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ABSTRACT

Constrained cooperative multi-agent reinforcement learning (MARL) is an emerg-
ing learning framework that has been widely applied to manage multi-agent sys-
tems, and many primal-dual type algorithms have been developed for it. However,
the convergence of primal-dual algorithms crucially relies on strong duality — a
condition that has not been formally proved in constrained cooperative MARL.
In this work, we prove that strong duality fails to hold in constrained cooperative
MARL, by revealing a nonconvex quadratic type constraint on the occupation mea-
sure induced by the product policy. Consequently, our reanalysis of the primal-dual
algorithm shows that its convergence rate is hindered by the nonzero duality gap.
Then, we propose a decentralized primal approach for constrained cooperative
MARL to avoid the duality gap, and our analysis shows that its convergence is
hindered by another gap induced by the advantage functions. Moreover, we com-
pare these two types of algorithms via concrete examples, and show that neither
of them always outperforms the other one. Our study reveals that constrained
cooperative MARL is generally a challenging and highly nonconvex problem, and
its fundamental structure is very different from that of single-agent constrained RL.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) (Zhang et al., 2018; Oroojlooy and Ha-
jinezhad, 2022; Chen et al., 2022) is a popular learning framework where multiple agents interact with
a dynamic environment independently and communicate with each other to collaboratively optimize
their policies to gain more rewards. It has a wide range of applications including coordination of
drones (Hammami et al., 2019; Jeon et al., 2022), autonomous vehicles (Garces et al., 2023), and
directional sensors (Xu et al., 2020), etc.

Recently, cooperative MARL has been further generalized to constrained cooperative MARL — a
more practical setting with safety constraints, in which the agents learn to gain more rewards while
constraining their behavior to reduce certain safety-related costs (Diddigi et al., 2019; Oroojlooy
and Hajinezhad, 2022). This is an important generalization of cooperative MARL that fits many
applications. For example, in multi-agent autonomous driving (Shalev-Shwartz et al., 2016), the
pursuit of fluent traffic flow should always obey speed limits and guarantee safety. In drone navigation
(Hammami et al., 2019), the drones are subject to constraints on bandwidth and battery power.

In the existing literature, the mainstream approach for solving constrained cooperative MARL
problems is primal-dual algorithm (Diddigi et al., 2019; Gu et al., 2021; Lu et al., 2021; Yang
et al., 2023; Ying et al., 2023), which applies alternating updates to optimize the Lagrange function
associated with the constrained cooperative MARL problem. This is a classic and popular algorithm
for solving constrained optimization problems, and it is well-known that its convergence crucially
relies on a strong duality condition of the underlying problem, which has been shown to hold for
constrained convex optimization problems (Bertsekas, 2014) and constrained RL problems (i.e.,
constrained cooperative MARL with a single agent) (Altman, 2004; Paternain et al., 2019). However,
strong duality has not been formally validated in constrained cooperative MARL, and therefore leaving
convergence of the existing primal-dual type algorithms obscure. In fact, constrained cooperative
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MARL can be more challenging than the special case of cooperative MARL (without any safety
constraint), since intuitively the optimal product policy of cooperative MARL can be ruled out by the
complex safety constraints. Hence, we are motivated to study the following fundamental problem.

Q1: Does strong duality hold for constrained cooperative MARL? Is constrained cooperative MARL
more challenging than its special cases of cooperative MARL and constrained RL?

The existing convergence analysis of primal-dual algorithms for constrained cooperative MARL
developed in (Lu et al., 2021; Ying et al., 2023) does not validate the strong duality condition, and
moreover, does not characterize the desired constraint violation and optimality of the output policy.
Instead, they only establish a convergence result to a certain stationary point with vanishing gradient
norm. In particular, Yang et al. (2023) decomposes the agents’ policy into a base policy and a
perturbation policy, and only the convergence of the perturbation policy update is established given a
fixed base policy. This result does not characterize the convergence of the full algorithm. In contrast,
the convergence of primal-dual algorithms is very well understood in the special case of constrained
RL (with a single agent). There, strong duality has been shown to hold, and the convergence rates
of constraint violation and optimality gap have been established (Li et al., 2021; Xu et al., 2021).
Therefore, we are further motivated to explore the following problem.

Q2: If strong duality fails to hold in constrained cooperative MARL, how does the duality gap affect
the convergence of the primal-dual algorithm? Moreover, can we develop an alternative algorithm
with convergence rates that do not depend on the duality gap?

1.1 OUR CONTRIBUTIONS

In this work, we provide comprehensive answers to the above questions, and show that constrained
cooperative MARL is more challenging than its special cases of cooperative MARL and constrained
RL. We summarize our contributions below.

We reformulate the constrained cooperative MARL problem as a constrained optimization problem on
the occupation measure associated with the agents’ product policy. It turns out that the reformulated
optimization problem involves a linear objective function, some linear inequality constraints and
certain highly nonconvex quadratic constraints, which are induced by the independence of the agents’
product policy in the occupation measure space. To the best of our knowledge, such a nonconvex
optimization problem has no known polynomial-time algorithm. In contrast, both constrained RL and
cooperative MARL, as special cases of constrained cooperative MARL, have provably convergent
polynomial-time algorithms. This indicates that the strong duality of constrained RL may no longer
hold in constrained cooperative MARL, as elaborated in the next point.

We further construct an example to show that constrained cooperative MARL problems can have a
strictly positive duality gap. Then, we reanalyze the convergence of the primal-dual algorithm in con-
strained cooperative MARL, and establish the first correct convergence rate result that characterizes
the impact of duality gap on the constraint violation and optimality of the output policy.

We then propose a decentralized primal algorithm that utilizes decentralized natural policy gradient
(NPG) updates to directly solve constrained cooperative MARL problems in their primal forms
and thus avoids the duality gap. We develop new technical tools and tight bounds to analyze the
convergence of this algorithm, and prove that both the constraint violation and the optimality gap

converge at the sub-linear rate O (, /7 (1“_'[ o5+ maxk Ck ), where M denotes the number of agents and

(1-)2
(x, denotes an advantage gap induced by the global and local advantage functions. We will show that
this advantage gap vanishes if and only if the () function satisfies a certain factorization structure (See
Appendix H for more details). In particular, in the single-agent case, the convergence rates of our
primal algorithm strictly improve those of the existing CRPO primal algorithm (Xu et al., 2021) by a
factor of 1/|S||A|(1 — ). We compare our convergence results with existing works on constrained
cooperative MARL in Table 1 in Appendix J.

Lastly, we compare the primal-dual algorithm with the primal algorithm and show that neither of them
always outperforms the other in constrained cooperative MARL, both theoretically and experimentally.
Specifically, we construct an example where the primal-dual algorithm always generates infeasible
policy whereas the primal algorithm converges to the optimal policy at a sublinear rate, vice versa. In
particular, the examples we construct involve highly nonconcave constrained maximization problems,
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making it challenging to study the convergence of the primal algorithm. Instead of using convex
optimization analysis techniques, we prove the convergence of two highly nonconvex potential
functions via multi-statement induction in various cases.

1.2 RELATED WORK

Cooperative MARL: Cooperative MARL has two tasks of interest, policy evaluation and policy
optimization. Policy evaluation has been solved by temporal difference type algorithms, including
(Wai et al., 2018; Doan et al., 2019; Wang et al., 2020; Sun et al., 2020; Liu and Olshevsky, 2023) for
on-policy evaluation and (Macua et al., 2014; Stankovi¢ and Stankovié, 2016; Cassano et al., 2020;
Chen et al., 2021c) for off-policy evaluation. Multiple algorithms have been proposed to solve policy
optimization problem, including actor-critic (Foerster et al., 2018; Lin et al., 2019; Suttle et al., 2019;
Ma et al., 2021; Chen et al., 2022; Luo and Li, 2022), natural actor-critic (Chen et al., 2022; Luo and
Li, 2022), fitted-Q (Zhang et al., 2020), value iteration (Chen et al., 2021a) etc.

Constrained Markov Decision Processes: Constrained RL proposed by (Altman, 2004) is a
particular case of constrained cooperative MARL with safety constraints but only one agent. Primal-
dual algorithms are also popular for constrained RL (Achiam et al., 2017; Tessler et al., 2018; Altman,
2004; Yang et al., 2019; Yu et al., 2019; Stooke et al., 2020; Ding et al., 2020; 2021; Li et al., 2021).
There are also other kinds of algorithms for constrained RL, including Lyapunov function based
algorithm (Chow et al., 2018; 2019), interior point methods (Liu et al., 2020), policy network that
encodes safety constraints (Dalal et al., 2018), and CRPO algorithm (Xu et al., 2021). See (Gu et al.,
2022) for a comprehensive review of constrained RL.

Other constrained cooperative MARL frameworks: We mainly focus on the main-stream con-
strained cooperative MARL framework (1) with lower bounds on the total discounted safety score.
Some other constrained cooperative MARL frameworks have also been proposed. For example,
the constrained cooperative MARL framework in (Liu et al., 2021) has partially observable states
and bounds the total discounted safety score as well as the instantaneous safety score. Sheng et al.
(2023) proposes a primal-dual algorithm for constrained cooperative MARL with an upper bound
on the probability of safety violation. Mondal et al. (2022) uses a mean-field approximation to
constrained cooperative MARL with a very large number of agents, which reduces multi-agent policy
to a centralized policy, and this approximated problem is solved by a natural policy gradient-based
primal-dual algorithm. Shang et al. (2023) proposes a constrained cooperative MARL framework for
collaborative multi-phase tasks where each agent focuses on its own value and safety, and proposes a
primal algorithm without theoretical analysis.

2 CHALLENGE OF CONSTRAINED COOPERATIVE MARL

We consider the standard setting of constrained cooperative MARL (Yang et al., 2023; Diddigi et al.,
2019; Gu et al., 2021; Lu et al., 2021), in which M agents explore and make decisions in a common
environment. They communicate with each other via a decentralized network G = ([M], £) where
[M] :={1,2,..., M} denotes the set of agents and £ denotes the set of communication links.

At time t, every agent m observes the global environment state s; € S and accordingly takes an

action agm) € AU based on its own policy 7(")(-|s;). These agents’ policies are independent,

agl); e ;agM)] € A is generated by the product policy
m(ag)st) = H%Zl 7r(7”)(a§m)|st). Then, the state s; transfers to a new state s;11 ~ P(-|st, at)

following the state transition kernel P, and every agent m receives a reward r(()f?) = r(()m) (8¢, az)

and therefore their joint action a; = |

and various safety scores r,g";) = r,im)(sh a) (k = 1,..., K), which are assumed to be in [0, 1]
throughout. The goal of constrained cooperative MARL is to find the optimal product policy that
maximizes the cumulative average reward under various safety constraints, that is,

oo
(Constrained cooperative MARL):  max  Vy(n) := E, [Z fyt?()’t‘so ~ p} , )
product policy 7 =0

oo
s.t. Vi(m) = EF{Z’thk,t‘so ~ p} >&, k=1,...,K,
t=0
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where the value functions Vj(7),k = 0, ..., K denote the expected accumulation of the agents’
average reward/safety scores Ty = 1 2%21 rl(!rz) with a discount factor v € (0,1), {& € R
denotes the threshold for the k-th safety constraint, and p is the initial state distribution.

When there is no safety constraint, problem (1) reduces to a standard cooperative MARL problem
that can be solved by many decentralized policy optimization algorithms (Zhang et al., 2018; Chen
et al., 2022). On the other hand, when there is only a single agent, problem (1) reduces to a standard
constrained RL problem that can be solved by primal-dual algorithms (Altman, 2004; Achiam et al.,
2017; Ding et al., 2021). However, as we show next, when imposing safety constraints on multiple
cooperative agents, the problem becomes more challenging.

To illustrate the challenges to solve problem (1), we rewrite it using the following occupation measures
associated with policy 7, where P, denotes the probability of visiting a certain (s, a) under 7.

vr(s,a) :=( ny}P’ St = s,a; = alsg ~ p), V(s Zyﬂ s, @) 2)

t=0

In particular, there is an almost one-to-one correspondence between a policy 7 and its occupation

measure v, (s, a), since w(als) = l’;(if;;) if vz (s) > 0 (otherwise, 7(-|s) can be any distribution on

A). Then, the value function V() in (1) can be rewritten as a linear function V(1) as follows.

Vie(m) = Vk Vp) i= Zrk s,a)vr(s,a), 3)

where 74 (s,a) = 57 Z (s7 a) denotes the average reward/safety score. However, in the
multi-agent setting, v, assomated with a product policy 7 needs to satisfy the following additional
complex constraints. Below, a(\™) denotes the joint action of all the agents except agent m.

