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ABSTRACT

Accurate representations of unknown and sub-grid physical processes through pa-
rameterizations (or closure) in numerical simulations with quantified uncertainty
are critical for resolving the coarse-grained partial differential equations that gov-
ern many problems ranging from weather and climate prediction to turbulence
simulations. Recent advances have seen machine learning (ML) increasingly
applied to model these subgrid processes, resulting in the development of hy-
brid physics-ML models through the integration with numerical solvers. In this
work, we introduce a novel framework for the joint estimation of physical param-
eters and machine learning parameterizations with uncertainty quantification. Our
framework incorporates online training and efficient Bayesian inference within
a high-dimensional parameter space, facilitated by differentiable programming.
This proof of concept underscores the substantial potential of differentiable pro-
gramming in synergistically combining machine learning with differential equa-
tions, thereby enhancing the capabilities of hybrid physics-ML modeling.

1 INTRODUCTION

Weather and climate models are critical tools for predicting weather patterns, understanding climate
change, and informing future environmental policies and strategies [IPCC (2021). Central to these
models is the challenging task of precisely solving time-dependent parametric partial differential
equations (PDEs) that encapsulate the intricate dynamics of Earth systems. A key challenge in these
models stems from the chaotic and multi-scale nature of atmospheric and oceanic processes. Owing
to computational constraints, these models are typically simulated on coarse meshes (O(10)km in
the horizontal), leading to miss-representation of crucial sub-grid scale processes (Schneider et al.,
2017). Yet, the mere increase in resolution is insufficient, as the set of PDEs remains unclosed
due to the absence of governing equations for certain critical, yet poorly understood or unknown
processes, such as the carbon cycle (Trugman et al., 2018) or microphysics. These gaps introduce
significant challenges to weather and climate projection (Nathaniel et al., 2024; Bony et al., 2015),
and underscore the need for a robust methodology to capture and couple all these dynamics that are
not directly resolved or described, which is called closure or parameterization (Randall et al., 2003).
Most traditional parameterization schemes contain an empirical functional relationship with tunable
physical parameters (Smagorinsky, 1963; Siebesma et al., 2007). These parameterization schemes
contribute to model uncertainty (Draper, 1995). Estimating the physical parameters of interest,
regarded as an inverse problem, can be approached by variational data assimilation (Smith et al.,
2009) ensemble methods such as ensemble Kalman filter (Evensen, 2009; Cleary et al., 2021) and
Monte-Carlo based approaches (Yang et al., 2020), but the quality of inferred models is challenged
by the dynamical systems’ strong nonlinearity (Cheng et al., 2023), and heuristic assumptions behind
traditional parameterization schemes (Gentine et al., 2018). The latter limitation has spurred the
use of machine learning for modeling sub-grid scale dynamics from high-resolution simulations to
emulate the coarse one (Rasp et al., 2018; Bhouri et al., 2023; Zanna & Bolton, 2020). Kalman based
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methods and variational methods can presumably be used to infer physical and machine learning
parameters based on uncertain observations (Evensen, 2009). However, the strong non-linearity of
the underlying models presents a challenge to the Gaussian and near-linear assumption underlying
Kalman filtering (Van Leeuwen et al., 2015) and the dimensionality of the problem (with millions
of degrees of freedom for neural networks), limits their applicability and performance. On the other
hand, differentiable modeling has been showing great promise in integrating machine learning and
physical models (Shen et al., 2023). It allows taking the derivatives within numerical errors to
any model parameters whether neural network based on physically based, thus permitting the use
of modern optimization techniques (backpropagation) for model inference. For parameterization,
online training of neural networks (NN) with differentiable solver through target trajectories offers
numerous benefits. These include enhanced numerical stability and accuracy (Frezat et al., 2022;
Qu & Shi, 2023), flexibility to integrate variational data assimilation (Farchi et al., 2023; Qu & Shi,
2023) without Gaussian assumption, and efficient uncertainty quantification facilitated by gradients
of the numerical solver (Yang et al., 2020; Bhouri & Gentine, 2022). The recent development of
differentiable general circulation models (NeuralGCM, Kochkov et al. (2023)) signals a promising
future for scaling up from surrogate models like the Lorenz systems to larger-scale, more realistic
systems.

