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Abstract—(MC)? is a lazy memory copy mechanism which can
be used within memcpy-like functions to significantly reduce the
CPU overhead for copies that are sparsely accessed. It can also
hide copy latencies by enhancing the CPU’s ability to execute
them asynchronously. (MC)?’s lazy memcpy avoids copying data
at the time of invocation. Instead, (MC)? tracks prospective
copies. If copied data is later accessed by a CPU or the cache,
(MC)? uses the tracking information to lazily execute a copy,
when necessary. Placing (MC)? at the memory controller puts
it at the perfect vantage point to eliminate the largest source of
memcpy overhead—CPU stalls due to cache misses in the critical
path—while imposing minimal overhead itself.

(MC)? consists of three main components: memory controller
extensions that implement a lazy memcpy operation, a new
instruction exposing the lazy memcpy, and a flexible software
wrapper with semantics identical to memcpy. We implement
and evaluate (MC)” in the gem5 simulator using a variety of
microbenchmarks and workloads, including Google’s Protobuf,
where (MC)? provides a 43% speedup and Linux huge page
copy-on-write faults, where (MC)” provides 250x lower latency.

Index Terms—lazy copy, memcpy, data transfer, memory
controller, memory, DRAM

I. INTRODUCTION

Memory copies significantly impact the execution latency
and computational overhead of modern applications. Profiling
of Google’s datacenters shows that more than 5% of CPU cycles
are consumed by memory copy (memcpy / memmove) opera-
tions [25, 47], a substantial overhead at that scale. Additionally,
waiting for copy completion adds “killer microseconds” [5] to
application processing which aren’t hidden by classical means
like out-of-order processing. As we will see in §II-C, most
CPU cycles for memcpy are spent stalled, waiting for memory.

CPU memory access latency is not expected to improve in
the future due to the classic “memory wall” problem, where
technological advances improve clock speeds for CPUs, while
memory latencies remain largely stagnant [7]. For example,
DDRS5 improves memory bandwidth by up to 2x over DDR4
at a slight memory access latency cost [12]. In fact, memory
latencies may worsen in the future as cloud providers add higher
capacity memories at the expense of latency [17, 21, 32, 35].

Common use cases of memory copies are for temporary
buffers. Consider serialization and deserialization mechanisms
used to transfer objects across processes and servers [2, 3, 53].
During serialization, a process converts an object into a byte-
stream and sends it to another process. The receiving process
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then deserializes this stream, transforming it back into an object.
Both serialization and deserialization can involve many data
copy operations as data is moved between the object and the
byte-stream. Databases with multi-version concurrency control
(MVCC) often use a form of read-copy-update to maintain
transactional isolation [58]. Here, the transaction duplicates
data it wishes to modify. Modifications happen locally and
the duplicate is merged into the database during the commit
stage. Copies are also common in operating systems, such
as for many IO system calls, for memory defragmentation,
and for the fork system call. In many of these cases, only a
fraction of each copy may be accessed or modified, making
the remainder redundant. Further, many accesses occur with a
time delay and do not require eager execution of the copy.

A variety of techniques to reduce the overhead of copies have
been proposed [43, 44, 55, 61]. For example, Demikernel [61]
adds zero-copy APIs to IO stacks, along with programming
language based object ownership tracking features. zIO [49]
reduces copy overheads in the IO stack without API changes by
unmapping copied pages and marking these memory locations
as copy-on-access. When a copy is not accessed, the copy
latency is saved. Only accessed memory pages incur the copy
overhead upon first access. Unfortunately, existing techniques
have drawbacks. Zero-copy APIs require significant program
redesign to use efficiently. Existing transparent approaches,
such as zIO, have high page remapping overheads and thus
only provide benefits for large (>16KB) copies of which only
a small fraction (<25%) is accessed, with high performance
penalties when this is not the case. Hardware offload techniques,
such as DMA engines, have high startup overheads making
them similarly impractical for smaller copies [52].

To alleviate the drawbacks of prior approaches, our proposal
relies on lazy execution of each memory copy. Laziness
is a common technique used across different domains in
computer science. When an expensive operation is requested,
laziness delays the operation until time of use. For example,
functional languages [20] use it to allow declaration of infinitely
sized data structures that consume limited memory—only
upon data access are the operations resolved and memory
is allocated. Operating systems use copy-on-write [48] to avoid
performing copies until pages are modified. Laziness provides
the advantage that penalties are paid only upon use.

Recent advances in memory and processing logic have
allowed significant compute logic to be placed near memory



modules, such as within the memory controller [39]. Prior
work has taken advantage of this to integrate tasks such as
encryption [36], data address remapping [62], or logging [59]
within the memory controller. As all memory accesses are
marshaled by the memory controller, we believe it is the ideal
place to improve data copying mechanisms.

We propose performing Memory Copies lazily at the Memory
Controller, i.e., (MC)2. (MC)? augments the memory controller
to allow programmers to issue a lazy memcpy operation on a
source and destination buffer. When any CPU or cache writes
to the source buffer or reads from the destination buffer, the
memory controller performs the copy lazily. At all times, data
appears to the program as if it had been copied eagerly. (MC)?
allows applications to avoid the latency of copying in the critical
path while only exhibiting overheads for copied data that ends
up accessed. (MC)? also provides the CPU further opportunities
to hide copy latencies through prefetching, accelerating copies
even in cases where most data is accessed.

(MC)? enhances the memory controller with a Copy Tracking
Table (CTT) containing details of prospective copies to be
performed lazily. On a memcpy, instead of performing the
copy, a new CPU instruction sends a message to the memory
controller with the source address, destination address, and
copy size which are inserted as an entry in the CTT. When
a destination cacheline is read from or a source cacheline is
written to, the memory controller consults the CTT, reads the
source cacheline from memory, then copies it to the destination,
i.e., a lazy copy is performed. On a destination cacheline write,
the CTT entries are modified to stop tracking the cacheline.
In summary, we make the following contributions:

o We propose a new hardware system, (MC)? that supports

lazy memcpy operations. Programmers may use (MC)? via
a set of new instructions, a memcpy_lazy C function,
or transparently via a dynamic link library that replaces
the standard C library memcpy function.

o We implement and evaluate (MC)? in the gem5 [6] cycle-
accurate simulator. (MC)? has only ~0.2% area overhead
and a bank leakage power of 33.8 mW.

o We demonstrate the improvement (MC)? brings for
server-class workloads, with the Protobuf [19] benchmark
showing 43% lower runtime, MongoDB’s [38] insert
operations showing 16% lower latency, and Cicada’s [34]
transactions having up to 78% higher throughput. (MC)?
also accelerates common OS operations, like huge page
copy-on-write faults that have up to 250 lower latency,
and IO buffer copies with up to 99% higher throughput.

We have made our code available at https:/github.com/
AKKamath/MCSquare-ISCA24 to aid further research.

II. BACKGROUND

We begin by describing the operation of memory copies
down to the hardware architectural level (§11-A). We then look
at how and why different types of applications make frequent
use of memory copies (§11-B). Finally, we look at the overhead
of copying in these applications and determine the hardware
architectural source of the overhead (§11-C).
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Fig. 1: Base memory system architecture.

A. Memory copy operation

Memory copies (memcpys) are used to transfer a given size
of data from a source buffer to a destination buffer. These
buffers do not overlap. There are four principal operations
involved in a memcpy: load, store, test, and loop [47]. The load
fetches data from the source buffer, the store places it into the
destination buffer. The test operation checks whether the current
copied size matches the provided size. If not, the loop operation
restarts the process for the next iteration. Optimizations to
memcpy typically involve taking advantage of CPU instructions
that support data movement at larger granularity for higher
throughput, such as SIMD instructions [9, 26].

