2023 IEEE/ACM Symposium on Edge Computing (SEC)

EdgeCut: Fast and Low-overhead Access of User-associated
Contents from Edge Servers

Yi Liu
University of California Santa Cruz
yliu634@ucsc.edu

Yang Wang
The Ohio State University

ABSTRACT

User-associated contents play an increasingly important role in
modern network applications. With growing deployments of edge
servers, the capacity of content storage in edge clusters significantly
increases, which provides great potential to satisfy content requests
with much shorter latency. However, the large number of contents
also causes the difficulty of searching contents on edge servers in
different locations because indexing contents costs huge DRAM
on each edge server. In this work, we explore the opportunity of
efficiently indexing user-associated contents and propose a scal-
able content-sharing mechanism for edge servers, called EdgeCut,
that significantly reduces content access latency by allowing many
edge servers to share their cached contents. We design a compact
and dynamic data structure called Ludo Locator that returns the IP
address of the edge server that stores the requested user-associated
content. We have implemented a prototype of EdgeCut in a real
network environment running in a public geo-distributed cloud.
The experiment results show that EdgeCut reduces content access
latency by up to 50% and reduces cloud traffic by up to 50% com-
pared to existing solutions. The memory cost is less than 50MB for
10 million mobile users. The simulations using real network latency
data show EdgeCut’s advantages over existing solutions on a large
scale.

CCS CONCEPTS

« Networks — Location based services.

KEYWORDS
Edge computing; Edge location service; User-associated data

ACM Reference Format:

Yi Liu, Minmei Wang, Shouqian Shi, Yang Wang, and Chen Qian. 2023.
EdgeCut: Fast and Low-overhead Access of User-associated Contents from
Edge Servers. In The Eighth ACM/IEEE Symposium on Edge Computing (SEC
’23), December 6-9, 2023, Wilmington, DE, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3583740.3628439

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEC °23, December 6-9, 2023, Wilmington, DE, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0123-8/23/12...$15.00
https://doi.org/10.1145/3583740.3628439

Minmei Wang

University of Connecticut

228

Shougian Shi

University of California Santa Cruz

Chen Qian
University of California Santa Cruz
cqian12@ucsc.edu

Location 1 -

. < N Infrastructure of the\\\
|
upload / User-associated contents network that runs 5
$ | nipsiiwwa tentid applications
access
users
. Edge server(s) ﬂ

Content
sharing

]

- @ upload \Q‘

users access \ Edge server(s) ’

\. Y / /

Location 2 b .

Cloud servers

ISP

Figure 1: Infrastructure of edge content caching.

1 INTRODUCTION

User-associated contents have been playing an increasingly im-
portant role in modern network applications. Each user-associated
content is defined as a file directly related to an application user. The
user profiles, posts, and uploaded photos of online social networks
such as Facebook [9] and Twitter [39], documents of file synchro-
nization services such as Google Drive and Dropbox, and the videos
of video-sharing applications such as TikTok are all associated with
specific users and shared with other accounts interacting with these
users.

Content caching methods, such as web caches, content delivery
networks (CDNs) [21, 31], and edge service [27, 40], are widely
recognized as win-win solutions that reduce both service latency to
users and the traffic overhead of network servers and data centers.
For a local community, such as all users in a city, a content provider,
such as Facebook, Google, and CDNs, may deploy an edge cluster
including multiple servers (also called Points of Presence (PoPs))
that carry sufficient resources to store popular contents to allow
users and Internet Service Providers (ISPs) to access these contents
without reaching their data centers [27, 40]. Fig. 1 illustrates an
infrastructure of edge content caching. Edge servers are deployed by
network applications in different locations that are closer to users
than the cloud, thus the latency could be reduced significantly due
to content sharing.

As shown in Fig. 2 (a), in the classic edge caching service, when
an edge server receives a user’s data request, it searches the local
storage of the edge server or edge cluster. If there is no hit, the
edge server will forward the request to the cloud. Fig. 2 (b) shows
a method called edge content sharing, which further reduces the

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

access latency: if the edge server finds no hit in local storage, it
expands the search to edge servers and clusters in other locations
and could find another edge server that holds the requested content.
It then forwards the request to that edge server if it is closer to the
user than the cloud. Edge content sharing is not a new idea and
has been discussed before [8]. However, it is not widely used in
practical networks [27, 31, 40]. The main challenge is that searching
other locations requires either huge message costs to broadcast the
request to other servers [8] or a gigantic directory storing the
content-to-server mappings. Our experiments show that even with
compact data structures such as counting Bloom filters (CBFs) [8],
the DRAM cost per server is as high as 12GB to extend the search
for other locations, including 1 million users based on the real
distribution of contents generated by users [4].

We identify the major problem that is studied in this work: with
growing deployments of edge servers, the capacity of con-
tent storage in edge clusters significantly increases, which
provides potentially much higher hit rates of edge content
requests. However, the large amount of content also causes
difficulty in indexing, which makes it hard to find the correct
edge locations for content requests.

This work presents a novel solution for scalable edge content
access. We argue that a large amount of user-associated content pro-
vides a unique opportunity to enable edge content sharing with effi-
cient and scalable directories. Our solution is based on two facts. 1)
It has been reported that most accesses of contents associated with
a specific user u happen in the physical regions close to the user’s
active areas [31, 39], i.e., the physical locations u frequently log in.
For example, the users that frequently visit u’s contents could be
u’s family members, friends, classmates, and colleagues. For video-
sharing applications, users in the same area (city, province/state, or
country) are more likely to visit their uploaded videos compared to
others. Hence caching u’s contents on the edge servers physically
close to u’s active location can increase hit rates if content sharing is
allowed because most requests to u’s contents also happen in these
areas. 2) We allow all u’s contents caching on the same edge server s
(or edge cluster). A large amount of user-associated data provides a
new yet not fully investigated opportunity for cache sharing within
a large network application: Maintaining these user-to-server map-
pings < u, s > is more efficient than maintaining content-to-server
mappings. Moreover, our solution is easy to achieve consistency
because the frequency of user location changes is much lower than
that of content changes.

We develop an Edge Location Service (ELS), called EdgeCut,
that returns the responsible edge server of caching a user u’s con-
tents. We design a compact and dynamic data structure called Ludo
Locator to support queries of edge servers and simultaneously
distinguish mobile and non-mobile users. With Ludo Locator, for
each content request, an edge server can quickly get the IP of the
edge server that stores the content. We have implemented EdgeCut
in a real network environment running in CloudLab [1], a pub-
lic geo-distributed cloud. The extensive experiment results show
that EdgeCut can reduce content access latency by 60% or more
and reduce traffic to the cloud by up to 50%, compared to existing
solutions. The memory cost is less than 48MB for extending the
cache sharing scope of 10 million mobile users, less than 1% of the
memory cost of CBFs. Note that practical networks also include

229

2) Search local
edge server

p

3) No hit. Forward the

1) Reques request to the cloud

content c
[11 o]
[11 o]

user

(a) Classic edge caching service
3a) If a nearby edge
server holds c,

E E request the server
I 3b)

1) Request If cloud is closer,
content ¢ request the CIOUCG(/B
—_— E —— (O
E [o]
user I

2. Search local edge
server. If no hit, search
all edge servers

(b) Edge content sharing

Figure 2: Edge content sharing can reduce access latency.

non-user-associated data, and they can be handled using state-of-
the-art caching methods. Hence this work is to complement existing
methods rather than replacing them.

There have been some works [29][8][38][33][11][37][35][36] to
solve the problem of accessing user data among geo-distributed
servers and edge servers. However, they either focus on design-
ing better data replication method [38][33][11] or using routing
schemes to find data [37][35]. They treat each content as an indi-
vidual one and do not deal with user-associated data. Hence they
cannot be used as an ELS. To our knowledge, there is no solu-
tion in the literature for memory-efficient ELS that can be
hosted on heterogeneous edge servers.

Our contributions are summarized as follows:

1). We design a new protocol called EdgeCut to provide an ELS
for user-associated contents. EdgeCut is the first ELS solution that
is efficient to run on every edge server.

2). We design Ludo Locator, an efficient key-value store to main-
tain the mappings of users to their responsible edge servers while
filtering non-mobiles users. It supports dynamic changes.

