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INTRODUCTION

We present a multi-scale finite element (FE) framework for modeling

fluid saturated materials with a porous microstructures. Mixture theory

and the theory of porous media both play an important role in many di-

verse areas of engineering, including the biomechanics of soft tissues (e.g.

liver, brain, and cartilage), as well as coupled problems in material science

and environmental sciences. The remarkable macro-mechanics of soft tis-

sues derive from the complex micro-mechanics of their constituents, e.g.

proteoglycans, collagens, and electrolytic fluid, and their interactions, thus

multiscale models arise naturally. To facilitate mechanistic understanding

and improved analyses (e.g. of experimental results) of the multi-scale me-

chanics of soft tissues we aimed to establish a computational framework

specific to fluid-saturated, fibrous soft tissues and engineered materials.

We implemented a 3-D mutiscale framework within FEBio (Version

3.5.1, University of Utah) combining mixture theory [1] and the FE2-

method [2] (i.e. finite elements of multiscale mixtures or FE2M) to solve

two-scale, non-linear, coupled, and time dependent boundary value prob-

lems (BVPs) for poro-hyperelastic, fluid-saturated porous media. We at-

tached a representative volume element (RVE) of the microstructure at

each material point of the macrostructure and performed discretizations

of the BVPs on both macro- and micro-scales. After successful implemen-

tation of this algorithm in 3-D nonlinear FEs, we investigated the effect of

the microstructural RVE size with respect to the macrostructural model.

METHODS

Theory. We write the pull back of the balance of linear momentum of

the mixture (from the current to reference configuration B0S) as∫
B0S

Div (PS
E − pF−T

S JS) dV0S = 0, (1)

where PS
E is the first Piola-Kirchhof solid extra stress, p is the fluid pres-

sure, FS and JS are the deformation gradient and Jacobian of the solid. We

write the corresponding balance of mass of the mixture as∫
B0

Div
[
(nFwFS + x

′
S)F

−T
S JS

]
dV0S = 0, (2)

where nF is the current volume fraction of the fluid, wFS is the filtration

velocity, and x′S denotes the velocity of a material point of the solid.

Numerical implementation. To solve the partial differential equations

governing the macroscopic BVP, (1) and (2), we used the finite element

method twice. We first provide macroscopic quantities, calculated from

an intermediate solution of the macroscopic FE model, as boundary condi-

tions (BCs) on the microscopic RVE, i.e. the deformation gradient FS and

the gradient of pressure times the volume fraction of the fluid Grad(nFp).
After solving the microscopic FE model with these BCs, we evaluate the

macroscopic material tangentA and measures P, (ES)′S · CsJS, nFwFS (first

P-K stress, Green Lagrange strain rate, right Cauchy-Green tensor, respec-

tively) at each Gauss integration point by a volume averaged solution of

the underlying RVE. We perform computational homogenization of an ar-

bitrary microscale quantity • over a RVE or over a representative surface

element in order to calculate its macroscopic counterpart •̄ following

〈•̄〉 ≈ 1

V0S

∫
B0S

• dV0S , b•̄c ≈ 1

A0S

∫
∂B0S

• dA0S , (3)

where V0S and A0S are reference volumes and areas respectively.

Numerical analyses of size effects. We considered single-scale models

as benchmark solutions for comparison to corresponding solutions from

equivalent two-scale models, see Fig. 1. In Fig. 1 we illustrate the scale

separation in the macrostructure, meaning that each cell in a single-scale

model is equivalent to an RVE (considering we have periodically repeti-

tive cells). The shaded region in the single-scale model is equivalent to

the shaded element in the two-scale model, i.e we solve an RVE for each

Gauss point within each element of the macrostructure. To study the size

effect we use the same RVE in progressively larger macrostructures, thus

increasing the difference in scales, and compare results obtained from sin-

gle and two-scale models for displacement, stress, and fluid pressure.



Figure 1: Schematic comparison of single-scale vs. two-scale models.