While out-of-order and speculative execution allow for some

parallelism among iterations of copying, prior work [23] has
found that this is largely limited. As the number of copy loop
iterations being performed increases, the CPU reorder buffer
quickly fills, forcing further iterations to wait. This brings
memory access latencies into the critical path of the copy, an
effect we will quantify in §II-C.
Memory system effect on memcpy: First, to clearly under-
stand how the memory system affects memcpy overhead, we
briefly describe common memory system hardware architecture,
shown in Figure 1. It consists of a set of CPU cores, each
with their own private cache and a shared last-level cache
(LLC). The system also contains a set of memory modules
with memory controllers responsible for issuing operations to
them. An interconnect connects the memory controllers to the
CPU cores via the caches.

For memory read operations, the system first probes the
CPU’s private cache and the shared LLC to locate the requested
data. If unsuccessful, the system transmits the access via the
memory interconnect to the appropriate memory controller.
This controller then sends a request to the memory module
and, upon retrieval, forwards the data to the core via the caches.
In contrast, write operations typically involve a direct write
to the cache, with the data eventually reaching the memory
through subsequent cache evictions.

In this architecture, memory access latencies become pro-
gressively worse with distance from the CPU core making the
access. The typical dynamic range of memory access latencies
can span up to 3 orders of magnitude, from a few nanoseconds
for L1 cache access to hundreds of nanoseconds for CXL-
attached DRAM and NVM. It is important to note that reads
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Fig. 2: Many use cases have significant copy overhead.

incur access latencies on the critical path, while write latencies
may be hidden by CPU write buffers and the cache. Thus,
reads from the source buffer that miss in the cache have the
biggest effect on memcpy overhead by stalling the CPU.

B. Utility of memory copies

We examine a few use cases where memory copies provide
substantial utility. Many of these use cases involve copies to
create temporary buffers. Temporary buffers are widely used
due to the strong isolation and ownership guarantees that they
provide. Data that needs to be shared by multiple components
of an application can be copied into temporary buffers, giving
each component its own local copy. These components can
then access and modify data in the buffer without risk of
interference by other components. This simplifies program
logic, as multiple components of an application do not need to
synchronize for local buffer access. In many of these cases, the
utility is so great that copies into temporary buffers are used
even if not all of the copied data is modified or even accessed.
Serialization: Serialization is a technique used to convert data
structures into a format that can be easily transferred between
processes. For example, Google’s Protobuf [3] is a popular
library used for language-agnostic serialization. The process
of serialization involves taking a data structure and converting
it into a stream of bytes. For this, a buffer is allocated and the
data structure is processed and often copied into the buffer. The
buffer is then sent to another process, where it is deserialized,
i.e., converted back into data structure form.

Many works in the field of ML [24, 57, 67] have noted

that copy overheads incurred during serialization have made
multiprocessing in Python infeasible. Similarly, prior work [27]
developed an accelerator for Protobuf due to the high serial-
ization and deserialization overheads, including copies.
I0 buffers: Prior work [49] has noted that IO-intensive
applications and the operating system IO stack often make
several redundant data copies. Applications like Redis make use
of copied buffers to pass data between independent subsystems.
These subsystems can modify the data for their specific purpose
without having to worry about other subsystems modifying
or freeing the buffer, e.g., one subsystem may log data while
another inserts it into a hash table. These copies could have
been avoided by keeping track of buffer ownership, but this
involves complicated, fine-grained memory management and
book-keeping to ensure buffers are not freed or modified before
subsystems have finished reading.
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Fig. 3: Source of Protobuf memcpy overhead.

Multi-version concurrency control (MVCC): Traditional
methods of isolation involve the use of locks to ensure that
data being modified is not simultaneously read. However, in
cases of high contention, this leads to high wait times between
readers and writers. To avoid this, in MVCC [58] databases
writers instead create copies of tables or tuples being written to
and only modify their local copy. At commit, these copies are
integrated into the main database. This ensures readers do not
end up reading partially modified data. However, this comes
at the tradeoff that writers may end up copying data that does
not end up being modified.

C. Cost of memory copies

Many use cases across these application domains exhibit
high copy overhead. Figure 2 shows the copy overhead for
four such use cases which we obtained by running applications
on an Intel Skylake server, measuring CPU cycles attributed to
memory copy using Linux perf [13]. We see that copy overhead
in terms of cycles spent in memcpy can be up to 68%.

Protobuf runs a workload from Google’s Fleetbench
suite [19] that executes Protobuf operations based on traces
from Google’s servers. Within this workload, operations such
as MergeFrom+ make heavy use of copying to move data
between buffers. MongoDB [38] is a popular NoSQL server that
prior work [49] has shown exhibits redundant copy operations
to manage IO buffers. Beyond 10, MongoDB also copies
inserted fields into an in-memory B-tree for indexing, as well
as a log—all of which contribute to the copy overhead shown.
Cicada [34] is an MVCC relational database that makes use
of copies during write operations for transactional isolation.

fork [48] is a common system call used to create a child
process. The new process inherits a virtual copy of the memory
of the parent process. This is done by creating a copy of the
parent page table, then marking all pages as copy-on-write
(COW). When a page is modified, a page fault is triggered and
the page is copied. As seen in Figure 2, a significant portion
of this page fault handling is spent on copying data for 4KB
pages. For huge pages, this overhead can reach 99%.

Virtual snapshotting [29, 33] is a technique used by in-
memory databases that takes advantage of this feature to take
consistent snapshots of the database. This is done by launching
a new process whenever a snapshot is needed. The new process
then has a virtual copy of the entire in-memory database.
While extremely useful, this technique can have high copy
overheads in the critical path. For this reason, databases like
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Redis advocate against the use of huge pages [45] due to the
copy overhead causing high operation latency spikes.
Memory access stalls are the source of copy overhead: To
understand the source of copy overhead in more detail, we
perform a deeper analysis of the Protobuf workload. Figure 3
shows memory access statistics obtained from perf during the
memcpy calls of the Protobuf workload. We see that more than
25% of data accesses end up missing in the cache and have to
be serviced from memory. More than 90% of the time, at least
one instruction within the CPU is waiting for a memory access
to be serviced (Mem miss cycles). These instructions take up
a slot in the CPU’s reorder buffer (ROB) and can reduce the
CPU’s effective throughput by blocking further instructions
from entering the ROB [23]. Due to this, for more than 60%
of the cycles spent in memcpy, the CPU is completely stalled
(Mem miss stall cycles).

Many memcpys are too small for OS-based avoidance: We
also analyzed the sizes of memcpy operations executed by
the Protobuf workload, shown in Figure 4. We find that the
majority of copies (~ 56%) copy a single kilobyte. An ideal
solution to resolve this overhead must thus be able to speed
up sub-page sized copies. Existing OS techniques [49] that
require page-sized or larger copies cannot provide any benefit.

IT1I. (MC)2 DESIGN

(MC)?’s primary goal is to eliminate copy overhead in the
critical path. (MC)? has to accomplish this while ensuring
data consistency. Figure 5 contains all the modifications and
new features (MC)? introduces to accomplish these goals. The
left side shows the modifications we make to the memory
controller. The right side shows two instructions we introduce,
along with the software support that we provide for (MC)Z.
We now cover the hardware changes made to support (MC)?2,
then look at its software interface and how memcpy operations
can be transparently replaced with their lazy alternative.