3). We implement a prototype of EdgeCut in CloudLab [1], a
public geo-distributed cloud, for evaluation. We use different traffic
datasets collected in the real world to show EdgeCut’s performance
on a large scale. The results show that EdgeCut can reduce content
access latency by up to 50% compared to a recent solution that uses
3x storage resources. EdgeCut also reduces the cloud access rate by
30% to 50%.

The paper is structured as follows. We present the system model
and problem statement in Section 2. The full design of the EdgeCut
is presented in Section 3. We show the evaluation results in Section
4. Section 5 presents the related work, and Section 6 concludes the
work.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

Content

Hom uester (CR)
Lo(c|_z|1t|o Resident
Location (RL)
Edge server

that stores the
mobile user
data

Location
(VL)

Figure 3: Several locations associated with one mobile user.

2 MODELS AND PROBLEM STATEMENT
2.1 System model

We consider the scenario in which application users carrying end
devices generate, share, and request contents under the edge com-
puting infrastructure [7]. The contents discussed in this work are
all user-associated and each content ID is queried along with its
user ID UID. Fig. 1 shows the system model, including five main
components.

1) Network application. The network application runs services
that provide contents to end users, such as social networks, video
streaming, and file sharing. It can be a single large application such
as Twitter and Facebook, or a multi-tenant content provider such
as AWS. The network application maintains the cloud and edge
clusters, which are connected by its private WAN.

2) Locations. Each location is an area including multiple users
and one edge server cluster. The size of each location is determined
by the network application and is typically a city or county.

3) End users. Users carrying devices request contents from edge
or cloud servers. Each user has a global-unique UID, assigned when
the user registers, and the location of registration is called its home
location (HL), as shown in Fig. 3. An HL covers an area where the
content provider deploys at least one edge server or edge cluster.
Hence users within a certain geographic area share the same HL.
The user’s HL would be encoded and put into UID as a prefix by the
servers when they register. Since users do not always stay in their
HLs, a user could be active in another geographic location for a long
time until present and such location is called its resident location
(RL). Such users are called the mobile users. A mobile user’s active
location is the RL and a non-mobile user’s active location is the HL.
Hence the contents of a mobile user are cached at an edge server
in his RL and the contents of a non-mobile user are cached in his
HL. When a user log-on in a new location, this location is marked
as its visit location (VL). If he stays in the VL for a sufficiently long
time, e.g., more than one month, the VL becomes his new RL. A
user u can also be a content requester (CR) to request the content
associated with another user v. A content request will first be sent
to an edge server to check if the request can be satisfied by the
cache. If not, the edge server will use EdgeCut to search other edge
servers or cluster that is responsible for caching v’s contents.

4) Edge servers. A server cluster including at least one edge
server is deployed in each location by the network application to
provide caching service to users in that location [7]. For each region,

230

HL edge data
server

uis anon-
mobile user

/<§§

Data Request

. for User u
e
o= = § =
Rconte?t Local edge Cloud server
equester data server
?CR) uisa
mobile user
RL edge data
server

Figure 4: The workflow of EdgeCut.

there is one control program that is responsible for managing the
cached content of its edge servers, which can co-locate with an
edge server.

5) Cloud servers. Cloud servers are the archive of user contents.
A content request can always be satisfied by the cloud, but the
cloud is remote to most users.

2.2 Problem statement

We target the problem of efficiently accessing cached user-associated
contents from edge servers via edge content sharing. Each content
request will be first sent to a local edge server of the content re-
quester (CR). For user-associated content, the server can get the
user ID (UID) with the associated content. To serve the request, the
main challenge is to obtain the IP address of the nearby edge server
that is responsible for caching the contents of that user, called the
server IP (SIP) of that UID. The edge server could be either located
in the HL for non-mobile users or RL for mobile users. Hence every
edge server should be able to resolve the above information for
an arbitrary UID. Note that if the request is forwarded to SIP and
the content is cached within the edge cluster containing SIP, we
consider the server with SIP can search its edge cluster and return
the content to the requester. We do not discuss how contents are
stored and searched within an edge cluster. EdgeCut relies on exist-
ing protocols to handle these tasks, such as the consistent hashing
method used in Akamai edge clusters [21].

3 DESIGN OF EDGECUT

3.1 System Overview

EdgeCut includes one control program running in each edge clus-
ter and one ELS program on every edge server. Fig. 4 shows the
overview of the EdgeCut protocol. The workflow for a CR to request
the content associated with user u is as follows.

Step 1. The CR sends the request for the queried content to his
edge data server. The server gets the UID of u along with the content
ID and makes a query to the ELS program on its local memory. The
result is a tuple < f, SIP > where f is a k-bit fingerprint of a UID
computed by a hash function, and SIP is an IP address.

Step 2. The local edge server uses the fingerprint f in the query
result of Step 1 to determine if u is a mobile user.

Step 3. Case 1: If the fingerprint matches the hash of UID, u
is a mobile user. Then SIP represents the preferred server (edge

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

Control
program
— Registration g h1e RTT tabl
table able able
Update <UID, SIP>, \mltlglrl]zdesl.elg? Tocator
’ \ UID; UID,
Edge) | Ludo T
servers ElnserﬂDelete locator| [ofaloelolo]io]
<UID, SIP>

Ludo Separator

Figure 5: System overview.

server or cloud) that stores the contents of user u. Whether an edge
server is preferred to the cloud can be defined by the provider. For
example, the edge server is preferred if the RTT to it is less than «
times the RTT to the cloud where « is a parameter such as 0.8. Note
that SIP can be a virtual IP of the cloud that will be resolved later by
its load balancer. The local edge server then forwards the content
request to SIP, and that storage server will return the requested
content to the CR. Case 2: If the fingerprint does not match, u is
a non-mobile user. In that case, the SIP field will not be used. The
edge server will forward the request to the HL edge server of the
user or cloud, whichever is preferred. The HL of the user can be
retrieved from its UID.

The key ideas of these design choices are: 1) managing content
cache on the granularity of the user level rather than the content
level, to reduce complexity; 2) separating the protocols for mobile
and non-mobile users; 3) locating mobile user’s RL using a memory-
efficient lookup table. These design choices are based on the fact that
the number of users is much smaller than the number of contents
[4], mobile users can be easily located based on their UID, and RL
lookups need to be performed in an efficient way.

3.2 Overview of data structures in EdgeCut

To complete the workflow discussed above, each edge server main-
tains two memory-compact and dynamic data structures developed
by us, called Ludo Locator and Ludo Separator, as shown in Fig. 5.
Ludo Locator maintains the < UID, SIP > pairs for all mobile users
and provides the result < f, SIP > of querying a UID. The design
of Ludo Locator is motivated by a recent key-value lookup engine
called Ludo hashing [28]. We use Ludo hashing because it supports
key-value lookups with memory efficiency and fast speed. The
memory benefits of Ludo come from the feature that it does not
store the keys. In our context, the keys are UIDs that could be very
long compared to the SIP. Hence, avoiding storing the UIDs in the
search engine is an ideal design choice. However, Ludo hashing has
a limitation that prevents it from being directly used in EdgeCut:
It returns an arbitrary result for any UID that is not included in
it — in the case of EdgeCut, querying a non-mobile user will get a
wrong SIP. Hence, we develop the Ludo Locator that can identify
non-mobile users. To further decrease the miss-classification of
non-mobile users, we develop the Ludo Separator.

Both Ludo Locator and Ludo Separator are constructed in the
control program, and the control program sends them to edge
servers via a software interface. For an edge cluster, one control
program is sufficient to manage the data structures on all servers.

231

Hence, such construction-query separation significantly reduces
the average resource overhead on each server. The control program
maintains three tables. 1) The registration table stores all users that
use this region as HL, RL, or VL and the time they have been staying
in this region. 2) The RL table stores the UIDs of all mobile users
and their RLs and the SIP of the edge server that stores the user
contents. 3) The RTT table stores the round trip time (RTT) to every
other region of the service provider and each region is identified
by the IP address of its control program. All control programs will
periodically synchronize the RL information of the mobile users
while measuring the RTTs using these messages.

At the initialization of an edge server, the control program will
compute its Ludo Locator and Ludo Separator, which are used to
provide lookup services to tell 1) whether the user of the requested
content is mobile, 2) if yes, what is the SIP of its RL, 3) whether
the edge server should forward the request to that SIP instead of
forwarding it to the cloud. The edge server directly receives these
two data structures from the control program. After initialization,
any changes of the < UID, SIP > pairs can be updated by each
edge server locally. The control program only needs to tell each
server to insert or delete certain pairs. Such a design reduces the
communication cost between the control program and servers.

