
(MC)2: Lazy MemCopy at the Memory Controller

Aditya K Kamath
Paul G. Allen School of Computer Science & Engineering

University of Washington

Seattle, USA

akkamath@cs.washington.edu

Simon Peter
Paul G. Allen School of Computer Science & Engineering

University of Washington

Seattle, USA

simpeter@cs.washington.edu

Abstract—(MC)2 is a lazy memory copy mechanism which can
be used within memcpy-like functions to significantly reduce the
CPU overhead for copies that are sparsely accessed. It can also
hide copy latencies by enhancing the CPU’s ability to execute
them asynchronously. (MC)2’s lazy memcpy avoids copying data
at the time of invocation. Instead, (MC)2 tracks prospective
copies. If copied data is later accessed by a CPU or the cache,
(MC)2 uses the tracking information to lazily execute a copy,
when necessary. Placing (MC)2 at the memory controller puts
it at the perfect vantage point to eliminate the largest source of
memcpy overhead—CPU stalls due to cache misses in the critical
path—while imposing minimal overhead itself.

(MC)2 consists of three main components: memory controller
extensions that implement a lazy memcpy operation, a new
instruction exposing the lazy memcpy, and a flexible software
wrapper with semantics identical to memcpy. We implement
and evaluate (MC)2 in the gem5 simulator using a variety of
microbenchmarks and workloads, including Google’s Protobuf,
where (MC)2 provides a 43% speedup and Linux huge page
copy-on-write faults, where (MC)2 provides 250× lower latency.

Index Terms—lazy copy, memcpy, data transfer, memory
controller, memory, DRAM

I. INTRODUCTION

Memory copies significantly impact the execution latency

and computational overhead of modern applications. Profiling

of Google’s datacenters shows that more than 5% of CPU cycles

are consumed by memory copy (memcpy / memmove) opera-

tions [25, 47], a substantial overhead at that scale. Additionally,

waiting for copy completion adds “killer microseconds” [5] to

application processing which aren’t hidden by classical means

like out-of-order processing. As we will see in §II-C, most

CPU cycles for memcpy are spent stalled, waiting for memory.

CPU memory access latency is not expected to improve in

the future due to the classic “memory wall” problem, where

technological advances improve clock speeds for CPUs, while

memory latencies remain largely stagnant [7]. For example,

DDR5 improves memory bandwidth by up to 2× over DDR4

at a slight memory access latency cost [12]. In fact, memory

latencies may worsen in the future as cloud providers add higher

capacity memories at the expense of latency [17, 21, 32, 35].

Common use cases of memory copies are for temporary

buffers. Consider serialization and deserialization mechanisms

used to transfer objects across processes and servers [2, 3, 53].

During serialization, a process converts an object into a byte-

stream and sends it to another process. The receiving process

This work was supported by NSF grants 2212580 and 2212193.

then deserializes this stream, transforming it back into an object.

Both serialization and deserialization can involve many data

copy operations as data is moved between the object and the

byte-stream. Databases with multi-version concurrency control

(MVCC) often use a form of read-copy-update to maintain

transactional isolation [58]. Here, the transaction duplicates

data it wishes to modify. Modifications happen locally and

the duplicate is merged into the database during the commit

stage. Copies are also common in operating systems, such

as for many IO system calls, for memory defragmentation,

and for the fork system call. In many of these cases, only a

fraction of each copy may be accessed or modified, making

the remainder redundant. Further, many accesses occur with a

time delay and do not require eager execution of the copy.

A variety of techniques to reduce the overhead of copies have

been proposed [43, 44, 55, 61]. For example, Demikernel [61]

adds zero-copy APIs to IO stacks, along with programming

language based object ownership tracking features. zIO [49]

reduces copy overheads in the IO stack without API changes by

unmapping copied pages and marking these memory locations

as copy-on-access. When a copy is not accessed, the copy

latency is saved. Only accessed memory pages incur the copy

overhead upon first access. Unfortunately, existing techniques

have drawbacks. Zero-copy APIs require significant program

redesign to use efficiently. Existing transparent approaches,

such as zIO, have high page remapping overheads and thus

only provide benefits for large (>16KB) copies of which only

a small fraction (≤25%) is accessed, with high performance

penalties when this is not the case. Hardware offload techniques,

such as DMA engines, have high startup overheads making

them similarly impractical for smaller copies [52].

To alleviate the drawbacks of prior approaches, our proposal

relies on lazy execution of each memory copy. Laziness

is a common technique used across different domains in

computer science. When an expensive operation is requested,

laziness delays the operation until time of use. For example,

functional languages [20] use it to allow declaration of infinitely

sized data structures that consume limited memory—only

upon data access are the operations resolved and memory

is allocated. Operating systems use copy-on-write [48] to avoid

performing copies until pages are modified. Laziness provides

the advantage that penalties are paid only upon use.

Recent advances in memory and processing logic have

allowed significant compute logic to be placed near memory

1

Fig. 4: Distribution of Protobuf memcpy sizes.

Redis advocate against the use of huge pages [45] due to the

copy overhead causing high operation latency spikes.

Memory access stalls are the source of copy overhead: To

understand the source of copy overhead in more detail, we

perform a deeper analysis of the Protobuf workload. Figure 3

shows memory access statistics obtained from perf during the

memcpy calls of the Protobuf workload. We see that more than

25% of data accesses end up missing in the cache and have to

be serviced from memory. More than 90% of the time, at least

one instruction within the CPU is waiting for a memory access

to be serviced (Mem miss cycles). These instructions take up

a slot in the CPU’s reorder buffer (ROB) and can reduce the

CPU’s effective throughput by blocking further instructions

from entering the ROB [23]. Due to this, for more than 60%

of the cycles spent in memcpy, the CPU is completely stalled

(Mem miss stall cycles).