A. (MC)? memory controller design

We start by making changes to the memory controller (MC)
to provide support for lazy copies. For clarity, we use the term
prospective copy to refer to a lazy copy that the processor has
requested. This copy is not immediately performed. Instead,
we add a copy tracking table (CTT) to each MC to track each
prospective copy. We use the term lazy copy to refer to the
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Fig. 5: (MC)? modifications introduced.

act of finally copying data from the source to the destination,
typically triggered by an access to either buffer that requires
the copy. To manage in-progress writes to source buffers,
we extend each MC’s existing write pending queue with a
bounce pending queue (BPQ) to hold the corresponding write,
while the lazy copy is performed. The left side of Figure 5
depicts these changes with our additions highlighted in purple.
We assume memory accesses reaching the memory controller
are at cacheline granularity, typical of most modern systems.
(MC)? supports prospective copies at a byte granularity, but
we simplify MC design by restricting tracked destination
buffers and lazy copy sizes to be of cacheline granularity.
A software wrapper (III-D) converts byte-granularity memcpys
to equivalent cacheline-granularity prospective copies.

1) Copy Tracking Table (CTT): We add a copy tracking table
(CTT) to each MC that tracks prospective copies. The CTT is an
SRAM-based module that performs lookups using the physical
address of memory accesses. These lookups are in parallel with
the memory access, avoiding overheads on the critical path
of access. The CTT ensures that reads to destination buffers
are correctly routed (bounced) to corresponding source buffers.
As the source and destination buffers may be placed across
multiple memory modules, we ensure that CTTs across MCs are
kept consistent. This is done by snooping the interconnect for
broadcast messages informing the MCs of table modifications.
Table entries: Each entry in the CTT occupies 16 bytes
consisting of a 52-bit source physical address, 52-bit destination
physical address, 21-bit size, an active bit (as shown in Figure 5)
and 2 unused bits. Addresses are tracked with 52 bits as this
is the upper limit of physical address sizes that most systems
support [14, 60]. A 21-bit size allows a single entry in the CTT
to track a lazy copy of up to 2MB, the size of a huge page.
Many copied buffers do not exceed this size. Further, memory
fragmentation causes larger physically contiguous regions to
be rare [64], making larger tracking granularities unnecessary.
Table logic: The CTT contains logic to ensure that tracked
destination buffers do not overlap. Specifically, if an existing
entry contains (part of) a destination buffer that a new operation
is inserting, the existing entry is removed (or resized) so that
the new and existing entries’ destination buffers do not overlap.
This corresponds to the case where data is copied to a buffer and
then new data is copied to the same buffer. Every destination
buffer thus has a unique source buffer.

In addition, when a new entry is inserted into the CTT, we
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check whether any part of the source buffer of the new entry
was a destination buffer in an existing entry. If so, we split the
new entry with the overlapping part using the source buffer
of the existing entry. For example, a lazy copy operation is
initiated with buffer A being copied to buffer B (copy 1), then
buffer B being copied to buffer C (copy 2). The entry in the
CTT corresponding to copy 2 will show A being copied to C.
This avoids chains of copies, simplifying dependence tracking.

The CTT also merges multiple lazy memcpy operations to
a single entry when it finds that the copies are to contiguous
source and destination buffers. This can occur when multiple
copies are to logically separate entities within the same buffer,
e.g., element-by-element copies of an array.

Required table storage: We allocate 2,048 entries in each
CTT to allow it to track a large number of active copies.
The CTT access latency is negligible compared to the DRAM
access latency, avoiding overheads in the critical path (see §V).
Altogether, the CTT uses 2,048x16B or 32KB of SRAM.
Avoiding CTT overflow: If the CPU continuously issues lazy
copy operations, the CTT can fill up. To avoid this, copies
are performed by the MC asynchronously, with entries freed
on copy completion. The tradeoff is that asynchronous copies
lead to increased memory bandwidth utilization and reduce
the potential of avoiding redundant copies. Conversely, waiting
until the CTT is full before copying causes stalls to the CPU
as it waits for entries to be freed.

To strike a balance, (MC)? starts lazy copying when the
CTT becomes 50% full. For this, the MC identifies entries
with the smallest size and creates read requests for their source
buffers. Once the read is complete, the data is written to the
destination buffer and the entry is then removed from the
table. For large servers capable of issuing sizeable bursts of
copies, the CTT frees multiple entries in parallel, leveraging
the increased bandwidth of these servers (§ V-C). This requires
only a few bytes for counters to keep track of the number of
entries being freed.

2) Bounce Pending Queue (BPQ): If data in a source buffer
is being modified, we must ensure that this data is first copied to
its destination buffer(s). To handle this, we extend the existing
write pending queue (WPQ) in the MC with an additional
bounce pending queue (BPQ). The BPQ contains writes to
the source buffer that are waiting for data to be copied to
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the destination buffer(s). Separating the BPQ from the WPQ
prevents stalling other writes that could have proceeded. If the
number of writes to source buffers exceed the size of the BPQ,
further writes are stalled by the MC, creating back-pressure on
the caches. We find that a small BPQ supporting 8 cachelines is
sufficient to absorb bursts of source buffer writes. We explore
the impact of the number of CTT and BPQ entries, and the
asynchronous copy threshold in more detail in §V-C.

B. (MC)? functionality

We examine how (MC)? interacts with the CPU and memory
system and how data consistency is preserved with lazy copies.

1) Lazy memcpy: Requesting a prospective memcpy involves
3 main steps, shown in Figure 6. The source buffer is shown
in maroon and the destination buffer is shown in purple.

@ The CPU issues MCLAZY, creating a packet containing
the source buffer address, destination buffer address, and copy
size. It sends this packet to the caches.

@ Once the packet reaches the caches it triggers writebacks
for all the cachelines contained in the source buffer, and
invalidates the cachelines contained in the destination buffer.
The caches’ FIFO write buffer ensures that the writebacks
reach the MC before the MCLAZY packet. This guarantees that
further MC-observed writes were issued after the lazy copy
operation, necessary for memory consistency.

@ The packet is then broadcast across the memory inter-
connect, and all the MCs insert a new entry containing the
details of the lazy copy into the CTT.

2) Memory access: The CTT is consulted for every MC-
observed memory access. If the memory access is to one of
the tracked source or destination buffers, (MC)? may need to
specifically handle it. There are four types of such memory
accesses. Namely, reads from destination, reads from source,
writes to destination, and writes to source buffers. We will
discuss each one in detail.

Read from source: As these accesses do not modify data
and the source is up-to-date in memory, they proceed without
interference.

Write to destination: If a write to a destination buffer reaches
the MC, we no longer need to track it, as the memory will now
contain fresh data. The MC removes the entry from the CTT on
completion of the write (or splits the entry if it spans multiple



cachelines). It also broadcasts a message on the interconnect
for the other MCs to update their CTTs.

Read from destination: As this is a prospective copy, the
data in the destination buffer in memory is stale. Retrieving
the correct data involves 3 steps, shown in Figure 7:

@ The MC fetches the appropriate source buffer address
corresponding to the destination address from the CTT.

@ It bounces the request to the MC containing the source.
This MC then reads the respective source cacheline from
memory and stores the data in the destination response packet.

(3) This packet is sent back to the core as if it was read
from the destination. As we now have the up-to-date version
of the destination cacheline, a copy of this packet is also
sent as a write to the MC containing the destination buffer,
eventually removing the corresponding entry from the CTT.
This prevents future accesses to the cacheline from suffering
further overheads.