Single-scale models as benchmark solutions. We considered 3-D

square plates with circular holes of length 4L, 12L, and 18L with L =
0.4mm; thickness t = 0.04mm; and radius of holes r = 0.04mm, see
Figs. 2(a)-(c). We subjected the plates to traction Tx = 10MPa and

allowed that surfrace to freely drain. We used a biphasic, neo-Hookean

model with properties E = 100MPa, ν = 0.3, Kd = 1e − 6mm4/(Ns)
and extracted the numerical results at time t = 1 s. We used eight-node

hexahedral elements for all finite element models.

Figure 2: Single-scale finite elementmodels: (a)Macro 1 (4L×4L×t),
(b) Macro 2 (12L× 12L× t), and (c) Macro 3 (18L× 18L× t).

Corresponding two-scale models. We considered 3-D square plates

of lengths nL with n = 4, 12, 18 and L = 0.4mm, and thickness

t = 0.04mm (for the macro-scale models), see Fig. 3(a). We subjected

the macro-scale models to the same BCs as the single-scale models above.

For the microstructural RVEs we considered a 3-D square plate of length

L = 0.4mm and thickness t = 0.04mmwith a circular hole r = 0.04mm
(using 1160 elements and 1968 nodes and the same material model as

above), see Fig. 3(b). We detail the number of nodes, elements, and holes

for both single-scale and two-scale (macro-scale) models in Table 1.

Figure 3: Two-scale finite element models: (a) macro-scale 3-D plate

(nL× nL× t) and (b) micro-scale RVE (L× L× t).

Table 1: Number of nodes/elements in single- and two-scale models.

Macro 1 Macro 2 Macro 3

Single-scale

Nr nodes 30,003 155,673 348,141

Nr elements 18,560 101,376 227,412

Nr holes 16 144 324

Two-scale

Macro 1 Macro 2 Macro 3

Nr nodes 27 147 300

Nr elements 8 72 162

RESULTS

In Fig. 4 we show the comparison between single-scale and two-

scale models based on volume integrals, considering the traction plus free-

draining surface boundary conditions. In Fig. 5 we show the convergence

plot in ‖e‖2 for fluid pressure (n = 4, 12, 18 andL = 0.4mm). ForMacro

1, 2, and 3 (Fig.4(a), (c), and (e)), the results of the total Cauchy stress for

our two-scale models showed excellent agreement with the single-scale

(benchmark) solutions. As the difference in length scales increases be-

tween themacrostructure and themicrostructural RVE, the error in the fluid

pressure decreases significantly to 2.8% and 1.6% for Macro 2 (Fig. 4(d))

and Macro 3 (Fig. 4(f)), respectively.

Figure 4: Single- vs. two-scale models based on volume integrals: to-

tal Cauchy stress (σxx) for (a) Macro 1, (c) Macro 2, (e) Macro 3; and

fluid pressure for (b) Macro 1, (d) Macro 2, (f) Macro 3.
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Figure 5: Convergence plot in ‖e‖2 for fluid pressure (n = 4, 12, 18
and L = 0.4mm). The slope of the regression line is 1.26.

DISCUSSION

We established a 3-D multiscale homogenization scheme for fluid-

saturated porous media. Our results demonstrate that size effects do in-

fluence results, e.g. distributions of stress and fluid pressure, within our

multiscale solutions. However, the size effects are managable as we can

make them arbitrarily small by increasing the difference in length scales

between macro- and micro-scale models. As this difference increases, e.g.

increasing n in 1/nL (n = 4, 12, 18), the ‖ep‖2-norm error decreases

with slope 1.26. Our FE2M framework (FE analyses augmented to de-

rive the material behaviors from a distribution of finer scale FE analyses)

facilitates studies of engineering materials for applications in biomedical

engineering, material science, and environmental sciences. In particular,

our FE2M framework is ideally suited to bridge the joint, tissue, and intra-

tissue scales for problems in biomechanics, but has not yet been applied to

multi-phase, fibrous soft tissues.
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