When a CR wants to access content that is associated with user u,
the content request is first forwarded to the edge data server in the
region where the CR resides. On the edge server, Ludo Locator can
provide a fast lookup service for the SIP of u, which contains the IP
address of the edge server or cloud server, whichever is closer to the
CR. The lookup result allows the edge server to forward the content
request to that server. Each mobile user’s location pair is stored in
this table. The details of the Ludo Locator will be presented in the
following part.

The locations of mobile users change dynamically, so the control
program of each location maintains a registration table that stores
the starting time of each mobile user arriving at that location. The
control program maintains and updates the location status of each
mobile user — determines whether this location is the user’s VL
or RL - according to the arrival time. The user-to-RL mappings
of all mobile users are stored in the RL table. When there is a
change in a user’s RL, this information should be forwarded to
control programs of all edge locations, which triggers the updates
of their RL tables. When there is a change to the RL table, the
control program can insert or delete user-location pairs to/from
Ludo Locator. In addition, each control program also maintains the
RTT estimations for communicating with all other edge control
programs, and these estimations can be used to determine the
network distances to other locations and whether other locations
should be chosen favorably over the cloud if a request should be
forwarded. The RTT estimations are computed using the moving
average method like that in the TCP protocol and stored in the RTT
table.

Ludo Separator is a memory-efficient (2,1)-Cuckoo filter [12]
running on each edge server to further reduce the false positives
caused by the Ludo Locator while distinguishing mobile users from
non-mobile users, assisting to provides a more accurate ELS for
users. The detailed design of the Ludo Separator is presented in
Sec. 3.5.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

Look up k

0

Bloomier filter
AITTTTITT]
s[TTTTTTT]

Two arrays 4 and B.
Get b=A[h(k)]|PD
B[h'(k)], bE {0, 1}

hash seeds+

0
1
2
3
4

v

%
@ s
ye /‘
@
Comgute H(k)=t,
t€{0,1,2,3}

Figure 6: Ludo hashing

Find the
value v in
slot t

Another advantage of EdgeCut is the ability to remove non-
mobile users from the whole user set without storing their keys.
However, the number of users is so large that just using a fingerprint
of a certain length of bits will result in a large number of false posi-
tives. The core structure of the Ludo separator is the (2,1)-Cuckoo
filter, which can make the number of false positives decrease expo-
nentially with a linear increase in memory usage. The reduction
of the false positive rate provides accurate location information of
mobile user contents, thus reducing invalid data access times and
reducing the burden on the communication network.

3.3 Ludo Locator

One challenge for providing a memory-efficient ELS on each edge
server is finding a space-efficient data structure to store UID-to-SIP
mappings and support fast lookup.

We briefly introduce Ludo hashing before presenting our design.
The proposed Ludo Locator is motivated by a recently developed
data structure called Ludo hashing [28], which Ludo Hashing is a
key-value lookup engine with small memory cost, > 50% smaller
compared with several known compact data structures such as
Cuckoo hashing and Bloomier filters [28] while supporting a fast
key-value pair updates.

Fig. 6 shows the structure of Ludo hashing, which is a tuple
(O, T, ho, h1, H), where O is an Othello lookup structure [41] that
maintains two bitmaps A and B and returns 1-bit value to indicate
whether the value v of a key k is stored in the bucket ho(k) or
hi(k) of T. Here, T is a (2,4)-cuckoo hash table [25] that stores the
values of keys. H is a universal hash function family. The index
t in the bucket is determined by comping ¢ = Hs(k) (t € 0,1,2,3)
where s is the seed stored in each bucket. Ludo hashing does not
need to store keys. For each key k, Ludo hashing first queries the
Othello structure to get whether the value is stored in the bucket
ho (k) or hq(k). Then Ludo hashing will extract the seed s in the
target bucket and compute the index t = H; (k). Finally, the value
stored in the slot ¢ will be returned as the value vy. Ludo hashing is
memory-efficient, which only costs (3.76 + 1.050) bits per key-value
item for [—bits values, providing > 50% space reduction compared
to existing solutions. Ludo hashing is fast in lookups and updates.
The time of item lookup and deletion is O(1) and the time of item
insertion is amortized O(1) [28].

For EdgeCut, the ‘key’ in our context is the UID of a mobile
user, and the ‘value’ is the IP address of the edge server or cloud,
whichever is preferred. The limitation of directly applying Ludo

232

Look up UID

0
Bloomier 1
Filter 2
3

\4 s HEAE Fingerprint matches:

forward the request to
I > the IP
0-bit fingerprint 32-bit IP address

v 0110110101] 142.250.1.1]

L.

Figure 7: The workflow of Ludo Locator

Fingerprint does not match:
forward the request to the HL
of UID

hashing in EdgeCut is that the Ludo hashing cannot tell whether
the given UID is for a mobile user or a non-mobile user. Since non-
mobile users are not stored in the table, by querying a UID of a
non-mobile user, Ludo hashing will return an arbitrary SIP. The
incorrect SIP for a non-mobile user will bring extra response time
and traffic. One intuitive solution to solve this issue is to place a
Bloom filter [10] that stores the user IDs of mobile users before
querying the Ludo hashing to filter non-mobile users. However,
Bloom filters introduce extra memory costs and memory accesses.
Instead, we present a solution that still uses three memory accesses
per lookup in the Ludo hashing.

Ludo Locator is designed to identify non-mobile users while
using less memory and fewer memory accesses compared to putting
aBloom filter. Instead of storing a value, Ludo Locator stores a tuple
in each table slot. The tuple includes two fields: (1) a fingerprint
field, also called user check code, which is a [.—bits value, and (2) the
SIP. The fingerprint stores the partial hash value H,(UID), where
H is the uniform hash function used in calculating the slot index.
Hence there is no extra step of hash computation. Fig. 7 shows the
slot format in Ludo Locator. To query a UID, Ludo Locator finds
the corresponding slot and gets the tuple. Then it compares the
fingerprint with H,(UID). If they match, Ludo Locator concludes
that the user is a mobile user and the SIP can be used for forwarding.
Otherwise, the user is regarded as a non-mobile user. The content
request can be forwarded to the edge server of the user’s HL. Recall
that the HL ID is stored along with every UID. Hence each edge
server also stores a small hash table for HL ID to HL IP mappings.
Such a table can be implemented with a standard Cuckoo hash table
[25].

We should point out that due to hash collisions, different users
may have the same fingerprint. If a non-mobile user is mapped
to a slot and the fingerprint matches its UID, we call this a false
positive (FP). The FP rate of an arbitrary non-mobile user for Ludo
Locator is 2 where I, is the length of each fingerprint. We set the
default [. to be 10 bits in our design, leading to an FP rate as low as
1/1024, which can be further reduced by the design presented in
Sec. 3.5. Suppose that a non-mobile user u is incorrectly identified
as a mobile user M; Ludo Locator will return the SIP of M. In this
case, the target edge server unlikely stores the contents of u and
will forward the request to the cloud. Note that for all mobile users,
all results provided by Ludo Locator are correct.

Lookup overhead. Each query lookup of the Ludo Locator
requires only four hash computations, two for the Othello lookup,

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

one for calculating the bucket index hj,, and one for the slot index
H inside the bucket. The fingerprint computation reuses the partial
result of H. If the seed for one bucket overflows, additional 1 or 2
hash computations are needed to get the result from the fallback
table, but the probability of bucket overflow is low (less than one
out of a million, according to our experiments).

Insertion and deletion overhead. Ludo Locator updates dy-
namic changes of mobile users’ RL information. Once a non-mobile
user becomes a mobile user, or a new mobile user joins the system,
the user’s < UID, SIP > pair is inserted into the table. The inser-
tion time consists of 1) an update to the Othello structure in (O(1))
time; 2) an update in the (2,4)-Cuckoo table contained in the Ludo
Locator in O((m/m — n)©Uogllog(m/m=n)))) \where m is the num-
ber of buckets in the Cuckoo table and n is the number of mobile
users; 3) the edge control program broadcasts the insertion update
information to the other regions. A similar but simpler process is
conducted for a deletion operation.