Write to source: If a write to a source buffer cacheline reaches
the MC, we need to execute a lazy copy. To do so, the write is
first held in the BPQ and a read to the same source cacheline
is generated and sent to memory. Once the source cacheline
is obtained from memory, the MC generates packets for each
destination cacheline that has a prospective copy with the
source. The data read from the source cacheline is copied into
these packets. The completed destination cachelines are then
written to memory and corresponding CTT entries are removed
(or resized). Once complete, the corresponding BPQ entries
are written to memory.

Unaligned copies: If source and destination copy buffers
are not cacheline-aligned with each other, a lazy copy to a
destination cacheline may require data from multiple source
cachelines. This results in multiple bounces to fetch the entire
destination cacheline. For example, if a prospective copy was
from physical address 100 (source) to address 512 (destination),
we require two bounces to reconstruct the destination; the first
access to address [64 - 127] and the second to [128 - 191],
which may lie in separate memory modules.

Reducing bandwidth contention: When a destination buffer
is read, a copy of the reconstructed cacheline is sent as a write
to memory. To avoid contending on memory bandwidth, if the
WPQ of the destination MC is more than 75% full, it rejects
the write to prioritise the memory bandwidth for accesses from
the caches. Otherwise, it writes the destination to memory
and removes (or resizes) the corresponding CTT entry. Further
reads to this destination cacheline are serviced from memory

as normal. §V-A2 evaluates the associated overhead reduction.

C. (MC)? ISA design

We provide two new instructions for programmers to take
advantage of lazy memcpy, shown on the right in Figure 5.
Lazy copy: MCLAZY enables the lazy memcpy. It takes three
register operands. The first register contains the virtual address
of the destination buffer, the second register contains the virtual
address of the source buffer, while the last register contains
the lazy memcpy size. The destination buffer cachelines

1 def memcpy_lazy(dest, src, size):

2 # Cacheline align dest

3 left_fringe = ALIGN_REM(dest, CL_SIZE)
4 memcpy (dest, src, left_fringe)

5 dest += left_fringe

6 src += left_fringe

7 size —-= left_fringe

8 while size > O0:

9 # Calculate remaining size in page
10 src_off = ALIGN_REM(src, PAGE_SIZE)
11 dest_off = ALIGN_REM (dest, PAGE_SIZE)

12 # Pick minimum size left as lazy copy size

13 copy_size = min(min(src_off, dest_off),
14 if copy_size < CL_SIZE:

15 memcpy (dest, src, copy_size)

16 else:

17 # Make copy_size a multiple of CL_SIZE
18 copy_size &= ~(CL_SIZE - 1)

19 MCLAZY (dest, src, copy_size)

20 dest += copy_size

21 src += copy_size

22 size -= copy_size

23 mfence ()

Fig. 8: Lazy memcpy function pseudocode.

encompassed by the operation are invalidated while the source
buffer cachelines are written back from the cache (see $III-B1).
Alignment requirements: The destination address must be
cacheline-aligned and the value contained in R,;,. must be a
multiple of the cacheline size. This simplifies the MC logic,
as destination cachelines are guaranteed to be lazily copied
in their entirety, and avoids partial cacheline invalidations for
the destination buffer. In §III-D we shall see how a software
wrapper removes these requirements.

The source and destination must each be contiguous in

physical memory. For user-space applications with buffers span-
ning multiple pages, the instruction must be called separately
for each page. The instruction requires at most two address
translations, one for the source and one for the destination.
Instruction parallelism: MCLAZY obeys memory consistency
similar to CLFLUSHOPT and CLWB [22]. This means that
separate invocations of the instruction proceed in parallel,
without serialization required for stores in the x86-TSO memory
model [41]. To enforce ordering with future operations, an
MFENCE or SFENCE operation must be called.
Freeing: Finally, we provide an MCFREE operation that takes
two operands: an address register and a size register. MCFREE
sends a hint to the MC that the buffer defined by the address
and size registers is no longer useful and can be freed. The
MC can remove all entries in the CTT where the destination
buffer is contained in the freed buffer. Data in the freed buffer
needs to be reinitialized before reuse, i.e., a read operation to
a freed buffer following an MCFREE call is undefined. This
instruction can be called within functions like munmap where
the buffer is guaranteed to no longer be used.

D. Software Design

C/C++ function: To remove constraints on the programmer,
we provide a C/C++ library function memcpy_lazy that has
the same semantics as a standard memcpy call. Internally, this
function calls MCLAZY for each page in the buffers and ensures
that the destination is cacheline-aligned.

size)
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Fig. 9: (MC)? simplified state transition diagram.

The pseudocode for this function is shown in Figure 8.
Here, CL_SIZE refers to the cacheline size, while the macro
ALIGN_REM returns the number of bytes required to align a
given address to a given alignment size. First, we identify the
number of bytes needed to be added to the dest address to
cacheline-align it (line 3). We then copy these bytes from the
source to destination (line 4). The destination is now cacheline
aligned. We then identify the number of bytes remaining in
the source and destination pages (lines 10 - 11) and pick the
smaller one (line 13). This ensures that the copy is being
performed on a single page for both the source and destination.
If this is smaller than the cacheline size, we manually memcpy
it (line 15). Otherwise, we make the copy size a multiple of
the cacheline size and call MCLAZY for it (lines 18 - 19). We
then repeat the process until the entire copy is complete. We
finally issue an mfence call to order the prospective copies
with future memory accesses (line 23). The read and write
operations of a standard memcpy are replaced by a MCLAZY
call per copied buffer page, enabling our lazy memcpy goal.
Memcpy interposition: We provide an additional interposer
library (copy_interpose. so) that converts memcpy calls
to lazy memcpy calls for legacy applications. This removes
the need to rewrite code to take advantage of (MC)>2.

E. Data protection and correctness

We now look at (MC)?’s data protection and correctness
guarantees. For concreteness, we assume the x86 CPU architec-
ture and x86-TSO memory model [41], although (MC)? may
be applied to other models with minor modifications.
Protection: As (MC)? deals with only physical addresses,
regular address translation occurs within the CPU where page
protection bits are checked. If a process tries to copy data it
does not have access to, the MMU raises a page fault. On
unmapping pages, the operating systems zeroes out the newly
freed pages before providing them to new processes. This
eventually reaches the MC as writes, removing entries from the
CTT and avoiding data leaks from occurring between processes.
This ensures that (MC)? does not expose data protection risks.

Memory consistency: (MC)? must ensure that reads and
writes to source and destination buffers preserve memory
consistency. In (MC)2, each destination cacheline behaves
independently. This destination cacheline is a prospective copy
of a single source cacheline if they are cacheline-aligned. In
cases of misalignment, the destination is split across two source
cachelines. To examine the interaction of memory accesses
with (MC)?, we make use of a state transition diagram, seen in
Figure 9. States @ - @ cover the transitions for when source
and destination are cacheline-aligned. When misaligned, we
have additional states (5) - (6).

Assume that S1, S2 and D are each cachelines, with S1 and
S2 being contiguous physical addresses. Part of S1 and S2
are prospective copies to the destination cacheline D, meaning
part of D’s data lies in S1 and part in S2, as seen in the top
of Figure 9. Note that S1, S2, and D may all lie in different
memory modules. The different states in the transition diagram
show the different possible states of the BPQ and CTT. State
transitions are caused by memory accesses by the CPU [in
black] or (MC)? [in red]. To understand how (MC)? provides
memory consistency, we shall now go through each state of
the diagram and analyze all the interactions and transitions to
see how the system reacts in each case.