Many memcpys are too small for OS-based avoidance: We

also analyzed the sizes of memcpy operations executed by

the Protobuf workload, shown in Figure 4. We find that the

majority of copies (∼ 56%) copy a single kilobyte. An ideal

solution to resolve this overhead must thus be able to speed

up sub-page sized copies. Existing OS techniques [49] that

require page-sized or larger copies cannot provide any benefit.

III. (MC)2 DESIGN

(MC)2’s primary goal is to eliminate copy overhead in the

critical path. (MC)2 has to accomplish this while ensuring

data consistency. Figure 5 contains all the modifications and

new features (MC)2 introduces to accomplish these goals. The

left side shows the modifications we make to the memory

controller. The right side shows two instructions we introduce,

along with the software support that we provide for (MC)2.

We now cover the hardware changes made to support (MC)2,

then look at its software interface and how memcpy operations

can be transparently replaced with their lazy alternative.

A. (MC)2 memory controller design

We start by making changes to the memory controller (MC)

to provide support for lazy copies. For clarity, we use the term

prospective copy to refer to a lazy copy that the processor has

requested. This copy is not immediately performed. Instead,

we add a copy tracking table (CTT) to each MC to track each

prospective copy. We use the term lazy copy to refer to the

Fig. 5: (MC)2 modifications introduced.

act of finally copying data from the source to the destination,

typically triggered by an access to either buffer that requires

the copy. To manage in-progress writes to source buffers,

we extend each MC’s existing write pending queue with a

bounce pending queue (BPQ) to hold the corresponding write,

while the lazy copy is performed. The left side of Figure 5

depicts these changes with our additions highlighted in purple.

We assume memory accesses reaching the memory controller

are at cacheline granularity, typical of most modern systems.

(MC)2 supports prospective copies at a byte granularity, but

we simplify MC design by restricting tracked destination

buffers and lazy copy sizes to be of cacheline granularity.

A software wrapper (III-D) converts byte-granularity memcpys

to equivalent cacheline-granularity prospective copies.

1) Copy Tracking Table (CTT): We add a copy tracking table

(CTT) to each MC that tracks prospective copies. The CTT is an

SRAM-based module that performs lookups using the physical

address of memory accesses. These lookups are in parallel with

the memory access, avoiding overheads on the critical path

of access. The CTT ensures that reads to destination buffers

are correctly routed (bounced) to corresponding source buffers.

As the source and destination buffers may be placed across

multiple memory modules, we ensure that CTTs across MCs are

kept consistent. This is done by snooping the interconnect for

broadcast messages informing the MCs of table modifications.

Table entries: Each entry in the CTT occupies 16 bytes

consisting of a 52-bit source physical address, 52-bit destination

physical address, 21-bit size, an active bit (as shown in Figure 5)

and 2 unused bits. Addresses are tracked with 52 bits as this

is the upper limit of physical address sizes that most systems

support [14, 60]. A 21-bit size allows a single entry in the CTT

to track a lazy copy of up to 2MB, the size of a huge page.

Many copied buffers do not exceed this size. Further, memory

fragmentation causes larger physically contiguous regions to

be rare [64], making larger tracking granularities unnecessary.

Table logic: The CTT contains logic to ensure that tracked

destination buffers do not overlap. Specifically, if an existing

entry contains (part of) a destination buffer that a new operation

is inserting, the existing entry is removed (or resized) so that

the new and existing entries’ destination buffers do not overlap.

This corresponds to the case where data is copied to a buffer and

then new data is copied to the same buffer. Every destination

buffer thus has a unique source buffer.

In addition, when a new entry is inserted into the CTT, we

4

cachelines). It also broadcasts a message on the interconnect

for the other MCs to update their CTTs.

Read from destination: As this is a prospective copy, the

data in the destination buffer in memory is stale. Retrieving

the correct data involves 3 steps, shown in Figure 7:

1 The MC fetches the appropriate source buffer address

corresponding to the destination address from the CTT.

2 It bounces the request to the MC containing the source.

This MC then reads the respective source cacheline from

memory and stores the data in the destination response packet.

3 This packet is sent back to the core as if it was read

from the destination. As we now have the up-to-date version

of the destination cacheline, a copy of this packet is also

sent as a write to the MC containing the destination buffer,

eventually removing the corresponding entry from the CTT.

This prevents future accesses to the cacheline from suffering

further overheads.

Write to source: If a write to a source buffer cacheline reaches

the MC, we need to execute a lazy copy. To do so, the write is

first held in the BPQ and a read to the same source cacheline

is generated and sent to memory. Once the source cacheline

is obtained from memory, the MC generates packets for each

destination cacheline that has a prospective copy with the

source. The data read from the source cacheline is copied into

these packets. The completed destination cachelines are then

written to memory and corresponding CTT entries are removed

(or resized). Once complete, the corresponding BPQ entries

are written to memory.

Unaligned copies: If source and destination copy buffers

are not cacheline-aligned with each other, a lazy copy to a

destination cacheline may require data from multiple source

cachelines. This results in multiple bounces to fetch the entire

destination cacheline. For example, if a prospective copy was

from physical address 100 (source) to address 512 (destination),

we require two bounces to reconstruct the destination; the first

access to address [64 - 127] and the second to [128 - 191],

which may lie in separate memory modules.

Reducing bandwidth contention: When a destination buffer

is read, a copy of the reconstructed cacheline is sent as a write

to memory. To avoid contending on memory bandwidth, if the

WPQ of the destination MC is more than 75% full, it rejects

the write to prioritise the memory bandwidth for accesses from

the caches. Otherwise, it writes the destination to memory

and removes (or resizes) the corresponding CTT entry. Further

reads to this destination cacheline are serviced from memory

as normal. §V-A2 evaluates the associated overhead reduction.