Theorem 1. The constrained cooperative MARL problem (1) is equivalent to the following con-

strained optimization problem on function v : S x A — R. That is, v is the optimal solution to the
following problem if and only if v = v, where 7 is the optimal product policy of the problem (1).

v

1
max 1 — 5 Sza:ﬂ)(s, a)v(s,a) 4
s.t. (Occupation constraints):
v >0, Zu(s,a)zl, Zu(s’,a) (1— —&—’yz s,a)P(s'|s,a); Vs

(Product policy constraints):

v(s,a) Zu(s,a')zz v(s, [a’(m),a(\m)]) . Z v(s, [a(m),a’(\m)]); Vs, a

a’ a’(m) a’/(\m)

( Safety constraints):

Proof Sketch of Theorem I. Note that both the objective function and the safety constraints in (1)
are rewritten using (3). The occupation constraints are standard for any occupation measure v. The
challenge is to introduce the product policy constraints, which is equivalent to that the corresponding
joint policy is a product policy. To do this, we observe that a joint policy 7 is a product policy if
and only if 7(a|s) = 7™ (a™)|s)w(\™) (a(\")|s) for all m, and also observe that the occupation
measure satisfies v, (s,a) = v, (s)7(™ (a(™)|s)7(\™) (a(\™)|5). Based on these two observations,
we can show that any occupation measure v, is associated with a product policy 7 if and only if
Ur(5,a) 30 Ve (8,0 ) =3 primy Ve (8, [0, aN™]) 3 vy v (s, [@™), /™)) forall s,a. O

Theorem 1 shows that the constrained cooperative MARL problem (1) is equivalent to an optimization
problem with quadratic equality constraints, which are induced by the product structure of the joint
policy. Unfortunately, optimization problems with both linear and quadratic equality constraints are
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highly nonconvex and there is no known polynomial-time algorithm. Moreover, some studies argued
that it is probably an NP-complete problem (Murty and Kabadi, 1987). Thus, constrained cooperative
MARL is a challenging problem due to the presence of safety and product policy constraints, and we
further illustrate this point in the perspective of duality gap in the next section.

As a comparison, both the constrained RL problem (with a single agent) and the cooperative MARL
problem (without safety constraints), as special cases of the constrained cooperative MARL problem,
can be solved in polynomial-time. To briefly explain, note that the constrained RL problem is
equivalent to the problem (4) without the quadratic product policy constraints (not required in the
single agent case), and the problem is simply a linear programming problem that can be solved in
polynomial time (Altman, 2004). For the cooperative MARL problem, it is equivalent to the problem
(4) without the safety constraints. In this case, it is well known that the problem always has an
optimal product policy that is both deterministic and greedy, which can be obtained by standard value
iteration or policy iteration approaches (Agarwal et al., 2022).

3 DUALITY GAP AND PRIMAL-DUAL ALGORITHM

In the existing literature, the mainstream studies proposed to apply the popular primal-dual algorithm
to solve constrained cooperative MARL problems (Diddigi et al., 2019; Gu et al., 2021; Lu et al.,
2021; Yang et al., 2023; Ying et al., 2023). However, this algorithm converges only when the strong
duality holds, which has not been formally justified in the constrained cooperative MARL setting. In
this section, we prove that constrained cooperative MARL problems can have strictly positive duality
gap, and consequently the primal-dual algorithm does not have exact convergence guarantee.

3.1 CONSTRAINED COOPERATIVE MARL HAS NONZERO DUALITY GAP

The constrained cooperative MARL problem (1) is equivalent to the following optimization problem.

K
max min L(m,A) :=Vo(m) + > A [Vi(m) — &), )
™ AERE k=1
where L(m, A) denotes the Lagrange function with multiplier A = [A1, ..., Ax]. The primal-dual
algorithm is based on a key assumption that the following duality gap equals zero.
(Duality gap): A := min max L(m, A) — max min L(m, \). 6)
AeRE ™ ™ AeRK

In the special case of a single agent, the problem reduces to a constrained RL problem that has been
shown to have zero duality gap (Altman, 2004; Paternain et al., 2019). This can be easily seen by
rewriting L (7, A) = Vo(vx) + o0, Me[Vi(vx) — €] using (3), which reduces to a bilinear function
of (vz,\) € V x RE. Since both of the sets V := {v|r is a policy} and R are convex sets, zero
duality gap follows from the standard minmax theorem (Lemma 9.2 of (Altman, 2004)). However,
in constrained cooperative MARL, the set  changes to V,, := {v |7 is a product policy}, which is
nonconvex due to the product policy constraints in Theorem 1. Consequently, the duality gap A does
not necessarily equal zero, which is formally proved in the following fact.

Fact 1. Constrained cooperative MARL problems can have a strictly positive duality gap.

Remark: Alatur et al. (2023) also obtains a similar result of positive duality gap for constrained
Markov potential game with competitive agents. Their result applies to constrained cooperative
MARL when all the agents use the same reward function ry. Moreover, it can be easily seen that the
duality gap has a constant upper bound A < ﬁ as ¢ € [0,1].

Proof Sketch of Fact 1. We construct Example 1 (see Appendix A) and show that it has a positive

duality gap A = % (see Appendix C for the detailed proof). The reward rém) and safety scores

TY”), rém) of this example are carefully selected based on the key observation that A > 0 if and only

if every optimal joint policy 7* of the constrained cooperative MARL problem (1) is a non-product
policy. To elaborate, we show the following equivalent conditions on the Lagrange function.

min max L(m,\) 9 min max L(m, A) @ max  min L(m,A\) = Vo (7™),
)\e]Rf product policy ,\eRf joint policy = joint policy = )\eRf
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where (i) holds since maXproduct policy = L (7, A) is essentially a cooperative MARL problem,
which has an optimal deterministic policy that also solves maxioint policy = L(7, A), and (ii) fol-
lows from the strong duality of constrained RL. Hence, A > 0 if and only if Vo(7*) >
MaXproduct policy x Mill AERK L(m, A\) = Vo(7*) where 7* is an optimal product policy of the con-

strained cooperative MARL problem (1), which implies that 7* cannot be a product policy. O

3.2 REANALYSIS OF PRIMAL-DUAL ALGORITHM

Based on the positive duality gap result, we are further motivated to reanalyze the convergence
guarantee of the primal-dual algorithm for constrained cooperative MARL. Throughout, we adopt the
following standard Slater’s condition (Paternain et al., 2019; Ding et al., 2020; 2021).

Assumption 1 (Slater’s condition). There exists a policy T and constants 0y, > 0 such that Vi, (7) >
&+ 0 forallk =1,... K.

The primal-dual algorithm is a popular method for solving constrained RL type problems. We present
the algorithm updates in Algorithm 1, whose main idea is to optimize the Largrange function L(m, \)
alternatively between 7 and \. Specifically, in the primal update step (line 4), we fix A and update
the policy 7 by solving the subproblem max, L(m, \). In particular, define the surrogate reward

Tat = Topt + Zszl ATk, and then the subproblem reduces to a standard cooperative MARL
problem with this surrogate reward. One can apply any of the existing MARL algorithms to solve
this subproblem up to arbitrary precision ¢; > 0, e.g., decentralized policy gradient (Bai et al.,
2021) and decentralized actor-critic (Zhang et al., 2018; Heredia and Mou, 2019; Chen et al., 2020;
2022). Moreover, in the dual update step (line 6), we fix 7 and update A by solving the subproblem
miny L(7, \) via projected gradient descent. Note that for the policy evaluation step in line 5, one
can apply the existing decentralized TD learning algorithms (Sun et al., 2020; Chen et al., 2021c).

We obtain the following new convergence result of Algorithm 1 in constrained cooperative MARL.

Theorem 2. Consider a constrained cooperative MARL problem with duality gap /A, and let Assump-
tion 1 hold. Apply the primal-dual Algorithm 1 to solve it with hyperparameters Ay max = m +

24 1 [K K o _ 1 Phe1 M max B= 1=/ K 2
3 61T T3\ 2T k=1 Ykmax 2 = T3\ 27 (K, Apman)2’ © VN 2KT 2uk=1 MNi,max:

We obtain the following results on optimality gap and constraint violation ((-)4+ := max(-,0)).

T K&
%(W*) - ET[VO(’/TT)] < 1— v 7 Z k,max ? (7)
k=1
K
22 K
D MemaxBz (& — Vi(mz) , < T\ 27 AR max ®)
k=1

Furthermore, using the decentralized natural actor-critic algorithm (Chen et al., 2022) to obtain
7y and model-based policy evaluation (Li et al., 2020) to obtain Vi,(;), the sample complexity is
O(e?Ine ) 10 achieve Vo (1*) — Ez[Vo(m5)] < € and Zszl Ne,max B (€ — Vk(7rf))+ <e+2A.

Theorem 2 shows that in constrained cooperative MARL, the optimality gap Vy(7*) — E[Vy(75)] of
the primal-dual algorithm achieves a sub-linear convergence rate O (1 / VT ) Moreover, the constraint

violation 25:1 Ak, max 7 (fk — Vk(m)) . converges at a similar rate, but up to a convergence error
that depends on the duality gap A of the problem. Therefore, it is possible that the algorithm
converges to a sub-optimal policy that strictly violates the safety constraints.

Comparison with the existing art. We note that the above sub-linear convergence rates match those
of primal-dual algorithm in single-agent constrained RL (A = 0) (Ding et al., 2020; 2021). Moreover,
compared with the existing studies of the primal-dual algorithm for constrained cooperative MARL
that only establish convergence to stationary points (Lu et al., 2021; Ying et al., 2023), our Theorem 2
directly characterizes the optimality and constraint violation of the output policy . To the best
of our knowledge, this is the first convergence result of the primal-dual algorithm in constrained
cooperative MARL that characterizes the impact of the nonzero duality gap A.
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Proof logic. The proof logic Algorithm 1 Primal-Dual Algorithm

mainly follows that of primal-dual  1: Inputs: €1,€2,3 > 0, Agmax > 0fork=1,... K,
algorithm in constrained RL  2: Initialize: A\ o =0fork=1,..., K.

(Ding et al., 2020). However, 3: foriterationst=0,1,2,...,7 —1do

since the duality gap A > 0, we 4:  Solve the cooperative MARL problem with surrogate

need to adopt a different bound reward 7' ;. Obtain an €;-accurate solution 7, i.e.,

for any product policy =’, i.e.,

L(T(’,A*) < max, L(?T,)\*) — III‘I?XL(T(,)\t) — L(ﬂ't, )\t> < €1. (9)
Vo(n*) — A, where N\ €

arg M\ erk MaXqy L(m, A), 5:  Perform TD learning to estimate XA/k(m) such that
and 7* is the optimal product [Vie(m) — Vi(my)| < e

policy of the constrained coop- ¢ Update the multipliers for k = 1,2, ..., K using pro-
erative MARL problem (1). The jected gradient descent as follows.

above bound is used to bound R

the constraint violation of the Ay = Projig s, Atk — B(Vi(m) — &)]. (10)

policies 7' = m; obtained by the

primal-dual algorithm, and also 7: end for .

bound \* via 7’ = 7 in Assumption  8: Output: 75 with T’ uifgrm {0,1,...,T —1}.
1 (See Lemma 1 in Appendix I for
detail). The duality gap A in the above bound further affects the subsequent proof.

4 DECENTRALIZED PRIMAL ALGORITHM

In this section, we propose a primal-based algorithm for constrained cooperative MARL whose
convergence does not involve the duality gap. Our algorithm extends the centralized CRPO algo-
rithm (Xu et al., 2021) to the constrained cooperative setting, and involves new designs to enable
decentralized implementation and new proof techniques that lead to improved convergence rates.

