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Abstract

Accurate and computationally-viable representations of clouds and turbulence are a
long-standing challenge for climate model development. Traditional parameteriza-
tions that crudely but efficiently approximate these processes are a leading source
of uncertainty in long-term projected warming and precipitation patterns. Machine
Learning (ML)-based parameterizations have long been hailed as a promising alter-
native with the potential to yield higher accuracy at a fraction of the cost of more
explicit simulations. However, these ML variants are often unpredictably unstable
and inaccurate in coupled testing (i.e. in a downstream hybrid simulation task
where they are dynamically interacting with the large-scale climate model). These
issues are exacerbated in out-of-distribution climates. Certain design decisions
such as “climate-invariant" feature transformation for moisture inputs, input vector
expansion, and temporal history incorporation have been shown to improve coupled
performance, but they may be insufficient for coupled out-of-distribution general-
ization. If feature selection and transformations can inoculate hybrid physics-ML
climate models from non-physical, out-of-distribution extrapolation in a chang-
ing climate, there is far greater potential in extrapolating from observational data.
Otherwise, training on multiple simulated climates becomes an inevitable neces-
sity. While our results show generalization benefits from these design decisions,
the obtained improvment does not sufficiently preclude the necessity of using
multi-climate simulated training data.

1 Introduction and Motivation

Anthropogenic climate change is increasing the frequency and severity of climate extremes and
natural disasters, requiring informed adaptation and mitigation measures from policymakers [1, 2, 3].
While domain scientists continue to achieve notable progress in improving our climate physics
understanding, significant uncertainty in projected warming and precipitation patterns remains.
Much of this uncertainty stems from the intractable computational expense of explicitly resolving
subgrid processes like convection and radiation, making cheaper conventional parameterizations that
approximate their effects necessary [1, 4]. Even if hardware advancements continue at the pace of
Moore’s Law, it would take decades to be able to run global climate simulations that resolve the
turbulent eddies responsible for low cloud formation, a major source of uncertainty in projected
warming [5].

Neural network parameterizations could be trained on more explicit simulations to emulate unresolved
subgrid processes, enabling a higher fidelity representation using current-generation hardware [6,
7, 8, 9, 10, 11]. However, the task of parameterizing subgrid physics (in our case convection and
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radiation) becomes stubbornly difficult when these neural network emulators are coupled to the
large-scale climate model and integrated in time. Because coupled behavior is highly variable,
large-scale coupled tests are necessary for drawing conclusions on surrogate model design decisions
[12]. Based on proven coupled in-distribution benefits [12] and using large-scale coupled tests on
an out-of-distribution climate, we rigorously test generalization improvement of the following three
design decisions:

1. Using a relative humidity “climate-invariant" feature transformation for the moisture input
[13].

2. Expanding the input vector to address potential omitted variable bias [12]

3. Incorporating memory effects (i.e. temporal history) in the input [14, 12]

Our results show that these design decisions improve generalization on an out-of-distribution climate
relative to our baseline neural network configuration, but they are not sufficient to supplant multi-
climate training, something that is argued necessary in previous works [15, 16].

2 Methods

2.1 Reference Climate Simulation

Our neural networks are trained on and validated against the Super-Parameterized Community
Atmosphere Model v3 (SPCAM 3), which has served as a test-bed of for prototyping neural network
emulators of subgrid convection in previous works [7, 17, 18, 13, 19]. In super-parameterization, a
high-fidelity, 2D model of convection called a Cloud-Resolving Model (CRM) with 32 columns at a
4-km horizontal resolution is embedded inside each grid-cell of the host climate model [20, 21, 22].
For simplicity, we use a fixed season, prescribed sea surface temperatures, and a zonally-symmetric
aquaplanet. The timestep is fixed to 30 minutes and 30 vertical levels are considered within each grid
cell. Using SPCAM 3, we create two reference simulations, with one having prescribed sea surface
temperatures that are 4K warmer. All hybrid-ML climate models are trained using the colder climate
and coupled in both settings.

2.2 Neural Network Configurations

To assess the generalization benefits of our design decisions, we train and evaluate 330 neural networks
for each design decision and each of the following configurations. The Specific Humidity (SH)
Configuration is a baseline similar to previous work [17]. The Relative Humidity (RH) Configuration
uses a “climate-invariant" relative humidity feature transformation for the moisture input variable.
The Expanded Variables (EV) Configuration concatenates meridional wind, ozone mixing ratio, and
cosine of zenith angle to the input variables of the RH configuration. Finally, the Previous Tendencies
(PT) Configuration concatenates heating and moistening tendencies from one previous timestep to the
input variables of the RH configuration. In order to leverage scalable off-the-shelf tools for coupling
(in our case the Fortran Keras Bridges (FKB)), all neural networks are dense, feedforward neural
networks. The input and output variables and hyperparameter search space used for sampling can be
found in the Appendix.