C. (MC)2 ISA design

We provide two new instructions for programmers to take

advantage of lazy memcpy, shown on the right in Figure 5.

Lazy copy: MCLAZY enables the lazy memcpy. It takes three

register operands. The first register contains the virtual address

of the destination buffer, the second register contains the virtual

address of the source buffer, while the last register contains

the lazy memcpy size. The destination buffer cachelines

1 def memcpy_lazy(dest, src, size):
2 # Cacheline align dest
3 left_fringe = ALIGN_REM(dest, CL_SIZE)
4 memcpy(dest, src, left_fringe)
5 dest += left_fringe
6 src += left_fringe
7 size -= left_fringe
8 while size > 0:
9 # Calculate remaining size in page

10 src_off = ALIGN_REM(src, PAGE_SIZE)
11 dest_off = ALIGN_REM(dest, PAGE_SIZE)
12 # Pick minimum size left as lazy copy size
13 copy_size = min(min(src_off, dest_off), size)
14 if copy_size < CL_SIZE:
15 memcpy(dest, src, copy_size)
16 else:
17 # Make copy_size a multiple of CL_SIZE
18 copy_size &= ~(CL_SIZE - 1)
19 MCLAZY(dest, src, copy_size)
20 dest += copy_size
21 src += copy_size
22 size -= copy_size
23 mfence()

Fig. 8: Lazy memcpy function pseudocode.

encompassed by the operation are invalidated while the source

buffer cachelines are written back from the cache (see §III-B1).

Alignment requirements: The destination address must be

cacheline-aligned and the value contained in Rsize must be a

multiple of the cacheline size. This simplifies the MC logic,

as destination cachelines are guaranteed to be lazily copied

in their entirety, and avoids partial cacheline invalidations for

the destination buffer. In §III-D we shall see how a software

wrapper removes these requirements.

The source and destination must each be contiguous in

physical memory. For user-space applications with buffers span-

ning multiple pages, the instruction must be called separately

for each page. The instruction requires at most two address

translations, one for the source and one for the destination.

Instruction parallelism: MCLAZY obeys memory consistency

similar to CLFLUSHOPT and CLWB [22]. This means that

separate invocations of the instruction proceed in parallel,

without serialization required for stores in the x86-TSO memory

model [41]. To enforce ordering with future operations, an

MFENCE or SFENCE operation must be called.

Freeing: Finally, we provide an MCFREE operation that takes

two operands: an address register and a size register. MCFREE

sends a hint to the MC that the buffer defined by the address

and size registers is no longer useful and can be freed. The

MC can remove all entries in the CTT where the destination

buffer is contained in the freed buffer. Data in the freed buffer

needs to be reinitialized before reuse, i.e., a read operation to

a freed buffer following an MCFREE call is undefined. This

instruction can be called within functions like munmap where

the buffer is guaranteed to no longer be used.

D. Software Design

C/C++ function: To remove constraints on the programmer,

we provide a C/C++ library function memcpy_lazy that has

the same semantics as a standard memcpy call. Internally, this

function calls MCLAZY for each page in the buffers and ensures

that the destination is cacheline-aligned.

6

Fig. 9: (MC)2 simplified state transition diagram.

The pseudocode for this function is shown in Figure 8.

Here, CL_SIZE refers to the cacheline size, while the macro

ALIGN_REM returns the number of bytes required to align a

given address to a given alignment size. First, we identify the

number of bytes needed to be added to the dest address to

cacheline-align it (line 3). We then copy these bytes from the

source to destination (line 4). The destination is now cacheline

aligned. We then identify the number of bytes remaining in

the source and destination pages (lines 10 - 11) and pick the

smaller one (line 13). This ensures that the copy is being

performed on a single page for both the source and destination.

If this is smaller than the cacheline size, we manually memcpy

it (line 15). Otherwise, we make the copy size a multiple of

the cacheline size and call MCLAZY for it (lines 18 - 19). We

then repeat the process until the entire copy is complete. We

finally issue an mfence call to order the prospective copies

with future memory accesses (line 23). The read and write

operations of a standard memcpy are replaced by a MCLAZY

call per copied buffer page, enabling our lazy memcpy goal.

Memcpy interposition: We provide an additional interposer

library (copy_interpose.so) that converts memcpy calls

to lazy memcpy calls for legacy applications. This removes

the need to rewrite code to take advantage of (MC)2.

E. Data protection and correctness

We now look at (MC)2’s data protection and correctness

guarantees. For concreteness, we assume the x86 CPU architec-

ture and x86-TSO memory model [41], although (MC)2 may

be applied to other models with minor modifications.

Protection: As (MC)2 deals with only physical addresses,

regular address translation occurs within the CPU where page

protection bits are checked. If a process tries to copy data it

does not have access to, the MMU raises a page fault. On

unmapping pages, the operating systems zeroes out the newly

freed pages before providing them to new processes. This

eventually reaches the MC as writes, removing entries from the

CTT and avoiding data leaks from occurring between processes.

This ensures that (MC)2 does not expose data protection risks.

Memory consistency: (MC)2 must ensure that reads and

writes to source and destination buffers preserve memory

consistency. In (MC)2, each destination cacheline behaves

independently. This destination cacheline is a prospective copy

of a single source cacheline if they are cacheline-aligned. In

cases of misalignment, the destination is split across two source

cachelines. To examine the interaction of memory accesses

with (MC)2, we make use of a state transition diagram, seen in

Figure 9. States 1 - 4 cover the transitions for when source

and destination are cacheline-aligned. When misaligned, we

have additional states 5 - 6 .

