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Abstract

Novel-view synthesis of specular objects like shiny met-
als or glossy paints remains a significant challenge. Not
only the glossy appearance but also global illumination
effects, including reflections of other objects in the envi-
ronment, are critical components to faithfully reproduce a
scene. In this paper, we present Neural Directional En-
coding (NDE), a view-dependent appearance encoding of
neural radiance fields (NeRF) for rendering specular ob-
jects. NDE transfers the concept of feature-grid-based spa-
tial encoding to the angular domain, significantly improv-
ing the ability to model high-frequency angular signals. In
contrast to previous methods that use encoding functions
with only angular input, we additionally cone-trace spa-
tial features to obtain a spatially varying directional en-
coding, which addresses the challenging interreflection ef-
fects. Extensive experiments on both synthetic and real
datasets show that a NeRF model with NDE (1) outper-
forms the state of the art on view synthesis of specular
objects, and (2) works with small networks to allow fast
(real-time) inference. The source code is available at:
https://github.com/Ilwwu2/nde

1. Introduction

Some of the most compelling appearances in our visual
world arise from specular objects like metals, plastics,
glossy paints, or silken cloth. Faithfully reproducing these
effects from photographs for novel-view synthesis requires
capturing both geometry and view-dependent appearance.
Recent neural radiance field (NeRF) [37] methods have
made impressive progress on efficient geometry represen-
tation and encoding using learnable spatial feature grids
[5, 7, 29, 39, 45, 53]. However, modeling high-frequency
view-dependent appearance has achieved much less atten-
tion. Efficient encoding of directional information is just
as important, for modeling effects such as specular high-
lights and glossy interreflections. In this paper, we present
a feature-grid-like neural directional encoding (NDE) that
can accurately model the appearance of shiny objects.

View-dependent colors in NeRFs (e.g. [48]) are com-
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Figure 1. OQOurs vs. analytical encoding. Methods like Ref-
NeRF [48] use an analytical function to encode viewing directions
in large MLPs, failing to model complex reflections (column 1-2
of the insets). Instead, we encode view-dependent effects into fea-
ture grids with better interreflection parameterization, successfully
reconstructing the details on the teapot and even multi-bounce re-
flections of the pink ball (3rd column of the insets) with little com-
putational overhead (75 FPS on an NVIDIA 3090 GPU).

monly obtained by decoding spatial features and encoded
direction. This approach necessitates a large multi-layer
perceptron (MLP) and exhibits slow convergence with ana-
Iytical directional encoding functions. To that end, we bring
feature-grid-based encoding to the directional domain, rep-
resenting reflections from distant sources via learnable fea-
ture vectors stored on a global environment map (Sec. 4.1).
Features localize signal learning, reducing the MLP size re-
quired to model high-frequency far-field reflections.

Besides far-field reflections, spatially varying near-field
interreflections are also key effects in rendering glossy
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objects. These effects cannot be accurately modeled by
NeRF’s spatio-angular parameterization whose directional
encoding does not depend on the position. In contrast, we
propose a novel spatio-spatial parameterization by cone-
tracing a spatial feature grid (Sec. 4.2) to encode near-field
reflections. The cone tracing accumulates spatial encodings
along the queried direction and position, thus it is spatially
varying. While prior works consider only single-bounce
or diffuse interreflections [26], our representation is able to
model general multi-bounce reflection effects.

Overall, our neural directional encoding (NDE) achieves
both high-quality modeling of view-dependent effects and
fast evaluation. Figure 1 demonstrates NDE incorpo-
rated into NeRF, showing (1) accurate rendering of spec-
ular objects—a difficult challenge for the state of the art
(Sec. 5.1), and (2) high inference speed that can be pushed
to real-time without obvious quality loss (Sec. 5.2).