In this work, we consider a hybrid model that contains poorly known physical parameter values, and
a neural network for sub-grid scale parameterization of turbulence. We approach the joint estimation
of physical parameters and machine learning parameters with quantified uncertainty, framed as a
Bayesian inverse problem, through a 2-stage approach enabled by differentiable programming. An
initial estimate of the set of parameters is obtained using stochastic gradient-based optimization on
temporally sparse trajectories. Then, we perform Bayesian inference of the set of parameters using
stochastic gradient Hamiltonian Monte Carlo (SG-HMC) (Chen et al., 2014), also through the set
of temporally sparse trajectories. As a proof of concept, the proposed approach is applied to a two-
layer quasi-geostrophic model to illustrate the potential of next generation Earth System Models
combining Bayesian ML and physics using a differentiable programming framework.

2 APPROACH

An abstraction of the coarse-grained dynamical system for climate and weather prediction can be
represented by the following differential equation:

dX

dt
with appropriate initial and boundary conditions. Here, X denotes the estimate of true physical
states X. The function F' encapsulates the resolved dynamics depending on physical parameters
Opny € R?. The function G models unknown or sub-grid scale dynamics as a function of X and
parameters 6 . In this study, we model G as a neural network with parameter 8y € R%. Typically,
d9 is much larger than d;, reflecting the higher dimensionality of parameter space in neural networks
compared to physical parameters and traditional parameterization schemes. Given numerical solver
time step At and initial value X, , n step integration using an explicit numerical scheme results in
Xig+nar = M™(Xyy; Ophy, On N ), Where M is a differentiable numerical solver utilized to evolve
Equation 1, and M"™ denotes the n-fold composition of M with itself. Assuming one ground truth
observation is available every AT = kAt (i.e. every k model time steps), a temporally sparse
trajectory of N + 1 ground truth data points is represented as {X;, ;a7 }2\, and the corresponding
forecast trajectory obtained from solving Equation 1 is denoted as {Xy,1ia7(@phy, On NI, =
{Mlk(Xt& Ophy, GNN)}ZN:(r

= F(X; Ophy) + G(X;6,), (D

*

Online deterministic training: ~An estimate of {85, , 0% v}, used subsequently to initialize the
Markov Chain, is obtained by mini-batch gradient-based optimization of a loss function,

1 —
T (Ophy, OnN) = Il Z L ({Xtgrint }itor {Xigriar(Ophy, ONN) Hio) 5 2)

toel

where [ is a random batch of ground truth trajectories’ initial time-steps from training dataset D, and
L(-,-) evaluates the distance between a ground truth trajectory and the corresponding forecast. In
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each training iteration, parameters 6, and 0 are updated based on 0.7 /00pny and 0T /00N v,
respectively. This separation permits the potential deployment of distinct learning rates and stochas-
tic gradient-based algorithms for each parameter type. Moreover, one may choose to cease the
update of 6, upon convergence, focusing solely on fine-tuning 8, especially considering the
high dimensionality of the latter. The gradients can be obtained conveniently when M is written
in programming frameworks that support automatic differentiation, such as JAX (Bradbury et al.,
2018), PyTorch (Paszke et al., 2019) and Julia (Bezanson et al., 2017).

Bayesian inference and uncertainty propagation: In contrast to traditional Markov-Chain
Monte Carlo (MCMC) sampling methods, which are computationally intensive for large-scale
Bayesian inference (Van Ravenzwaaij et al., 2018), Hamiltonian Monte Carlo (HMC) methods offer
an efficient means to sample high-dimensional parameter spaces (Neal et al., 2011). To circumvent
directly computing the costly gradient of the potential energy over the whole dataset, we adopt the
stochastic gradient HMC (SG-HMC) Chen et al. (2014), which approximates the gradient by eval-
uating the likelihood on mini-batches. A Bayesian hierarchical approach is applied to quantify the
uncertainty. We combine {0,,,, Oy} as a set of uncertain model parameters 6 € Ré+d2 with a
prior parameterized by A that encodes our prior knowledge about 8. Another random variable + is
introduced to quantify the quality of data. The likelihood is constructed as follows:

P ({Xegriar iy 10,7) = [T NV (Xegwiar ) [{M*(Xe; 011,971 3)

toel

where I denotes a random batch of initial times of ground truth trajectories from training dataset D,
and N represents the probability density function for normal distribution. The posterior distribution
is then formulated as:

P (0,7 A [{Xegriar}ilo) o< p ({Xegriar}ilo 10,7) p(0 [ Np(Np(y), )

with specifics on the selections of priors detailed in Appendix B. Importantly, the posterior dis-
tribution does not depend on initial time ¢y of trajectories as long as the inference is conducted
in statistically quasi steady state of the system, taking into account the ergodicity. The likelihood
formulation Equation 3 emphasizes the need for a differentiable PDE solver M as SG-HMC neces-
sitates the computation of the gradient of the log-likelihood with respect to 8. The Markov Chain
sampling is initialized with 8* = {B;hy7 0% v} to favor a short transient phase and improve sam-
pling robustness. The predictive posterior distribution of a forecast at time ¢, denoted by X*(¢), is
then given by

PX (1) | D, Xy 1) = / K™ (1) 10,7, A Xey . )p(B, 7, A | D)dBdvd, 5)

allowing us to sample X*(¢) for a given initial state X, assuming ¢t — to = [A¢ for some integer /,
as depicted in the following equation:

X*(t) = M (Xy;0) + 6,6 ~ N(0,771),{0,7,\} ~ p(8,7,\|D). (6)

The posterior mean and variance of X*(¢) can be approximated from SG-HMC samples as detailed
in Appendix B.

3 EXPERIMENTS AND RESULTS

The proposed framework is applied to the two-layer quasi-geostrophic equations with rigid lid ap-
proximation and flat bottom topography, as implemented in PyQG JAX port, which supports au-
tomatic differentiation (Otness et al., 2023). Detailed descriptions of the model’s governing equa-
tion, the coarse-grained equation, sub-grid scale terms targeted for parameterization, and parame-
ter specifics are detailed in Appendix A. "Ground truth” data is generated from simulations on a
256 x 256 mesh covering a 1, 000km x 1, 000km domain, with convergence testing outlined in Ross
et al. (2023). Simulations span 10 years at a timestep of At = lhour, using third-order Adams-
Bashforth time stepping, and the initial 5 years are excluded as spin-up. 60 simulations are used
for deterministic training and Bayesian inference, with additional 10 for testing. Finally, the data is
coarse-grained to a 32 x 32 mesh using a sharp spectral cutoff filter (details in Appendix A).
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The physical parameter set, 8,,, = {6,U}, includes the layer thickness ratio § and the upper
layer background velocity Uy, with true values of {0.25,0.025} and initial guess of {0.01,0.001}.
Sub-grid total tendency was modeled using a convolutional neural network (CNN) that takes the
upper and bottom layer vorticities as inputs, with an architecture detailed in Appendix C. Tempo-
rally sparse trajectories of just 20 daily observations at one observation per day (AT = 24At), were
used for online deterministic training. The mean squared error (MSE) served as the loss function.
Online deterministic training proceeds with updating both 6, and @y  until convergence of 8,
followed by refinement of 8 with fixed 8,,. The dimensional structure of the samples gener-
ated via SG-HMC mirrors that utilized during the deterministic training phase. Details of online
deterministic training and SG-HMC sampling, such as learning rates, optimizer selection and HMC
step size, are provided in Appendix C. The training and validation curves and history of 8, are
shown in Figure 2 in Appendix D. The inferred physical parameters from the deterministic train-
ing, 07, = {0.25636,0.02535}, align closely with their true values, exhibiting relative errors of

{2.54%,1.43%}.