Assume that S1, S2 and D are each cachelines, with S1 and

S2 being contiguous physical addresses. Part of S1 and S2

are prospective copies to the destination cacheline D, meaning

part of D’s data lies in S1 and part in S2, as seen in the top

of Figure 9. Note that S1, S2, and D may all lie in different

memory modules. The different states in the transition diagram

show the different possible states of the BPQ and CTT. State

transitions are caused by memory accesses by the CPU [in

black] or (MC)2 [in red]. To understand how (MC)2 provides

memory consistency, we shall now go through each state of

the diagram and analyze all the interactions and transitions to

see how the system reacts in each case.

1 We start with an empty CTT and BPQ. In this state, (MC)2

has no impact. On receiving a prospective copy, we transition

to state 2 .

2 In this state, the CTT contains an entry noting that S1

and S2 have been lazily copied to D. Writing to D removes

the entry from the CTT and transitions us back to state 1 ,

while reading S1 or S2 has no impact. Performing another

prospective copy with destination D retains us in the same

state, with the CTT entry being modified to contain the new

source(s). On writing to either S1 or S2 (denoted by Si), we

move to state 3 , where the write is kept in the BPQ.

3 This is a transitional state, where a bounce packet is

generated which reads S1 and S2 from memory (and not

the BPQ) and then writes to cacheline D. On completion of

the write, we move to state 4 , denoted by the “Bounce D”

transition. A similar transition occurs when the CPU directly

writes to D. Reads and writes to Si issued by the CPU are

merged and serviced directly from the BPQ. On a write to Sj

(j != i) we move to state 5 .

4 This is also a transitional state. D is removed from the CTT

as its data has been retrieved and written to memory, i.e., the

lazy memcpy is complete. Reads and writes to D are serviced

normally by the memory as the CTT does not contain an entry

for it. The BPQ writes Si to memory to move back to stable

state 1 . If Si is a common source for multiple prospective

copy destinations, e.g., D1, D2, D3..., the BPQ must wait until

all entries with Si as source are removed from the CTT before

writing Si to memory.

5 This is also a transitional state, where both S1 and S2 are

kept in the BPQ (denoted by Si and Sj). Similar to state 3 ,

all reads and writes to S1 and S2 from the CPU are serviced

by the BPQ, while the bounce packet for D reads directly from

memory. Writing to D or completion of the bounce operation

7

moves us to state 6 .

6 Similar to state 4 , D is removed from the CTT. S1 and S2

are written back to memory to move back to state 1 . It may

occur that S1 and S2 lie in different memory modules operated

by different MCs, with both independently generating identical

bounce requests for D. One may complete, while the other is

still pending. For this, bounce requests for D are dropped on

reaching this state.

In all the transitional states where the BPQ contains either

S1 or S2 (3 - 6), prospective copies involving S1 or S2 are

stalled until S1 and S2 have been written back to memory.

F. Performance Tradeoff Discussion

While (MC)2 provides the same semantics as the standard

memcpy and aims to accelerate it, there are performance

tradeoffs. We discuss them in this section.

Cached source buffers may harm performance: When the

source buffer is already present in the cache, the overhead

of copying is low as the CPU fetches data from the cache

instead of memory. Replacing these copies with (MC)2 could

harm performance. Despite this, we shall see in V-A1 that the

latency of (MC)2 is not significantly worse than a cached copy.

Reduced cache pollution: Cache pollution is a common

problem associated with buffer copies [52, 66], where the

destination of the copy is not immediately accessed after the

copy. As (MC)2 explicitly invalidates destination buffers from

the cache, it avoids this problem.

Copy-and-access may harm performance: If a destination

buffer is immediately accessed after a prospective copy,

(MC)2 could reduce performance, as the destination buffer’s

cache lines have been invalidated. We shall see in V-A2 that

prefetching eliminates this performance impact in many cases.

Memory footprint: Prior work, such as zIO [49], performed

copy elision by unmapping destination pages and marking

them copy-on-access, reducing the memory footprint for copies

with unaccessed destination buffers. (MC)2 does not reduce

memory footprint, as both source and destination buffers must

be physically allocated by the OS before lazy copying. This

allows (MC)2 to remain transparent to the OS and support lazy

copies at sub-page granularity, avoiding hardware interrupts

and page faults on access to destination buffers. Nevertheless,

for an application like Protobuf, we found that zIO provided

no memory footprint reduction due to sub-page sized copies.

For MongoDB, we found only a modest 6 – 8% reduction in

memory caused by copied data frequently being accessed.

IV. EVALUATION METHODOLOGY

We simulate the performance of (MC)2 by extending GEM5-

v22.1 [6]. Table I gives the configuration details of our

simulation. Our system resembles a scaled-down server node.

We use CACTI 7.0 [4], a tool that calculates cache spec-

ifications based on provided parameters, to obtain the CTT

access latency and area. For our configuration, with a 22 nm

transistor size, we find that the CTT area is 0.14 mm2 which

is negligible compared to I/O die areas of 100 mm2 [40]. The

bank leakage power is 33.8 mW. The CTT latency is 0.79 ns,

TABLE I: Simulated configuration.

Hardware

CPUs 8 Clock speed 4 GHz

Private L1

cache

64 KB/CPU,
Stride

prefetcher

Shared L2

cache

2 MB, Stride
prefetcher

DRAM size 3 GB
DRAM

channels
2

DRAM

config.
DDR4 BPQ size 8 entries

CTT entries 2,048 CTT latency 0.79 ns

Software

OS kernel Linux 5.7.0 Distribution Ubuntu 20.04

significantly lower than typical DRAM access latencies (15 -

90 ns [12]). The CTT latency is incurred when the destination

of a prospective copy is read. The entry in the CTT is looked

up and the ongoing access is preempted, incurring the CTT

latency. The packet is then bounced towards the source.

Throughout our evaluation we make use of our C wrapper

function memcpy_lazy. To accurately model the performance

of cacheline writebacks required by MCLAZY, this function calls

the CLWB instruction [22] for each cacheline that needs to be

written back. It also cacheline-aligns the provided destination,

calling memcpy for unaligned fringes (as mentioned in §III-D).