2. Related work

Novel-view synthesis aims to render a 3D scene from un-
seen views given a set of image captures with camera poses.
Neural radiance fields (NeRF) [37] has recently emerged
as a promising solution to this task, utilizing an implicit
scene representation and volume rendering to synthesize
photorealistic images. Follow-up works achieve state-of-
the-art results in this area, for unbounded scenes [1, 59],
in-the-wild captures [34], and sparse- or single-view recon-
struction [6, 14, 28, 46, 47, 51]. While the original NeRF
method [37] is computationally inefficient, it can be visu-
alized in real-time by baking the reconstruction into voxel-
[12, 15, 43, 57] or feature-grid-based representations (dis-
cussed below). The volumetric representation has been ex-
tended to work with signed distance fields (SDF) [50, 55]
for better geometry acquisition, and the volume-rendering
concept has also been applied to other 3D-related tasks such
as object generation [4, 5, 27, 30, 42].

Feature-grid-based NeRF. NeRF’s positional encod-
ing [37] is a key component for the underlying multi-layer
perceptron (MLP) network to learn high-frequency spatial
and directional signals. However, the MLP size needs to
be large, which leads to slow training and inference. In-
stead, methods like NSVF [29] and DVGO [45] interpo-
late a 3D volume of learnable feature vectors to encode
the spatial signal, showing faster training and inference
with even better spatial detail. Addressing the sparsity
in typical scene geometry, later works avoid maintaining
a large dense 3D grid via volume-compression techniques
such as hash grids [39] and tensor factorization [5, 7, 11].
These methods are compact and scale up the feature grid to
large scenes [2, 39] and even work with SDF-based mod-
els [25, 56]. The essence of feature-grid encoding is to in-
terpolate feature vectors attached to geometry primitives,
and similar ideas have also been applied to irregular 3D
grids [22, 44], point clouds [19, 20, 54, 62], and meshes [8].
Operations like mip-mapping are trivial on feature grids, en-
abling efficient anti-aliasing and range query of NeRF mod-

els [2, 16, 53]—something we also leverage in this paper to
encode rough reflection.

Rendering specular objects. Apart from geometry,
view-dependent effects like reflections from rough surfaces
are a crucial component in photorealistic novel-view syn-
thesis. Reflections are conventionally modeled by fitting
local light-field functions [10, 17, 36]. A 4D light field
presents more degrees of freedom than the constraints from
input images, which necessitates additional regularization
to avoid overfitting. Inverse-rendering approaches intro-
duce such a constraint by solving for parametric BRDFs
and lighting, then using forward rendering to reconstruct
the light field. Spherical-basis lighting [60] or split-sum ap-
proximation [31, 40] are usually used to tamper the Monte
Carlo variance of specular-reflection derivatives [3]. EN-
VIDR [26] and NMF [33] further explicitly consider global-
illumination effects by ray-tracing one or few bounces of
indirect lighting. On the other hand, Ref-NeRF [48] uses an
integrated directional encoding (IDE) to directly improve
NeRF’s view-dependent effects. IDE encodes the reflected
direction rather than viewing direction to let the network
learn an environment-map-like function and is pre-filtered
to account for rough reflection effects. Our neural direc-
tional encoding, similar to IDE, can model general view-
dependent appearance without assuming simplified lighting
or reflections but with smaller computation cost.

3. Preliminaries

We assume opaque objects with diffuse and specular com-
ponents and demonstrate our directional encoding using a
surface-based model that represents a scene using a signed
distance field (SDF) s(x) and a color field c(x,w) (depen-
dent on the viewing direction w). The SDF is converted to
NeRF’s density field o following VolSDF [55] with a learn-
able parameter 3 controlling the boundary smoothness:

ﬁ exp (s(ﬁx)> if s(x) <0,
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The color C(x,w) of a ray with origin x and direction w
can thus be volume-rendered [35]:

C(x,w):Zw(o(xi))c(xi,w), where 2)

w(o(x;)) = <1 — e*U(Xi)&i) H efa(xj)éj’ 3)

J<i

with §; =||x; —x;_1||2 and x; denoting the i sample point
along the ray. Like Ref-NeRF [48], we decompose the color
c into a diffuse color cg4, specular tint kg, and specular color
¢, queried in reflected direction w,. with surface normal n
given by the SDF gradient:

c(x,w) = cq(x) + ks(x)cs(x,w,), where

n = normalize(Vxs(x)).