Selection of SIP in Ludo Locator. The control program con-
structs Ludo Locator for edge servers from the RL table that stores
the full mappings of UIDs to their SIPs in RL. It needs to decide
which IP address should be put into the SIP field for each mobile
user with UID, specifically, the SIP of RL or the IP address of the
cloud. Both are correct locations that store the contents of UID.
Whether an edge server is preferred to the cloud can be defined by
the network application. A possible condition can be the RTT to
the edge server is less than « times the RTT to the cloud, where o
is a constant such as 0.8.

3.4 Update and consistency of Ludo Locator

Mobile users may also move to other locations and their RLs may
change. How to handle the dynamics to maintain correct lookup
tables is a challenge.

The control program tracks the mobile users in its location using
the registration table. When a mobile user visits the location, the
registration table records its visited time associated with its UID.
The time will be used for tracking if the user’s VL should be changed
to its RL. When a non-mobile user changes to a mobile user or a
user’s VL changes to its RL, an update is necessary to edge servers
to reflect the correct mobile user to SIP mapping.

The edge data server only needs to store one table, maintaining
the mobile user ID and its associated RL edge data server IP. How-
ever, if the network latency required for the edge control server in
this region to communicate with the cloud server is lower, then the
value saved in the RL field is the IP address of the cloud server.

RL insertion. When a user u moves into a new location r, the
location is marked as its VL, and the location’s control program
records it in the registration table. The contents generated by u are
cached by an edge server s in r, and s also forwards the contents
to u’s corresponding server s’ in its RL or HL by looking up Ludo
Locator. When the control program in r finds that the time u has
been in this area exceeds a predefined threshold T;;, it determines
that it becomes the RL for u. The edge server s in r will be the new
corresponding server of u and notify the current RL edge server s’
to stop caching more u’s contents and migrate the existing cached
contents of u to s. The IP address of s will be the SIP of u. The
control program notifies all edge servers in r to perform an insert

233

operation of < UIDy, SIPs > in their Ludo Locator, where SIP; is
the IP of s. The control program also synchronizes this information
with other locations. The control program of every other region
will tell its edge servers to insert < UID,,, SIP >, where SIP is the
IP address of s or the cloud, whichever is preferred.

Note there is no difference in the RL insertion process for the
case of u moving from its HL to an RL or the case of moving from
a previous RL to a new RL. If a previous mapping of u exists in
Ludo Locator, it will be replaced by the new one. If no mapping of
u exists, a new one will be inserted. In the end, the resulting Ludo
Locator is the same in the two cases.

RL deletion. RL deletion happens in only one case: a mobile
user becoming non-mobile. When a mobile user u returns to its HL
r, an edge server s of r starts to store new contents generated by
u. When u stays in its HL for a longer time than the threshold Ty,
the control program of r will notify the current RL edge server to
stop caching more u’s contents and migrate the existing cached
contents of u to s. The mapping of u in the control program of
every location will be deleted. EdgeCut supports quick deletion
operations by simply deleting an entry from the control program
and removing u’s fingerprint in Ludo Locator.

Consistency. Maintaining consistency ensures the lookup re-
sults of the Ludo Locator reflect the actual edge servers that store
the requested contents. If a mobile user u moves from an RL to a
VL and stays long enough, the VL becomes the new RL, and the
previous RL should retire. EdgeCut will request the RL server s” to
stop caching more contents of u and migrate the existing contents
to the VL edge server s. The migration should be complete before
the changes to Ludo Locator take effect. During this period, any
changes about u’s contents that are sent to s will be forwarded to
s.

If user data that has been copied to the VL server is written,
the RL edge control server can act as an anchor node to inform
the VL edge data server to modify the corresponding value. The
write operation in these two servers can be asynchronous because
any concurrent writes to the same content are subject to the last
writes to the RL edge data server until the RL value is changed.
Copying before RL value modification in the Ludo table ensures
the consistency of data before and after the user moves. The same
is true for mobile user deletions and new insertions. For the consis-
tency of the Ludo Locator table, an edge control server sends the
update information to other edge control servers once there is an
RL insertion, update, and deletion.

Size setting of Ludo Locator. The load factor is defined as
the number of key-value mappings over the total number of slots
in a data structure such as Cuckoo hashing, Ludo hashing, and
Ludo Locator. It has been shown that insertions never fail when
the load factor of Ludo is <97% [28]. It proves in theory that the
insertion would always be successful asymptotically when the load
factor is <98.03% [15]. In our implementation, as long as the load
factor of a Ludo Locator is below 97%, reconstruction will not be
triggered. Otherwise, the control program will start reconstructing
the Ludo Locator by increasing its size by 10% for all edge servers
in its location.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

o 6-bit FP 1-bit Flag & 32-bit IP Addr
Mobile 0 {5¢ [101001 | 1+142250.0.1 |
1 [S2 -
2[5 [f0.v Non-mol?ile
user
Static 3/67
user B 4 |Ss [oo0] [10]00]11]10]

Ludo Locator (2,1)-Cuckoo filter

Figure 8: Construction of the Ludo Separator.

3.5 Ludo Separator

When the number of non-mobile users is large, Ludo Locator’s
fingerprint-based approach still produces false positives that cate-
gorize some of them as mobile users (shown in Section 4). However,
a unique feature that can be utilized by EdgeCut is that, once a false
positive is detected by an edge server, it can be recorded and later
queries of the same non-mobile user will not cause a false positive
again.

Towards this goal, we design Ludo Separator, a secondary data
structure based on a (2,1)-Cuckoo filter [12], i.e., a Cuckoo hash
table that uses two alternate buckets for each key and each bucket
stores the fingerprint of the key mapped to this bucket. To query
a UID, Ludo Separator fetches two buckets and checks if one of
the fingerprints matches the fingerprint of the UID. If there is a
match, Ludo Separator returns a positive result, otherwise it returns
a negative result. In addition, the SIP field in Ludo Locator includes
an extra flag bit to indicate a collision in this slot. Suppose that
one slot in the Ludo Locator stores the fingerprint and the SIP
corresponding to a mobile user g, and a non-mobile user b is also
mapped to this slot, and they happen to have the same fingerprint.
Then the flag bit is set to 1 to indicate that there is a potential false
positive so the edge server will further lookup b in Ludo Separator.

The construction of the Ludo Separator is as shown in Fig. 8.
When a local edge server s processes the request of a content of a
non-mobile user u but encounters a false positive, it will forward
the request to an edge server s’ that does not store u’s contents. s’
will report this false positive to s, so s should insert the element
u into Ludo Separator and set the collision flag bit of the slot in
the Ludo Locator to 1. In Ludo Separator, each bucket contains a
2-bit fingerprint. If there is again a fingerprint match of u in Ludo
Separator, EdgeCut can conclude that u is a false positive and thus is
a non-mobile user. Otherwise, u will be forwarded to s’ because it is
not a false positive. After every insertion, the edge server broadcasts
its Ludo Separator to all edge servers within the same cluster, to
make all Ludo Separators consistent.

The (2,1)-Cuckoo filter can be used during the construction.
When a CR wants to request the user’s data, the edge data server
first checks whether the flag bit is “1" after finding the SIP corre-
sponding to the user ID. If the flag bit is “1", then the user ID needs
to be checked in the Cuckoo filter again using the new identifier.

In summary, the fingerprint of the Ludo Locator removes most
non-mobile users, and the second filter - Ludo Separator removes
collisional mobile users. Thus, the false positive rate will be greatly
reduced, and the separation of mobile users and non-mobile users
will be completed more thoroughly. The evaluation results show
the false positive rate using Ludo Locator plus Ludo Separator is

234

more than 80% lower compared to using Ludo Locator only with
more memory cost.

We conduct the following analysis on the false positive rate by
using both Ludo Locator and Ludo Separator.

Suppose there are n mobile users and m non-mobile users and
we assume the ratio of them is f, which means m = fn. As for the
locator-only approach, the length of the fingerprint is /5. For the
Ludo Separator approach, the length of a fingerprint in the Ludo
Locator is Iz and a fingerprint in (2,1)-Cuckoo filter is I3 bits. For

the locator-only approach, the memory cost is: n - (32 + ;) and its
1

2h

As for the Ludo Separator, its memory cost consists of the Ludo
Locator and the additional (2,1)-Cuckoo filter, The length of the
Cuckoo filter follows the setting in [12]. Thus its memory cost can

be expressed as: (I +1+32) - n+ 2123_1

Ludo Separator come from the mobile users whose UID pass the
Ludo Separator and are identified as non-mobile users: n - 2%2 . 2%
o(n- (2%)2), where o(n - (2%)2) represents the probability of cases

false positives only come from non-mobile users is: m -

- n. The false positives of

that two or more non-mobile users are mapped to the same slot
with one mobile user and their fingerprints are all the same. Since
the value is very small, we ignore the calculation here.