Baselines: We compare our approach to a baseline memcpy

operation. We also compare against zIO [49], a state-of-the-art

approach for OS-assisted zero-copy IO. zIO elides memcpy

operations and tracks the copies in a skiplist. The page table

entries are marked as copy-on-access using userfaultfd [1]. On

a page fault, zIO allocates physical memory for the destination

buffer and performs the copy. We modify zIO to perform elision

on all memcpy calls instead of just IO-based copies.

V. EVALUATION

We evaluate (MC)2 and tease out the performance im-

plications of the lazy memcpy technique through a set of

microbenchmarks. We then look at the full-system performance

of (MC)2 through benchmarks and applications consisting of

Google’s Protobuf, MongoDB, and Cicada. We also analyze

the impact of (MC)2 on Linux kernel buffer copies and huge

page faults. We conclude by examining (MC)2’s sensitivity to

different configuration parameters.

Our evaluation answers the following questions:

1) How much lower is (MC)2’s memcpy critical path

overhead? What are the main sources of overhead for

(MC)2’s memcpy? (§V-A1)

2) What is the impact of lazily copying data upon access?

(§V-A2)

3) What benefit does (MC)2 provide to applications? (§V-B)

4) How do (MC)2’s parameters impact its performance?

(§V-C)

8

B. Artifact check-list (meta-information)

• Compilation: GCC 9 or higher.
• Binary: All required binaries are included.
• Data set: Scripts are provided to generate necessary datasets.
• Run-time environment: Simulator can be run on an x86

machine. We evaluated on a machine with Ubuntu 22.04.
• Hardware: An x86 machine with at least 100 GB of disk space

that supports KVM.
• Output: Text files containing the summarized results are

generated as well as PNG files of the graphs in the Evaluation
section (§V). Raw performance numbers can be found in the
results folder as well.

• How much disk space required (approximately)?: 100GB..
• How much time is needed to prepare workflow (approxi-

mately)?: 30 minutes
• How much time is needed to complete experiments (approx-

imately)?: 42 hours
• Publicly available?: Yes
• Archived (provide DOI)?: 10.5281/zenodo.10884322

C. Description

The artifact contains the source code of (MC)2 along with all

evaluated benchmarks and datasets. This allows for reproducing

figures 10 - 21 contained in §V.

1) How to access: The artifact can be downloaded from

https://github.com/AKKamath/MCSquare-ISCA24 or https://

zenodo.org/doi/10.5281/zenodo.10884322.
2) Hardware dependencies: The artifact requires an x86

machine with around 100 GB of free disk space that supports
KVM. To see if your CPU supports KVM run:

egrep -c '(vmx|svm)' /proc/cpuinfo

If it returns 0, your processor does not support KVM. If the

command returns 1 or more, your processor supports KVM.

3) Software dependencies: The gem5 simulator requires

either Ubuntu 20.04 or 22.04. Root privilege is required to

run the experiments. Detailed instructions on how to build can

be found here: https://www.gem5.org/documentation/general_

docs/building. This page also contains Docker Images with all

dependencies already installed.
For Ubuntu 22.04, the following installs all dependencies:

sudo apt install build-essential git m4 scons \

zlib1g zlib1g-dev libprotobuf-dev python3-dev \

protobuf-compiler libprotoc-dev qemu-kvm \

libvirt-daemon-system libgoogle-perftools-dev \

libboost-all-dev pkg-config python3-tk \

libvirt-clients bridge-utils unzip wget \

python3-matplotlib python3-numpy

D. Installation

The artifact can be built using the following Linux com-
mands:

sudo adduser `id -un` libvirt # FOR KVM

sudo adduser `id -un` kvm # FOR KVM

unzip MCSquare-AE.zip -d mcsquare_ae

cd mcsquare_ae

scons build/X86/gem5.opt -j ${CPUS}

${CPUS} is the number of threads to use to build the simulator.

A single-threaded build takes around 2 hours.

E. Experiment workflow

Most of the folders contained in the repository are for

the gem5 simulator. The relevant files and folders specific

to (MC)2 are contained in a folder called “mcsquare/”. In

this folder, a Makefile is provided which contains all the

commands necessary to run the different experiments. The

scripts/ directory contains all the scripts used with gem5 to run

specific experiments, which are called by the Makefile. These

have been organized into folders based on their benchmark.

The os/ directory contains the disk and kernel images used by

the simulator. On running experiments, a results/ folder will

be created within the mcsquare/ directory which will contain

all the raw results from the experiments. A figures/ folder will

be created on completion of experiments, which shall contain

the final plotted figures generated from the results.

The experiments can be launched in parallel and run in

the background, to reduce overall time for simulation. If

experiments take much longer than the listed time, it’s likely

the simulator hung during launch and the experiment should

be relaunched.
The following commands can be executed within the

“mcsquare/” folder to generate the different results:

make launch_micro_latency #Figure 10: 10 min

make launch_micro_breakdown #Figure 11: 10 min

make launch_micro_seq #Figure 12: 30 min

make launch_micro_rand #Figure 13: 1 hr

make launch_protobuf #Figure 14,20: 2 hr

make launch_mongo #Figure 15: 15 hr

make launch_mvcc #Figure 16a,17a: 10 hr

make launch_mvcc_8T #Figure 16b,17b: 10 hr

make launch_hugepage_access #Figure 18 20 min

make launch_pipe #Figure 19: 15 min

make launch_src_write #Figure 21: 10 min

make launch_ctt_free #Figure 22: 2 hr

The commands require sudo priviledges, and the account

password will be asked when the command is run.

F. Evaluation and expected results

For each key result, a tab-separated result .TXT file and

a .PNG graph are generated. The results/ folder contains all

generated tab-separated text files with filenames figureX.txt.