“4)

w, = reflect(w, n),
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Figure 2. Pipeline of our neural directional encoding (NDE). We encode far-field reflections into a cubemap and near-field interreflec-
tions into a volume. Both representations store learnable feature vectors to encode direction and are mip-mapped to account for rough
reflections. Given a reflected ray, the features are combined by tracing a cone of size proportional to the surface roughness to aggregate
spatial features with cubemap features blended as the background. The result is fed into an MLP to output the specular color (Eq. (5)).

Here, the specular color c; is decoded from an MLP that
conditions on spatial feature f(x), directional encoding H
controlled by surface roughness p, and the cosine term n-w:

cs(x,w,) = MLP(f(x), H(x, w,, p(x)),n-w).  (5)

cq, ks, £, p come from a spatial MLP (Sec. 4.3).

Discussion on directional encoding. Previous works [37,
48] use an analytical function for H dependent only on w,
(and optionally p), which has several limitations: (1) the en-
coding function is fixed (not learnable), and (2) the spatial
context only comes from f(x). Both require the decoder
MLP to be large to fit the spatio-angular details of the spec-
ular color, which can be expensive and slow.

4. Neural directional encoding

To minimize the MLP complexity, we use a learnable neu-
ral directional encoding that also depends on the spatial
location. Specifically, our NDE encodes different types
of reflection by different representations, which include a
cubemap feature grid h for far-field reflections and a spa-
tial volume h,, that models near-field interreflections. As
shown in Fig. 2, we compute H by first cone-tracing h,,
accumulated along the reflected ray, yielding near-field fea-
ture H,, (Sec. 4.2), and blending the far-field feature H
queried from hy in the same direction (Sec. 4.1):

H(Xa wmp) = Hn(x,wr, p) + (1 - an)Hf(wrap)a (6)

where «, is the cone-traced opacity [24], and both features
are mip-mapped with p deciding the mip level.

4.1. Far-field features

Feature-grid-based representations [7, 29, 39, 45, 53] speed-
up spatial signal learning by storing feature vectors in vox-
els for local signal control. Similarly, we place feature vec-
tors hy at every pixel of a global cubemap to encode ideal
specular reflections. The cubemap is pre-filtered to model
reflections under rough surfaces in the split-sum [18] style,
where the k" level mip-map h” is created by convolving the
downsampled h using a GGX kernel [49] D with canoni-
cal roughness py, evenly spaced in [0, 1]:

h’; = convolution(downsample(hy, k), D(px)).  (7)

Given the surface roughness, we perform a cubemap lookup
in the reflected direction and interpolate between mip levels
to get the far-field feature:

() = terp () 1), L)

" P11 Pk

where lerp(-) denotes linear interpolation and p € [pg, px+1]-

The cubemap-based encoding allows signals in different
directions to be optimized independently by tuning the fea-
ture vectors. This is easier to optimize than globally solv-
ing the MLP parameters, making it more suitable to model
high-frequency details in the angular domain (Fig. 3). The
coarse level feature is a consistently filtered version of the
fine level, which is empirically found to be better con-
strained than using independent feature vectors at each mip
level [23, 58].

4.2. Near-field features

Parameterizing the specular color by a spatial and angular
feature is sufficient for distant reflections, but lacks expres-
sivity for near-field interreflections: different points query
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Figure 3. Our cubemap-based feature encoding requires only a
small MLP (2 layers, 64 width) to model details in mirror reflec-
tions (3rd image) comparable with IDE [48] (2nd image; 8 layers,
256 width MLP) that fails when the MLP is small (1st image).
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Figure 4. Spatio-spatial encoding (middle) is equivalent to the
common spatio-angular encoding (left) of mirror reflections, but
it captures the variation of x’ across different x. The idea can be
extended to model rough reflections by cone tracing mip-mapped
spatial features covered by the reflection cone (right).

the same hy, so spatially varying components can end up
being averaged out during optimization. Our insight is that
the spatio-angular reflection can also be parameterized as a
spatio-spatial function of current and next bounce location
(Fig. 4). Therefore, an MLP can decode the second bounce
spatial feature with f(x) in Eq. (5) to get mirror reflections.