@ We start with an empty CTT and BPQ. In this state, (MC)?
has no impact. On receiving a prospective copy, we transition
to state @

(2) In this state, the CTT contains an entry noting that S1
and S2 have been lazily copied to D. Writing to D removes
the entry from the CTT and transitions us back to state @,
while reading S1 or S2 has no impact. Performing another
prospective copy with destination D retains us in the same
state, with the CTT entry being modified to contain the new
source(s). On writing to either S1 or S2 (denoted by Si), we
move to state @, where the write is kept in the BPQ.

@ This is a transitional state, where a bounce packet is
generated which reads S1 and S2 from memory (and not
the BPQ) and then writes to cacheline D. On completion of
the write, we move to state @, denoted by the “Bounce D”
transition. A similar transition occurs when the CPU directly
writes to D. Reads and writes to Si issued by the CPU are
merged and serviced directly from the BPQ. On a write to Sj
(j '= i) we move to state (5).

(4) This is also a transitional state. D is removed from the CTT
as its data has been retrieved and written to memory, i.e., the
lazy memcpy is complete. Reads and writes to D are serviced
normally by the memory as the CTT does not contain an entry
for it. The BPQ writes Si to memory to move back to stable
state (1). If Si is a common source for multiple prospective
copy destinations, e.g., D1, D2, D3..., the BPQ must wait until
all entries with Si as source are removed from the CTT before
writing Si to memory.

@ This is also a transitional state, where both S1 and S2 are
kept in the BPQ (denoted by Si and Sj). Similar to state @
all reads and writes to S1 and S2 from the CPU are serviced
by the BPQ, while the bounce packet for D reads directly from
memory. Writing to D or completion of the bounce operation



moves us to state (6).
(6) Similar to state (4), D is removed from the CTT. S1 and S2
are written back to memory to move back to state (1). It may
occur that S1 and S2 lie in different memory modules operated
by different MCs, with both independently generating identical
bounce requests for D. One may complete, while the other is
still pending. For this, bounce requests for D are dropped on
reaching this state.

In all the transitional states where the BPQ contains either
S1 or S2 (@ - @), prospective copies involving S1 or S2 are
stalled until S1 and S2 have been written back to memory.

F. Performance Tradeoff Discussion

While (MC)? provides the same semantics as the standard
memcpy and aims to accelerate it, there are performance
tradeoffs. We discuss them in this section.

Cached source buffers may harm performance: When the
source buffer is already present in the cache, the overhead
of copying is low as the CPU fetches data from the cache
instead of memory. Replacing these copies with (MC)? could
harm performance. Despite this, we shall see in V-Al that the
latency of (MC)? is not significantly worse than a cached copy.
Reduced cache pollution: Cache pollution is a common
problem associated with buffer copies [52, 66], where the
destination of the copy is not immediately accessed after the
copy. As (MC)? explicitly invalidates destination buffers from
the cache, it avoids this problem.

Copy-and-access may harm performance: If a destination
buffer is immediately accessed after a prospective copy,
(MC)? could reduce performance, as the destination buffer’s
cache lines have been invalidated. We shall see in V-A2 that
prefetching eliminates this performance impact in many cases.
Memory footprint: Prior work, such as zIO [49], performed
copy elision by unmapping destination pages and marking
them copy-on-access, reducing the memory footprint for copies
with unaccessed destination buffers. (MC)? does not reduce
memory footprint, as both source and destination buffers must
be physically allocated by the OS before lazy copying. This
allows (MC)? to remain transparent to the OS and support lazy
copies at sub-page granularity, avoiding hardware interrupts
and page faults on access to destination buffers. Nevertheless,
for an application like Protobuf, we found that zIO provided
no memory footprint reduction due to sub-page sized copies.
For MongoDB, we found only a modest 6 — 8% reduction in
memory caused by copied data frequently being accessed.

IV. EVALUATION METHODOLOGY

We simulate the performance of (MC)? by extending GEM5-
v22.1 [6]. Table I gives the configuration details of our
simulation. Our system resembles a scaled-down server node.

We use CACTI 7.0 [4], a tool that calculates cache spec-
ifications based on provided parameters, to obtain the CTT
access latency and area. For our configuration, with a 22 nm
transistor size, we find that the CTT area is 0.14 mm?2 which
is negligible compared to 1/O die areas of 100 mm? [40]. The
bank leakage power is 33.8 mW. The CTT latency is 0.79 ns,

TABLE I: Simulated configuration.

Hardware
CPUs 8 Clock speed 4 GHz
Private L1 64 g[ﬁ{icePU’ Shared L2 2 MB, Stride
cache cache prefetcher
prefetcher
DRAM size 3GB DRAM 2
channels
DRAM DDR4 BPQ size 8 entries
config.
CTT entries 2,048 CTT latency 0.79 ns
Software
OS kernel | Linux 5.7.0 || Distribution | Ubuntu 20.04

significantly lower than typical DRAM access latencies (15 -
90 ns [12]). The CTT latency is incurred when the destination
of a prospective copy is read. The entry in the CTT is looked
up and the ongoing access is preempted, incurring the CTT
latency. The packet is then bounced towards the source.

Throughout our evaluation we make use of our C wrapper
function memcpy_ lazy. To accurately model the performance
of cacheline writebacks required by MCLAZY, this function calls
the CLWB instruction [22] for each cacheline that needs to be
written back. It also cacheline-aligns the provided destination,
calling memcpy for unaligned fringes (as mentioned in §1II-D).
Baselines: We compare our approach to a baseline memcpy
operation. We also compare against zIO [49], a state-of-the-art
approach for OS-assisted zero-copy 10. zIO elides memcpy
operations and tracks the copies in a skiplist. The page table
entries are marked as copy-on-access using userfaultfd [1]. On
a page fault, zIO allocates physical memory for the destination
buffer and performs the copy. We modify zIO to perform elision
on all memcpy calls instead of just I0-based copies.

V. EVALUATION

We evaluate (MC)? and tease out the performance im-
plications of the lazy memcpy technique through a set of
microbenchmarks. We then look at the full-system performance
of (MC)? through benchmarks and applications consisting of
Google’s Protobuf, MongoDB, and Cicada. We also analyze
the impact of (MC)? on Linux kernel buffer copies and huge
page faults. We conclude by examining (MC)?’s sensitivity to
different configuration parameters.

Our evaluation answers the following questions:

1) How much lower is (MC)?’s memcpy critical path
overhead? What are the main sources of overhead for
(MC)?’s memcpy? (§V-Al)

2) What is the impact of lazily copying data upon access?
(§V-A2)

3) What benefit does (MC)? provide to applications? (§V-B)

4) How do (MC)?’s parameters impact its performance?
(§V-O)
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A. (MC)? performance implications

We first analyze the performance tradeoffs that lazy memcpy
provides for different memcpy scenarios.

1) Copy latency and overheads: We examine copy latency
of (MC)? by performing memcpy operations on various sizes
of data regions prefaulted into memory. We then take a look
at the breakdown of overhead that (MC)? incurs.

Uncached source buffer: Figure 10 shows the latency for
zIO memcpy elision and (MC)? lazy memcpy compared to a
baseline of native memcpy (lower is better). (MC)? enables
cacheline-sized lazy copies, with speedups for copies 1KB and
larger. It has a significantly lower overhead than zIO for smaller
copies, and is 55% to 11 x faster than memcpy for copies of a
kilobyte and larger. As zIO relies on page table copy-on-access
for elision, it requires copy sizes of at least a page to be able to
perform elision. The overhead of unmapping pages and issuing
TLB shootdowns ends up degrading performance for smaller
copy sizes, with zIO performing worse than native memcpy for
16KB copies. zIO’s cost becomes justified for copy sizes of

64KB or larger, with a speedup of 23 x over memcpy at 4MB.