Suppose the memory cost of these two schemes same, then the

2,?_1 +1. Thus, when

I1, Iz, and I3 will follow this equation: /1 = I +

5]
. I+ 52 -1 .
p is greater than 2 "5 the Ludo separator will outperform
the fingerprint-based approach in the number of false positives.

3.6 Scalability.

When the number of mobile users reaches the threshold of the load
factor (e.g., 0.85) of the registration table or there is a deadlock
encountered when inserting a new UID, the registration table main-
tained in the control program (shown in Fig. 5) would be enlarged.
Then, all < UID, SIP > pairs will be inserted into the new empty
table again. However, new < UID, SIP > pair insertion would be
halted during registration table resizing. Even if the mobile users’
registration is not a time-sensitive task (e.g., transaction system),
the time and CPU overhead for migrating all current < UID, SIP >
pairs into an empty table is large. To reduce the halted time for the
registration table when resizing, we leverage the extendible hash-
ing scheme to reduce the number of migrated pairs. In extendible
hashing, there is only one registration table with the fixed size first;
when the number of < UID, SIP > pairs in it reaches a threshold,
there is another table would be created with the same size, and all
the UID ending with the "0" would stay in the original table. The
left pairs whose UID ends with "1" will move to the new split one.
When both of them become full, two new registration tables would
be created to have the pairs whose UID ends with "10" and "11", and
the UID ending with "01" and "00" will stay in the original tables
and keep going. Then, there is always the power of two registration
tables kept in the control program, and only half of < UID, SIP >
pairs would be moved to the new registration tables.

3.7 Data privacy.

From a trustworthy edge computing perspective [32], the protec-
tion of user-associated data is of paramount importance due to the

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

Machine in Utah

Vo WISC

MASS . |

(_/B Cluster D . D Clusteri
= D—ﬁ B |
[b ;
[P |
- P :

[

(a) The network topology consists of 9 machines from
MASS, WISC and Utah clusters in the CloudLab.

80
I Cloud I Portkey
70 I Replicas EdgeCut
- 60
Es0

40
Mobile users ratios

60

(b) Average latency of accessing user-associated content.

Figure 9: Results from EdgeCut prototype implementation.

sensitive and private nature of the information involved. Safeguard-
ing this data is crucial to ensure individuals maintain control over
their personal information. It is important to note that in this partic-
ular context, the focus is on the content and data published by the
user. The EdgeCut framework enables CR to query user-associated
content based on the user’s unique identifier (UID). Throughout
the entire data query process, the user’s identity, who publishes
the content, remains undisclosed to the CR system. This privacy
assurance is achieved through the implementation of a control pro-
gram running in the application layer. By operating at this layer, the
control program guarantees that the user’s information is not ex-
posed to the CR. Additionally, content owners retain the authority
to establish access permissions for other users attempting to access
their content through the use of metadata. This feature empowers
content owners to set appropriate levels of authorization, granting
or denying access to specific individuals or groups as they see fit.
By emphasizing privacy protection, incorporating control mech-
anisms, and empowering content owners with access authority,
the framework aligns with trustworthy edge computing principles,
providing users greater control and security over their personal
data.

4 EVALUATION

We evaluate the performance of our EdgeCut against a few state-of-
the-art methods that can be utilized for edge content access, by both
the prototype implementation and simulations with real network
datasets.

235

4.1 Application workloads

The user-associated content is indexed with the UID. We use the
YCSB workload [26] to generate 10M distinct keys as UID for all
users, which are spread in the whole network uniformly. In the
latency measurement, we randomly select 10K users as CRs. For
each CR’s workload, we generate 1K UID as their content access
workload in the YCSB suite with the distributions of uniform and
Zipfian-0.9. In the following evaluation, we will change the mobile
users ratio in each CR’s workload to get the average latencies, which
will be treated as the lookup latency.

4.2 Methods to compare with

We compare EdgeCut with the following three approaches in the
evaluation:

1). Direct cloud access (denoted as “Cloud”): A naive ap-
proach that directly queries the cloud to get every content.

2). Proactive replication: In the proactive replication scheme
[13][14], edge servers provide content access based on the “cell
structures”, and proactively replicate data to the different number
of edge servers in the adjacent cells. For our evaluation, we replicate
user contents from each edge server into 2 adjacent hexagonal cells.
When a CR requests a mobile user’s data, the local edge server will
access one of these three servers.

3). Portkey [24]: This method is an adaptive placement for
a distributed KV store in the case of dynamic edge networks. In
Portkey, all KV pairs are grouped with the hash function. The main
strategy is to place different KV pair groups in the edge server
where it can achieve low latency. The optimal placement for each
KV pair group comes from the analysis of the workload and the
applied greedy algorithm. In our implementation, the “optimal”
location for each KV pair group is set on the edge server where
users request them most.

4.3 Implementation and prototype evaluation

We implement the EdgeCut protocol as a prototype system run-
ning in CloudLab [1], a public geo-distributed cloud. The prototype
consists of 9 machines from 3 different clusters located in Mas-
sachusetts (MA), Wisconsin (WI), and Utah (UT). As shown in Fig.
9a, four physical servers are used in each of MA and WI as an edge
cluster: three computers are used as edge servers connected to one
physical machine as the control program. In addition, we also use a
machine in UT as the cloud. We use Redis [5] to store user IDs and
a random string (1KB) as value, the ZeroMQ [6] will be leveraged
to complete communication between machines.

In EdgeCut, All UID-to-SIP mappings are stored in Ludo Locator,
running on each edge server in MA and WI. Each edge server per-
forms queries of contents from different mobile users 10 thousand
times and sends the content requests to the targeted servers indi-
cated by the SIPs. Each successful content request starts with the
requester sending the request and finishes at the requester receives
the requested content. Meanwhile, we record the response latency
for these content requests and calculate the average response la-
tency and throughput of satisfying content requests on each edge
server.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

Num. of users 100K 1M 5M 10M
CBF (content-level) [8, 21] 1190 11870 59360 118710
EdgeCut (user-level) (this work) 0.5 5.1 25.1 50.2

Table 1: Memory cost (in MB) for content-level and user-level
indexing structures.

In the proactive replication approach, we store three copies of
each content in another 2 adjacent edge servers. Also, CR can reach
any of these three replicas (including HL) to access queried data.

In Portkey, we cached the mobile user’s contents in the edge
server based on the analysis of CRs” workloads. The location of the
edge server is closer to the CR that queries this mobile user’s con-
tents most frequently. Note that all UIDs are hashed into different
groups to be placed on different servers, so the cached edge server
may not be the closest location for CRs to access the user-associated
content.

We distribute all users in the above two clusters and generate
queried workloads for randomly selected CR from the YCSB work-
load with the Zipfian distribution with a constant 0.9 [17, 19, 20].
For mobile users, their RL and HL are uniformly distributed in two
distinct clusters. Fig. 9b shows the latency of completing content
requests on each edge server. No error bars are drawn in the figures
because the variations are too small to see. EdgeCut can achieve
0.5x latency compared to direct cloud access when the mobile users
ratio is more than 60. For mobile users, CR can get a closer SIP
from the Cloud or RL cached server for the queried UID via the
Ludo locator. For non-mobile users, HL or Cloud will be chosen to
access data based on the round trip table. Portkey can choose an
edge server for caching all user-associated data in a user group, but
that may not be a closer choice for each queried user data.

4.4 Simulations with real network datasets

We use the network latency datasets [43] based on PlanetLab [3]
and the Seattle topology [2] for evaluation. The PlanetLab dataset
collects the pair-wise RTTs among 490 nodes over 18 time slices
in the PlanetLab network. The Seattle dataset consists of pair-wise
RTTs among 99 nodes in 688 time slices. We choose one node as
the cloud and others as edge clusters. We use one workstation with
two Intel E5-2660 v3 10-Vore CPUs at 2.60GHz, 160GB 2133MHz
DDR4 memory, and 25MB LLC to run the simulations.