The figures/ folder contains the PNG graphs with filenames

figureX.png, where X is the figure number. The exception is

Figure 20 where only a .TXT file containing the result table

is outputted. These outputs can be matched against figures

reported in the paper. Minor variances in performance numbers

occur from run to run, but general trends should remain stable.

REFERENCES

[1] userfaultfd(2). http://man7.org/linux/man-pages/man2/

userfaultfd.2.html, February 2020.

[2] pickle — python object serialization. https://docs.python.

org/3/library/pickle.html, October 2023.

[3] Protocol buffers. https://protobuf.dev/, October 2023.

[4] Rajeev Balasubramonian, Andrew B. Kahng, Naveen

Muralimanohar, Ali Shafiee, and Vaishnav Srinivas. Cacti

7: New tools for interconnect exploration in innovative

14

off-chip memories. ACM Trans. Archit. Code Optim.,

14(2), jun 2017.

[5] Luiz Barroso, Mike Marty, David Patterson, and

Parthasarathy Ranganathan. Attack of the killer microsec-

onds. Commun. ACM, 60(4):48–54, mar 2017.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black,

Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel

Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib,

Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5

simulator. SIGARCH Comput. Archit. News, 39(2):1–7,

aug 2011.

[7] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan,

Saugata Ghose, Kevin Hsieh, Donghyuk Lee, Tianshi

Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu.

Understanding latency variation in modern dram chips:

Experimental characterization, analysis, and optimization.

In Proceedings of the 2016 ACM SIGMETRICS Inter-

national Conference on Measurement and Modeling of

Computer Science, SIGMETRICS ’16, page 323–336,

New York, NY, USA, 2016. Association for Computing

Machinery.

[8] Kevin K. Chang, Prashant J. Nair, Donghyuk Lee, Saugata

Ghose, Moinuddin K. Qureshi, and Onur Mutlu. Low-cost

inter-linked subarrays (lisa): Enabling fast inter-subarray

data movement in dram. In 2016 IEEE International

Symposium on High Performance Computer Architecture

(HPCA), pages 568–580, 2016.

[9] Guillaume Chatelet, Chris Kennelly, Sam (Likun) Xi,

Ondrej Sykora, Clément Courbet, Xinliang David Li,

and Bruno De Backer. Automemcpy: A framework for

automatic generation of fundamental memory operations.

In Proceedings of the 2021 ACM SIGPLAN International

Symposium on Memory Management, ISMM 2021, page

39–51, New York, NY, USA, 2021. Association for

Computing Machinery.

[10] Zhenke Chen, Dingding Li, Zhiwen Wang, Hai Liu,

and Yong Tang. Ramci: a novel asynchronous memory

copying mechanism based on i/oat. CCF Transactions

on High Performance Computing, 3:129–143, 2021.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. Benchmarking cloud

serving systems with ycsb. In 2010 ACM Symposium on

Cloud Computing, SoCC ’10, page 143–154, New York,

NY, USA, 2010. Association for Computing Machinery.

[12] Crucial. Ddr5 memory: Everything you need to

know. https://www.crucial.in/articles/about-memory/

everything-about-ddr5-ram, 2023.

[13] Arnaldo Carvalho De Melo. The new linux’perf’tools.

In Slides from Linux Kongress, volume 18, pages 1–42,

2010.

[14] A Micro Devices. Amd64 architecture programmer’s man-

ual volume 2: System programming. AMD64 Architecture

Programmer’s Manual, 2024.

[15] Filipa Duarte and Stephan Wong. A memcpy hardware

accelerator solution for non cache-line aligned copies. In

2007 IEEE International Conf. on Application-specific

Systems, Architectures and Processors (ASAP), pages 397–

402, 2007.

[16] Filipa Duarte and Stephan Wong. Cache-based memory

copy hardware accelerator for multicore systems. IEEE

Transactions on Computers, 59(11):1494–1507, 2010.

[17] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar,

David Culler, Zhiyi Xu, Jianing Fan, Christopher Ken-

nelly, Bill McCloskey, Danijela Mijailovic, Brian Morris,

Chiranjit Mukherjee, Jingliang Ren, Greg Thelen, Paul

Turner, Carlos Villavieja, Parthasarathy Ranganathan, and

Amin Vahdat. Towards an adaptable systems architecture

for memory tiering at warehouse-scale. In Proceedings of

the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Sys-

tems, Volume 3, ASPLOS 2023, page 727–741, New York,

NY, USA, 2023. Association for Computing Machinery.

[18] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff.

Computedram: In-memory compute using off-the-shelf

drams. In Proceedings of the 52nd Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, MICRO ’52,

page 100–113, New York, NY, USA, 2019. Association

for Computing Machinery.

[19] Google. Fleetbench. https://github.com/google/fleetbench,

2023.

[20] Paul Hudak. Conception, evolution, and application of

functional programming languages. ACM Comput. Surv.,

21(3):359–411, sep 1989.

[21] Intel. Intel® optane™ persistent memory. https://www.

intel.com/content/www/us/en/products/docs/memory-

storage/optane-persistent-memory/overview.html.

[22] Intel. Intel® 64 and ia-32 architectures software devel-

oper’s manual, 2011.

[23] Xiaowei Jiang, Yan Solihin, Li Zhao, and Ravishankar

Iyer. Architecture support for improving bulk memory

copying and initialization performance. In 2009 18th

International Conference on Parallel Architectures and

Compilation Techniques, pages 169–180, 2009.

[24] Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-

Stavros Iliopoulos, Tao Schardl, Charles E. Leiserson, and

Jie Chen. Accelerating training and inference of graph

neural networks with fast sampling and pipelining. In

D. Marculescu, Y. Chi, and C. Wu, editors, Proceedings of

Machine Learning and Systems, volume 4, pages 172–189,

2022.