Despite this, we shall see that when the destination buffer
is accessed, zIO suffers significant mis-speculation penalties,
degrading the overall performance.

Cached source buffer: We also analyze the performance of
memcpy when the source buffer has already been touched
before the operation leading to it being cached (Touched
memcpy). We see that this outperforms (MC)? for smaller
sizes, however, for 16KB and above (MC)? is able to provide
a similar memcpy latency. This shows that (MC)? can be used
to provide copy latencies similar to cached copies, regardless
of whether the data is present in the cache.
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Overhead breakdown of memcpy lazy: The primary
overheads for (MC)? memcpy are writing back cachelines
and sending the prospective copy operation to the memory
controller. We separately measure these latencies, shown in
Figure 11 (lower is better). For copies smaller than 1KB, CLWB
instructions can proceed in parallel, leading to minimal impacts
in performance. Above 1KB, these operations serialize due
to the CPU load/store queue and ROB becoming full. The
lazy copy packets being sent to the MC proceed in parallel,
reducing their impact.

There is scope for improving cacheline writeback latencies.
For large copy sizes, a single full-cache writeback operation
akin to INVD [22] could be introduced, providing a single
fixed overhead for cacheline writeback regardless of copy size.
For smaller copy sizes, a wider writeback operation could be
provided (for example, operating at a page granularity), further
reducing its overhead. We therefore view the current overheads
of (MC)? prospective copies as a conservative estimate.

2) Data access latency: As our approach lazily copies data,

we end up with increased data access latencies for buffers of
prospective copies. We now look at the impact this latency has
and optimizations that allow us to minimize it.
Sequential destination buffer access: For this experiment,
we measure the runtime of copying a 4MB source to a
destination buffer followed by iterating through the destination
buffer reading elements sequentially and accumulating the
values into a local variable. This is essentially a streaming
access pattern, commonly found in operations like serialization
and deserialization. We purposely misalign the source and
destination buffer so that (MC)? suffers the increased penalty
of two bounces during destination access.

Figure 12 shows the runtimes of zIO and (MC)? relative



to native memcpy for different access proportions of the
destination buffer. While zIO is around 70% faster than (MC)?
when the dataset is not accessed, we see that this swiftly
degrades, with zIO performing worse than native memcpy
when half or more of the dataset is accessed. This is because
zIO performs copy-on-access and has to handle page faults
that add additional overhead.

Interestingly, we see that (MC)? consistently outperforms
the native memcpy for all access proportions with a worst case
runtime of 80% that of memcpy. This is because the cache
prefetcher predicts the sequential access pattern and prefetches
the destination cachelines before the CPU requests them. The
prefetches allow some of the extra latency caused by bouncing
to be hidden. We can see that, when prefetching is turned off
(No prefetch), (MC)? performs up to 21% worse than native
memcpy. Conversely, if the source and destination buffers
are both cacheline-aligned with each other (Aligned), (MC)?
is able to perform even better at up to 57% the runtime of
memcpy, as destination accesses bounce only once.
Random access: We repeat this experiment with a random
access pattern. We perform a pointer-chasing experiment where
each element contains the index of another element in an
array contained in the copied buffer. We ensure that every
index is unique and randomly distribute the indices among the
elements. This brings the memory access latency to the critical
path, as every subsequent access is dependent on the value
of the previous one, preventing any data access parallelism or
prefetching. This type of access pattern is relatively uncommon
and degrades the benefit of caches.

Figure 13 shows runtimes of zIO and (MC)? relative to
native memcpy. As the access pattern is now random, zIO
at 12.5% access suffers from frequent page faults causing its
runtime to be 2.1 X native memcpy. Once more of the dataset is
accessed, these accesses occur to already copied pages, causing
the runtime to decrease to 1.3x that of memcpy.

(MC)? on the other hand, has a much lower runtime of 92%
of memcpy. Our optimization—writing back the destination
cacheline after it bounced—is a significant source of this
reduced overhead. When the completed read is not written back
(No writeback), the latency degrades to at most 1.6 x memcpy,
performing worse than zIO. This is because every memory
access bounces twice to reconstruct the destination value,
leading to an effectively doubled memory access latency. As
before, when the destination and source buffers are cacheline-
aligned with each other (Aligned), (MC)? outperforms memcpy
with a worst case runtime of 88% of memcpy. Here, the memory
copy latency was reduced by (MC)?, and the memory access
latency is only slightly higher than normal due to destination
accesses bouncing only once.

B. Application Workload Evaluation

Google Protobuf: To evaluate the effectiveness of (MC)? on
a real workload, we ran the Protobuf workload provided in the
Google Fleetbench [19] benchmark suite. Fleetbench consists of
workloads dedicated to common “hot” library functions using
traces obtained from production servers. Google’s Protobuf
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Fig. 15: MongoDB average insertion latency.

library [3], which provides a language-agnostic framework
for data serialization, is a major workload in Fleetbench.
The Protobuf workload calls different Protobuf functions with
message sizes obtained from server traces. We accelerate this
workload with (MC)? using the library interposer to redirect
memcpy calls 1KB and larger to our lazy_memcpy function.

In Figure 14 we see the runtime obtained for the baseline
Protobuf workload compared to the runtimes of the workload
with zIO and (MC)2. We find that all memcpy operations were
below page size preventing zIO from performing any elision.
(MC)? provides 43% speedup over vanilla memcpy.
MongoDB: We examine (MC)?’s effectiveness in eliminating
redundant copies in 10 buffers by running MongoDB [3§]
with (MC)? and zIO’s MongoDB copy elision interposer [50].
We replicate the experiment performed by Stamler et. al. [49],
where a client runs the YCSB [11] load phase with 100KB
fields and 10 fields per insertion. The load phase performs
100% inserts in a uniform random distribution. We scale down
the number of insertions to 50 to make the simulation time
feasible. We run this workload 3 times and report the average
insertion latency in Figure 15. (MC)? speeds up insertions
by 15.5%, while zIO slows down insertions by 9.7% due to
frequent accesses to copied data.

For large copy sizes, zIO is supposed to provide better copy
latencies than (MC)? (§V-Al). Despite this, (MC)? provides
better performance than zIO as it does not have the page fault
penalties that zIO experiences when prospective copies are
accessed. MongoDB copies data into an in-memory B-tree
used for indexing and into a log during transaction commit.
During this process, it accesses copied data. For zIO, this
triggers a page fault, forcing it to perform a copy on the
accessed page, which (MC)? avoids.

Multi-version concurrency control: Multi-version concur-
rency control (MVCC) [58] is a popular database transactional
consistency technique. With MVCC, write transactions that
modify data first create a local copy of the tuples being modified.
Only the local copies are modified, creating a new version of
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the data upon commit. These new versions are hooked back
into the main database, discarding the old data. This allows
concurrent read transactions to read consistent data from the
main database without requiring locks.

Transactions often only update a small portion of a tuple,
incurring unnecessary copy overhead. For example, TPC-C has
frequent operations that update a single tuple attribute (e.g.,
decrementing the quantity of stock of an item [31]) which
updates only 1-2% of the tuple. Sub-tuple copies drastically
increase the complexity of version management and are thus
avoided by databases [58].

