot-multiply (4.1), (4.2) with u1 and �T1, respectively, where � > 0 is a

free parameter, and Integrate over ⌦1 to obtain

1

2

d

dt
||u1||2(L2(⌦1))2

+

Z

⌦1

(u1 ·r)u1 · u1dx

= �Pr||ru1||2(L2(⌦1))2
+

Z

y=0
Pr

@u1

@y
u1ds (4.8)

1

2

d

dt
�||T1||2L2(⌦1)

+ �

Z

⌦1

(u1 ·r)u1T1dx

= ��||rT1||2L2(⌦1)
+ �

p
Ma

d̃1

Z

⌦1

v1T1dx�

Z

y=0

@T1

@y
T1ds. (4.9)

Similarly, We dot-multiply (2.15), (2.16) with ⇢ru2 and �⇢rcrT1, respec-

tively, and integrate over ⌦2 to have

1

2

d

dt
⇢r||u2||2(L2(⌦2))2

+ ⇢r

Z

⌦1

(u2 ·r)u2 · u2dx

= �Prµr||ru2||2(L2(⌦2))2
�
Z

y=0
Prµr

@u2

@y
u2ds (4.10)

1

2

d

dt
�⇢rcr||T2||2L2(⌦2)

+ �⇢rcr

Z

⌦2

(u2 ·r)u2T2dx

= ��kr||rT2||2L2(⌦2)
+ �

p
Ma

⇢rcr

krd̃1

Z

⌦2

v2T2dx� �kr

Z

y=0

@T2

@y
T2ds. (4.11)

A simple calculation can show that

Z

⌦1

(u1 ·r)u1 · u1dx =

Z

⌦1

(u1 ·r)T1T1dx = 0, (4.12)

Z

⌦2

(u2 ·r)u2 · u2dx =

Z

⌦2

(u2 ·r)T2T2dx = 0. (4.13)

Therefore, making use of (4.12)-(4.13) and adding the equations (4.8)-(4.11)

together, we derive that

1

2

d

dt
[||u1||2(L2(⌦1))2

+ �||T1||2L2(⌦1)
+ ⇢r||u2||2(L2(⌦2))2

+ �⇢rcr||T2||2L2(⌦2)
]

= �[Pr||ru1||2(L2(⌦1))2
+ �||rT1||2L2(⌦1)

+ Prµr||ru2||2(L2(⌦2))2

+ �kr||rT2||2L2(⌦2)
] + �

p
Ma

d̃1

Z

⌦1

T1v1dx+ �

p
Ma

⇢rcr

krd̃1

Z

⌦2

T2v2dx
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�
Z

y=0
[Prµr

@u2

@y
u2 � Pr

@u1

@y
u1]ds� �

Z

y=0
[kr

@T2

@y
T2 �

@T1

@y
T1]ds. (4.14)

Making using of the interface conditions (2.18)-(2.20) and (4.7), we obtain

Z

y=0
[Prµr

@u2

@y
u2 � Pr

@u1

@y
u1]ds =

Z

y=0
[Prµru1

@u2

@y
� Pru1

@u1

@y
]ds

= �Pr

p
Ma

Z

y=0

@T1

@x
u1ds = �Pr

p
Ma

Z

y=0

@v1

@y
T1ds

= �Pr

p
Ma

Z

@⌦1

T1
@u1

@y
· n1ds = �Pr

p
Ma

Z

⌦1

rT1 ·
@u1

@y
dx (4.15)

and

Z

y=0
[kr

@T2

@y
T2 �

@T1

@y
T1]ds =

Z

y=0
[kr

@T2

@y
� @T1

@y
]T1ds = 0. (4.16)

Substituting (4.15)-(4.16) into (4.14), we get

1

2

d

dt
[||u1||2(L2(⌦1))2

+ �||T1||2L2(⌦1)
+ ⇢r||u2||2(L2(⌦2))2

+ �⇢rcr||T2||2L2(⌦2)
]

= �[Pr||ru1||2(L2(⌦1))2
+ �||rT1||2L2(⌦1)

+ Prµr||ru2||2(L2(⌦2))2

+ �kr||rT2||2L2(⌦2)
] +

p
Ma

⇥
�
1

d̃1

Z

⌦1

T1v1dx+ �
⇢rcr

krd̃1

Z

⌦2

T2v2dx

+ Pr

Z

⌦1

rT1 ·
@u1

@y
dx
⇤
. (4.17)

Let us denote

E(t) =
1

2
[||u1||2(L2(⌦1))2

+ �||T1||2L2(⌦1)
+ ⇢r||u2||2(L2(⌦2))2

+ �⇢rcr||T2||2L2(⌦2)
],

D = [Pr||ru1||2(L2(⌦1))2
+ �||rT1||2L2(⌦1)

+ Prµr||ru2||2(L2(⌦2))2

+ �kr||rT2||2L2(⌦2)
], (4.18)

I = �
1

d̃1

Z

⌦1

T1v1dx+ �
⇢rcr

krd̃1

Z

⌦2

T2v2dx+ Pr

Z

⌦1

rT1 ·
@u1

@y
dx.