Our decentralized primal algorithm is presented in Algorithm 2. To explain, the main idea is to use
(decentralized) TD learning to estimate the value functions {Vj ()}, associated with the safety
scores and select one that violates its constraint threshold by a pre-determined amount 7 as the target
value function. If no such violation exists, then we select Vj as the target value function. After that,
we update the current policy 7; using a decentralized natural policy gradient algorithm based on the
selected target value function. Compared to the existing CRPO algorithm for single-agent constrained
RL (Xu et al., 2021), our algorithm design introduces several new elements. To elaborate, we update
the agents’ product policies via the following decentralized natural policy gradient (NPG) update

(™ s) oc w1 (a™)]s) exp (@ QL™ (mp; 5,a"™)); Vs, a™, (11)

where o > 0 is the stepsize and @,&m) (m;5,a(™)) is an estimation of the local () function
Qgcm)(w; 5,a™) =Er [ 3020 Trelso = s, a(()m) = a(™], which can be efficiently estimated by
sample average estimation of Q,(Cm) (m;8,a™) = E[Fi(s, a) +yVi(m; 8')[a\™) ~ 7O (]s), 8" ~
P(:|s, a)} (Wei et al., 2021; Chen et al., 2021b). In particular, such a decentralized update is crucial
for performing optimization in the product policy space. Moreover, when we estimate the value
functions {Vj ()}, in line 5, we randomly permute their order and break the loop once a target
value function is found. This helps avoid the undesirable situation where the same value function is
frequently selected so that the policy stays at a stationary point (possibly infeasible) in the policy
update (11), and also reduces computation. As a comparison, the CRPO algorithm requires to
estimate Vi (m;) for all k = 1,2, ..., K in every iteration, and therefore is less efficient.

Next, define the advantage gap (p := sup,, . |Ax(m;s,a) — Z%Zl Agcm) (m;s,a(™)|, which

corresponds to the gap between the local advantage function A,(;") (m;8,a™) = Q;m) (m;8,a™) —
Vi (7; s) and the global advantage function Ay (7; s, a) := Qk(m; s,a) — Vi(m; s).
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Theorem 3. Apply Algorithm 2 with o = O( %) €2 = O(,/ﬁ), e = O0(y/32),
n= O(, / T(lj\i/)s + ma}zlfij C’“) (see Appendix E for details). Then the output policy n7 satisfies

Vo(n") — Ex[Vo(mz)] < O( T(lj‘f T 507)2» (12)

M maxlngKCk
. S )i k=1
1—-7) (1=

& — Eg[Vi(mrg)] < O( 7 LK. (13)

Furthermore, using the model-based policy evaluation (Li et al., 2020) to obtain Vk(m) and
@gn)(m; s,al™)), the sample complexity is O(e™*) to achieve Vy(m*) — Ex[Vo(nz)] < O(e +
(157?”2) and Zszl )\k,mafo (fk — Vk(ﬂ'f))Jr SO(G + m(llg_i]if)fg)

Theorem 3 shows that both the optimality gap and the constraint violation converge at the sublinear
rate O(y/M/[T(1 — ~)?]), up to certain convergence errors that depend on the advantage gaps (.
Thus, the above convergence result has a very different nature from that of the primal-dual algorithm,
which involves the problem’s duality gap A instead. Moreover, (i vanishes if and only if the Q)
function satisfies a certain factorization structure (See Appendix H for more details) (Guestrin et al.,
2001; Son et al., 2019; Rashid et al., 2020). Therefore, when the Q function can be approximated by
a factorized form, (j, is small, so the primal algorithm is preferable to the primal-dual algorithm.

Comparison with the existing art. In the single-agent case M = 1, the advantage gap ( vanishes,
and the convergence rates in Theorem 3 reduce to O (+/M/[T(1 — ~)5]), which strictly improves
that of the CRPO algorithm (Xu et al., 2021) by a factor of /|S||.A|(1 — ) for large state and action
spaces !. In particular, this improvement crucially relies on proving our new Lemma 3, which proves
the bound Vi, (m41; ') — Vi, (5 0') < o t (M O‘;?’ that tightens the corresponding bound in
(Xu et al., 2021) by a factor of O(1/[|S||A| (1 —)]) using two novel techniques as elaborated below.

Technical novelty. First, denote p;, p; as the distributions of state s; under 7; and 71, respectively.
Then, by Markov decision process, we can show that ||pj_ | —pi11][1 < maxg [|m1(-|s)—m(-|s)|]1+
lp; — pil|1, which implies that ||p; — p;||1 < imax; ||m11(:|s) — m(+|s)]]1. Hence, we have
Vi (13 0') = Vi, (m5.0) = 227207 2o 0 The (5, @)[pi(8)meqa (als) — pi(s)me(als)]
< (1 =) 2 maxg |41 ([s) — m(-[s)]l1,
where the second inequality upper bounds ), by max, without introducing the factor |S|. Second,
we further prove the following non-trivial tight bound

71 (cls) = me(c1s)l < ey Yo 7Tt+1( a(™]s) — ™ (a™)]s)] ~
<> _la(maxa<m) th (7 8, a( )) — ming(m) th(ﬂ't;s,a(m))),

where the inequality is obtained by taking W:grf( (m) |s) in the update rule (11) as a function of

« and bounding }%wt(fl) (a(m)|s)‘ (see the proof of Lemma 2 for details). This bound upper

bounds 3" (m) by max,om Qk, (14 5,a™) — mingm @kt (745 5,a\™). In contrast, (Xu et al.,
2021) uses the Lipschitz property Vi, (415 ") — Vi, (5 0) < 137 lwis1 —wy||2 under the softmax
policy parameterization 7. (a|s) o< explw:(s,a)]. However, this further leads to the upper bound
[wir — will2 = af|Q, (5, ) [[2 < 125 [S]|A| that is much looser than our |[me41 — 7|1

5 PRIMAL-DUAL ALGORITHM V.S. PRIMAL ALGORITHM

We have shown that the primal-dual Algorithm 1 and the primal Algorithm 2 suffer from non-
vanishing convergence errors that depend on the duality gap and the advantage gap, respectively.
Next, we show that each of the two algorithms can offer advantages over the other in certain scenarios.

'The convergence rates of CRPO established in (Xu et al., 2021) should be O( (171@2 ‘S‘TLAl ). In the proof

of their Lemma 7, (iii) should have used the update rule w41 —w; = ﬁ@i, but they used w41 —we = a@z.
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Algorithm 2 Decentralized Primal Algorithm

First, we revisit Example 1 and show that
Algorithm 2 outperforms Algorithm 1in 1t InPPtS_: @, €2,€3 > 0,1

the following theorem. Here, the product ~ 2: Initialize: Policy mo.

policy m; is fully characterized by p; := for primal iterations t = 0,1,2,...,7 — 1 do

ﬂgm(o‘s) and ¢, = Ft(2)(0|5)- 4:  » Letk; < 0.

. 5:  for k = 04(1),...,0+(K) where o; is a random
Theor:em 4. Ir.z Example 1, if we run permutation on {1,2, ..., K} do
?}ff(;};l:f;’:; t]e dv‘;}al(t)}llice; o isEiQn feas?l; letl}eor: 6: » Perform TD learning to estimate Vi (1) such
all t. In contrast, if we run Algorithm that ‘Yk(ﬂt) = Vi(me)| < e2.
2 with eg = €3 = 0, a < 1073, T » If Vi(m) < & — 1, let ky <+ k and break.
1n = —6a and an initial policy that sat- 8:  end for
isfies 2q0 < po < 3o and 0.06 < 9: foragentsm =1,2,..., M in parallel do
Pogo ? 0-11?5);}11@;11”1(6 (%er)zera;ed IZ;Z' 10: » Estimate A,(;n)(m; s,a™) such that
icy my for all t > =2 In (557 ) is feasible ~(m), m)y _ m) . (m)
and close to the optimal solution (i, i) (@, " (mi; 5,a7) .th (7%7’5’ @ )‘S €
with max (|pt . i ae — i|) < 4. 11: » Update local policy to m; | following the

decentralized NPG update rule (11).

Technical novelty: The major challenge 12:  end for

to prove Theorem 4 lies in the conver- 13: end for -

gence analysis of Algorithm 2 in Exam- 14: Output: 77 with 7 """ {0 <t < T—1: k; = 0}.
ple 1, which can be written as a noncon-
cave constrained maximization problem
(37). Moreover, the primal update rule differs for k; = 0, 1, 2. Hence, we cannot follow the standard
convergence analysis for convex optimization. Instead, we utilize the multiplicative structure of the
primal updates of p; and ¢, in Egs. (42) and (43) to obtain the convergence of the potential functions
p+qy and % to %6 and 1, respectively. To elaborate, we prove the statement (A;): %qt <p < %qt
and 0.06 < pyq; < 0.135, and the statement (Cy): % — 1‘ <(1- 0.07905)]% — 1| whenever
|5 — 1| > 5a, via inductions that (4;), (C;) = (A¢+1) and that (A;) = (Cy). In particular,
(4;) = (C) is proved in 4 separate cases: either p; > ¢; or p; < ¢, and either p;q; > %6 + 3a
or pegr < 15 + 3a. (A¢), (Cy) imply that |22 — 1| < 10a for a certain T < O(a ' In(a™1)). To
further show that |% — 1| < 10«; Vt > T, it suffices to prove |% — %| < 4.66q, so that the ring

area S < ‘%f — 1’ < 10« is sufficiently wide to drag Z—: back towards 1. The convergence rate of

Deqy 18 proved similarly via inductions in two separate cases where p;q; > % +3aorpigr < % +3a.

Next, we prove that Algorithm 1 outperforms Algorithm 2 in Example 2 (See Appendix A).

Theorem 5. In Example 2, Algorithm 1 obtains the optimal policy in one iteration. In contrast, if
we run Algorithm 2 with e; = €3 = 1 = 0 and an initial policy that satisfies po + qo = 1, then the
generated policy m; is infeasible for all t.

Since Example 2 is also a nonconcave maximization problem, proving the infeasibility of the function
value V7 (;) obtained by the primal algorithm also cannot follow the standard convex optimization
convergence analysis. Instead, we prove that p; + ¢, = 1 via induction and show the constraint
violation Vi (m;) = 4p(1 — p) <1 < &;.

In Appendix A, we conduct simulations to verify the above theoretical comparison of both algorithms.

6 CONCLUSION

In this work, we have shown that constrained cooperative MARL is a highly nonconvex problem
that is more challenging than cooperative MARL and single-agent constrained RL in the occupation
measure space. Due to the challenges, the strong duality condition required by the mainstream
primal-dual algorithms no longer holds in constrained cooperative MARL. Therefore, we reanalyze
the convergence rates of the primal-dual algorithms with nonzero duality gap. Then, we propose a
decentralized primal algorithm for constrained cooperative MARL to avoid the duality gap, and our
analysis shows that its convergence is hindered by another gap induced by the advantage functions.
We expect that our study will spark new research directions in multi-agent RL, and motivate to design
better algorithms with rigorous convergence guarantee for constrained cooperative MARL.
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A NUMERIC EXAMPLES AND EXPERIMENTS

In this section, we implement the primal-dual algorithm (Algorithm 1) and the primal algorithm
(Algorithm 2) to the following two numeric examples to verify Theorems 4 and 5.

Example 1. Consider a constrained cooperative MARL problem with two agents, a single state
S = {s}. Both agents share the same action space A'™ = {0, 1} and the same reward and safety
scores listed below. The discount factor is v = % and the safety thresholds are & = & = é.

rg™(5,00,0) =1, ™ (s,[0,0) =1, ™ (s,[0,0]) =0
g™ (5,00,1)) =0, "™ (s,[0,1)) =0, " (s,[0,1]) =0
rg™ (s, [1,0) =0, ™ (s,[L,0]) =0, 75" (s,[1,0]) =0
rg (s, (L) =1, (s, L) =0, (s [L 1) =1

Example 2. Consider modifying Example 1 so that both agents share the following reward and a
single safety score. The safety threshold is &, = 1.8.

To (37 [070]) = 17 1 (57 [Oa O]) =1
g™ (s, [0,1]) =0, ™ (5,]0,1]) =0
r{™(s,[1,0) =0, "™ (s,[1,0]) =0
" (s, L) =0, (s L 1) = 1.
For Example 1, we implement the primal Algorithm 2 with o = 1073, €3 = €3 = 0, 7 = —60q, and

try various initial policies (pg, go) € {(0.45,0.3),(0.2,0.3),(0.3,0.3), (0.25,0.25), (0.35,0.35)}
which satisfy the conditions of Theorem 4. We obtain the results as shown in the first five figures of
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— (o, q0)=(0.45,0.3)
— (po,q0)=(02,0.3)
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Figure 1: Results of the primal algorithm on Examples 1 (the first 5 figures) and 2 (the last figure).

Figure 1. The first two figures at the top of Figure 1 indicate that (p;, ¢;) with various initializations
converge to the same value which is close to the optimal solution (i, i) The top right figure of
Figure 1 shows that V() converges and is close to the optimal value %. The first two figures at the
bottom of Figure 1 show that the policy 7 is feasible (i.e., V1 (m;) > &1, Va(m) > &) after ¢ > 2500
iterations. In contrast, we implement the primal-dual Algorithm 1 witha =8 =0.1,¢; = €2 =0
and initial multiplier A = [0, 0]. The policy parameter (p:, ¢;) alternates between (1, 1) and (0, 0),
both of which are infeasible since they satisfy Va(m;) = 0 < & and Vi (7)) = 0 < &; respectively.
These results verify Theorem 4.