It is well known that contents have different popularity and
both content popularity and user activities may be described as
Zipfian distribution [17]. We generate two types of content request
workloads in both uniform and Zipfian distributions to show that
Edgecut can be widely applied in different scenarios based on YCSB
workload [26], which is a common setting [20]. For the uniform
distribution workload, each user’s contents have the same probabil-
ity of being accessed by others. The Zipfian distribution (constant
0.9) workload includes a small part of popular UIDs.

4.4.1 Evaluation of Ludo Locator. We implement Ludo Locator
using C++ code and compare it with two data structures used for
recent indexing solutions named Cuckoo Summary (CS) [37] and
counting Bloom filters (CBF) [21]. In our implementation, each CBF

236

—~300 =

a —E~ Cuckoo Summary 84 -¥-Cuckoo Summary

= =~ Ludo Locator g -# -Ludo Locator

% < | %..._—I-Counting Bloom Filter

<) = o

O Q 2 S ¥rme—n — e -

> < . S

S 2

§ 2

R Ele—t—0
100K ™M 5M 10M 100K 1™ 5M 10M

Mobile Users # Mobile Users

(a) Memory cost. (b) Lookup throughput.

Figure 10: Performance comparison for Ludo Locator,
Cuckoo summary and counting Bloom filters.

— 2.5 —#— LudoSeparator:6+2bits
R ~{~ Fingerprint = 10bits Separator:6+1bits

2 =7~ Fingerprint = 9bits : .
5 Fingerprint = 8bits Separator:6+2bits
P 1.5 Fingerprint = 7bits
:% 1 Fingerprint = 8bits
£ V- g--- - -y Fingerprint = 9bits
Q
2 05 4 - R L Sy Fingerprint = 10bits
uw B IR Y

0

100K 500K ™ M 4.4 4.8 5.2 5.6 6.0

Mobile Users
(a) The false positives rate.

Memory cost (MB)
(b) The memory cost.

Figure 11: Evaluation of Ludo Separator against locator-only
approaches.

is constructed by an edge cluster based on the mobile users it is
responsible to [21]. CBFs will be synchronized among edge clusters.

Memory cost. Fig. 10a shows the memory cost comparison of
the three methods. Ludo Locator costs smaller memory than CS, in
particular around 25% less for 10M mobile users, and significantly
smaller memory than CBF, around 66% less. Note the memory cost
of CBF in Fig 10a is for user-level indexing, while the original
design of CBF is for content-level indexing. Table 1 shows the
comparison of the Ludo Locator and content-level indexing using
CBFs. The content-level indexing requires over 12GB for 1 million
users based on the real distribution of the number of contents per
user per year [4]. We find that content-level indexing requires 2000x
more memory and hence is impossible to support cache sharing in
modern edge computing. User-level content caching is a preferred
solution.

Lookup throughput. We evaluate the lookup throughput in
millions of queries per second (Mqps) of the data structures for
the three indexing methods. We vary the number of mobile users
from 100K to 10M. The test dataset contains 10K UIDs that could be
repeatable. Each point value is the average time of 5 runs. Fig. 10b
shows that CS achieves slightly faster throughput than Ludo Loca-
tor. However, Ludo Locator achieves around 2 Mqps, way more than
sufficient to support queries on the edge server. Hence, the through-
put Ludo Locator and CS do not make significant differences. Both
of them are much faster than CBF.

4.4.2 Evaluation for Ludo Separator. In this section, we compare
the approach of the Ludo Locator plus Ludo Separator (denoted

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

1000
900
800
700
600
500
400
300
200
100

I Cloud
I Replicas

[Portkey

Latency (ms)

20

40 60 80
Mobile users ratios (%)

100

[EdgeCut

1000
900
800
700
600
500
400
300
200
100

B Cloud
B Replicas

[Portkey
I EdgeCut

Latency (ms)

20

40 60 80
Mobile users ratios (%)

100

(a) Latency with uniform distribution in Seattle topology. (b) Latency with Zipfian distribution in Seattle topology.

600

B Cloud
B Replicas

[N Portkey
5001

£ 400
3 300
| =
(0]
% 200
-
100
0_

20 40 60 80

Mobile users ratios (%)

100

[EdgeCut

600
500+
€ 400
3300
=4
[
5 2001
-
100+
0_

B Cloud
@ Replicas

I Portkey
[EdgeCut

20 40 60 80

Mobile users ratios (%)

100

(c) Latency with uniform distribution in PlanetLab topol- (d) Latency with Zipfian distribution in PlanetLab topol-
ogy.

ogy.

Figure 12: Comparison of content access latency.

as Ludo Separator in short) with the locator-only approach. The
performance metrics include the number of false positives, false
positive rate, and memory cost.

Ludo Separator is used in a two-layer data structure, including
Ludo Locator and Ludo Separator, which is a (2,1)-Cuckoo filter.
Ludo Locator can filter out most non-mobile users, and the Cuckoo
filter can remove the mobile users that are false positives introduced
by fingerprint collisions in the Ludo Locator. After this two-layer
screening, the number of false positives can be reduced significantly.
As for the fingerprint-based approach, it can use more bits for
fingerprints in Ludo Locator to reduce the false positive rate.

We vary the number of mobile users from 100K to 2M and test
with 4x non-mobile users. We assume EdgeCut uses 6-bit finger-
prints in the Ludo Locator and 2-bit fingerprints in Ludo Separator
for the solution that combines them. We compare the locator-only
approach by varying the length of the fingerprint from 8 bits to
10 bits. As shown in Figs. 10a, Ludo Separator achieves the lowest
false positives compared to all three versions of Ludo Locator-only
approaches. We set 1M mobile users and compare the memory
cost of all approaches. From Fig.11b, the memory costs of the Ludo
Separator with (6+2) bits are smaller than that of the locator-only
approach (8 bit). Combining the results of the Ludo Separator with
(6+2) bits and the locator-only approach (8 bit) from all three figures
in Fig. 11, we find that Ludo Separator costs lower memory while
achieving a lower false positive rate with its two-layer design.

4.4.3 Evaluation for network latency. We test the latency of con-
tent accesses by comparing EdgeCut with Cloud and Proactive
Replication. Lower latency infers the edge cache-sharing method

237

with a higher fit rate. We implement EdgeCut with different mo-
bile user ratios from 20% to 100%. In our benchmark, the CRs are
randomly chosen on different servers. We also assign each CR with
10K queried users’ IDs. We generate 1K UID as the queried work-
load based on the YCSB suite with the distributions of uniform and
Zipfian-0.9.

Figs. 12a and 12b show the latency of the Seattle topology with
uniform and Zipfian distributions, respectively. Figs. 12c and 12d
show the latency of the PlanetLab topology with uniform and Zip-
fian distributions, respectively. In most cases, EdgeCut provides
lower latency than the other three schemes, especially when the ra-
tio of edge users is large. The reason is that the Ludo locator enables
users to access the targeted mobile user’s content from the closer
SIP for each CR. In Portkey, even if the cached user data is placed
in an edge server in a hashing group based on the analysis of CRs’
workloads. However, each group contains many users’ data; thus
it is not optimal for all CRs to get data from a closer place. In the
proactive replicas approach, user data is copied to the edge servers
that are adjacent to HL and cannot reduce the latency for a CR that
is far from them. Low latency means that the time taken for a user’s
request to reach the server and for the server to respond is minimal.
The reduction of the latency provided by EdgeCut can enhance user
satisfaction. Also, due to the different node geo-distributions in the
Seattle and PlanetLab networks, the RTTs in these two datasets are
different. Therefore, in the simulation results, the average latency
of the PlanetLab network is lower than that of the Seattle network.

4.4.4 Cross-area traffic rate. Cross-area traffic refers to the data
traffic that needs to be transmitted between different geographical

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

B Cloud N Replicas [Portkey

100

I EdgeCut

901
80
701
60
501
40
30
20

Cross-area request
rate (%)

20 40 60 80

Mobile users ratio (%)

100

(a) Cross-area traffic (uniform)

BN Cloud BN Replicas [Portkey

100

[EdgeCut

90
80
70
60 1
501
40
301
20-

Cross-area request
rate (%)

20

40 60 80
Mobile users ratio (%)

100

(c) Cross-area traffic (uniform)

BN Cloud WM Replicas [Portkey [EdgeCut
100
= 90
9 80
Bg 70
8 60
88 50
w
g 40
© 30
20
20 40 60 80 100
Mobile users ratio (%)
(b) Cross-area traffic (zipfian)
BN Cloud W Replicas [Portkey [EEE EdgeCut
100
0
]
3
D,
S
8g
5t
&
2
(8]

20

40 60 80
Mobile users ratio (%)

100

(d) Cross-area traffic (zipfian)

Figure 13: Cross-area traffic rate comparison.

areas or regions. In the context of the given statement, cross-area
traffic specifically refers to content requests that are satisfied by
edge servers located far away, resulting in longer latency. To eval-
uate the distribution of content requests among edge servers, the
metric of cross-area traffic rate is used. This metric measures the
proportion of content requests that are satisfied by distant edge
servers or the cloud, leading to higher latency.