According to (4.18), (4.14) can be rewritten as

dE

dt
= �D +

p
MaI = �D

p
Ma

✓
1p
Ma

� I

D

◆
, (4.19)

We define 1p
Ma�

as the maximum of the ratio of energies

1p
Ma�

= max
H�{0}

I

D
, (4.20)
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which implies that

dE

dt
 �D

p
Ma

✓
1p
Ma

� 1p
Ma�

◆
. (4.21)

The Poincaré inequality indicates D � cE for some constant c. As a result, we

deduce from (4.21) that

dE

dt
 �c

✓
1p
Ma

� 1p
Ma�

◆
E. (4.22)

Then, if
p
Ma <

p
Ma�, the Gronwall lemma indicates that

E  e
�c̃t

E(0), (4.23)

which yields that the system is nonlinearly stable as long as
p
Ma <

p
Ma�,

where c̃ = c( 1p
Ma

� 1p
Ma�

).

Next, we shall solve the maximum (4.20), the Euler-Lagrange equations for

which read

2Prr2u1 + �

p
Ma�

d̃1

T1j� Pr

p
Ma�r(

@T1

@y
) = rL1,

r · u1 = 0, (x, y) 2 (0, l̃)⇥ (�d̃1, 0), (4.24)

2r2
T1 +

p
Ma�

d̃1

v1 = 0,

and

2Prµrr2u2 + �

p
Ma�

⇢rcr

krd̃1

T2j = rL2,

r · u2 = 0, (x, y) 2 (0, l̃)⇥ (0, d̃2), (4.25)

2krr2
T2 +

p
Ma�

⇢rcr

krd̃1

v2 = 0,

where Li is the Lagrange multiplier for the region ⌦i(i = 1, 2).

Inserting (3.14)-(3.15) into (4.24)-(4.25) and replacing the pi by Li and re-

moving Li(i = 1, 2), we derive

2Pr(D2 � �
2
1)

2
'1 � �

p
Ma�

d̃1

�
2
1✓1 = 0,

2(D2 � �
2
1)✓1 +

p
Ma�

d̃1

'1 = 0, (4.26)
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and

2Prµr(D
2 � �1)

2
'2 � �

p
Ma�

⇢rcr

krd̃1

�
2
1✓2 = 0,

2kr(D
2 � �

2
1)✓2 +

p
Ma�

⇢rcr

krd̃1

'2 = 0, (4.27)

where D = d

dy
and �21 = ( 2k1⇡

l
)2. Then, the critical linear eigenvalue problem

of (4.1)-(4.6) reads

Pr(D2 � �
2
1)

2
'1 = 0, (4.28)

(D2 � �
2
1)✓1 +

p
Mac

d̃1

'1 = 0, y 2 (�d̃1, 0), (4.29)

and

µrPr⇢
�1
r

(D2 � �
2
1)

2
'2 = 0, (4.30)

kr⇢
�1
r

c
�1
r

(D2 � �
2
1)✓2 +

p
Mac

d̃1kr

'2 = 0, y 2 (0, d̃2). (4.31)

Correspondingly, the condition (4.7) comes

µrD
2
'2(0)�D

2
'1(0) + �

2
1

p
Ma�✓1(0) = 0. (4.32)

The equations (4.26)-(4.27) along with these conditions (3.20), (3.22)-(3.24) and

(4.32) constitute a generalized eigenvalue problem for the parameter
p
Ma�.

For each � > 0, one can solve
p
Ma� by using the Chebyshev-tau method. By

maximizing
p
Ma� over � > 0, we obtain the threshold for nonlinear stability

p
Ma = max

�>0

p
Ma�.

The marginal stability curves involving linear and nonlinear stability are

shown in Figure 4.1 from which we see that when d̃1 = 0.51 and d̃1 = 0.54, the

critical value for nonlinear stability is smaller than that for linear stability. This

means that the problem (2.12)-(2.24) may undergoes a jump transition.