For rough reflections, we aggregate the averaged second
bounce feature under the reflection lobe by cone tracing [9]
(Fig. 4, right), which volume renders the mip-mapped spa-
tial features h,, using the mip-mapped density o,, along
the reflected ray x 4 w,t with mip level \; = log,(2r;)
at sample point x; decided by the cone’s footprint r; =

V3% [[x — xi[l2:

H,(x,w.,p) = Z wih’ where
i ©)
wzz :U)(Un(X;,AZ)), h;z :hn(xiv)‘l)
The cone’s footprint is selected to cover the GGX lobe at x
(see supplemental document). Note that we do not use the
SDF-converted ¢ in Eq. (1) as it cannot be mip-mapped;
instead, we optimize a separate o,, to match o (Sec. 4.3)
jointly with the indirect feature h,,. Both are decoded from
a tri-plane [5] T,,, whose each 2D plane is mip-mapped
similar to Tri-MipRF [16]:

on (X5, Ni), hy, (x5, A\;) =MLP(mipmap(T,, (x}), \;)). (10)

The indirect rays are spatially varying, hence the cone-
traced near-field features are spatially varying too. This has
advantages over the angular-only feature for learning inter-
reflections and is empirically less likely to overfit (Fig. 5).
This is because the same h,, is traced from different rays
in training, such that the underlying representation is well-
constrained. H,, and Hy are similar to the foreground

Ours with H,,

Ground truth

Ours without H,,

Figure 5. Our cone-traced near-field features successfully re-
construct the reflected spheres (2nd column) under novel views,
which are overfitted by the angular-only encoding (1st column).
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Figure 6. Network architectures. N x M denotes an M-layer
MLP of width N.

and background colors in regular volume rendering, so H
can be naturally composited with H,, using the opacity
ap=1—[], e &A% =S 4l as in Eq. (6).

4.3. Optimization

Figure 6 shows our network architectures. Stable geometry
optimization is essential for modeling specular objects, so
we use the positional-encoded MLP from VolSDF [55] to
output the SDF. To reduce computation cost, a hash grid
is used to encode other spatial features (cq4, kg, p, f), and
all other MLPs are tiny. The representation is optimized
through the Charbonnier loss [1] between ground truth pixel
color Cg and our rendering C in tone-mapped space:

L= IN(Cxw)) - Calxw)l +0.001, (1)

where I is the tone-mapping function [40].

Occupancy-grid sampling. Egs. (3) and (9) are acceler-
ated by an occupancy-grid estimator [24] to get rid of com-
putations in empty space. This is especially important for
the efficient near-field feature evaluation, since we trace a
reflected ray for each primary ray sample. The primal ray
rendering uses a fixed ray marching step of 0.005. Follow-
ing [9], we choose the cone tracing step proportional to its
footprint: max (0.5r;,0.005), and query a mip-mapped oc-
cupancy grid for the correct occupancy information.

Regularization. Given the primary samples x;, Eikonal
loss [55] Leix is applied to regularize the SDF, and we im-
plicitly regularize o,, to match o by encouraging the render-
ing using o, at mip level O to be close to the ground truth:
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[J denotes stop-gradient to prevent o,, affecting appearance.
The total loss is L + 0.1 L¢j + 0.01L,.

Implementation details. We implement our code using
PyTorch [41], NerfAcc [24], and CUDA. The optimiza-
tion takes 400k steps using the Adam optimizer [21] with
0.0005 learning rate and dynamic batch size [39] target-
ing for 32k primary point samples. We use the scheduler
from BakedSDF [15] to anneal /3 in Eq. (1) for more stable
convergence. Because the SDF uses a positional-encoded
MLP, each scene still requires 10~18 hours to train on an
NVIDIA 3090 GPU with 15GB GPU memory usage.

5. Experiments

We evaluate our method on view synthesis of specular ob-
jects using synthetic and real scenes. The synthetic scenes
include the Shinny Blender dataset [48] and the Materials
scene from the NeRF Synthetic dataset [37], all rendered
without background; the real scenes come from NeRO [31]
which contain backgrounds and reflections of the capturer
in the images. The rendering quality is compared in terms
of PSNR, SSIM [52], LPIPS [61], and the inference speed
in FPS is recorded on an NVIDIA 3090 GPU.