For Example 2, we implement the primal Algorithm 2 with o = 0.1, €2 = €3 = 7 = 0, and try
various initial policies (po, o) € {(0,1),(0.2,0.8),(0.4,0.6), (0.7,0.3), (0.9,0.1)} which satisfy
the conditions of Theorem 5. The learning curve of the value function V4 (7;) is shown in the last
figure of Figure 1. It can be seen that Vi () is always far below the safety threshold £; = 1.8. In
contrast, implementing the primal-dual Algorithm 1 with o = § = 0.1, ¢ = €2 = 0 and initial
multiplier A = 0, we obtain (p¢, ¢:) = (1,1) which is the optimal solution to Example 2. These
results verify Theorem 5.

B PROOF OF THEOREM 1
Proof for the product policy constraints: We will first prove that 7 is a product policy if and only if
v, satisfies the product policy constraints in Eq. (4).

Note that the following equality always holds for v, of any joint policy .

1/7‘—(8,&) Zl/ﬂ—(s,a/) _ Z Vn (S, [a/(M)7a(\m)]) . Z Vn (3’ [a(m),a’(\’n)])

a/(m) al(\m)

= va(s)m(als) Y vals)ntalls) = [ 3 wals)n(la ™, aCs)|
a’ a’(m)
3 vas)e(a™, a5
a/(\m)
& v2(s)[m(als) — ) (@5 (a0)s)], (1
where (i) uses vg(s,a) =  we(s)m(als), and (i) wses a(M(a(™|s) =

i va(s)m([a’ ™, aC™]|s) and 7O (@O |s) 2= 3y w([@ 0, alV]s).
If 7 is a product policy, then 7(a|s) = 7O\ (a(\™)|s)7(™) (a(™)|s) where 7(\™) (a(\)|s) =
Y (m") (a(m")|s), which implies that Eq. (14) equals 0, i.e., v, satisfies the product

m’:l,m’;ﬁmﬂ—

policy constraints in Eq. (4).
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Conversely, suppose that v, satisfies the product policy constraints in Eq. (4), i.e., Eq. (14) equals 0.
Then for any state s, consider the following two cases.

If v (s) # 0, we have 7(a|s) = 7(\™) (a(\™)|s) (™) (a(™)|s), which means for any agent m, a(\™)

and (™) are independent given s. Therefore, a("),a®, ... a(™) are independent under the policy
7(|s), which means 7 (als) = H%:l 7™ (a(™)]5s).

If v (s) = 0, m(:|s) can be arbitrarily defined, and thus we can define it such that the product policy
condition 7(als) = Hf\,{:l 7™ (a(™)|s) holds.

Therefore, 7 can be a product policy if v, satisfies the product policy constraints.

Proof of equivalence between the problems (1) and (4): Suppose 7* is the optimal product policy
for the constrained cooperative MARL problem (1). Then v, satisfies the occupation constraints
in problem (4) based on Theorem 3.2 of (Altman, 2004), and further satisfies the product policy
constraints as 7* is a product policy. Therefore v, is a feasible point of the problem (4).

Then consider any function v’ : § x A — R that satisfies all the constraints of the problem (4). Since
v/ satisfies the occupation constraints, o’ = v, for some policy 7’ based on Theorem 3.2 of (Altman,
2004). As proved above, since v, satisfies the product policy constraints, 7’ is a product policy. Also,

the safety constraint V(') @ ﬁ Zs’a 7r(s,a)ve(s,a) > & (k = 1,..., K) holds where (i)
uses Eq. (2). Therefore, ' is a feasible policy of the problem (1) and thus we have V(7') < Vo (7*),
ie, 175 2o, To(s,a)v/(s,a) < 125 37, , To(s, a)ve= (s, ). Since v/ is an arbitrary feasible point

of the problem (4), the feasible point v/~ is also the optimal solution to the problem (4).
Conversely, suppose v* : S x A — R is the optimal solution to the problem (4). Then as v*

satisfies the occupation constraints and product policy constraints of the problem (4), v* = v~

for some product policy 7*. Hence, the safety constraint Vi, (7*) = ﬁ > saTk(8,a)vr(5,a)
(k=1,...,K)means 7* is a feasible product policy of the problem (1).

For any feasible product policy 7 of the problem (1), v, satisfies the occupation constraints and prod-
uct policy constraints, as well as the safety constraints that ﬁ Y osaTr(S, @)V (s,a) = Vi(n') >
& (k= 1,...,K). Due to the optimality of v* = v,«, we have ﬁ YosaTo(s,a)vp(s,a) <
125 2.0 T0(8, )vee (s, a), ie. Vo(n') < Vo(m*). Hence, the feasible policy 7* is also the optimal
solution to the problem (1).

C PROOFOF FACT 1

We repeat Example 1 as follows.

Example 1. Consider a constrained cooperative MARL problem with two agents, a single state
S = {s}. Both agents share the same action space A'™ = {0, 1} and the same reward and safety
scores listed below. The discount factor is v = % and the safety thresholds are &, = &3 = é.

g™ (5,00,0) =1, "™ (s,[0,0]) =1, 5" (s,[0,0]) =0
r ™ (s,00,1]) =0, "™ (s,0,1]) =0, 5" (s,[0,1]) =

r™ (s, [1,0) =0, r{"™(s,[1,0) =0, 7§ (s,[1,0) =0
i (s L) =1, (s L) =0, (s, [1,1]) =1

In the above example, any product policy 7(als) = 7 (a™M|s)7(?) (a?|s) can be fully charac-
terized by p = 7(1)(0|s) and ¢ = 7(?)(0|s). Then the aim of the constrained cooperative MARL
problem in Example 1 can be formulated as

max V() :=2pq +2(1 —p)(1 —q)
p,q€[0,1]

s.t. Vi(m) :=2pq >

1
8
Va(m) :=2(1-p)(1 —q) >

| =

16
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The above problem has two optimal solutions, p = ¢ = 1 and p = ¢ = 3. Both of them have
Vo(m) = 2. Therefore, maxproduct policy minAeRf L(m,\) = 2.

Now consider the following dual problem.

min max L(m,A) :=2pg(1+ A1) +2(1—p)(1 —¢)(1+ A2)

1
— =AM+ A 15
AER? p.q€[0,1] 8( 1+ 2) ()

Fixing A € R%, max,, 4e(0,1) L(7, A) is equivalent to

14+ Ao 14 X
el (p_ 2+ A +/\2)(q_ 2+ M —|—)\2)
If 2_:;);_2)\2 < % (i.e. A1 > )A2), then the above problem has solution p* = ¢* = 1 which yields
L(p*,q*;A) = 2(1 + A1) — §(A1 + A2); Otherwise if Ay < Az, p* = ¢* = 0 which yields
L(p*,q*;\) =2(14+Xa) — %(/\1 +X2). Hence, maxy, 4ep0,1] L(7m, A) = 242 max(A1, A2) — %()\1 +
Az2), which has minimizer A* = [0, 0] and the corresponding value miny gz Maxp gefo,1] L(m, \) =
2. Asaresult, A=2— 32 =3

D PROOF OF THEOREM 2

Note that since 7 ¢ € [0, 1], the value function Vj(7) has the following bound for all policy 7 and
k=0,1,... K.

oo

1
— t=
OSVk(W)—Eﬁ{;’y rk,t‘sowp} gm. (16)
Hence, the norm of V (7) := [V (n);...; Vi ()] € [0, 1]¥ has the following bound
VK
[V(m)l < T a7

Furthermore, Assumption 1 implies that there is a feasible product policy 7 such that 0 < &, < Vi (7),
so the norm of £ := [£1;...;&x] € RE has the following bound

_ VK
Il < vl < 17— (18)
Then,
0 < [IAz|?
() =
= (el = 1A
t=0
(@) T=1 R ) )
< (J[xe = B(V(me) = O)|” = I1Al?)
t=0
(i) L=l . . ) = 2
<28 A (E=Vm))+ 82D (V) = V)| + [V ()| + 1€l
t=0 t=0
vy Tl . T—1 . R L 2VE 9
<283 A (V@) = V(m) +28> N (V(m) = V(m)) + T8 (ﬁ + 62\/@
t=0 t=0
@ = = 8KTp> 22
<28 N (V(*) = V(m)) +2TBe2 > Memax + Ty T2ETH (19)
t=0 k=1

where (i) uses the initialization Ay = 0, (ii) uses the update rule (10), (iii) uses triangular inequality,
and (iv) uses |V () — Vi(m)| < €2, Egs. (17) and (18), A+ > 0 as well as the constraint that

17
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V(m*) > & satisfied by the optimal policy 7* of the constrained cooperative MARL problem in Eq. (1),

and (v) uses Ay i, € [0, Ak max] (based on the update rule (10)) as well as |X7k(7rt) — Vi(m)| < €.
Rearranging the above inequality, we obtain that

T-1 K
4KT
SN (Vm) = V() <Tex > Aemax + (1€ + KTBé. (20)
t=0 k=1 v
Note that
T-1
0< (max L(m, A¢) — L(7*, Ay))
=0
(i) 2
< (61 + L(me, A¢) — L(7", )\t))
t=0
DS (e Volm) = Vo(m) + AT (V(m) = V() 1)
t=0
(i) L1 AKTS )
< (61+V0(7Tt)—V0(7T ) +T€22)\kmax+W+KTﬂe%
t=0 k=1

where (i) uses Eq. (9), (ii) uses the definition of the Lagrange function in Eq. (5), and (iii) uses Eq.
(20). Rearranging the above inequality yields that

T-1
* 1 *
Vo(m*) =Bz [Vo(m)] = = D [Vo(m™) = Vo(m)]
=0
K
K 2
< 622>\k,max + (1_7)2 +e1 + K e
k=1 i
W 7T | K¢
< -
- 1= v 2T :g:: k,max’
k=
where (i) uses the hyperparameter choices ¢ = %\/%Zk[(ﬂ AP omaxe €2 =

Z{-,(:l )\z,rnax 1 _ : . .
T\ 37K Amar)? <1 0=0-7) T Zk 1 Af.max- This proves the optimality

gap in Eq. (7).
Next, we will prove the convergence rate (8) of the constraint violation.
For any = [Xl; .. ;XK] € [0, Ak max] X, it holds that

Aera = Al

(4) ~ ~2

< A= B(V(m) —€) = A

(i) ~ ~ ~T

< A= >\||2 —2B(A¢ — )\)T(V(Wt) - 5) —2B(A¢ — )\)T(V(Wt) - V(Wt))

+ B2 IV (m) = Vo)l + [V ()| + [i]])”

(i37)

< = W12 = 2800 2T (Vim) - +wezzka+5 (VB + 2K

~ ~ X 8K 32
<A = Al = 2800 = 2) T (V(m0) = €) + 2862 > Mmax + 2K 5765 + T
k=1
where (i) uses the update rule (10) and )\k € [0, Ak max], (ii) uses triangular inequality, (iii) uses
At ks /\k € [0, Ak max)» |Vk(7rt) Vi(mt)| < €a, Egs. (17) and (18). Telescoping the above inequality
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overt =0,1,...,T — 1 and using A\g = 0, we obtain that
T—1 K
~ 12 ATK 32
T 2.2
B ;m =N (V(m) ~ &) < S| + Thes ; Aimax + KTB%€3 + = (22)
Since V(7*) > & and \; € RE, Eq. (21) implies that
T-1 T-1
BY N (E=V(m) <BY (e + Volm) — Voln™)) (23)
t=0 t=0
Summing up Egs. (22) and (23) yields that
T-1
B Z A (€=V(m)
- R K o AKTS?
Z (e1+ Vo(m) = Vo(a)) + S |[M]" + TBe Y Ak max + K565 + T @
t=0 k=1
Note that
Vo(m*) = max min L(m, \)
T )\GR m
© max L(m, \*) — A
> L(m, A*) — A
© Vo(m) + ()T (V(m) —€) - A
(44%)
> Vo(m) = (\) T (€= V(m)), —A (25)

where (i) uses the definition of the duality gap A in Eq. (6), (ii) uses the definition of the Lagrange
function (5), and (iii) uses \* € Ri’”. Substituting the above inequality into Eq. (24) and rearranging
it, we obtain that

T-1
I} ()\T E-V 7rt)) — ()\*)T(g _ V(Wt))+)
t=0
- K 2
<BT(A+e)+ %||>\||2 +TBex Y Nomax + KTB%€5 + (41K_T52 : (26)
k=1

Using Eq. (64) and selecting \n = Memax I { Vi (m¢) < &} where I{-} is an indicator function, we
obtain that

XT (f — V(ﬂ't)) ( ) (f V 7Tt 1 Z )\k max Vk(ﬂt))+v

l\D

Substituting the above inequality into Eq. (26) yields that

T-1 K

ﬂ Z Z )\k max Vk(ﬂ—t))_,'_

t=0 k=1

1~ K 4KTpB?
< BT(A+€) + §|]/\]|2 +TBe2 Y Armax + KTB%€5 + = :32
k=1

K

4KTpB?
< BT(A+61 +22)\k max T TBe2 Y Memax + KTB%3 + i _7’32,
k=1 k=1
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where (i) uses [|X]|2 = Y5, A2 < 4577 A2 .. Finally, by dividing both sides of the above
inequality by T’ 5 we prove the convergence rate (8) of the constraint violation as follows.