5. Nonlinear dynamic transitions

5.1. Main result

The Theorem 3.1 says that the system of equations (2.12)-(2.24) must un-

dergo one of three types transitions. In this section, we shall analyze the types
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Figure 4.1: Marginal stability curves with d̃1 = 0.51(left) and d̃1 = 0.54 (right), where

Pr = 4.38, ⇢r = 0.844, µr = 0.812, kr = 0.638, l̃ = 6.5.

.

of transitions when m = 2, which is the generic case.

Theorem 5.1. Under the conditions of Theorem 3.1 and assuming m = 2, the

exists a coe�cient Q defined by (5.16) and depending on the critical values Mac

and other parameter such that the following assertions hold true

(1) If Q(Mac) < 0, then the problem (2.12)-(2.24) undergoes a continuous

transition from (0,Mac). As a result, it bifurcates from (0,Mac) to a

local attractor AMa with the following approximation

AMa =

⇢
xRe 1 + yIm 1|x2 + y

2 = ��1
Q

�
+ o

 s
�1

|Q|

!
,Ma > Mac.

The attractor AMa is homological to unit circle S
1, which attracts H ��,

where � is the stable manifold of  = 0 with codimension 2.

(2) If Q(Mac) > 0, then the problem (2.12)-(2.24) undergoes a jump transition

from (0,Mac). Namely, there exists an open and dense set U of  = 0 in

H such that for any  0 2 U and for every Ma 2 (Mac � ✏,Mac + ✏) with

some ✏ > 0, the solution  satisfies

lim
t!1

sup || (t, 0)|| > �1 > 0,

where �1 is independent of Ma and Q(Ma).
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Proof 5.1. This proof is divided into three parts.

Step1: Space decomposition. According to the spectral theory of linear com-

pletely continuous field [55, 50], the spaces V and H can be decomposed into

H = E1 � E2, V = E1 � E2,

where E1 = {⌘1 1 + ⌘1 1|⌘1 2 C}, E2 = E
?
1 and  1 = (uc

1, T
c

1 ,u
c

2, T
c

2 ) is the

eigenvector corresponding to �1(Mac). Therefore, the solution of (2.12)-(2.24)

is expressed as

 = �+ h(�), � = ⌘1 1 + ⌘1 1 2 E1, (5.1)

where h : E1 ! E2 is the corresponding center manifold function associated with

the PES (3.30) condition. In the vicinity of Mac, the center manifold function

h can be approximated as

h(�) = h2(�) + o(|⌘|2). (5.2)

Then, we derive from (2.12)-(2.24) that

(
@u1

@t
,u⇤

1)1 = �Pr(ru1,ru⇤
1)1 + Pr

Z

y=0

@u1

@y
u
⇤
1ds� ((u1 ·r)u1,u

⇤
1)1, (5.3)

(
@T1

@t
, T

⇤
1 )1 = �(rT1,rT

⇤
1 )1 +

1

d̃1

(v1, T
⇤
1 )1 +

Z

y=0

@T1

@y
T

⇤
1 ds

� ((u1 ·r)T1, T
⇤
1 )1,

(5.4)

(
@u2

@t
,u⇤

2)2 = �Prµr

⇢r
(ru2,ru⇤

2)2 �
Prµr

⇢r

Z

y=0

@u2

@y
u
⇤
2ds� ((u2 ·r)u2,u

⇤
2)2,

(5.5)

(
@T2

@t
, T

⇤
2 )2 = � kr

⇢rcr
(rT2,rT

⇤
2 )2 +

1

krd̃1

(v2, T
⇤
2 )2 �

kr

⇢rcr

Z

y=0

@T2

@y
T

⇤
2 ds

� ((u2 ·r)T2, T
⇤
2 )2,

(5.6)

where  ⇤
1 = (u⇤

1, T
⇤
1 ,u

⇤
2, T

⇤
2 ) is the eigenvector of L⇤

�
corresponding to �1.

For convenience, we denote

h2(�) = (h1
2(�), h

2
2(�), h

3
2(�), h

4
2(�)).
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Multiplying (5.5), (5.6) by ⇢r and ⇢rcr, respectively, then adding these results

together with (5.3) and (5.4), one deduce that

d⌘1

dt
[(uc

1,u
⇤
1)1 + (T c

1 , T
⇤
1 )1 + ⇢r(u

c

2,u
⇤
2)2 + ⇢rcr(T

c

2 , T
⇤
2 )2]