Background and capturer. For real scenes, we use a sep-
arate Instant-NGP [39] with coordinate contraction [1] to
render backgrounds. Similarly to NeRO [31], the reflection
of the capturer is encoded by blending a capturer plane fea-
ture h, of opacity o between Hy and H,:

H=H, + (1 - a,)(ach.+ (1 —a.)Hy), where
a¢, h, = MLP(mipmap(T.(u), \.))

are decoded from a mip-mapped 2D feature grid T.; u, A,
are the ray-plane intersection coordinate and the mip-level
derived from the intersection footprint. Jointly optimiz-
ing foreground and background networks can be unstable,
so we apply stabilization loss from NeRO [31] and mod-
ify the specular color computation for the first 200k steps:
hf, h,, h. are sampled and decoded into colors first, then
the colors are blended to get c¢;. Compared to blending the
feature and decoding, we find the decoding-then-blending
strategy provides better geometry optimization.

5.1. View synthesis

We compare against NeRO [31], ENVIDR [26], and Ref-
NeRF [48] on synthetic scenes. All methods except for Ref-
NeRF use SDFs, and we evaluate NeRO after the BRDF
estimation as it shows better performance. Ideally, both
backgrounds and reflections from the capturer should be

Method Mat. Teapot Toaster Car Ball Coffee Helmet Mean

PSNR 1

NeRO 24.85 40.29 27.31 26.98 31.50 33.76 29.59 30.61
ENVIDR  29.51 46.14 26.63 29.88 41.03 34.45 36.98 34.95
Ref-NeRF 3541 47.90 25770 30.82 47.46 34.21 29.68 35.88
NDE (ours) 31.53 49.12 30.32 30.39 44.66 36.57 37.77 37.19

SSIM 4

NeRO 0.878 0.993 0.891 0.926 0.953 0.960 0.953 0.936
ENVIDR 0971 0.999 0.955 0.972 0.997 0.984 0.993 0.982
Ref-NeRF  0.983 0.998 0.922 0.955 0.995 0974 0.958 0.969
NDE (ours) 0.972 0.999 0.968 0.968 0.995 0.979 0.990 0.982

LPIPS |

NeRO 0.138 0.017 0.162 0.064 0.179 0.099 0.102 0.109
ENVIDR  0.026 0.003 0.097 0.031 0.020 0.044 0.022 0.035
Ref-NeRF  0.022 0.004 0.095 0.041 0.059 0.078 0.075 0.053
NDE (ours) 0.017 0.002 0.039 0.024 0.022 0.033 0.014 0.022

Table 1. Quantitative comparison on synthetic scenes showing
our encoding (NDE) is either the best or second best compared to
other methods for view synthesis of specular objects.

removed when evaluating renderings of specular objects,
which is difficult for the real scenes. Therefore, we only
qualitatively compare real scenes against NeRO with PSNR
computed on the foreground zoom-ins without the capturer.

Results. Overall, our method gives the best rendering
quality on synthetic scenes with quantitative results either
better or comparable with the baselines (Tab. 1). This
is because our NDE gives the most detailed modeling of
both far-field reflections and interreflections, which also
helps improve the geometry reconstruction (Fig. 7 bottom).
While ENVIDR’s SSIM is slightly better than ours in sev-
eral scenes, we not only achieve much better PSNRs (sur-
passing 2dB), but also higher LPIPS scores. The PSNR on
the Materials (Mat.) scene is worse than Ref-NeRF’s be-
cause the SDF is inefficient at modeling the concave geom-
etry of the sphere base. However, our directional MLP is
much smaller (Sec. 5.2), and we still achieve perceptually
better appearance as shown in the insets of Fig. 7. The qual-
itative comparison in Fig. 8 shows that NDE extends well
to real scenes, producing clearer specular reflections of the
complex real-world environments compared to NeRO.

Editability. The near- and far-field features provide a nat-
ural separation of different reflections, allowing us to ren-
der these effects separately by excluding Hy or H,, during
inference (Fig. 9). Because interreflections are spatially en-
coded in the near-field feature grid, an object and its first-
bounce reflections can be removed by masking out both
o and o, from the corresponding regions (Fig. 10). This
does not work for multi-bounce reflections which are not
encoded on the deleted object.