(MC)? allows MVCC databases to utilize tuple-wise copying,
while paying the copy penalty only for the portions updated. To
demonstrate this, we enhance the Cicada MVCC database [34]
with (MC)2. We perform repeated operations on a table with
8KB-sized rows, modifying different fractions of the tuples and
measuring throughput. The operations are split in a 50:50 ratio
between reads and updates, typical of write-intensive database
workloads [11]. We ran this experiment with one and eight
threads performing transactions to analyze performance when
latency-bound and bandwidth-bound respectively.

Figure 16 shows the transaction throughput of baseline
Cicada compared to (MC)? when the updates are read-modify-
write (RMW) operations. The baseline reads data from memory
during memcpy then performs the RMW locally in the cache.
(MC)? avoids the memory read during memcpy, and only
reads from memory the fraction of data being updated during
the RMW operation. For updates that modify less than 25%
of the tuple, (MC)? provides up to 78% higher throughput.
For higher fraction of updates with one thread, the memory
read penalty of (MC)? outpaces the copy speedup. With eight
threads the transactions are memory bandwidth-bound, and
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as (MC)? reduces memory accesses it consistently provides
performance improvement for update fractions less than 100%.
Figure 17 shows the transaction throughput when the update
operations are write-only. The throughput mimics that of
RMW because cache write misses issue read-for-ownership
(RFO) [22] that reads data from memory before writing to the
cache, incurring (MC)?’s read penalty. If the store operations
are replaced by non-temporal stores [22] that avoid RFO, we
see that (MC)? is able to provide a higher throughput with one
thread than the baseline for all write fractions. Similar to the
previous case, for 8 threads the application becomes memory
bandwidth bound, leading to performance improvements until
the entire tuple is modified. We were unable to compare to
zIO as Cicada allocates memory using MAP_ SHARED, which
zIO does not support.
Concurrent snapshots with huge pages: In-memory databases
make use of virtual memory snapshotting [29] to take con-
current database snapshots. They leverage the fork system
call to create a virtual memory snapshot in a child process. To
minimize overhead, fork does not copy memory to create the
snapshot. Instead, the parent and child map the same memory
as copy-on-write, copying memory pages lazily on writes [48].
With their large datasets, in-memory databases would like
to use huge page mappings to minimize TLB misses. However,
despite the use of huge pages reducing the direct overhead of
fork by over an order of magnitude due to smaller copied
page tables [63], huge page copy-on-write faults require larger
2MB copies, causing significant latency spikes. For this reason,
many in-memory databases advise against huge pages [30, 45].
To demonstrate how (MC)? can mitigate this issue, we mod-
ify the Linux kernel’s copy_user_huge_page function to
use MCLAZY instead of copying the huge page immediately.
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We run a program that initializes a 64MB memory region
using huge pages, calls fork, and then updates random §-byte
elements in the 64MB region. We measure the latency of each
update using the RDTSC [22] instruction.

Figure 18 shows the latencies of the first 100 accesses, where
Native is the unmodified Linux kernel, and (MC)? uses our
modified kernel. The native kernel experiences latency spikes
up to 455x during page faults. (MC)? experiences spikes at
most 2x with worst-case latencies 250x lower than native.
(MC)? reduces latency spikes caused by huge page copy-on-
write faults by over two orders of magnitude, while retaining
the benefits of huge pages.

User-kernel buffer copies: Copies between user and kernel
buffers upon system calls incur overheads across many appli-
cation domains. For example, cloud platforms heavily use the
POSIX socket interface for communication. Socket calls (e.g.,
send/recv) involve buffer copies that are exchanged with the
NIC via DMA [28]. Similarly, inter-process communication
like pipes and Unix sockets involve kernel buffer copies.

We modify the Linux kernel functions pipe_write and
pipe_read to make use of lazy copies instead of copying
data to/from a kernel buffer. We measure the latency of transfer
when a process sends data to another with these pipes using
RDTSC, then report the throughput in bytes/kilocycle.

Figure 19 shows the throughput for different transfer sizes.
For smaller sizes, the overhead of the system call dominates
over the actual data transfer time, leading to (MC)? having
a small improvement in throughput. As these transfer sizes
increase, the throughput saturates with (MC)? providing roughly
double the throughput of the native kernel.
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# of CTT entries (access latency)

Copy 1024 2048 4096
threshold (0.65ns) (0.75ns) (0.98ns)
10% 50.8 50.8 51.0
25% 51.0 50.8 51.0
50% 51.2 50.8 51.0
75% 52.2 51.2 51.2
90% 53.4 51.6 51.6
(a) Wall clock execution time in milliseconds.

# of CTT entries (access latency)
Copy 1024 2048 4096
threshold (0.65ns) (0.75ns) (0.98ns)
10% 1% 0% 0%
25% 4% 0% 0%
50% 20% 0% 0%
75% 58% 5% 0%
90% 100% 30% 12%

(b) Max-min normalized stalls due to full CTT.

Fig. 20: Protobuf performance, varying the number of CTT
entries and copy threshold.

C. Sensitivity studies

We now examine the impact of the different parameters of
the Copy Tracking Table and Bounce Pending Queue.
Copy Tracking Table (CTT): To identify the impact of the
number of CTT entries and the threshold at which we start
asynchronously freeing entries, we run Protobuf with a sweep
of various CTT sizes and thresholds, shown in Figure 20. The
performance difference between worst and best configuration is
around 5%, showing that varying the CTT parameters does not
drastically impact performance. When the CTT is small (1,024
entries), the CPU frequently suffers from stalls due to the CTT
being full (Figure 20b), negatively impacting performance. We
see a similar behavior with a high (i.e., 90%) copy threshold.

Interestingly, reducing the copy threshold does not negatively
impact performance. This is because (MC)? limits the outstand-
ing asynchronous copies per memory controller, restricting the
memory bandwidth interference with the CPU. However, a
too small copy threshold leads to unnecessary copying and
underutilizes the CTT. We find that 2,048 entries with a 50%
copy threshold provides a small CTT without stalls.
Bounce Pending Queue (BPQ): To identify the performance
impact of differing BPQ sizes, we make use of a microbench-
mark that lazily copies a source buffer to a destination buffer,
overwrites the source buffer, then flushes the writes from the
cache. The microbenchmark then executes a fence operation,
bringing the overhead of writing to the source buffer into the
critical path. We repeat this experiment for varying buffer sizes.

Figure 21 shows the normalized runtime with different
BPQ sizes. A small BPQ fills up quickly, leading to stalled
writes. As the BPQ size increases, more writes are able to
proceed in parallel, reducing the runtime. Enlarging the BPQ
gradually receives diminishing returns, with 16 BPQ entries
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Fig. 22: MVCC database speedup with (MC)?, varying the
number of per-MC parallel CTT entry frees.
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only providing on average 2% speedup over 8 entries, compared
to 2 entries providing 35% speedup over 1 entry.

Scalability: Modern servers provide a considerable number of
cores, supporting a large number of parallel threads. As the
number of threads executing lazy memcpy operations increases,
the CTT can quickly fill, causing stalls while waiting for entries
to be freed (SI1I-A1).

To resolve this, the CTT frees multiple entries in parallel. To
demonstrate this, we run the MVCC database with increasing
numbers of threads, while varying the number of CTT entries
being freed in parallel per memory controller. We examine the
throughput obtained, normalized to standard memcpy using the
same number of threads (Figure 22). For small thread counts,
the performance is stable as the rate of lazy copies is not
enough to fill the CTT. For larger thread counts, non-parallel
freeing ends up suffering due to stalls. Increasing parallelism
improves performance and prevents these stalls. Parallel CTT
freeing increases the memory bandwidth utilization. However,
servers provision memory bandwidth proportional to cores [42],
allowing (MC)? to scale to larger servers.