= [�Pr(ruc

1,ru⇤
1)1 � (rT

c

1 ,rT
⇤
1 )1 � µrPr(ruc

2,ru⇤
2)2 � kr(rT

c

2 ,rT
⇤
2 )2

+
1

d̃1

(T c

1 , v
⇤
1)1 +

⇢rcr

krd̃1

(T c

2 , v
⇤
2)2 +MaPr

Z

y=0

@T
c

1

@x
u
⇤
1]⌘1

� ⌘1[((u
c

1 ·r)h1
2(�) + (h1

2(�) ·r)uc

1,u
⇤
1)1 + ((h1

2(�) ·r)T c

1

+ (uc

1 ·r)h2
2(�), T

⇤
1 )1 + ⇢r((u

c

2 ·r)h3
2(�) + (h3

2(�) ·r)uc

2,u
⇤
2)2

+ ⇢ccr((h
3
2(�) ·r)T c

2 + (uc

2 ·r)h4
2(�), T

⇤
2 )2]� ⌘1[((uc

1 ·r)h1
2(�)

+ (h1
2(�) ·r)uc

1,u
⇤
1)1 + ((uc

1 ·r)h2
2(�) + (h1

2(�) ·r)T c

1 , T
⇤
1 )1

+ ⇢r((uc

2 ·r)h3
2(�) + (h3

2(�) ·r)uc

2,u
⇤
2)2 + ⇢rcr((uc

2 ·r)h4
2(�)

+ (h3
2(�) ·r)T c

2 , T
⇤
2 )2] + o(|⌘1|3).

With the help of (3.3), one can obtain

d⌘1

dt
= �1⌘1 +

R(⌘)

A
+ o(|⌘1|3), (5.7)

where

A = (uc

1,u
⇤
1)1 + (T c

1 , T
⇤
1 )1 + ⇢r(u

c

2,u
⇤
2)2 + ⇢rcr(T

c

2 , T
⇤
2 )2,

R(⌘) = �⌘1[((uc

1 ·r)h1
2(�) + (h1

2(�) ·r)uc

1,u
⇤
1)1 + ((h1

2(�) ·r)T c

1

+ (uc

1 ·r)h2
2(�), T

⇤
1 )1 + ⇢r((u

c

2 ·r)h3
2(�) + (h3

2(�) ·r)uc

2,u
⇤
2)2

+ ⇢ccr((h
3
2(�) ·r)T c

2 + (uc

2 ·r)h4
2(�), T

⇤
2 )2]� ⌘1[((uc

1 ·r)h1
2(�)

+ (h1
2(�) ·r)uc

1,u
⇤
1)1 + ((uc

1 ·r)h2
2(�) + (h1

2(�) ·r)T c

1 , T
⇤
1 )1

+ ⇢r((uc

2 ·r)h3
2(�) + (h3

2(�) ·r)uc

2,u
⇤
2)2 + ⇢rcr((uc

2 ·r)h4
2(�)

+ (h3
2(�) ·r)T c

2 , T
⇤
2 )2].

Step 2: Center manifold functions. In the following, we calculate the center

manifold function h2(�) by following the method used in [56, 52]. Apparently,
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the solution of the system
8
><

>:

d

dt
M 1 = LMa 1

,

 1(0) = ⌘1 1 + ⌘1 1,

(5.8)

is given by

 1 = ⌘1e
�1(Ma)t

 1 + ⌘1e
�1(Ma)t

 1. (5.9)

Furthermore, we consider the following system
8
><

>:

d

dt
M 2 = LMa 2 +G( 1

, 1),

limt!�1 2(t) = 0,
(5.10)

where

G( 1
, 1) =⌘21exp(2�1(Ma)t)(G1( 1, 1), G2( 1, 1))

T

+ |⌘1|2exp(Re�1(Ma)t)[(G1( 1, 1), G2( 1, 1))
T

+ (G1( 1, 1), G2( 1, 1))
T ]

+ ⌘1
2
exp(2�1(Ma)t)(G1( 1, 1), G2( 1, 1))

T
,

and

G1( 1, 1)

exp(2i�1x)
= P

0

BBBBBBB@

i�1�
2
1 + '1D�1

i�1�1'1 + '1D'1

i�1�1✓1 + '1D✓1

1

CCCCCCCA

G2( 1, 1)

exp(2i�1x)
= P

0

BBBBBBB@

⇢r(i�1�22 + '2D�2)

⇢r(i�1�2'2 + '2D'2)

⇢rcr(i�1�1✓1 + '1D✓1)

1

CCCCCCCA

,

G1( 1, 1) = P

0

BBBBBBB@

�i�1|�1|2 + '1D�1

�i�1�1'1 + '1D'1

�i�1�1✓1 + '1D✓1

1

CCCCCCCA

,
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G2( 1, 1) = P

0

BBBBBBB@

⇢r(�i�1|�2|2 + '2D�2)