3 Results

3.1 Uncoupled Results

The uncoupled error for all four configurations in both climates is given in Figure 1, showing higher
values across the board in the warmer climate. As expected, the baseline SH configuration no longer
clears the linear regression baseline when tested on the warmer climate, in line with smaller-scale
uncoupled results from Beucler et al. (2021) [13]. Variance in uncoupled error for the SH (EV)
configuration jumps by 2 (3) orders of magnitude in the warmer climate testing, and error from the
EV configuration is higher compared to the RH configuration (a reversal from uncoupled results in
the original climate), suggesting potential overfitting on some of the additional variables.
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Figure 1: Uncoupled test error on in-distribution and out-of-distribution (warmer) climate for each
configuration with models ranked by validation error.

3.2 Coupled Results

3.2.1 Coupled Generalization on Unseen Climate

Figure 2 shows the coupled results for the warmer climate testing, highlighting potential success in
coupled generalization to an unseen climate. However, only a fraction of the coupled simulations run
for the entire year without prematurely terminating (4.5%, 13%, 23%, and 14% of simulations for the
SH, RH, EV and PT configurations, respectively). While the coupled simulations with the lowest
temperature and humidity RMSEs belong to the PT configuration, the best PT models for one climate
are not necessarily the best for the other.

3.2.2 Coupled Generalization in Both Climates

Figure 3 shows a fairly clear relationship between coupled error in the warmer climate and the original
one, with R2 values of .82 and .61 for temperature and humidity, respectively. However, excluding
the SH configuration, whose models under-performed linear regression in the warmer climate, drops
these R2 values to .4 and .25, respectively.

4 Discussion

As seen in Figure 3, there appears to be a weak relationship for coupled temperature error between
in-distribution and out-of-distribution climates. Such a relationship is not only much weaker for
moisture results, but the coupled moisture errors in the warmer climate are almost uniformly higher.
This behavior indicates that generalizing on moistening in a coupled setting on an out-of-distribution
climate deserves focus for future model development. It is possible that addressing this limitation
in future model development will also tighten the relationship for temperature error between in-
distribution and out-of-distribution climates.
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Figure 2: Histograms for coupled root mean squared error for temperature and humidity in the
warmer (unseen) climate. Models corresponding to coupled simulations that prematurely terminated
are excluded.

Figure 3: Scatterplots of coupled error for hybrid physics-ML simulations that did not prematurely
terminate in either climate. Dashed line is a 1-to-1 line that intersects the origin.

5 Conclusion

Coupled out-of-distribution generalization might still be possible without multi-climate training when
using more sophisticated network architectures, physics-informed neural networks (PINNs), pruned
feature selection, and additional “climate-invariant" feature transformations (e.g. for temperature
and latent heat flux) [23, 24, 13, 12]. It is also worth noting that enforcing conservation laws for
our task is not possible without additional inputs and outputs. Nevertheless, our results point to the
necessity of stress-testing out-of-distribution in a coupled setting. The combined task of generalizing
out-of-distribution and remaining stable and accurate when coupled is a demonstrably more difficult
challenge that requires further collaboration between domain scientists and machine learning experts.
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5.1 Input and output variables

Table 1 depicts the input variables for the neural network configurations. All neural network con-
figurations other than the baseline specific humidity (SH) configuration use relative humidity (%)
for moisture. Variables marked with a single asterisk * are exclusive to the expanded variables (EV)
configuration, and variables marked with a double asterisk ** are exclusive to the previous tendencies
configuration. Input variables are normalized by subtracting the mean and dividing by the standard
deviation.

All neural network configurations share output variables shown in 2. Output variables are multiplied
by 1004 and 2.5e6 for heating and moistening tendencies, respectively, to put them in similar orders
of magnitude.

Table 1: Input variables

Input variable Unit

Temperature K 30
Humidity kg/kg or % 30
Surface pressure Pa 1

Incoming solar radiation W/m2 1

Sensible heat flux W/m2 1

Latent heat flux W/m2 1
Meridional wind* m/s 30

Ozone mixing ratio* m3/m3 30
Cosine of zenith angle* 1
(t− 1) Heating tendency** K/s 30
(t− 1) Moistening tendency** kg/kg/s 30
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Table 2: Output variables

Input variable Unit Vertical levels

Heating tendency K/s 30
Moistening tendency kg/kg/s 30

5.2 Hyperparameter search space

All neural networks uniformly randomly subsample the search space depicted in Table 3. For the
learning rate range, the entire interval is log transformed such that different orders of magnitude are
sampled at similar rates.

Table 3: Hyperparameter search space

Hyperparameter Range

Hidden layers [[4, 11]]
Nodes per layer [[128, 512]]
Batch normalization {On, Off}
Dropout [0.0, 0.25]
Optimizer {RMSprop, Adam, RAdam, QHAdam}
Leaky ReLu slope [0.0, 0.4]
Learning rate [1e-5, 1e-2]
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