In our evaluation, cross-area traffic is defined as one with a
latency longer than 120 ms by analyzing the network latency from
CR to the targeted user-associated data. Fig. 13 shows the cross-
area traffic rate of the three methods in both Seattle and PlanetLab
topologies with different workloads, with different mobile users
ratios. In all cases, EdgeCut can reduce the cross-area traffic rate by
5% to 30% compared to other methods. Hence, more requests are
satisfied by EdgeCut on nearby servers.

4.4.5 Cloud access rate. Reducing cloud traffic load has emerged
as a crucial objective in the realm of edge computing, prompting
the pursuit of various solutions such as edge caching. EdgeCut can
also be employed as a user-associated data caching approach to
alleviate the burden on cloud resources by storing and delivering
mobile users’ data at the network edge.

We show the cloud access rate of the three methods in Fig. 14.
The cloud approach enables CR to request data from the cloud
server each time. Thus, the cloud traffic reaches 100%, as shown in
the red dot line. Again, with both uniform and Zipfian workloads,
EdgeCut always achieves the lowest cloud access rate and reduces
the metric by 20% to 50% compared to Proactive Replication, despite
the latter using the 3x storage resource.

238

5 RELATED WORK

Reducing network latency and cloud bandwidth cost of content
accesses is a crucial issue. Edge caching is one promising approach
to achieve so [23].

Data Caching in Edge Computing. Xia et al. [34] models the
collaborative edge data caching problem (CEDC) as a constrained
optimization problem and proves it is NP-complete. They also pro-
pose an online algorithm, called CEDC-O, to solve this problem
based on Lyapunov optimization. Zhang et al[42] investigates
delay-optimal cooperative edge caching in large-scale user-centric
mobile networks. By proactively storing files at base stations (BSs)
and utilizing cooperative caching, the study aims to reduce end-to-
end delay and alleviate backhaul pressure and proposes a greedy
content placement algorithm based on optimal bandwidth alloca-
tion. Gabry et al. [16] focuses on optimizing content placement in
wireless edge caching to maximize energy efficiency in heteroge-
neous networks. By minimizing key metrics like expected backhaul
rate and energy consumption through convex optimization, the
study highlights a tradeoff between these factors. However, even
if there are optimizations to solve the placement problem for data
in edge computing, the Ludo locator proposed in this work can
always enable the user to access them with a memory-efficient data
structure.

Edge Location Services. The location service enables users to
locate the specific edge servers that store the content they are re-
questing. In arecent study by Xie et al. [35], they introduced a highly
efficient data indexing framework called HDS. This framework di-
vides the forwarding of data access requests into two categories:

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

B Cloud

Py
o
o

80 1
601
40
201

Cloud traffic rate (%)

20 40 60 80

Mobile users ratio (%)

100

(a) Cloud access rate (Seattle, uniform)

N EdgeCut

BN Cloud @ EdgeCut

Yy
o
o

801
60
40
201

Cloud traffic rate (%)

20 40 60 80

Mobile users ratio (%)

100

(b) Cloud access rate (Seattle, Zipfian)

Figure 14: Comparison of cloud access rate.

inter-region and intra-region. The index of data items is stored in
the Cuckoo Summary, which is maintained in the regional data
center. COIN [37] is another efficient routing method that focuses
on finding cached content. It leverages virtual coordinates on P4
switches to optimize the routing process. However, both HDS and
COIN rely on content-level indexing, which limits their ability to
handle a large number of users and content effectively. In con-
trast, EdgeCut addresses the scalability issue by utilizing user-level
indexing and caching properties. By leveraging these techniques,
EdgeCut is able to provide a solution that overcomes the challenges
posed by a large user base and a vast amount of content.

User Profile Replication. User profiles, which are essential
user-associated data, have been extensively studied in the context
of mobile networks [30]. In their work, the authors approach the
user profile replication problem by formulating it as a flow network
problem [18] in order to optimize the minimum communication
latency to a replica. They also propose a replication mechanism
that takes into account calling and user mobility patterns, resulting
in faster location lookup.

Building upon this research, Shivakumar et al. [29] presents a
novel replication mechanism for user profiles, leveraging known
calling and user mobility patterns to enhance the speed of loca-
tion lookup. However, in the context of the future era of software-
defined networking and edge computing, there is a shift towards
storing user profiles on local edge servers. Consequently, our pri-
mary focus is on efficiently determining user location while ensur-
ing network scalability.

Nevertheless, in modern network applications, the indexing of
user-associated data poses a challenging problem that existing
works have yet to resolve.

Data replication provides several benefits, including load balanc-
ing, consistency maintenance, and fast access by duplicating data
across different geo-distributed servers. Mansouri et al. [22] intro-
duced a Dynamic Popularity Aware Replication Strategy (DPRS)
that utilizes access history to prefetch popular data adaptively.

For mobile edge computing, Farris et al. [13] proposed a re-
active/proactive data replication approach based on mobile user
movement patterns. They formulate the data replication selection
policy as an optimization problem, considering two metrics: Reac-
tive Migration (RM) times and Numbers of Service Replicas (NSR).
However, this approach often results in storing user data in more
than three adjacent edge data servers, which is unnecessary in terms

239

of memory consumption in the future. In Section 4, it is demon-
strated that despite proactive replication storing more copies of
data, EdgeCut still outperforms it in terms of access latency.

Edge data store. Edge data stores [24] play a pivotal role in
edge computing by providing localized storage and efficient data
access at the network edge. These data stores address the challenges
incurred by latency and bandwidth limitations often encountered
in edge computing environments.

An edge data store typically comprises a distributed storage sys-
tem deployed in proximity to the devices and users generating the
data. It enables the storage and retrieval of frequently accessed data
or pertinent subsets of data that require rapid processing or delivery.
We can apply different key-value store engines or data structures as
the backend of the edge server. In EdgeCut, we leverage the Ludo
locator and Ludo separator as two main structures. The indexing
structure that is more memory efficient is the preferred feature for
edge servers because the capacity is limited in edge servers.

Another benefit of edge stores is data privacy and security: With
edge data stores, sensitive data can be stored and processed locally,
reducing the risk of data breaches and ensuring compliance with
privacy regulations. This localized approach enhances data privacy
and security by minimizing data exposure to external networks. Our
future work would focus more on how to construct and maintain
trustworthy edge data stores.

6 CONCLUSION

This paper introduces EdgeCut, a scalable protocol that facilitates
edge location services for accessing user-associated content. A key
innovation of this work is Ludo Locator, an efficient key-value store
that maintains UID-SIP mappings, filters non-mobile users, and
supports dynamic changes. Additionally, we have developed a data
structure named Ludo Separator, which significantly reduces the
false positive rate of filtering while consuming minimal memory.

To evaluate the effectiveness of EdgeCut, we have implemented a
prototype in CloudLab, a public geo-distributed cloud platform. Fur-
thermore, we have conducted simulations using diverse large-scale
datasets collected from real-world scenarios. The results demon-
strate that EdgeCut can reduce content access latency by up to 30%
compared to a recent solution that requires three times the storage
resources. Additionally, EdgeCut reduces the cloud access rate by
20% to 50%. Notably, EdgeCut exhibits low overhead when deployed
on edge servers.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS [28] Shougian Shi and Chen Qian. 2020. Ludo hashing: Compact, fast, and dynamic

key-value lookups for practical network systems. Proceedings of the ACM on

We sincerely thank our anonymous shepherd and reviewers for Measurement and Analysis of Computing Systems 4, 2 (2020), 1-32.

their insightful suggestions. Y. Liw. S. Shi. M. Wang and C. Qian [29] Narayanan Shivakumar, Jan Jannink, and Jennifer Widom. 1997. Per-user profile
- ? i ’ replication in mobile environments: Algorithms, analysis, and simulation results.

were partially supported by NSF Grants 2322919, 2114113, 1932447, Mobile Networks and Applications 2, 2 (1997), 129-140.

and 1750704. Y. Wang was supported by NSF grant 2118745. [30] Narayanan Shivakumar and Jennifer Widom. 1995. User profile replication for

faster location lookup in mobile environments. In Proceedings of the 1st annual
international conference on Mobile computing and networking. 161-169.