⇢r(�i�1�2'2 + '2D'2)

⇢rcr(�i�1�2✓2 + '2D✓2)

1

CCCCCCCA

,

G1( 1, 1) = G1( 1, 1) G2( 1, 1) = G2( 1, 1),

G1( 1, 1) = G1( 1, 1) G2( 1, 1) = G2( 1, 1),

from which one can obtain the solution  2(t) has the following expansion

 2(t) = ⌘
2
1 exp(2�1(Ma)t+ 2i�1x) ̃20(y) + |⌘1|2exp(2Re�1(Ma)t) ̃11(y)

+ ⌘1
2 exp(2�1(Ma)t� 2i�1x) ̃02(y), (5.11)

where we denote

 ̃20 = {u1,20(y), T1,20(y),u2,20(y), T2,20(y)}, um,20(y) = (um,20, vm,20),

 ̃11 = {u1,11(y), T1,11(y),u2,11(y), T2,11(y)}, um,11(y) = (um,11, vm,11), m = 1, 2,

 ̃02 = {u1,02(y), T1,02(y),u2,02(y), T2,02(y)}, um,02(y) = (um,02, vm,02).

Substituting (5.11) into (5.10), we deduce that  ̃20 satisfies the following

equations

2�1(D
2 � 4�21)v1,20 = Pr(D2 � 4�21)

2
v1,20 + F1,

2�1T1,20 = (D2 � 4�21)T1,20 +
1

d̃1

v1,20 + G1, y 2 (�d̃1, 0), (5.12)

and

2�1(D
2 � 4�21)v2,20 =

Pr

⇢r
µr(D

2 � 4�21)
2
v2,20 + F2,

2�1T2,20 =
kr

⇢rcr
(D2 � 4�21)T2,20 +

1

krd̃1

v2,20 + G2, y 2 (0, d̃2), (5.13)

which subjects to the interface conditions and boundary condition (3.20)-(3.24),

and where

F1 = 2i�1[D(i�1�
2
1 + '1D�1)� 2i�1(i�1�1'1 + '1D'1)],
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G1 = �(i�1�1✓1 + '1D✓1),

F2 = 2i�1[D(i�1�
2
2 + '2D�2)� 2i�1(i�1�2'2 + '2D'2)],

G2 = �(i�1�2✓2 + '2D✓2),

Furthermore, with the help of the divergence-free condition and boundary

condition, we deduce that

vm,11(y) = 0, m = 1, 2,

which combining the governing equations implies that

um,11(y) = 0, m = 1, 2.

As a result, we deduce that Tm,11(m = 1, 2) are determined by the following

equations

2Re�1T1,11 = D
2
T1,11 � 2(D'1✓1 + '1D✓1),

and

2Re�1T2,11 =
kr

⇢rcr
D

2
T2,11 � 2(D'2✓2 + '2D✓2),

which subjects to the following interface conditions and boundary condition

T1,11(0) = T2,11(0), krDT2,11(0)�DT1,11(0) = 0, T1,11(�d̃1) = T2,11(d̃2) = 0.

Finally, using the fact

Gm( 1, 1) = Gm( 1, 1), m = 1, 2,

we deduce that

 ̃0,2 =  ̃2,0.

Consequently, the approximation center manifold function is given by

h2(�) =  
2(t)|t=0 = ⌘

2
1 exp(2i�1x) ̃20(y) + |⌘1|2 ̃11(y)

+ ⌘1
2 exp(�2i�1x) ̃02(y) + o(|⌘1|2). (5.14)
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Step 3: Equations reduction. Next, we shall calculate the coe�cient R in the

reduced equation (5.7). With the help of (5.14), one can deduce

R(⌘1) = ⌘1|⌘1|2
7X

i=1

ri,

where

r1 = �l̃

Z 0

�d̃1

'1DT1,11✓
⇤
1dy � ⇢rcr l̃

Z
d̃2

0
'2DT2,11✓

⇤
2dy

r2 = � l̃

�
2
1

Z 0

�d̃1

D'1Dv1,20D'
⇤
1dy �

l̃

2�21

Z 0

�d̃1

'1D
2
v1,20D'

⇤
1dy

� 2l̃

Z 0

�d̃1

D'1v1,20'
⇤
1dy � l̃

Z 0

�d̃1

'1Dv1,20'
⇤
1dy

r3 = �(� l̃

2�21
)

Z 0

�d̃1

Dv1,20D'1D'
⇤
1dy � (� l̃

�
2
1

)

Z 0

�d̃1

v1,20D
2
'1D'