Z)\k max fk - Vk(TrT))_A,_

where (i) uses the hyperparameter choices € = i\ 2r Zk 1 k maxs €2 =
1 / k=1 k max 1 _ _ 1 2
1—y 2T(Zk71 Ak,max)? < 1—v /8 B (1 7)\/2KT k=1 Ak,max’

Furthermore, for any ¢ > 0, implementing Algorithm 1 for 7' = ﬁ Zle fmax = O(€7?)

iterations, the output policy 7 satisfies the following convergence results based on the convergence
rates (7) and (8).

7T K&
%(ﬂ' ) T[VO(FT)] =1_ v 2T ];:: ,max — 22

22
ZAkmax (& — Vi(r ))+§ﬁ TZ)\kmaX+2A§e+2A.

Each iteranon of Algorithm 1 uses decentralized natural actor-critic algorithm (Chen et al., 2022)
to obtain 7, and model-based policy evaluation (Li et al., 2020) to obtain Vk(ﬂ't) which require

O(e;*Iner ') and O(e; %) samples to achieve precisions € = T\ ar K s A max = O(€) and

K 2
€ = 125 QT(ZXE—A;IC‘Z)Q = O(e) respectively. Hence, the sample complexity of Algorithm 1 is

TO(e*Inert +652) = 0(e2)O(e 2 Ine ! +€e72) =O(e P Ine ).

E PROOF OF THEOREM 3

First, we list the hyperparameter choices of Algorithm 2 as follows.

o= [k K (o)L @
_8\/MIE.;W* 1_(;§)IIWO('IS)] +2m?i<1_§';§2f<<k’ (28)
"o \/M]Ew . 1_(;i)lm(l s)] (29)
63_ 1— VEomr, ILL[T Cls)[Imo(-|s)] (30)

Specifically, o < 1 if we choose the number of iterations 7' > %Eswyw* KL[7*(:|s)||mo(:|$)]-
Furthermore, if we select uniform policy 7 such that 7y (a|s) = I%H’ then KL[7*(+|$)]|mo(-|s)] <

In |.A| and thus we only require T’ > % In|A| toleta < 1.
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Based on Eq. (75), we have
In Z™(s) — aVi, (m; 5)
= n( Z 7™ (a/™)|s) exp (a@,(;n) (7re; s,a’(m)))) — aVi, (73 8)

a’(m)

> 3" 7™ (@™ s) nexp (aQy™ (m; 5,a'™)) — aVi, (m4: 5)

a’(m)

= Z 7rtm (m) ( Him )(Wt;s,a’(m)) — Q;T)(ﬂt;s,a’(m)))

a’(m)

> —a max |Q0) (m; 5,a™) — QU™ (mi3 5,0'™)| > —aes,

s,a(m)
which means
éln Z™ (s) = Vi, (m438) + €3 > 0. 31)
Therefore, we have
(1 =) (Vi, (m5150") = Vie, (m030))

- ]Es AV, /Akt(ﬂ—t;S a)

u) (m m
Eoniyi,, Z ST m @™ ) QU (s s, a™) = Vi, (13 )

m= la(m
Eonvipai Z Z W]ETl)(a(m)‘S) (@;T)(Wﬁ s,a™) — Ql(c:n) (73 s, a(m)))
m=1 g(m)
M
+ ES"”””H—WJ’ (Akt (ﬂ-t; S, a’) - Z Agtn) (7Tt; S, a(m))>
m=1
(2i1) M 1 m W(m) (m) s
> By D0 (S0 2 6) Vi) + 3w (@) %)
m=1 & S Bt 7™ (alm)]s)

- Z max |Q ’/Tt;sva(m)) - I(gt )(’Ntas a | 7Ck

(m)
m= 154

(iv) Moo .
> Eovryyr 2 (2 Z™(8) = Vi (mi58) + ) — 2Mes = G,

m=1
Q) <N
> (1 —7)Esnp Z (7 In Zt(m)(s) — Vi, (me58) + 63) —2Mes — (y,
m=1 a
where (i) denotes the occupation measure vyt 1,y = (1 — ) > 2 V' Pr, (st = s|so ~ p')

and uses the performance difference lemma (Lemma 6.1 of Kakade and Langford (2002)), (ii)
uses A,(CT)(wt;s,a(m)) = Q,(CT)(m;s,a(m)) — Vi, (w43 8), (iii) uses the policy update rule (76)
and (i := sup, , . |Ak(m;s,a) — 2%21 Afcm)(w; s, a(m))|, (iv) uses KL(Wt(Tl) H7r(m)(~|s)) =

. 2™ (a0 |5 ~(m m .
Za(m) 7Tt(+1)(a(m)|8) In % 2 0 and maXs,a(m) ’Q](gt )(Trt; S, a'(m)) - Qi;t (Trt; S, Cl( ))’ S

€3, and (v) uses Eq. (31) and 441,/ (s) > (1 — 7)p’(s). The above inequality can be rearranged as
follows.

Egnpr Z (111 Z(m ) + aez — aVi, (m; s))

< 204M63 n oz(kt
1—7 177

(th (7Tt+1, ) th(ﬂ'tvp ))
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@) 2aMes  aly, Mo« 2M aes
< + ( -+ ;)
l—v 1-9v (IT=7? (1=

(2) Ozth 4MO[€3 A]M'Ol2

< (32)
l—y  (1-9)2 (1-9)?
where (i) uses Eq. (69) and (ii) uses o < 1. Then, we have
Esn, [KL(7* ()] |41 (-]5)) — KL(7"(-[3)[[m:(-|s))]
= Eonry B (1s) [ 10 (as) 7 (“"9)}
mir1(als) m(als)
M
= Eoanv,e Y (0™ (@™]s) — Inf) (a™)]s)]
m=1
Q Es gmv - Z [ln Zt(m) (s) + aes — aVi, (my; s) + Vi, (m; 8) — aez — aQ,(CT)(ﬂ't; s, a(m))}
m=1
(@) o AM e Ma? M (m)
k 3 m
< ! = —aE; gp . Q. («x :s,a™) — Vi, (145 s
R ) M (RO 2 (@ (i) = Vi (i)
(i) oy 4Moe Ma? M (m)
221 3 m
= - + — s g - A (755, a(™
Tyt Ty e 2 A s
(@)l 4M cves Mo?
< - + 7aES,aNVW*Akf 5 S, a +a<kf
-y (1-9)2 (1-9)? (m3,0) ‘
@ « 4Mae Ma? .
ke > a(l =) (V, (1%) = Vi, (1)), (33)

Tl (1-92 (1-9)2F

where (i) uses the update rule (76), (ii) uses max; ,(m) ‘@g:z) (145 8,a(™) — Q;Jtn)(m; s, a(m)){ <
e3 and Eq. (32) for p/ = vy, (iii) uses the definition of the advantage function that
A,(;tn) (7 8, a(m)) = Q,(;tn) (75 8, a(m))—Vk(T)(m; s), (iv) denotes that ;, := SUp; 4 1 |Ak(7r; s,a)—
M A,(cm) (w3 s,a™)|, and (v) uses o < 1 as well as the performance difference lemma (Lemma
6.1 of Kakade and Langford (2002)) which implies that E o~,_. Ay, (743 5,a) = (1 —7) (th (m*) —
Vi, (7rt)). Rearranging and averaging the above inequality (33) overt = 0,1,...,7T — 1, we obtain
that

T—1
1 ( Ck 4Meg Mo
— th 77* — th ) — t — — )
7 2 (V) =Vl - 2 — s~ a oy
Esv,. KL(7*(-]8)][m0(:|5))
- Ta(l—7) '
Denote Ny, :== {0 < ¢ < T —1: k; = k}. Then based on the design of Algorithm 2, for any ¢ € A
(including t = T) and 1 < k < K, we have Vi (m;) > & — 1, so the convergence rate (13) of the
constraint violation can be proved as follows.
Vi(nz) > Vi(nz) — [Vi(nz) — Vi(nz)|
(2)
> &k —1n— €

(i) \/MESN,,W* KL]

(34)

s)lImo(-ls)] — 2maxicr<r G

W, (]
R () a-n)?

where (i) uses \A/k(m) > &, —nand |\A/k(7rt) — Vi (mt)| < €2, and (ii) uses the hyperparameter choices

(28) and (29). Conversely, for any t € Ny (1 < k < K), we have Vi (m) < & —n < Vi(7*) — 1,
s0 in a similar way we can prove that

Vie(m) < Vie(m) + |[Vie(me) = Vie(my)| < Vi(n*) = + €. (35)

22



Published as a conference paper at ICLR 2024

Substituting Eq. (35) into Eq. (34), we obtain that
Esvv,. KL(7*(-[8)[Im0(']3))

Ta(l—7)
> ;tEZNO (VO(W*) —Vo(m) — 507)2 - (14]14;3)3 - (1A_4j)4)
. ;ég/z (ka) — Vi(me) — {a Ckv)z - (;1]14;3;3 - (1]\—43)4)
2 ;ZN (Vate) = Vot = 2~ o~ o)
R
) ;t§o (VO(W*) —Vo(m:) — a 507)2 - (Iu%j)?» - (1Afi)4)
I e, e

where (i) uses Eq. (35) and (ii) uses Z,{,{:l INk| = T — |Ng|. Substituting the hyperparameters
choices (27)-(30) into the above inequality, we obtain that

Xy, 2l —IN0) 6

1
€2 ZT (Vb(’f(*) — Vo(me) — bea — T

— )2
v (1=1)

If Ny = 0, then Eq. (36) above implies the contradiction that || > £ > 0. Hence, Ny # 0.

Then we prove the convergence rate (12) of the policy optimality in the following two cases.

(Case 1) If Zte/\/g (VO(W*) —Vo(my) — beg — (157‘;)3) > 0, then Eq. (36) implies that |Ny| > % >0

and that )7, . (Vo(m*) — Vo(my) — Bea — (157"7)3) < Te,. Then the convergence rate (12) can be
proved as follows

E(VO( ) - VO(WT))

IN | g\; —Vo(mt))
= Wldg;o (Vo(ﬂ*) Vo(m) = Be2 = 17 CO) )+5e2+ (12_@ E
< % + 5ea + (12};)2
<Tat 2_<o =7 MEq~, *ﬁﬁ[i*il?'“( )] (12‘;4%2

(Case 2) If ZteNo (V()(ﬂ'*) — Vo(me) — Bea — ufiey)g) < 0, then the convergence rate (12) can be
proved as follows.

E(Vo(r*) = V(7))

2o 2¢o
WMZN (Vo(r) %(m)—ser—ﬂ_wz) oot ot
2Co ME;~y,. 7T*( |s)[|mo(]s)] 2Go
§562+ \/ — )5 +(1_7)2.
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Furthermore, for any € > 0, the output policy 75 of Algorithm 2 after 7' = O(e~?) iterations satisfies
the following convergence results based on the convergence rates (12) and (13).

M
%(W*)—ET[VO(Wf)]§O< T(177)5+(1 507)2)§O<6+(1£70’Y)2)7
M maxi<g<i maxj<g<kK
6~ ExlVi(mp)] <O\ g+ i ) <O RSy < k< i

Each iteration of Algorithm 2 uses model-based policy evaluation (Chen et al., 2022) to obtain ‘A/k ()
and @,(:L) (74; 5,a™)), which require O(e;?) and O(e5 ?) samples to achieve precisions ez = O(e)
(by substituting 7' = O(e~2) into Eq. (29)) and €3 = O(¢) (by substituting 7' = O(e?) into Eq.
(30)) respectively. Therefore, the sample complexity of Algorithm 2 is

TO(5* +€5%) = O 2)0(e 2 +€72) = O(c4).

