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INTRODUCTION

We present a multi-scale finite element (FE) framework for modeling
fluid saturated materials with a porous microstructures. Mixture theory
and the theory of porous media both play an important role in many di-
verse areas of engineering, including the biomechanics of soft tissues (e.g.
liver, brain, and cartilage), as well as coupled problems in material science
and environmental sciences. The remarkable macro-mechanics of soft tis-
sues derive from the complex micro-mechanics of their constituents, e.g.
proteoglycans, collagens, and electrolytic fluid, and their interactions, thus
multiscale models arise naturally. To facilitate mechanistic understanding
and improved analyses (e.g. of experimental results) of the multi-scale me-
chanics of soft tissues we aimed to establish a computational framework
specific to fluid-saturated, fibrous soft tissues and engineered materials.

We implemented a 3-D mutiscale framework within FEBio (Version
3.5.1, University of Utah) combining mixture theory [1] and the FE2-
method [2] (i.e. finite elements of multiscale mixtures or FE2M) to solve
two-scale, non-linear, coupled, and time dependent boundary value prob-
lems (BVPs) for poro-hyperelastic, fluid-saturated porous media. We at-
tached a representative volume element (RVE) of the microstructure at
each material point of the macrostructure and performed discretizations
of the BVPs on both macro- and micro-scales. After successful implemen-
tation of this algorithm in 3-D nonlinear FEs, we investigated the effect of
the microstructural RVE size with respect to the macrostructural model.

METHODS

Theory. We write the pull back of the balance of linear momentum of
the mixture (from the current to reference configuration Bys) as

/ Div (PE — ngTJs) dVes =0, (D
Bos

where P} is the first Piola-Kirchhof solid extra stress, p is the fluid pres-
sure, Fs and Js are the deformation gradient and Jacobian of the solid. We

write the corresponding balance of mass of the mixture as

/ Div [(anFs + x’s)FS_TJs] dVs = 0, 2)
Bo
where n¥ is the current volume fraction of the fluid, wrs is the filtration
velocity, and xg denotes the velocity of a material point of the solid.
Numerical implementation. To solve the partial differential equations
governing the macroscopic BVP, (1) and (2), we used the finite element
method twice. We first provide macroscopic quantities, calculated from
an intermediate solution of the macroscopic FE model, as boundary condi-
tions (BCs) on the microscopic RVE, i.e. the deformation gradient Fs and
the gradient of pressure times the volume fraction of the fluid Grad(nfp).
After solving the microscopic FE model with these BCs, we evaluate the
macroscopic material tangent A and measures P, (Es)5 - CsJs, nFwrs (first
P-K stress, Green Lagrange strain rate, right Cauchy-Green tensor, respec-
tively) at each Gauss integration point by a volume averaged solution of
the underlying RVE. We perform computational homogenization of an ar-
bitrary microscale quantity e over a RVE or over a representative surface
element in order to calculate its macroscopic counterpart ® following
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where Vs and Agg are reference volumes and areas respectively.

Numerical analyses of size effects. We considered single-scale models
as benchmark solutions for comparison to corresponding solutions from
equivalent two-scale models, see Fig. 1. In Fig. 1 we illustrate the scale
separation in the macrostructure, meaning that each cell in a single-scale
model is equivalent to an RVE (considering we have periodically repeti-
tive cells). The shaded region in the single-scale model is equivalent to
the shaded element in the two-scale model, i.e we solve an RVE for each
Gauss point within each element of the macrostructure. To study the size
effect we use the same RVE in progressively larger macrostructures, thus
increasing the difference in scales, and compare results obtained from sin-
gle and two-scale models for displacement, stress, and fluid pressure.
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Figure 1: Schematic comparison of single-scale vs. two-scale models.

Single-scale models as benchmark solutions. We considered 3-D
square plates with circular holes of length 4L, 12L, and 18L with L =
0.4 mm; thickness ¢ = 0.04 mm; and radius of holes » = 0.04 mm, see
Figs. 2(a)-(c). We subjected the plates to traction 7, = 10MPa and
allowed that surfrace to freely drain. We used a biphasic, neo-Hookean
model with properties £ = 100 MPa, v = 0.3, K4 = le — 6 mm®/(Ns)
and extracted the numerical results at time ¢ = 1s. We used eight-node
hexahedral elements for all finite element models.