To assess the efficacy of the inferred physical parameters and neural network parameterizations,
equation 1 is solved using a ground truth initial condition from the statistically steady state (i.e.,
post-year 5), over a one-year period (8,640 At). Evaluation metrics include the coefficient of deter-
mination (R?), Mean Squared Error (MSE), and total kinetic energy. For a comprehensive analysis
of long-term behavior, the empirical distribution of the upper layer potential vorticity was exam-
ined over the prediction period’s final 100 days. Performance comparisons were drawn between our
framework’s deterministic, maximum a posteriori(MAP) and posterior mean estimates, against tra-
ditional Smagorinsky schemes and scenarios without parameterization. The uncertainty was quan-
tified through a 2 posterior standard deviation band, encapsulating 95% of variability, as depicted
in Figure 1 . For the prediction window up to 4,000 hours, our framework’s deterministic esti-

R? Je—11 MSE x10-¢ Total Kinetic Energy x10% q1 Distribution

[S, 3 < BN
S~ o

—
.

Frequency

N w N
(/
/
N

Kinetic Energy Density m?/s?

S // /

0 2500 5000 7500 0 2500 5000 7500 0 2500 5000 7500
Time (h) Time (h) Time (h) Vorticity 1a<hi

—— Mean —— Smagorinsky MAP —— Deterministic —— No Parameterization Truth 2 STD Band

Figure 1: Metrics evaluating the performance of online predictions over 1 year period.

mate outperform both the no-parameterization approach and the Smagorinsky scheme in terms of
achieving the highest R? and lowest MSE. The MAP estimate’s performance closely mirror that of
the deterministic estimate. Within the initial 2,500 hours, the posterior mean showcase commend-
able accuracy with a minimal spread of uncertainty. The Smagorinsky parameterization exhibited
over-dissipation, as shown by the continuous decline in total kinetic energy and alterations in the
long-term vorticity distribution. Conversely, simulations at low resolution displayed unphysical in-
creases in total kinetic energy, hinting at potential numerical instability for extended simulations.
In contrast, our framework’s deterministic, MAP and posterior mean predictions manage to better
conserve total kinetic energy, albeit with a significant uncertainty spread. These outcomes under-
score the viability of the proposed approach in enhancing weather and climate model predictions
through efficient parameterization and uncertainty quantification. Additional results are available in
Appendix D.

4 CONCLUSION AND DISCUSSION

Our proposed framework demonstrates the potential of integrating Bayesian differentiable program-
ming with physical parameter inference and machine learning parameterization. This integration,
complemented by efficient Bayesian inference, paves the way for more accurate and reliable scien-
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tific simulations and knowledge discovery. Current efforts are directed towards optimizing online
training strategies, specifically exploring the optimal selection and configuration of ground truth tra-
jectories, including their length and temporal sparsity. Such design considerations are closely tied
to the characteristics of the system under study, aiming to balance the reduction of temporal cor-
relation with the challenges of gradient backpropagation over extensive, sparse trajectories. Given
the potential inaccuracies in gradient estimates from SG-HMC in large datasets, especially where
high-precision scientific simulation is required, alternatives such as Control Variate Gradient HMC
(CVG-HMC) (Zou & Gu, 2021) can be considered for gradient estimation improvements. Our fu-
ture work will extend to accommodate spatially sparse ground truth data and noise, and integrate
state inference, as considered in Qu et al. (2024). For various systems, inferring parameters and
parameterizations simultaneously may exhibit the equifinality issue, highlighting the importance
of continuous effort to further improve the proposed framework’s generalizability. Through these
endeavors, we aim to refine and expand the capabilities of our methodology, contributing to the
advancement of artificial intelligence for scientific modeling.
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A QG MODEL PARAMETERS AND DATA GENERATION

We consider the two-layer quasi-geostrophic(QG) equation illustrating flows driven by baroclinic
instability of a background velocity shear U; - Uz with rigid lid approximation and flat bottom

topography: 5 " 5
q1 1 a1
ot +J (Y1, q1) +5% + U187 =0,

9q2 &) -
ot + J (b2, q2) +5% + U287 = —Ter Vo,

where J (-, -) is the horizontal Jacobian, ¢;, ¢; is the layer-i potential vorticity and stream function,
respectively. They are related through

)

1

_ o2
@ =V + )

(2 — 1),
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g2 = Vs + 1 — 1g).