F PROOF OF THEOREM 4

We repeat Example 1 as follows.

Example 1. Consider a constrained cooperative MARL problem with two agents, a single state

S = {s}. Both agents share the same action space A = 10,1} and the same reward and safety
scores listed below. The discount factor is v = 5 and the safety thresholds are &1 = &5 =

" (s [0,0) = 1, ri””(s, 0,0) =1, 75"(s,[0,0]) =0

r™ (s, [0,1) =0, ™ (5,0,1]) =0, ™ (s,[0,1]) =0

" (s [LO) =0, ™ (s [LO) =0, (s [1L0) =0

s L) =1 s L) =0, (s L) =1

In the above example, any product policy 7(a|s) = 7 (a™)|s)7(? (a(?)|s) can be parameterized
by p = 7Y (0]s) € [0,1] and ¢ = 72 (0]s) € [0, 1]. Then the aim of the constrained cooperative
MARL problem in Example 1 can be formulated as

max Vy(m) :=2pg+2(1 —p)(1—q)
p,q€[0,1]

s.t. Vi(m) :=2pg > (37)

1
8
p)

Va(m) :==2(1 —p)(1 —q) >

| =

Proof for the primal-dual algorithm: Since e; = 0, (p;, ¢¢) in the primal-dual algorithm (Algorithm
1) is obtained by solving arg max, L(m, ;). In Appendix B, we have obtained that (p;, q;) = (1,1)
where Vi(my) =1 > & if Ay > Ao and (pr, ¢:) = (0,0) where Vo () = 1 > & if Ay < Ao. Hence,
the policy 7; is infeasible for all ¢.

Update rules of the primal algorithm for Example 1:

Next, we analyze the primal algorithm (Algorithm 2) on Example 1. Note that there is only one state
s in Example 1, so Vi () = Vi (7)(s), and thus the local Q function can be computed by Bellman
equation as follows.

(s s,a™) = 37 7lm (@O s)(s, a) + Vi), (38)
a(\m)

Hence, the NPG update rule (11) becomes

ng)(0|s) exp (a@}cm) (758 0))
"™ (0]s) exp (aQ\™ (5 5,0)) + 7™ (1]s) exp (aQ™ (m; 5, 1))

7Tt+1<0| s) =
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=)
a2

" (0]s)
e (m) ) (39
(0]s) + 7rt ( |s) exp (@} (w43 5,1) — Q) (7435, 0))

where (i) uses \@,(Cm) (m;5,a™) — Q,(c (m;5,a"™)| < e5 = 0. Note that Eq. (38) implies that

(s s,1) — QLY (me:5,0)

= qt (?k}t(s7 [17 0]) - rkt( S, [O,O])) + (1 - Qt)(?kt (S’ [17 1]) - ?kt(87 [07 1])) (40)
,(j)(m;s,l)f ,(j)(wt;s,O)
=Dt (Fkt (57 [07 1]) = Tk, (87 [07 OD) + (1 - pt)(Fkt (57 [1’ 1]) = Tk, (87 [17 OD) (41)

Substituting Eqs. (40) and (41) as well as the expressions of r,(cm) (s,a) deﬁned by Example 1 into the

update rule (39), we further obtain the following update rules of p; := 7rt (O| )and g; := ﬂ't (O| ).

Pt itk =0
pe+ (1 —py) exp(a172qt)
Pt .
_ ifky =1
PH1=9 p, + (1 — py) exp(—aqt) t (42)
P if oy = 2
pr+ (1 —pyp) exp(al—qt)
It L if k=0
qt + (1 — q) exp (a(l — 2py))’
qt .
- ifk; =1 4
Gt+1 o+ (1—q) exp(—ozpt) t . (43)
qt .
;o if k=2
qe + (1 — q¢) exp (04(1 *Pt))

Next, we prove the convergence of the above primal update rules (42) and (43) to the optimal solution
p,q=7 Startlng from an initial policy satisfying 2 590 <po < 2q0 and 0.06 < pogo < 0.135, we
will prove the following three useful statements for all ¢ > 0:

(A4): 0.06 < prg: < 0.135 and % < % < 1.5, which implies that p¢, ¢; € [0.2,0.45].

(Bt): prtqt = 1 g = 11() + 30[ DPt+1Gt+1 S %, OtherWiSC, Pt+1qt+1 Z %

(Ce): IF |22 — u>5atmnVH1 1| < (1-0.079a)| £ — 1.

Since (Ap) holds, we will prove the above three statements by proving the induction arguments that

(At), (Bt), (Ct) = (At+1) and that (At) = (Bt), (Ct)

Upper bound the change of p;q; and £ under (A;): Next, we will prove that under the statement
(A¢), the change of the potential functions p:q; and ’q’—: will always be upper bounded by O(«).
Substituting M = 2 and e3 = 0 into Eq. (68), we have

Z S I @™ s) = 7™ (a)]s)|

m=1 q(m)

1
= 2|pr1 — el + 2lqe41 — ¢t §M04<1_7+2€3> = 4o (44)

Therefore, we have

Pt+1Ge+1 1‘ < ‘pt+1(Qt+1 —qt) + q:(Pe1 — pt) ‘

Ptaqr Peq
©) (44)
< 17|peg1 — pe| + 17|qe41 — @] < 34a, (45)
and
Di+1 Dt
qt+1 qt
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_ Qt(pt+1 —pt) - pt(Qt+1 — Qt)
qt+1G¢

(i) 1

< @(U)t—i—l — i) + @41 — @)

(iv)

< 4.66q, (46)

where (i) uses p¢11, ¢ < 1 and prgr > 0.06 (based on (A;)), (i) and (iv) use Eq. (44), and (iii) uses
peoqr < 0.45and qr1qe > 67 — qel g1 — el > qe(qe — 20) > (0.45)(0.43) (based on Eq. (44)).

Proof of (A;),(B:),(Ct) = (Ai41): Based on the statement (A;), we will prove that 0.06
De41Gt+1 < 0.135 in the following two cases of p;q;.

IA

(Case I) If 0.06 < prqr < % + 3a, then on one hand, based on the statement (By), ps11qi+1

ptq: > 0.06. On the other hand, based on Eq. (45), we have pir1qir1 < (1 + 34a)prq:
(14 34a)(75 + 3a) < 0.135.

INIV

(Case II) If 1—16 + 3 < pige < 0.135, then on one hand, based on the statement (B;), pr4-1Ge+1
ptqr < 0.135. On the other hand, based on Eq. (45), we have piyr1qi+1 > (1 — 34a)pigy
(1-34x1073)+ > 0.06.

IV IA

Then, we prove that 2 < 241 < 1.5 in the following two cases of 2.
3 qr+1 qt

(Case D) If |% — 1| > 5a, then based on the statement (C), we have ZE -1| < |% -1| <

1.5 — 1 = 0.5 which implies that % < 1.5. Then suppose % <2< Be | which along with

Eq. (46) implies that ’q’—: < % + 4.66a < % +4.66 x 1073 < 1. Hence, based on the statement

(Cy), 1 — Bl < ] — Bt je Pl > Pt which contradicts with 241 < 2 < Pt Therefore,
qt+1 qt qt+1 qt qt+1 3 qt

% < P+l < 1 5 holds in Case L.
qt+1

(Case ID) If |§§ — 1| < 5a, then based on Eq. (46), we have

D41
qt+1

Pty1 P
qt+1 qt

< 9.66a < 9.66 x 1073, 47)

_1’§

L
qt

which implies that% < Pl <15,
qt+1

Proof of (A;) = (B;), (Cy): Since p;,q; € [0.2,0.45] and n = —6cr > —0.006, the corresponding
value function Va(m;) = 2(1 — p¢)(1 — ¢;) > 2(0.55)% > £ — 1. Hence, we only need to consider
the following two cases, V; (m;) > % —n(i.e., k; = 0)and Vi (m) < é —n(e., k =1).

(Case I) If Vi (mt) = 2prqr > % — 1, then the case k; = 0 of the update rules (42) and (43) is

implemented. We will first bound the involved terms exp (c(1 — 2¢;)) and exp (a(1 — 2p;)) as
follows.

exp (a(1 — 2¢¢)) < exp(0.6a) < 14 0.6acexp(0.6a) < 14 0.7a, (48)
(iv) (@)
exp (a(l — 2qt)) > exp(0.1a) > 1+ 0.1a, (49)

where (i) and (iv) use ¢; € [0.2,0.45], (ii) and (v) use e® = 1 + foz eldt <1l+4+ze*ande® > 14z
respectively for any > 0, and (iii) uses o < 102, In a similar way, we can obtain that

1+0.la <exp (a(l —2p)) <14 0.7a. (50)
As the case k; = 0 of the update rules (42) and (43) is implemented, we have
Ptq
—— = [Pt + (1 —pt)exp (04(1 - 2%))] [(]t + (1 —q¢)exp (04(1 - 2pt))]
Pt+1qt+1

—~
=

i)

v

[pe + (1= p)(1+0.10)] g + (1 = )(1 + 0.1a)]
[140.1a(1 = p)][1 4 0.1a(1 — q)]
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(#1)
> (1 +0.055a)*
>14+0.11q, (51)
where (i) uses Eqgs. (49) and (50), and (ii) uses py, g: < 0.45.
When p; > ¢, we have
Pt+1 1
qi+1
(i_')zﬁqt-f—(l—qt)exp( (1-2p))
(Jtpt—i-(l—pt)exp( (1—2¢ )
&(1 pe—qi+ (1 —pi) exp (o1 — 2,)) — (1—qt)exp(a(1—2pt))> .

qt pe 4 (1 —pe) exp (a1 — 2¢4))
_ ey pe (=g [exp (a1 = 2g)) —exp (a(1 = 2p1))] = (pe—go) [ exp (a(1 = 241)) —1]
qt qt pe + (1 —pg)exp (04(1 - 2%))
@ pe e (0-55)2a(p; — gr) = 0.Ta(p — 1)
o Qs 14+ 0.7a
(zm) Dy
2100792 —1
Q@ (Qt )
1-0.079a) (2 —1 52
< ( (e 1), (52

where (i) uses the case k; = 0 of the update rules (42) and (43), (ii) uses ¢; < 0.45, py — q; > 0,
Eq. (48) and exp (a(1 — 2¢;)) — exp (a(1 — 2p;)) > 2au(py — ) > 0, (iii) uses & < 1073 and
p¢ > 0.2. Similarly, when p; < ¢, we have

P
Gt+1

P <1+ (1—q¢) [eXp(a(l—Zpt)) —exp (a(1—2qt))] —(qt—pt) [exp (a(l—th)) —1] )

Qs pe + (1 —pt) exp (04(1 —2Qt))
<1 P pe(055)20(q: —py) — 0.T0(g — 1)

qt qt 1 + 0.7«
<1-B 0.0790¢pt(1 - ]ﬁ)

qt qt
(7') P+
< (1-o. 079a)(1 - ;) (53)

where (i) uses ¢; < 0.45.

(Case I) If Vi(m¢) = 2prqe < % — 1, then the case k; = 1 of the update rules (42) and (43) is
implemented. Hence, we obtain that

Py (1= pr) exp(—ag)] [a + (1 — q) exp(—apy)]
Pt+1qe+1
(4)
< [pe+ (1= pe)(1 —0.190)] [g: + (1 — g:)(1 — 0.190)]
=[1—-0.19a(1 — p)][1 — 0.19c(1 — ¢¢)]
(i) (1i1)
< (1-010)2<1-02a+0.0la? < 1-0.19, (54)

where (i) uses the following Eq. (55), (ii) uses p;, ¢; < 0.45, and (iii) uses o < 1073,

1
exp(—ag) <1—agq + 5(04%)2

(1073)(0.45)

<1l-agqg+ B

aqy
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<1-0.9%q <1-0.99¢(0.2) <1 —0.19. (55)
When p; > ¢, we have
bty1
qt+1

@) pe @ + (1 = q1) exp(=apy)
@ pt + (1 — p) exp(—aqe)
P (1 ~pe—a+ (1 —p)exp(—ag) — (1 - q) eXp(—ozpt))) .