@ p=0 (b p=0 ()
| Prossosoosoos [
O O O O 600000000000
660000000000
— ooooo0o0o0o00000f |
0 0 0 of |n [essessessed |x
600000000000
— 660000000000 |
O O O O 600000000000
oco0c0000000d
— oc0c0000000d |
y O O O O| |  |cocccoccsocsn
Li i 000000000000 i
x 4L[mm] 12L[mm] 18L{mm]

Figure 2: Single-scale finite element models: (a) Macro 1 (4L x4L xt),
(b) Macro 2 (12L x 12L x t), and (¢) Macro 3 (18L x 18L X t).

Corresponding two-scale models. We considered 3-D square plates
of lengths nL with n = 4,12,18 and L = 0.4mm, and thickness
t = 0.04 mm (for the macro-scale models), see Fig. 3(a). We subjected
the macro-scale models to the same BCs as the single-scale models above.
For the microstructural RVEs we considered a 3-D square plate of length
L = 0.4 mm and thickness ¢ = 0.04 mm with a circular hole 7 = 0.04 mm
(using 1160 elements and 1968 nodes and the same material model as
above), see Fig. 3(b). We detail the number of nodes, elements, and holes
for both single-scale and two-scale (macro-scale) models in Table 1.
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Figure 3: Two-scale finite element models: (a) macro-scale 3-D plate
(nL x nL x t) and (b) micro-scale RVE (L x L X t).

Table 1: Number of nodes/elements in single- and two-scale models.

Macro 1 | Macro 2 | Macro 3
Nr nodes 30,003 155,673 | 348,141
Single-scale | Nr elements 18,560 101,376 | 227,412

Nr holes 16 144 324
Macro 1 | Macro 2 | Macro 3

Two-scale Nr nodes 27 147 300

Nr elements 8 72 162

RESULTS

In Fig. 4 we show the comparison between single-scale and two-
scale models based on volume integrals, considering the traction plus free-
draining surface boundary conditions. In Fig. 5 we show the convergence
plotin |e]|,, for fluid pressure (n = 4,12, 18 and L = 0.4 mm). For Macro
1, 2, and 3 (Fig.4(a), (c), and (e)), the results of the total Cauchy stress for
our two-scale models showed excellent agreement with the single-scale
(benchmark) solutions. As the difference in length scales increases be-
tween the macrostructure and the microstructural RVE, the error in the fluid

pressure decreases significantly to 2.8% and 1.6% for Macro 2 (Fig. 4(d))
and Macro 3 (Fig. 4(f)), respectively.
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Figure 4: Single- vs. two-scale models based on volume integrals: to-
tal Cauchy stress (0..) for (a) Macro 1, (c) Macro 2, (e) Macro 3; and
fluid pressure for (b) Macro 1, (d) Macro 2, (f) Macro 3.
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Figure 5: Convergence plot in ||¢||, for fluid pressure (n = 4,12,18
and L = 0.4 mm). The slope of the regression line is 1.26.

DISCUSSION

We established a 3-D multiscale homogenization scheme for fluid-
saturated porous media. Our results demonstrate that size effects do in-
fluence results, e.g. distributions of stress and fluid pressure, within our
multiscale solutions. However, the size effects are managable as we can
make them arbitrarily small by increasing the difference in length scales
between macro- and micro-scale models. As this difference increases, e.g.
increasing n in 1/nL (n = 4, 12, 18), the ||e,||,-norm error decreases
with slope 1.26. Our FE2M framework (FE analyses augmented to de-
rive the material behaviors from a distribution of finer scale FE analyses)
facilitates studies of engineering materials for applications in biomedical
engineering, material science, and environmental sciences. In particular,
our FE2M framework is ideally suited to bridge the joint, tissue, and intra-
tissue scales for problems in biomechanics, but has not yet been applied to
multi-phase, fibrous soft tissues.
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