(IHIETA

The physical meaning of physical parameters and their setting for generating ground truth can be
found in Table 1. The parameters to be inferred is a subset of the physical parameters, denoted by
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Table 1: List of physical parameters

PARAMETER DESCRIPTION VALUE

B Rossby Parameter 1.5 x 10711
Tek Linear Botton Drag Coefficient 5.787 x 1077
T4 Deformation Wavenumber 1.5 x 10*

Uy Upper Layer Background x-axis velocity 2.5 x 1072
U, Lower Layer Background x-axis valocity 0

) Layer Thickness Ratio H; /H» 2.5 x 1071

Ophy- Following Ross et al. (2023), we approximate the effect of grid by a coarse-graining filter (-),
and the sub-grid dynamics to be parameterized is the sub-grid total tendency

_ 0q; 0g;

Si=—Fr— Fti=1,2 0
Tt ot T 9
The filter applied is a sharp spectral truncation filter as following:

= q/\lia K < K(;’

dx = {(j;{ . 6723.6(N7Hc)4Axf()chs, K> HC’ (10)

where g, is the Fourier transformation of vorticity at wave number &, k. is the cutoff threshold
and Az owgres 1S the spatial resolution of low-resolution simulations. The sub-grid totalt tendency
is not available in low-resolution simulations since the first term at the right-hand-side of Equation
9 is a filtered ground truth/high-resolution total tendency. Therefore, we use a neural network with
parameter 0y to model it as a function of low-resolution variable.

B PRIORS AND POSTERIOR STATISTICS

Following Bhouri & Gentine (2022), the choices of priors are given by

0 | \ ~ Laplace(0 | 0,\71), (11)
log A ~ Gamma(log \ | a1, 31), (12)
log vy ~ Gamma(logy | az, B2), (13)

where a1, as, 81, B2 are hyperparameters. The the use of logarithm transformation is to ensure A
and ~y are always positive. The posterior mean and variance are:

Ng
LN
pix- (t) = /Ml(XtO; 0)p(6 | D)o ~ > M (X4, 0:), (14)
S =1
2 1 & 2
ox-(t) = / (M (X130) = px- (1)) (6 | D)dO ~ <= > (M (K13 8) — px- (1) (15)
S =1

Here N; is the number of samples that approximates the posterior distributions obtained through
SG-HMC sampling.

C ONLINE DETERMINISTIC TRAINING AND BAYESIAN INFERENCE DETAILS

The sub-grid total tendency was parameterized using a convolutional neural network (CNN), de-
tailed in Table 2. This CNN incorporates periodic padding in each layer, includes bias terms, omits
batch normalization, and employs the ReLU activation function. The parameter space of the CNN is
dimensioned at do = 113, 766. Implementation was carried out using the Flax library (Heek et al.,
2023).
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Table 2: Neural Network Architecture

Convolution Layer Number Output Channels Kernel Size
1 128 (3.3)
2 64 (3,3)
3 32 (3.3)
4 32 (3.3)
5 32 (3.3)
6 2 (3.3)

In the online deterministic training phase, we employed two separate AdaBelief optimizers (Zhuang
et al., 2020) for optimizing 8y and 8, each with its distinct learning rate schedule. Specifically,
0,1, utilized an exponential decaying learning rate, starting at 0.01 and decreasing to 0.001 with
a decay rate of 0.9. Similarly, for 8, an exponential decaying learning rate was applied, com-
mencing at 0.0005 and diminishing to 0.0001 with a decay rate of 0.95. Convergence of 8, was
observed near the 50-epoch mark, at which point it was held constant to exclusively continue the
training of the CNN for an additional 50 epochs.

During the SG-HMC sampling phase, the hyperparameters oy, 1, a2, and [o within the prior
distributions are all assigned a value of 1. The leapfrog step size for SG-HMC, denoted as eg /¢,
is set to 5 x 10~°, with the number of leapfrog steps per iteration fixed at L = 10. The sampling
process is conducted over 2,000 iterations.

D ADDITIONAL RESULTS
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Figure 2: Curves for training loss, validation loss, U; and §. Note that the values are averaged over
all the batches within an epoch. After 50 epoches, U; and § are fixed.
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Figure 3: Metrics evaluating the performance of online predictions over 1 year period. Same as
Figure 2, but evaluated on another test case.
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Figure 4: Metrics evaluating the performance of online predictions over 1 year period. Same as
Figure 2 and 3, but evaluated on another test case.
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