[25] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,

Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon Wei,

and David Brooks. Profiling a warehouse-scale computer.

In Proceedings of the 42nd Annual International Sympo-

sium on Computer Architecture, ISCA ’15, page 158–169,

New York, NY, USA, 2015. Association for Computing

Machinery.

[26] Giorgos Kappes and Stergios V. Anastasiadis. Asterope: A

cross-platform optimization method for fast memory copy.

In Proceedings of the 11th Workshop on Programming

Languages and Operating Systems, PLOS ’21, page 9–16,

15

New York, NY, USA, 2021. Association for Computing

Machinery.

[27] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao,

Dinesh Parimi, Borivoje Nikolic, Krste Asanovic, and

Parthasarathy Ranganathan. A hardware accelerator for

protocol buffers. In MICRO-54: 54th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO

’21, page 462–478, New York, NY, USA, 2021. Associa-

tion for Computing Machinery.

[28] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma,

Thomas Anderson, and Arvind Krishnamurthy. High

performance packet processing with flexnic. In Pro-

ceedings of the Twenty-First International Conference on

Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’16, page 67–81, New York,

NY, USA, 2016. Association for Computing Machinery.

[29] Alfons Kemper and Thomas Neumann. Hyper: A hybrid

oltp&olap main memory database system based on virtual

memory snapshots. In 2011 IEEE 27th International

Conference on Data Engineering, pages 195–206, 2011.

[30] KeyDB. Troubleshooting latency issues. https://docs.

keydb.dev/docs/latency/.

[31] Scott T. Leutenegger and Daniel Dias. A modeling study

of the tpc-c benchmark. In Proceedings of the 1993 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’93, page 22–31, New York, NY, USA,

1993. Association for Computing Machinery.

[32] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst,

Pantea Zardoshti, Stanko Novakovic, Monish Shah, Samir

Rajadnya, Scott Lee, Ishwar Agarwal, Mark D. Hill,

Marcus Fontoura, and Ricardo Bianchini. Pond: Cxl-

based memory pooling systems for cloud platforms. In

Proceedings of the 28th ACM International Conference

on Architectural Support for Programming Languages

and Operating Systems, Volume 2, ASPLOS 2023, page

574–587, New York, NY, USA, 2023. Association for

Computing Machinery.

[33] Liang Li, Guoren Wang, Gang Wu, Ye Yuan, Lei Chen,

and Xiang Lian. A comparative study of consistent

snapshot algorithms for main-memory database systems.

IEEE Transactions on Knowledge and Data Engineering,

33(2):316–330, 2021.

[34] Hyeontaek Lim, Michael Kaminsky, and David G. An-

dersen. Cicada: Dependably fast multi-core in-memory

transactions. In Proceedings of the 2017 ACM Interna-

tional Conference on Management of Data, SIGMOD

’17, page 21–35, New York, NY, USA, 2017. Association

for Computing Machinery.

[35] Compute Express Link. Compute express link™: The

breakthrough cpu-to-device interconnect cxl. https://www.

computeexpresslink.org/.

[36] Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko,

Aasheesh Kolli, and Samira Khan. Janus: Optimizing

memory and storage support for non-volatile memory

systems. In Proceedings of the 46th International

Symposium on Computer Architecture, ISCA ’19, page

143–156, New York, NY, USA, 2019. Association for

Computing Machinery.

[37] Howard Mao, Randy H Katz, and Krste Asanović.

Hardware acceleration for memory to memory copies.

Master’s thesis, 2017.

[38] MongoDB. Mongodb. github.com/mongodb/mongo/blob/

v4.4/.

[39] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and

Rachata Ausavarungnirun. Enabling practical processing

in and near memory for data-intensive computing. In

Proceedings of the 56th Annual Design Automation

Conference 2019, DAC ’19, New York, NY, USA, 2019.

Association for Computing Machinery.

[40] Samuel Naffziger, Kevin Lepak, Milam Paraschou, and

Mahesh Subramony. 2.2 amd chiplet architecture for high-

performance server and desktop products. In 2020 IEEE

International Solid-State Circuits Conference - (ISSCC),

pages 44–45, 2020.

[41] Scott Owens, Susmit Sarkar, and Peter Sewell. A better

x86 memory model: X86-tso. In Proceedings of the

22nd International Conference on Theorem Proving in

Higher Order Logics, TPHOLs ’09, page 391–407, Berlin,

Heidelberg, 2009. Springer-Verlag.

[42] Vinicius Petrucci, Eishan Mirakhur, Nikesh Agarwal,

Su Wei Lim, Vishal Tanna, Rita Gupta, and Mahesh

Wagh. Cxl memory expansion: A closer look on

actual platform. https://www.micron.com/content/dam/

micron/global/public/products/white-paper/cxl-memory-

expansion-a-close-look-on-actual-platform.pdf, 2023.

[43] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene

Zhang. Breakfast of champions: Towards zero-copy

serialization with nic scatter-gather. In Proceedings of the

Workshop on Hot Topics in Operating Systems, HotOS ’21,

page 199–205, New York, NY, USA, 2021. Association

for Computing Machinery.

[44] Deepti Raghavan, Shreya Ravi, Gina Yuan, Pratiksha

Thaker, Sanjari Srivastava, Micah Murray, Pedro Henrique

Penna, Amy Ousterhout, Philip Levis, Matei Zaharia,

and Irene Zhang. Cornflakes: Zero-copy serialization for

microsecond-scale networking. In Proceedings of the 29th

Symposium on Operating Systems Principles, SOSP ’23,

page 200–215, New York, NY, USA, 2023. Association

for Computing Machinery.

[45] Redis. Optimizing redis: Diagnosing latency issues. https:

//redis.io/docs/management/optimization/latency/.