⇤
1dy

� l̃

2

Z 0

�d̃1

Dv1,20'1'
⇤
1dy � l̃

Z 0

�d̃1

v1,20D'1'
⇤
1dy

r4 = �2l̃

Z 0

�d̃1

D'1T1,20✓
⇤
1dy � l̃

Z 0

�d̃1

'1DT1,20✓
⇤
1dy

� l̃

2

Z 0

�d̃1

Dv1,20✓1✓
⇤
1dy � l̃

Z 0

�d̃1

v1,20D✓1✓
⇤
1dy

r5 = �⇢r[
l̃

�
2
1

Z
d̃2

0
D'2Dv2,20D'

⇤
2dy +

l̃

2�21

Z
d̃2

0
'2D

2
v2,20D'

⇤
2dy

+ 2l̃

Z
d̃2

0
D'2v2,20'

⇤
2dy + l̃

Z
d̃2

0
'2Dv2,20'

⇤
2dy]

r6 = �⇢r[(�
l̃

2�21
)

Z
d̃2

0
Dv2,20D'2D'

⇤
2dy + (� l̃

�
2
1

)

Z
d̃2

0
v2,20D

2
'2D'

⇤
2dy

+
l̃

2

Z
d̃0

0
Dv2,20'2'

⇤
2dy + l̃

Z
d̃2

0
v2,20D'2'

⇤
2dy]

r7 = �⇢rcr[2l̃
Z

d̃2

0
D'2T2,20✓

⇤
2dy + l̃

Z
d̃2

0
'2DT2,20✓

⇤
2dy]

� ⇢rcr[
l̃

2

Z
d̃2

0
Dv2,20✓2✓

⇤
2dy + l̃

Z
d̃2

0
v2,20D✓2✓

⇤
2dy].

Then the reduce equation (5.7) can be rewritten as

d⌘1

dt
= �1⌘1 +Q⌘1|⌘1|2 + o(|⌘1|3), (5.15)
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where

Q =
1

A

7X

i=1

ri. (5.16)

Consequently, by Theorem 2.3.1 in [50], one can obtain the assertions.

6. Numerical results

In the preceding section, we establish the nonlinear dynamic transition the-

orem of (2.12)-(2.24). The transition type of (2.12)-(2.24) is determined by

the sign of the transition number Q. For the purpose of illustration, we give

some numerical results on the transition number Q . In Figure 6.1, we plot

Figure 6.1: Plot of the transition number as a function of d̃1 (left) and l̃ (right), respectively.

The parameters are: Pr = 4.38, ⇢r = 0.844, µr = 0.812, kr = 0.638, cr = 1.02, l̃ = 6.5 for the

left panel, d̃1 =
1
2 for the right panel

.

the transition number as a function of height ratio d̃1 (left) and aspect ratio l̃

(right), respectively. It can be seen from Figure 6.1 that when the value range of

height ratio is [0.3, 0.5], the sign of transition number Q is negative. However,

when the value range of height ratio is (0.5, 0.55], the sign of transition num-

ber Q is positive. By the assertions of Theorem 5.1, the problem (2.12)-(2.24)

undergoes a continuous transition for d̃1 2 [0.3, 0.5] and a jump transition for

d̃1 2 (0.5, 0.55]. As a result, the problem (2.12)-(2.24) bifurcates a local attrac-

tor from (0,Mac) for d̃1 2 [0.3, 0.5]. It is worth pointing out jump transition is
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Figure 6.2: Plot of the transition number as a function of ⇢r (left) and cr (right), respectively.

The parameters are: Pr = 4.38, kr = 0.638, µr = 0.812, l̃ = 6.5, d̃1 =
1
3 , cr = 1.02, for the

left panel, ⇢r = 0.844, for the right panel

.

not observed in the classical Marangoni convection problem in a single domain

[28]. Similarly, it can be deduced from Figure 6.1that the problem (2.12)-(2.24)

has a continuous transition for l̃ 2 [6, 10]. In Figure 6.2, we plot the transition

number as a function of density ratio ⇢r (left) and heat capacity ratio cr (right),

respectively, it shows that when the density ratio ⇢r 2 [0.3, 0.9] or the heat ca-

pacity ratio cr 2 [0.6, 1.4], the problem (2.12)-(2.24) will undergo a continuous

transition at the critical value Ma = Mac.

Furthermore, we observe from Figure 6.1 and Figure 6.2 that the transition

number Q is discontinuities at those values of height ratio d̃1, aspect ratio l̃

and density ratio ⇢r, where the critical mode mc changes its value and two

eigenvalues become critical eigenvalues. At these points, we cannot apply the

reduced equation (5.15) to discuss the transition type of the model (2.12)-(2.24).