-1

q pe+ (1 = pi) exp(—aqy)
_ bt 1— bt (1 - Qt) [exp(—aqt) - exp(—apt)} + (pt - (Jt) [1 - exp(—aqt)]
qt qt pr + (1 — pi) exp(—agy)
(i)
< % 1 %[(0.55)(0.99@)(}% — q) +0.19a(p; — q1)]
t t
(44%) Dy
< 2101402 -1
qt (Qt )
1—0.14a)( =2 -1 56
< (o), (56)

where (i) uses the case k; = 1 of the update rules (42) and (43), (ii) uses ¢; < 0.45, p — ¢+ > 0, Eq.
(55) and the following Eq. (57), (iii) uses a < 1073 and p; € [0.2,0.45].

exp(—aq;) — exp(—ap;) >exp(—apy)a(pr — q¢) > (1 — apy) (pr — q¢) > 0.99a(pr — q1). (57)

Similarly, when p; < g, we have

1— Pt+1
qt+1
Pt (1—q) [exp(—apt) - exp(—aqt)] + (gt — pt) [1 - exp(—aqt)}
=1 qt (1 * pe + (1 —pt) exp(—aqy) )
Dt
<(1- 0.14a)(1 _ ;). (58)

Now we will integrate the above two cases. Statement (B;) follows by combining Eqs. (51) and (54)
in Cases I and II respectively. Combining Eqgs. (52) & (53) in Case I and Egs. (56) & (58) in Case 11,
we obtain that Eq. (52) always holds whenever p, > ¢; and Eq. (53) always holds whenever p; < g;.
Note that when |p L 1| > 5o, Eq. (46) implies that p t —1 and 2 :1 1 have the same sign. In this
case, we can further combine Eqgs. (52) and (53) and obtaln the following inequality, which proves
the statement (C}).

Pet1 1‘ (1 - 0.079a)| 2 — 1‘.
qt41
Proof of the convergence rate for p;q; — %
Next, we will prove that 7} := {t 0<pqt — 15 < Ga} <8 - in the following three cases.

(Case ) If 0 < poqo — 15 < 6cv, then Ty = 0.

(Case II) If ¢ T 6 < pogo < 0.135, then we have i —i— 6 < prgqr <0.135forall0 <t < Ty — 1
Otherwise, there must exists 0 < t < T} — 2 such that = 16 +6a < prgr < 0.135 and pr 141 < 16,

so 2 ’;Z:“ <7 /iéfm — 34a (since o < 10~3) which contradicts with Eq. (45). Therefore,

-1 <Lt +6a<pq <0.135forall0 <t <T,— 1,so based on the statement (B;), we have

Poqo < 0.135
14+011)r-1 = (1 +0.11a) 721"

< <
16 Py 141, — 1_(
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which implies that

" <l+7———F———<1+

In2.16 L <
- In(1+0.11c) a ~

R Joo

where we use o < 1073,

(Case II) If 0.06 < pogo < %6, then similarly we can prove that 0.06 < piqr < % for all
0 <t < Tj — 1. Hence, based on the statement (B;), we have

Poqo > 0.06
1—-0.190)7-1 = (1 —0.19) T2 1’

T > PTi—141 -1 2 ( (59)

16

which implies that

where we use o < 1073,

Next, we will prove that 0 < p;q; — % < 6« for all ¢ > 77 via induction. It holds at ¢ = 717 based
on the definition of 7. Then suppose 0 < p.q; — %6 < 6« holds for a certain ¢ > T} and we will
prove that 0 < pyy1qeq1 — i < 6« in the following two cases.

(Case I) If 3a < prqr — 1—16 < 6a, then on one hand, based on the statement (B;), we have

Dir1qir1 < pegr < % + 6a. On the other hand, based on Eq. (45), pt11qt+1 > (1 — 34a)peqe >
L(1-0.034) > 0.06.

(Case II) If 0 < prq: — 15 < 3, then on one hand, based on the statement (By), we have piy1Gey1 >

Piq: > 7=. Onthe other hand based on Eq. (45), prr1qi+1 < (1434a)prgr < (1434a) (% +3o¢) <
1

=+ 6a

16

Asaresult, 0 < pygy — 75 < 6aforallt > 2 > Ty,

16 =
Proof of the convergence rate for & — 1

Next, we will prove that 75 := {t | 1| < lOa} < 13 In ( ) Then based on the statement
(Ct), we have

10a < [Pzt 1‘§(170.079 )Te— 1’ 1) 2(1 - 0.0790) 71,
qr,—1

where (i) uses % < Z—g < 1.5. The above inequality along with o < 1073 implies that

Ty <14 2200 13, (i>
In(1 -0.079) ~ « 20c

Next, we will prove that ’% — 1} < 10« for all ¢ > T5 by induction. This holds for t = T5

and suppose that it holds for a certain ¢ > T5. Then if |p L — 1’ < 5o, Eq. (46) implies that

e — 1] < |2t — 1] + 4.66c < 10c; Otherwise, if 5o < |pf — 1| < 10a, then the statement (C})

implies that |p"+1 1] < ‘p* 1] < 1| < JBe— 1| < 10c always holds and

thus we have proved that ”“ — 1| < 10« forall t > 13 ln ( ) > Ts.

Obtain the final convergence rates: Combining the convergence rates for p;q; — 7= and p t 1,
we obtain that 0 < p;g; — &= < 6a and ‘pf 1’ < 10a forall t > L3 1n (51-). Therefore we

conclude the proof by providing the ranges of p;, ¢; and the lower bounds of V1 (7rt) and V() for
t > 131n (53-) as follows.

o= S % c {\/116(1 ~ 10a), \/(116 + 6a)(1 n 1004)} - E — 2, i T 14a]7
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_ 29_1 {¢ 1/16 ¢Lﬂ6+6a}c[l_2 L
K “%(% SWitioa'V 1100 /=l "0t

where the two C use o < 10~3. Therefore, we can prove that ; is feasible as follows.
1
Vi(me) = 2pqy > 2(16) &1,

(7) 1 i) 1
Va(me) = 2(1 = pe)(1 — qt) = 2 — 2(pe + q¢) + 2peqe > 2 — 2(5 + 2804) + 3 > 3= &,

where (i) uses p¢, q¢ > + 14« and pyqy > 16, and (ii) uses o < 1073,

G PROOF OF THEOREM 5

Example 2 is equivalent to the following constrained optimization problem

max Vp(m) := 2pq
p,q€[0,1] (60)
st. Vi(m) :=2pg+2(1—p)(1 —q) > 1.8

which has the unique optimal solution p = ¢ = 1.

Proof for the primal-dual algorithm: For the problem (60), the Lagrange function (5) can be
computed as follows.

L(m, A) = Vo(m) + M [Vi(m) — &1
= 2pq + M\ (2pg +2(1 —p)(1 —q) — 1.8)
=2(1+2X\1)pg — 2X\1(p + q) + 0.2\,
B A A\ 222
_%1+ZMKP_1+2m><q 1+2M)+02A1 1+2)

Forall A; > 0, 1+2)\ < 1 soargmax, , L(m, A) = {(1,1)}. Therefore, the primal-dual algorithm
always achieves the 0pt1ma1 solution p = ¢ = 1 in the first iteration.

Proof for the primal algorithm: In the same way as the proof of item 1 for Example 1, we obtain
the update rules of the primal algorithm as follows.

Y43

pt+-1-—pteXp(—-a%)
D41 = D (61)
ik =1
pr+1—ptwpm1—2%)
T a ( 7 if k=0
qt - Qt CXp (| — apt
Qi1 = G . (62)
iy = 1
q + (1 —q) exp(a 1—2p, )

With initialization pg 4+ go = 1 and py € [0.1, 0.9], we will first prove that p; + ¢: = 1 by induction.
Suppose p; + ¢; = 1 holds for a certain ¢. Then V3 (7)) = 2piqe +2(1 —p) (1 — q¢) = 4p(1—pi) <
1 < & = 1.8. Hence, the case k; = 1 of the update rules (42) and (43) is implemented which implies
that

Pt qt

1+ G = + (1 —pe) exp (a(1 — 2q;)) + @+ (1 — ) exp (a1 — 2py))
_ Y43 I 1—p
pr+ (1—p)exp (a(l —2q)) 1 —py+prexp (a(2q — 1))
Pt (1 —pt)exp (04(1 - 26115))

T+ (L—pexp (a(l—2¢))  (1—pr)exp (a(l—2q,)) +pr

Hence, p; + ¢ = 1, which proves that Vi (m) = 2piqe + 2(1 — pe)(1 — q¢) = 4pe(1 —py) <1 <
& = 1.8forallt.
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H EQUIVALENT CONDITION OF (;, =0

Theorem 6. (;; = 0 if and only if the Q function has the commonly used factorization structure
below (Guestrin et al., 2001; Son et al., 2019, Rashid et al., 2020)
M ~
Qr(m;s,a) = Q;Cm)(ﬂ'; s,a(m)). (63)

m=1

Proof. Proof of “if’: Suppose Eq. (63) holds. Then for any s, a and product policy 7, we have

M
Z A,im) (ms s, a(m))

m=1
M

D3[P (i 5,a™) — Vi(s o)
m=1

m=1 q(\m)

M

(i) 35T Am(gimg) Z (m; s,a(m/))> — MVj,(; )

m=1 g(\m) —1

M M
= Z (™) (V™)) (@,(cm) (5 8,a\™) + Z @,(cm ) (m; s, a(m/))> — MVy(m;s)
m=1 g(\m) m’'=1,m'#m
M
—( 7O (@) Q™ (35, ™) )

M
+ ( Z Z ﬂ(m/)(a(m')|s)©,im/)(7r;s,a(m,))) — MVy(7; s)

@(f@;m)(w;sM) (Z D BRI " (m:5,a"))

=1 m/=1m=1,m#m’ q(m’)

Y Qu(m;s,a) — Vil s) + ( Z Z 7™ (@™)15)Q™) (s 5 a<m>))

— (M = 1)Vj(m; 5)

@ 4, (r5,0) (Z S S w@m™)s)rm) (@) )@](me(m&a(m’)))

m/=1 q(m’) g(\m')

— (M — 1)Vi(m; s)

() Ag(m;s,a) ( Z Z (als) (m;s a(m))) (M — 1)V (75 8)

m/'=1 a

M
= Ag(m;s,a) + (M — 1)(Z7r(a|s) Z @](cm )(77;57(1(?”/))) — (M — 1)V (m; s)

I Ay (s s, a) + (M — 1)<Zw(a|s)Qk(ﬂ; s, a)) — (M = 1)Vi(m;5)

a

(g) Ak(ﬂ-7 S, a/)a
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where (i) uses the definition of the local advantage function Aém)(w; s, a(m)), (ii) uses the rela-
tionship that Q,(Cm) (m38,a™) =3 o [T (V™[ 8) Q. (75 5, a™)] where 7\ (a(\™)|5) 1=

H%:Lm,#m 7(m) (a(™")|s) denotes the policy of all the agents except the agent m, which can

be seen from the definition of the local Q function Q,(Cm) (m;8,a™) = E-[>, 'thk’t|so =
s,a5™ = a™] and the global Q function Q™ (m; 5,a) = Ex [ 325%0 7' Th.t|s0 = 5, a0 = al, (iii),
(v) and (viii) use Eq. (63), (iv) uses >_,qm 7™ (a(\™)|s) = 1, (vi) uses the definition of the
advantage function A (7;s,a) := Qr(m;s,a) — Vi(m; s) and uses D (\m/) 7O\ (o) |s) = 1,
(vii) uses 7(a(™)]s)r(\™) (a(\™m) |s) = 7 (als) for the joint action a = [a(™"), a(\™")], and (ix) uses
Vi(m;s) = -, m(als)Qk(m; s, ). This indicates that (j, = 0.

M

el A,(Cm)(ﬂ; s,a(™)). Hence, we can prove

Proof of “only if””: If ¢, = 0, then Ay (m;s,a) = >
Eq. (63) as follows.