[46] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee,

Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin

Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch,

and Todd C. Mowry. Rowclone: Fast and energy-efficient

in-dram bulk data copy and initialization. In Proceedings

of the 46th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO-46, page 185–197, New

York, NY, USA, 2013. Association for Computing Ma-

chinery.

[47] Richard L Sites. Fast memcpy, a system design. https:

//www.sigarch.org/fast-memcpy-a-system-design/, Dec

16

2022.

[48] Jonathan M. Smith and Gerald Q Maguire Jr. Effects of

copy-on-write memory management on the response time

of unix fork operations. Computing Systems, 1(3):255–

278, 1988.

[49] Timothy Stamler, Deukyeon Hwang, Amanda Raybuck,

Wei Zhang, and Simon Peter. zIO: Accelerating IO-

Intensive applications with transparent Zero-Copy IO. In

16th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 22), pages 431–445, Carlsbad,

CA, July 2022. USENIX Association.

[50] Timothy Stamler, Deukyeon Hwang, Amanda Raybuck,

Wei Zhang, and Simon Peter. zio’s copy interposer for

mongodb. https://github.com/tstamler/zIO/blob/mongo/

tas/lib/sockets/copy_interpose.c, 2022.

[51] Wen Su, Ling Wang, Menghao Su, and Su Liu. A

processor-dma-based memory copy hardware accelera-

tor. In 2011 IEEE Sixth International Conference on

Networking, Architecture, and Storage, pages 225–229,

2011.

[52] Karthikeyan Vaidyanathan, Wei Huang, Lei Chai, and

Dhabaleswar K Panda. Designing efficient asynchronous

memory operations using hardware copy engine: A case

study with i/oat. In 2007 IEEE International Parallel

and Distributed Processing Symposium, pages 1–8. IEEE,

2007.

[53] Kenton Varda. Protocol buffers: Google’s data interchange

format. Google Open Source Blog, Available at least as

early as Jul, 72:23, 2008.

[54] Stamatis Vassiliadis, Filipa Duarte, and Stephan Wong.

A load/store unit for a memcpy hardware accelerator. In

2007 International Conference on Field Programmable

Logic and Applications, pages 537–541, 2007.

[55] Adam Wolnikowski, Stephen Ibanez, Jonathan Stone,

Changhoon Kim, Rajit Manohar, and Robert Soulé. Zeri-

alizer: Towards zero-copy serialization. In Proceedings

of the Workshop on Hot Topics in Operating Systems,

HotOS ’21, page 206–212, New York, NY, USA, 2021.

Association for Computing Machinery.

[56] Stephan Wong, Filipa Duarte, and Stamatis Vassiliadis. A

hardware cache memcpy accelerator. In 2006 IEEE Inter-

national Conference on Field Programmable Technology,

pages 141–148, 2006.

[57] Wenchao Wu, Xuanhua Shi, Ligang He, and Hai Jin.

Turbognn: Improving the end-to-end performance for

sampling-based gnn training on gpus. IEEE Transactions

on Computers, 72(9):2571–2584, 2023.

[58] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and

Andrew Pavlo. An empirical evaluation of in-memory

multi-version concurrency control. Proc. VLDB Endow.,

10(7):781–792, mar 2017.

[59] Sujay Yadalam, Nisarg Shah, Xiangyao Yu, and Michael

Swift. Asap: A speculative approach to persistence.

In 2022 IEEE International Symposium on High-

Performance Computer Architecture (HPCA), pages 892–

907, 2022.

[60] Huaisheng Ye. Introduction to 5-level paging in 3rd gen

intel xeon scalable processors with linux. Lenovo Press,

2021.

[61] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk

Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ashlie

Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay

Jayakar, Pedro Henrique Penna, Max Demoulin, Piali

Choudhury, and Anirudh Badam. The demikernel datapath

os architecture for microsecond-scale datacenter systems.

In Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles, SOSP ’21, page 195–211,

New York, NY, USA, 2021. Association for Computing

Machinery.

[62] Jialiang Zhang, Michael Swift, and Jing (Jane) Li.

Software-defined address mapping: A case on 3d memory.

In Proceedings of the 27th ACM International Conference

on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’22, page 70–83, New York,

NY, USA, 2022. Association for Computing Machinery.

[63] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. On-

demand-fork: a microsecond fork for memory-intensive

and latency-sensitive applications. In Proceedings of the

Sixteenth European Conference on Computer Systems,

EuroSys ’21, page 540–555, New York, NY, USA, 2021.

Association for Computing Machinery.

[64] Kaiyang Zhao, Kaiwen Xue, Ziqi Wang, Dan Schatzberg,

Leon Yang, Antonis Manousis, Johannes Weiner, Rik

Van Riel, Bikash Sharma, Chunqiang Tang, and Dimitrios

Skarlatos. Contiguitas: The pursuit of physical memory

contiguity in datacenters. In Proceedings of the 50th An-

nual International Symposium on Computer Architecture,

ISCA ’23, New York, NY, USA, 2023. Association for

Computing Machinery.

[65] Li Zhao, Laxmi N. Bhuyan, Ravi Iyer, Srihari Makineni,

and Donald Newell. Hardware support for accelerating

data movement in server platform. IEEE Transactions on

Computers, 56(6):740–753, 2007.

[66] Li Zhao, R. Iyer, S. Makineni, L. Bhuyan, and D. Newell.

Hardware support for bulk data movement in server

platforms. In 2005 International Conference on Computer

Design, pages 53–60, 2005.

[67] Da Zheng, Xiang Song, Chengru Yang, Dominique

LaSalle, and George Karypis. Distributed hybrid cpu

and gpu training for graph neural networks on billion-

scale heterogeneous graphs. In Proceedings of the 28th

ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, KDD ’22, page 4582–4591, New York, NY,

USA, 2022. Association for Computing Machinery.

17