5.2. Performance comparison

We compare the evaluation frames per second (FPS) on
an 800 x 800 resolution of the color network and its MLP
size (#Params.) with all baselines in Sec. 5.1 on synthetic
scenes. The color MLPs include the decoder of o,,, h,,, c;
for our model (Fig. 6), lighting MLPs for NeRO [31] and
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Figure 7. Qualitative results for synthetic scenes show our NDE successfully models the fine details of reflections from both environment
lights (mirror sphere and car top) and other objects (glossy interreflections on spheres; zoom in to see the difference). Ref-NeRF tends to use
wrong geometry to fake interreflections (2nd column on bottom). In contrast, our encoding has sufficient capacity to model interreflections,
which enables more accurate normals (3rd column on bottom). Mean angular error of the normal is shown in the insets.
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Figure 8. Qualitative comparison on real scenes. Our NDE gives better reconstruction of the interreflections (the bear’s plate and bottom
of the vase) and detailed highlights from the environment. Numbers in the insets are image PSNR values.



Figure 9. Reflection separation. We can visualize different reflec-
tion effects by feeding corresponding features into the network.

Removed

Figure 10. Editability of our encoding. Reflections from the
deleted spheres can be removed by deleting the volume of their
indirect features (bottom).

ENVIDR [26], and the directional MLP for Ref-NeRF [48].
The spatial-network evaluation is excluded to eliminate the
difference caused by different geometry representations,
network architectures, and sampling strategies. For each
method, we choose the rendering batch size that maximizes
its performance.

Results. As shown in the top half of Tab. 2, our NDE takes
a fraction of a second to evaluate, because it requires sub-
stantially smaller MLPs to infer color without hurting the
rendering. In contrast, other baselines need large MLPs to
maintain rendering quality, which prevents them to be visu-
alized in real-time.

Real-time application. It is possible to create a real-time
version of our model by converting the SDF into a mesh
through marching cubes [32] and baking cg4, ks, p, f into
mesh vertices. The pixel color then can be computed us-
ing the rasterized vertex attributes and c, decoded from the
NDE, which takes only a single cubemap lookup and cone
tracing for each pixel. As a result, this process requires
about the same budget as evaluating a real-time NeRF
model [39, 45, 53]. We implement our real-time model
(NDE-RT) in WebGL and report the full rendering frame
rate (not just color evaluation) at the bottom of Tab. 2 with
a real-time baseline 3DGS [19]. 3DGS is faster as it uses
spherical harmonics for color without network evaluation,

0.0
Our offline model Our real-time model

Ground truth

Figure 11. Error near object boundaries in our real-time model
is caused by the marching-cube extraction of a triangle mesh and
its subsequent rasterization (squared error maps at the bottom).
This error does not lead to significant qualitative differences (top).

Method FPSt #Params| PSNRt SSIM{ LPIPS|
NeRO 0.11 454k 3061 0.936 0.109
ENVIDR 0.55 206k 3495 0982 0.035
Ref-NeRF 008 521k 3588 0969 0.053
NDE (ours) 303 75k 37.19 0982 0.022
3DGS 235 - 3030  0.949  0.076

NDE-RT (ours) 66 75k 3548 0976 0.027

Table 2. Performance comparison. Our NDE achieves high ren-
dering quality, and its use of small MLPs enables fast color evalu-
ation and real-time rendering. We report only the evaluation time
and parameter counts of color MLPs except for 3DGS (no color
MLPs) and our NDE-RT, for which we report the total rendering
time. All metrics are averaged over the synthetic scenes in Tab. 1.

which leads to poor specular appearance reconstruction. In-
stead, our NDE-RT shows rendering quality comparable to
other baselines while achieving frame rates above 60. The
loss in PSNR is mainly due to error around object edges
which is cause by the marching-cube mesh extraction and
subsequent rasterization (Fig. 11). This error does not sig-
nificantly affect the visual quality and can be resolved by
fine-tuning the mesh [8, 40].

5.3. Ablation study

Different directional encodings. In Fig. 12 we com-
pare different directional encodings on the Materials scene.
IDE [48] (analytical) with our tiny MLP yields blurry re-
flections. Interreflections cannot be reconstructed using
only the far-field feature, and if we volume-render rather
than cone-trace the near-field feature, mirror interreflections
can be recovered but reflections on rough surfaces look too
sharp. It is therefore necessary to use both the cubemap-
based far-field feature and the cone-traced near-field feature
to get the best specular appearance (Tab. 3).