As mentioned in [52], the change of the critical mode mc leads to the change

of the number of convection rolls. To illustrate this phenomena, we plot the

streamline of flow field with height ratios d̃1 = 1/3, 1/2, 0.53, 0.54, respectively,

shown in Figure 6.3-Figure 6.6. From Figure 6.3-Figure 6.6, it is clear that the

flow changes from six rolls for d̃1 = 1/3 and eight rolls for d̃1 = 1/2 to ten rolls

for d̃1 = 0.53 and twelve rolls for d̃1 = 0.54, which is consistent with the change
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of critical mode mc shown in Figure 6.1 (lelft). We have similar conclusions

from Figure 6.1 (right) and shown in Figure 6.2 (left)

Figure 6.3: The approximate bifurcated solutions-temperature(left), streamline of flow field

(right). The parameters are: Pr = 4.38, kr = 0.638, µr = 0.812, ⇢r = 0.844, l̃ = 6.5, d̃1 =
1
3 ,

cr = 1.02

.

Figure 6.4: The approximate bifurcated solutions-temperature (left), streamline of flow field

(right). The parameters are: Pr = 4.38, kr = 0.638, µr = 0.812, ⇢r = 0.844, l̃ = 6.5, d̃1 =
1
2 ,

cr = 1.02

.

7. Conclusion

In this article, we study nonlinear stability and transition types involv-

ing Marangoni convection of two superimposed immiscible fluids with a non-
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Figure 6.5: The approximate bifurcated solutions-temperature (left), streamline of flow field

(right). The parameters are: Pr = 4.38, kr = 0.638, µr = 0.812, ⇢r = 0.844, l̃ = 6.5,

d̃1 = 0.53, cr = 1.02

.

Figure 6.6: The approximate bifurcated solutions-temperature (left), streamline of flow field

(right). The parameters are: Pr = 4.38, kr = 0.638, µr = 0.812, ⇢r = 0.844, l̃ = 6.5,

d̃1 = 0.54, cr = 1.02

.
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deformable interface by using a hybrid analytical calculation method. Perform-

ing careful numerical calculations, we find that the nonlinear stability threshold

is less than linear stability threshold, which suggests that a jump transition

may exists in the two-layer Marangoni convection. To determine the specific

types of nonlinear dynamic transition arising in Marangoni convection of two

superimposed immiscible fluids, we establish a transition theorem based on the

center manifold reduction. The theorem says that if the sign of a dimensionless

coe�cient is positive, then a jump transition occurs in the two-layer Marangoni

convection. Our numerical calculations show that when the height ratio is be-

tween 0.5 and 0.55, the sign of the dimensionless coe�cient is positive, which

guarantees the existence of a jump transition in two-layer Marangoni convection.

The results in this paper can be extended in serval directions which we shall

consider in our future works. First, we only consider the dynamic transition from

real eigenvalues. It would be interesting to consider the the dynamic transition

from complex eigenvalues. Secondly, we would like to investigate the dynamic

transition of two-layer Marangoni convection with deformable interface.
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8. Appendix

In this section, we discuss the existence of global weak solution by using the

Galerkin method. Firstly, we give the definition of weak solution.

Definition 8.1. We say  = (u1, T1,u2, T2) 2 L
2(0, ⌧ ;V ) \ L

1(0, ⌧ ;H), (0 <

⌧ < 1) is a weak solution of (2.12)-(2.24), if

d

dt
(u1, ũ1)1 +

d

dt
⇢r(u2, ũ2)2 + ((u1 ·r)u1, ũ1)1 + Pr(ru1,rũ1)1
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+ ⇢r((u2 ·r)u2, ũ2)2 + Prµr(ru2,rũ2)2 = PrMa

Z

y=0

@T1

@x
ũ2ds, (8.1)

and

d

dt
(T1, T̃1)1 +

d

dt
⇢rcr(T2, T̃2)2 + ((u1 ·r)T1, T̃1)1 + (rT1,rT̃1)1

+ ⇢rcr((u2 ·r)T2, T̃2)2 + kr(rT2,rT̃2)2 =
1

d̃1

(v1,fT1)1 +
⇢rcr

krd̃1

(v2, T̃2)2, (8.2)

for any  ̃ = (ũ1, T̃1, ũ2, T̃2) 2 V and satisfies the initial data (2.24).

8.1. Existence and uniqueness of weak solution

To show existence of weak solution, we need a prior estimate of the problem

(8.1)-(8.2), which is given as follows.