[31] Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante.

REFERENCES 2009. Drafting Behind Akamai: Inferring Network Conditions Based on CDN

[1] [n.d.]. https:/cloudlab.us/. Redirections. IEEE/ACM TRANSACTIONS ON NETWORKING (2009).

[2] [n.d.]. https://seattle.poly.edu/. [32] Tian Wang, Lei Qiu, Arun Kumar Sangaiah, Anfeng Liu, Md Zakirul Alam

(3] [n.d.]. https://www.planet.com/. Bhuiyan, and Ying Ma. 2020. Edge-computing-based trustworthy data collec-

[4] [n.d.]. https://www.statista.com/statistics/744126/facebook-user-posts-per- tion model in the internet of things. IEEE Internet of Things Journal 7, 5 (2020),
month/. 4218-4227.

[5] [n.d.]. Redis. https://github.com/redis/redis. [33] Shiow-yang Wu and Yu-Tse Chang. 2006. A user-centered approach to active

(6] [n.d.]. ZeroMQ. https://github.com/zeromq/libzmq. replica management in mobile environments. IEEE Transactions on Mobile Com-

[7] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. 2017. Mobile edge pijtting 5 '11 (ZQOG')’ 1606_1'619' .
computing: A survey. IEEE Internet of Things Journal 5, 1 (2017), 450-465. [34] Xiaoyu Xia, Feifei Chen, Qiang He, John Grundy, Mohamed Abdelrazek, and Hai

(8] J Almeida, AZ Broder, P Cao, and L Fan. 1998. A scalable wide-area web cache Jin. 2020. Online collaborative data caching in edge computing. IEEE Transactions
sharing pr’otocol. SIG’COMM;S (1998). on Parallel and Distributed Systems 32, 2 (2020), 281-294.

[9] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. (35] Junjie Xie, Deke Quo, Xlaofeng Shi, Haofan Cai, Chen Qlap, and H'onghul Chen.
2012. Workload Analysis of a Large-Scale Key-Value Store. In In Proc. of ACM 2020. A fast hybrid data sharing framework for hierarchical mobile edge com-
SIGMETRICS. puting. In IEEE INFOCOM. IEEE, 2609-2618.

[10] Andrei Broder, Michael Mitzenmacher, and Andrei Broder I Michael Mitzen- [36]]un]1§ Xie, Chen Qian, Deke Guo, X‘_n Li, Shou_qmn _Shl’ and Honghul. Chen. 2019.
macher. 2002. Network applications of bloom filters: A survey. In Internet Mathe- Efficient Data Placement and Retrieval Services in Edge Computing. In [EEE
matics. Citeseer. ICD__CS- I_EEE) .))))

[11] I-R Chen and Baoshan Gu. 2003. Quantitative analysis of a hybrid replication with [37] Junjie Xie, Chen Qian, Deke Guo, Minmei Wang, Shougian Shi, and Honghui
forwarding strategy for efficient and uniform location management in mobile .CherL 2019. Efﬁleent indexing mechanism for unstructured data sharing systems
wireless networks. IEEE Transactions on Mobile Computing 2, 1 (2003), 3-15. n edg€ Computlngx In IEE?:" INFOCOM. IEEE, 820-828.

[12] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. [38]]1an11ang' Xu', Bo Li, and Dl'k Lun Lee. 2002. Placement problems for trans.par.ent
2014. Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM data replication proxy services. IEEE Journal on Selected areas in Communications
International on Conference on emerging Networking Experiments and Technologies. 20,7 (2002), 1383-1398. . .
75-88. [39] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2021. A Large-scale Analysis of

[13] Ivan Farris, Tarik Taleb, Miloud Bagaa, and Hannu Flick. 2017. Optimizing service Hundreds of In-memory Key-value Cache Clusters at Twitter. ACM Transactions
replication for mobile delay-sensitive applications in 5G edge network. In 2017 on Storage (2021).)) o
IEEE International Conference on Communications (ICC). IEEE, 1-6. [40] Kok-Kiong Yap et} {11. 2017. Taking the Edge off with Espresso: Scale, Reliability

[14] Ivan Farris, Tarik Taleb, Antonio Iera, and Hannu Flinck. 2017. Lightweight and Programmability for Global Internet Peering. In Proc. of ACM SIGCOMM.
service replication for ultra-short latency applications in mobile edge networks. [41] Ye Yu, Djamal Belazzougui, Chen Qian, ancll Qin ZhangA 2018. Mémory—eﬂi01ent
In 2017 IEEE International Conference on Communications (ICC). IEEE, 1-6. and ultrajfast network Iopkup and forwarding using Othello hashing. IEEE/ACM

[15] Daniel Fernholz and Vijaya Ramachandran. 2007. The k-orientability thresholds Tran§actzons on Networking 26, 3 <2018)’ 1151-1164.)
for G n, p. In Proceedings of the eighteenth annual ACM-SIAM symposium on [42] Yuming Zhang, Bohao Feng, Wei Quan, Aleteng Tian, Keshav Sood, Youfang
Discrete algorithms. Citeseer, 459-468. Lin, and Hongke Zhang. 2020. Cooperative edge caching: A multi-agent deep

[16] Frédéric Gabry, Valerio Bioglio, and Ingmar Land. 2016. On energy-efficient learning based approach. IEEE Access 8 (2020), 133212-133224.
edge caching in heterogeneous networks. IEEE Journal on Selected Areas in [43] Rui Zhu, Bang Liu, Di Niu, Zongpeng Li, and Hong Vicky Zhao. 2016. Network la-
Communications 34, 12 (2016), 3288-3298. tency estimation for personal devices: A matrix completion approach. IEEE/ACM

[17] Maria Kihl, Robin Larsson, Niclas Unnervik, Jolina Haberkamm, Ake Arvidsson, Transactions on Networking 25, 2 (2016), 724-737.

and Andreas Aurelius. 2014. Analysis of Facebook content demand patterns. In
2014 International Conference on Smart Communications in Network Technologies
(SaCoNeT). IEEE, 1-6.

[18] Darwin Klingman, Albert Napier, and Joel Stutz. 1974. NETGEN: A program
for generating large scale capacitated assignment, transportation, and minimum
cost flow network problems. management science 20, 5 (1974), 814-821.

[19] Jun Li, Hao Wu, Bin Liu, Jianyuan Lu, Yi Wang, Xin Wang, Yanyong Zhang,
and Lijun Dong. 2012. Popularity-driven coordinated caching in named data
networking. In Proceedings of the eighth ACM/IEEE symposium on Architectures
for networking and communications systems. 15-26.

[20] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. {DistCache }: Provable Load Balancing
for {Large-Scale} Storage Systems with Distributed Caching. In 17th USENIX
Conference on File and Storage Technologies (FAST 19). 143-157.

[21] Bruce M Maggs and Ramesh K Sitaraman. 2015. Algorithmic nuggets in content
delivery. ACM SIGCOMM Computer Communication Review 45, 3 (2015), 52-66.

[22] Najme Mansouri and Mohammad M Javidi. 2018. A new prefetching-aware data
replication to decrease access latency in cloud environment. Journal of Systems
and Software 144 (2018), 197-215.

[23] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief.
2017. A survey on mobile edge computing: The communication perspective. IEEE
Communications Surveys & Tutorials 19, 4 (2017), 2322-2358.

[24] Joseph Noor, Mani Srivastava, and Ravi Netravali. 2021. Portkey: Adaptive

key-value placement over dynamic edge networks. In Proceedings of the ACM

Symposium on Cloud Computing. 197-213.

Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of

Algorithms 51, 2 (2004), 122-144.

[26] Jinglei Ren. 2016. YCSB-C. https://github.com/basicthinker/YCSB-C.

[27] B. Schlinker et al. 2017. Engineering Egress with Edge Fabric: Steering Oceans of
Content to the World. In Proc. of ACM SIGCOMM.

[25

240

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