Network architecture. Table 4 shows the performance
trade-off between different network architectures of our
model on synthetic scenes. Using a smaller MLP width for
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Figure 12. Qualitative ablation of NDE components. Details
from the environment light fail to be reconstructed with an ana-
lytical encoding (mirror sphere on 2nd row). It is also necessary
to use the cone-traced near-field feature, otherwise rough surfaces
are rendered incorrectly (grey sphere on 3rd row).

Far-field feature Near-field feature PSNRT SSIM{ LPIPS|

Analytical - 28.54 0944  0.029
Cubemap - 30.27 0962 0.022
Cubemap Volume-rendered  29.31 0951 0.034
Cubemap Cone-traced 31.53 0972 0.017

Table 3. Ablation on directional encodings shows each compo-
nent of NDE is needed for the best rendering quality. The compar-
ison is made on the Materials scene.

Model MLP width PSNR1 SSIMt LPIPS| FPS?
64 37.19 0.982 0.022 <1

Our offline 32 36.69 0.979 0.026 <1
16 36.23 0.977 0.028 <1
64 35.48 0.976 0.027 66

Our real-time 32 33.97 0.971 0.034 211
16 33.71 0.969 0.036 331

Table 4. Ablation on our network architecture. Using a smaller
MLP width introduces a minor loss in rendering fidelity but a no-
ticeable real-time performance boost.

the decoder of 0,,, h,, c, has only a slight negative impact
on the rendering quality but significantly improves real-time
performance. The rendering quality reduction of the real-
time model is mainly caused by the error near object edges
as discussed in Sec. 5.2.

Spatial mip-mapping strategies. Besides mip-mapped
tri-plane [5, 16], our architecture can also work with a mip-
mapped hash grid [39] for the near-field feature encoding.
Similar to [2, 25], the hash-grid mip-mapping is imple-
mented by gradually masking out fine-resolution features as
the mip level increases. This results in limited model capac-
ity for rough surfaces where most of the features are masked

Mat. Teapot Toaster Car Ball Coffee Helmet Mean
PSNR 1

Hash grid 30.89 49.00 29.46 30.16 43.48 3498 37.67 36.52
Tri-plane 31.53 49.12 30.32 30.39 44.66 36.57 37.77 37.19

SSIM 1

Hash grid 0.968 0.999 0.953 0.967 0.990 0.974 0.990 0.977
Tri-plane 0.972 0.999 0.968 0.968 0.995 0.979 0.990 0.982

LPIPS |

Hash grid 0.019 0.002 0.058 0.025 0.031 0.043 0.014 0.027
Tri-plane 0.017 0.002 0.039 0.024 0.022 0.033 0.014 0.022

Table 5. Ablation on mip-mapping strategies suggests that the
mip-mapped tri-plane represents averaged near-field features and
density better than the mip-mapped hash grid.

A AAS

ENVIDR [26] NDE (hash grid) NDE (MLP) Ground truth

Figure 13. Unstable geometry optimization of specular objects
prevents us from encoding the SDF using a hash grid [39] as it
gives incorrect surface normals (middle left). This is also the case
for other hash-grid-based methods (left).

out, such that a mip-mapped hash grid produces slightly
worse rendering than the tri-plane encoding (Tab. 5).

Limitations. Like previous works [26, 31, 48], NDE is
sensitive to the quality of the surface normal. This prevents
us from using more efficient geometry representations such
as a hash grid, which tends to produce corrupted geometry
(Fig. 13). As a result, we use positional-encoded MLPs to
model the SDF, which leads to long training times and is
difficult for modeling transparent objects. Meanwhile, the
editibility of our method is limited.

6. Conclusion

We have adapted feature-based NeRF encodings to the di-
rectional domain and introduced a novel spatio-spatial pa-
rameterization of view-dependent appearance. These im-
provements allow for efficient modeling of complex re-
flections for novel-view synthesis and could benefit other
applications that model spatially varying directional sig-
nals, such as neural materials [13, 23, 58] and radiance
caching [38].
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