VI. RELATED WORK

We are not the first to consider the impact of memcpy in
application performance. We review related work here.
Cache-based lazy memcpy: The closest line of work [15,
16, 54, 56] proposes a memcpy accelerator within the cache.
This accelerator adds a mapping table to the cache that remaps
destination buffer requests to the source buffer. However, the
high performance of this accelerator is contingent on the source

13

data being present in the cache. Otherwise, it must still be
fetched from memory.

Copy engines: Many proposals [10, 23, 37, 51, 52, 65] present
copy engines to improve bandwidth and reduce CPU data
movement overhead. Asynchrony is often used to provide high
performance, where the CPU initiates the copy engine and
performs other compute while waiting for copy completion.
Many of these proposals have high initialization overhead,
making them impractical for kilobyte-sized copies.

We view these proposals as addressing an orthogonal
problem to ours. (MC)? eliminates unnecessary data movement
and removes copies from the critical path, delaying them to
access time where copy latencies can be hidden. (MC)? could
make use of copy engines to start asynchronously moving data
on lazy memcpy calls, while access to uncopied data follows the
usual (MC)? procedure, providing fully asynchronous copies
transparent to the CPU.

In-DRAM copies: A tangential line of work [8, 18, 46]
explores in-DRAM copy techniques. These take advantage
of high-bandwidth internal links present in DRAM to perform
copy operations fully within the DRAM module, without
needing to move data across the memory interconnect. These
proposals require the source and destination buffers to be
present within the same DRAM module.
Application-specific memcpy elision: Many proposals target
copy overheads in specific application domains. S. Karandikar
et. al. [27] propose a hardware accelerator for Protobuf opera-
tions. Several works [43, 44, 55] target reducing copy overheads
in serialization. zIO [49] eliminates redundant memory copies
present in 10-based application and OS operations. Contrary
to these, we seek to provide a general-purpose solution across
various application domains.

VII. CONCLUSION

Data movement is a significant CPU overhead in modern
applications. We propose (MC)?, a hardware mechanism that
enables lazy memcpy operations. (MC)? reduces copy overhead
in the critical path. We evaluate (MC)? using gem5 and show
that it provides 43% speedup for Google’s Protobuf workload
and 250x lower latency for huge page copy-on-write faults.

APPENDIX
A. Abstract

We provide the source code and setup necessary for (MC)?:
Lazy MemCopy at the Memory Controller. (MC)? is a hardware
extension that provides support for a lazy memcpy operation.

This operation avoids copying data at the time of function
call. Instead, if copied destinations are later accessed, (MC)?
uses tracking information to seamlessly reroute the request
to the appropriate source, while lazily executing copies only
when necessary. (MC)? modifies the memory controller and
has been implemented using gem5, a CPU simulator.

This artifact consists of the source code of the simulator,
benchmarks used for evaluation and all scripts needed to
replicate the figures in the paper.



B. Artifact check-list (meta-information)

Compilation: GCC 9 or higher.

Binary: All required binaries are included.

Data set: Scripts are provided to generate necessary datasets.

Run-time environment: Simulator can be run on an x86

machine. We evaluated on a machine with Ubuntu 22.04.

« Hardware: An x86 machine with at least 100 GB of disk space
that supports KVM.

e Output: Text files containing the summarized results are
generated as well as PNG files of the graphs in the Evaluation
section (§V). Raw performance numbers can be found in the
results folder as well.

« How much disk space required (approximately)?: 100GB..

« How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes

« How much time is needed to complete experiments (approx-
imately)?: 42 hours

o Publicly available?: Yes

o Archived (provide DOI)?:

10.5281/zenodo.10884322

C. Description

The artifact contains the source code of (MC)? along with all
evaluated benchmarks and datasets. This allows for reproducing
figures 10 - 21 contained in §V.

1) How to access: The artifact can be downloaded from
https://github.com/AKKamath/MCSquare-ISCA24 or https://
zenodo.org/doi/10.5281/zenodo.10884322.

2) Hardware dependencies: The artifact requires an x86

machine with around 100 GB of free disk space that supports
KVM. To see if your CPU supports KVM run:

''(vmx | svm) '

egrep -c /proc/cpuinfo

If it returns 0, your processor does not support KVM. If the
command returns 1 or more, your processor supports KVM.
3) Software dependencies: The gem5 simulator requires
either Ubuntu 20.04 or 22.04. Root privilege is required to
run the experiments. Detailed instructions on how to build can
be found here: https://www.gemS5.org/documentation/general_
docs/building. This page also contains Docker Images with all

dependencies already installed.
For Ubuntu 22.04, the following installs all dependencies:

sudo apt install build-essential git m4 scons \
z1liblg zliblg-dev libprotobuf-dev python3-dev \
protobuf-compiler libprotoc-dev gemu-kvm \
libvirt-daemon-system libgoogle-perftools-dev \
libboost-all-dev pkg-config python3-tk \
libvirt-clients bridge-utils unzip wget \
python3-matplotlib python3-numpy

D. Installation

The artifact can be built using the following Linux com-
mands:

sudo adduser “id -un” libvirt # FOR KVM
sudo adduser “id -un” kvm # FOR KVM
unzip MCSquare-AE.zip -d mcsquare_ae
cd mcsquare_ae

scons build/X86/gem5.opt -3 ${CPUS}

${CPUS} is the number of threads to use to build the simulator.
A single-threaded build takes around 2 hours.

E. Experiment workflow

Most of the folders contained in the repository are for
the gem5 simulator. The relevant files and folders specific
to (MC)? are contained in a folder called “mcsquare/”. In
this folder, a Makefile is provided which contains all the
commands necessary to run the different experiments. The
scripts/ directory contains all the scripts used with gem5 to run
specific experiments, which are called by the Makefile. These
have been organized into folders based on their benchmark.
The os/ directory contains the disk and kernel images used by
the simulator. On running experiments, a results/ folder will
be created within the mcsquare/ directory which will contain
all the raw results from the experiments. A figures/ folder will
be created on completion of experiments, which shall contain
the final plotted figures generated from the results.

The experiments can be launched in parallel and run in
the background, to reduce overall time for simulation. If
experiments take much longer than the listed time, it’s likely
the simulator hung during launch and the experiment should

be relaunched.
The following commands can be executed within the
“mcsquare/” folder to generate the different results:

make launch_micro_latency #Figure 10: 10 min
make launch_micro_breakdown #Figure 11: 10 min
make launch_micro_seq #Figure 12: 30 min
make launch_micro_rand #Figure 13: 1 hr
make launch_protobuf #Figure 14,20: 2 hr
make launch_mongo #Figure 15: 15 hr
make launch_mvcc #Figure 16a,17a: 10 hr
make launch_mvcc_8T #Figure 16b,17b: 10 hr
make launch_hugepage_access #Figure 18 20 min
make launch_pipe #Figure 19: 15 min
make launch_src_write #Figure 21: 10 min
make launch_ctt_free #Figure 22: 2 hr

The commands require sudo priviledges, and the account
password will be asked when the command is run.

F. Evaluation and expected results

For each key result, a tab-separated result .TXT file and
a .PNG graph are generated. The results/ folder contains all
generated tab-separated text files with filenames figureX.txt.
The figures/ folder contains the PNG graphs with filenames
figureX.png, where X is the figure number. The exception is
Figure 20 where only a .TXT file containing the result table
is outputted. These outputs can be matched against figures
reported in the paper. Minor variances in performance numbers
occur from run to run, but general trends should remain stable.
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