Lemma 8.1. Suppose that  2 L
2(0, ⌧ ;V ) \ L

1(0, ⌧ ;H), (0 < ⌧ < 1) is a

weak solution of (2.12)-(2.22), then the following inequalities satisfied

sup
0t⌧

[||u1||2(L2(⌦1))2
+ �||T1||2L2(⌦1)

+ ⇢r||u2||2(L2(⌦2))2
+ �⇢rcr||T2||2L2(⌦2)

]

 exp(M⌧)[||u10||2(L2(⌦1))2
+ �||T10||2L2(⌦1)

+ ⇢r||u20||2(L2(⌦2))2

+ �⇢rcr||T20||2L2(⌦2)
] (8.3)

and
Z
⌧

0
[Pr||ru1||2(L2(⌦1))2

+ �||rT1||2L2(⌦1)
+ Prµr||ru2||2(L2(⌦2))2

+ �kr||rT2||2L2(⌦2)
]dt

 (1 + ⌧exp(M⌧))[||u10||2(L2(⌦1))2
+ �||T10||2L2(⌦1)

+ ⇢r||u20||2(L2(⌦2))2

+ �⇢rcr||T20||2L2(⌦2)
], (8.4)

where � = max{1, P rMa
2} and M = max{1, 1

d̃
2
1

�, cr�,
1

k2
r d̃

2
1

}.

Making use of the standard Galerkin method and Lemma 8.1, we can prove the

existence and uniqueness of weak solution for the model (2.12)-(2.24)

Theorem 8.1. Given  0 = (u10, T10,u20, T20) 2 H, the equations (2.12)-(2.24)

possess a unique weak solution  = (u1, T1,u2, T2) 2 L
1(0, ⌧ ;H) \ L

2(0, ⌧ ;V )

for any 0 < ⌧ < 1.
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8.2. Proof of Lemma 8.1

Choosing e =  in (8.1)-(8.2) and from (4.17), we get

1

2

d

dt
[||u1||2(L2(⌦1))2

+ �||T1||2L2(⌦1)
+ ⇢r||u2||2(L2(⌦2))2

+ �⇢rcr||T2||2L2(⌦2)
]

+ [Pr||ru1||2(L2(⌦1))2
+ �||rT1||2L2(⌦1)

+ Prµr||ru2||2(L2(⌦2))2

+ �kr||rT2||2L2(⌦2)
]

=
1

d̃1

�

Z

⌦1

T1v1dx+
⇢rcr

krd̃1

�

Z

⌦2

T2v2dx+ PrMa

Z

⌦1

rT1 ·
@u1

@y
dx. (8.5)

Utilizing the Young’s inequality, we obtain

1

d̃1

�

Z

⌦1

T1v1dx+
⇢rcr

krd̃1

�

Z

⌦2

T2v2dx

 1

d̃1

�||T1||L2(⌦1)||u1||(L2(⌦1))2 +
⇢rcr

krd̃1

�||T2||L2(⌦2)||u2||(L2(⌦1))2

 �

2
||T1||2L2(⌦1)

+
�

2d̃21
||u1||2(L2(⌦1))2

+
�⇢rcr

2
||T2||2L2(⌦2)

+
⇢rcr�

2k2
r
d̃
2
1

||u2||2(L2(⌦1))2

 M

2
[||u1||2(L2(⌦1))2

+ �||T1||2L2(⌦1)
+ ⇢r||u2||2(L2(⌦1))2

+ �⇢rcr||T2||2L2(⌦2)
],

(8.6)

and

PrMa

Z

⌦1

@u1

@y
·rT1dx

 1

2
Pr||ru1||2(L2(⌦1))2

+
1

2
PrMa

2||rT1||2L2(⌦1)
(8.7)

 1

2
Pr||ru1||2(L2(⌦1))2

+
1

2
�||rT1||2L2(⌦1)

.

Substituting (8.6)-(8.7) into (8.5), one can get

d

dt
[||u1||2(L2(⌦1))2

+ �||T1||2L2(⌦1)
+ ⇢r||u2||2(L2(⌦2))2

+ �⇢rcr||T2||2L2(⌦2)
]

+ [Pr||ru1||2(L2(⌦1))2
+ �||rT1||2L2(⌦1)

+ Prµr||ru2||2(L2(⌦2))2

+ �kr||rT2||2L2(⌦2)
]

 M [||u1||2(L2(⌦1))2
+ �||T1||2L2(⌦1)

+ ⇢r||u2||2(L2(⌦2))2
+ �⇢rcr||T2||2L2(⌦2)

].

(8.8)

Consequently, (8.3)-(8.4) can be derived by the Gronwall’s Lemma.
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