M M
Qr(m;8,a) = Vi(m; 8) + Ag(m; 8,a) = Vi(m; ) + Z Agcm)(ﬂ'; s5,a™) = Z Qvfcm) (m;5,a™),
m=1 m=1
where @im) (m35,a™) = A,gm)(ﬁ; s,a™) + LVi(m; s). O

I SUPPORTING LEMMAS

Lemma 1. Any optimal Lagrange multiplier \* € arg min AR MaXy L(w, \) satisfies the following
range.
1

1 A
A< Moo =~ 2k =1,... K. 64
k—2 k, (;k(l_'y) 51@ ( )

Proof. Use the policy 7 in Assumption 1, (i.e., Vi (7) > & + i) and denote 7* as the optimal
solution to the constrained cooperative MARL problem (1). Then we have

= max min L(m, \)
T AeRE
® nax L(m,\*)— A

™

> L7, \) — A
=Vo(®) + D _M(Ve(® — &) — A

(iii

) K
> bk — A,
k=1

where (i) and (iii) use Vi (7) € [0,1/(1 — ~)] since Tx(s,a) € [0, 1], (ii) uses the definition of the
duality gap A in Eq. (6), and (iii) also uses A}, > 0 and Vj(7) > & + d5. Since A}, 6 > 0, the

above inequality implies Eq. (64). O
Lemma 2. For any probability vector p € R? (every entry p, > 0 and ZZ:1 px = 1) and any
b € R, denote the probability vector ¢ € R? with entries q;, = Z;'L;kb,. Then the distance
j=1Pj€"
between p and q has the following upper bound. ’
d
||q _p”l = Z |qk - pk| S bmax - bmin (65)
k=1

where bmax = mMaXj<i<d bk and bmin = minlgkgd bk.
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Proof. Fort € [0,1] and k = 1,2,...,d, define the following function

vi(t) = % (66)
Z P otbs
which has the following derivative bound.
)] = PR B e = o B by
(Z] 1 pjetti)?
,mﬂﬂZ?ﬂmm—@wM
(Z] L pjetti)?
pkeﬂ”‘ E _, pjlbk — bjletti
- (30— pjetti)?
< P’ (b — bunin) Z;‘l=1 pe'® _ Pre™* (bmax — bmin) (67)
- (ZJ L pjet)? Zj L pjetts
As a result,
d d d 1 1 d
D lae —prl = lok(1) — v(0)] = Z\/ vL(t)dtﬂ s/ S 10 ()]t < bmax — binin-
k=1 k=1 k=1 70 0 .
O

Next, we change initial state distribution p to be any state distribution p’, and replace the value
function Vi () (defined in Eq. (1)) and occupation measure 1441 := vy, , (defined in Eq. (2)) with
Vi,pr () and vy41.,» respectively to emphasis their dependence on p’.

Lemma 3. The policy m; and index ky generated from Algorithm 2 satisfy the following bounds for
any state s € S.

Z Z |7T(m) a™|s) m)( (m)|g)| < Mo[(1 i S + 263) (63)

m=1 g(m)

Mo 2M cves
Jr

Vk,,(ﬂ'hq, ) th(ﬂt,P) < (1_7)2 1—7

(69)

Proof. First, consider two MDPs {S;, 4;};, {S;, A;}; following the same transition kernel P and
policies 7, and 74 respectively. Then the state transition distribution of the two MDPs are
respectively p(s'|s) = P(Sit1 = §'|S; = s) = >, P(s|s,a)m;(als) and p'(s'|s) = P(S; , =
§'|S; =) =3, P(s'|s,a)m41(als) respectively. Denote p; and p; as the distribution of .S; and 5]
respectively under the same initial distribution py = p{; = p’. Then we have

1P} 1 = pisall = Z i1 (s') = pisa ()]
=2 [ 01 —p(s’\sm(s))\
< Z\prs)(p’(s’ )|+ Z\Zp —pils)|
< iz;jpé(S)lp’(S’l |+Zzp s)|pi(s) — pi(s)|
- ipﬁs) 52 2P ls alfmies als) o) mlals) + b~ il

< max [|m 1 (-fs) = me(-[s)ll1 + llp; — pills- (70)
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Since p(, = po, iterating the above inequality yields that
Ip; = pilly < dimax || (-fs) = m(:|s)ls- (71)

Hence, the state occupation measure difference can be upper bounded as follows.

1300 () = v (V1 < (1 Zvllpz pill
(1)
< (1 =) max |41 (Js) = m(1s)]h Zw
& s maxme (s) = m sl (72)

where (i) uses Eq. (71) and (ii) uses the fact that the function f(v) = Y72, ~7* = (1 — )~ has the
following derivative

Zz’y - 1-=9)" 2, (73)

Therefore, the state action occupation measure difference can be bounded as follows.
V100 () = v () 1

= Z Vi1 ()T (als) — vip (s)mi(als)]
< ZVt+1 o (8)|mega(als) — mi(als)| + Zﬂt 8) Vg5 (8) = vaspr ()]

< thﬂ o () 1es1 (1) = T L)+ [vesnp () = v (]

(@)
< max [[m41(s) = m (|51 + ﬁ max [[m41([s) = m(-|s) 1
1
= 7 max||m1(cls) = me(ls)lh, (74)
’Y S

where (i) uses Eq. (72).

To bound the policy difference Hmﬂ (-|s) — m(+]8)]|1, we rewrite the NPG rule (11) as follows

(m) Z w(m) (M) 5) exp (aQ (m;s,a'(m))), (75)
a’(m)
(m)(_(m)
T al™|s ~(r m
Wzgff( (m)]s5) _tZ((m)(S)HeXP (O‘Qgctb)(ﬁtésva( ) (76)
t
Therefore,
[mes1(-ls) = me(-]s) [l
M
—Zinﬁiﬁ) (@™]s) = [] m™ @ls)|
a m=1
M m’'—1
< Z Z ’ H 7r(m) (m)l H 71_t(m)(a(m)‘s) _ H (m) (m)l H ! (m) (m)‘
a m'=1 m=1 m=m'+1 m=1 m=m/'
M
-y > ( H @™l T w™ @) im0 @))s) = 7™ (@)s)
m/'=1 a m=m'—+1

(”) m m m m
ZZ| T (@™]s) — 7™ (a™)]s)]

m=1 g(m)
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(i) M

- s g(m) H(m) (m >>

< mE_loz(r;}gXQk (m1;8,a"™)) — g}g}@ (mt;8,a"™))
M

< g qm) . qm)

_osz_ (g}g};@k (w3 8,07™)) — flr(l}g)lQ Y(mi55,a™)

+2max Q" (m; 5,0™) = QU (mi; 5,0(™)])

(iv)
< Ma( ! +263>, 77
1—7

where (i) uses the following relation for any joint action a where C,(a) =

H:Z 17"t(T1)( (m)|) T 141 7™ (a(™)|s), (ii) and (iv) prove Eq. (68), (iii) applies Lemma
2 where the a(™)-th entries of vectors p, b, q € RA™ 1 are (™ (a(™)]s), a@;(!t”) (4;5,a™)) and

(m) ! (al™|s) respectively, and (iii) uses Qk (7r, s,al™) € [0,1/(1 — ~)] since 7y ; € [0,1].
ICai(a) — Cola \_] Z (@) — Cor—1 ( ‘ Z (e _1(a)].
m/=1 m’=1
As aresult, Eq. (69) can be proved as follows.
|ka (7Tt+17 ) th (7Tt, 14 )|
Z?kt s, a) [Vt+1;p’(57 a) = vip (s, a)] ‘

(2 Hl/t 1: /(' ) — V4. /(- )H]
— ] ,Y P ? 3P )
= (1 7)2 t+1 t 1

(@) M 2M e
S 3T 2
(1T=7? (1-9)
where (i) uses T, (s, a) € [0, 1], (ii) uses Eq. (74) and (iii) uses Eq. (77). O
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J  COMPARISON OF CONVERGENCE RESULTS ON CONSTRAINED
COOPERATIVE MARL

Table 1: Comparison of Convergence Results on Constrained Cooperative MARL

Works Algorithm Assumptions Convergence measure
bounded reward,
Lu et al. (2021) primal-dual Lipschitz continuity, gradient

Slater’s condition
bounded reward,
Lipschitz continuity,
bounded optimal
Lagrange multiplier?
Fixing base policy, perturbation convergence of
Yang et al. (2023)  primal-dual policy in compact convex space perturbation policy
Lipschitz continuity

Ying et al. (2023)  primal-dual gradient

. . bounded reward constraint violation
Algorithm 1 (Ours)  primal-dual Slater’s condition optimality gap
Algorithm 2 (Ours) primal bounded reward constraint .v1olat10r1

optimality gap

K EXPERIMENT ON CONSTRAINED GRID-WORLD

We slightly adapt the constrained grid-world task (Diddigi

et al., 2019) where two agents explore the 4 x 4 grid-world

in Figure 2. The agents start from position 3 and aim at

the target 11. Both agents can observe their positions and 1 2 1 3 1 4 1 5

accordingly select to move up, down, left or right. If an agent

m has reached the destination (target 11), then it will always 8 9 1 O 1 1
;A

stay there and obtains reward 7‘(()77?) = 0 regardless of the

selected action. If an agent is at a non-target marginal grid
and the action points outside the grid, then the agent stays

there and obtains reward -5 (For example, an agent will stay 4 5 6 7
at position 7 if it selects to move right.). In all the other cases,
the agent moves one step and obtains reward -1. The safety

score 1"5";) = —1 for both agents m = 1, 2 if they collide at O 1 2 Ll 3

a non-target position (including initial position 3). Otherwise,

7’§nz) = 0. The discount factor is v = 0.9 and the safety

threshold is & = —1, which allows no collision between Figure 2: Constrained grid-world.
the agents except at the initial time. Therefore, the optimal

solution is to let the agents deterministically select the two

paths shown in Figure 2 respectively with Vy(7) = —2.6695 and V; (7) = —1, which indicates that
this problem has zero duality gap.

We compare the non-stochastic versions of the primal-dual algorithm (Algorithm 1), the primal
algorithm (Algorithm 2) and the centralized nested actor-critic (CNAC) algorithm (Diddigi et al.,
2019) on this constrained grid-world task where transition kernel and reward/safety score functions
are available. Specifically, in Algorithm 1, we use 50 value iterations to obtain the greedy policy
¢, exactly evaluate Vi (m) = Vi (1) = ﬁ Y saTo(s,a)vr, (s, a) where the occupation measure
Vr,(s,a) is known to be the stationary distribution of the mixed transition kernel P,(:|s, a)

~vP(:|s,a)+(1—~)p(-), and update the multipliers with stepsize 8 = 1 and threshold A1 yax = 10. In
Algorithm 2, we also exactly evaluate Vj(m;) = V() and @g"') (43 8,a™) = gt"’) (43 8,a™),

and select stepsize @ = 1 and tolerance 7 = 1073, The CNAC algorithm essentially follows
the primal-dual framework (Algorithm 1) except that the policy 7; is updated with one projected
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stochastic policy gradient ascent step as follows.

7 < Projy, [T+ aV L, M)

Here, V), is the product policy space, and we use the exact policy gradient @WL(W, M) = ViL(m, \)
and select stepsize a = 0.2. The update rule of the multipliers for the CNAC algorithm is the same
as that for our primal-dual algorithm.

We implement these algorithms for 100 iterations. The initial policy of each agent at each state
is randomly generated from Dirichlet distribution Dir(1,1,1,1). We plot the learning curves of
Vo(m¢) and Vi () in Figure 3. It can be seen from Figure 3 that all these algorithms converge fast to
the feasible region V;(m;) > —1 within 10 iterations. As to optimality, our primal-dual algorithm
and primal algorithm converge to the optimal value Vj(7;) = —2.6695 within 3 iterations and 70
iterations respectively. The CNAC algorithm converges to a sub-optimal value Vj(7;) ~ —4.5 within
10 iterations, since it uses policy gradient ascent update which may stuck at a stationary point.

5 5
= i X' -1.84 Our Primal-Dual Algorithm

-1z Our Primal-Dual Algorithm Yy — Our Primal Algorithm

—144 —— Our Primal Algorithm —:— CNAC Algorithm

—-— CNAC Algorithm -2.2 Threshold &; =-1.0
e e Vo =-2.6695 of the optimal path. P I minVy(m) = -1
0 20 40 60 80 100 0 20 40 60 80 100
t t

Figure 3: Results on the constrained grid task with constraint V; (7)) > —1.

Furthermore, we decrease the threshold £; to —1.1, where the deterministic paths in Figure 2 become
near-optimal and the duality gap becomes nonzero. We implement these algorithms for 100
iterations using the same initial policy as that for the threshold £ = —1. Our primal-dual algorithm
uses stepsize S = 1 and 50 value iterations. Our primal algorithm uses stepsize & = 0.4 and tolerance
n = 1073. The CNAC algorithm uses stepsizes o = 0.8 and 8 = 1. From the result in Figure 4,
we can see that all the algorithms become less stable in the constrained-related value V; () and
occasionally falls below the threshold —1.1 due to the nonzero duality gap. Regarding the objective
Vo(m¢), our primal-dual algorithm and primal algorithm converge to the near-optimal value, and
primal-dual converges faster, but CNAC converges to a lower sub-optimal value.

NN e e
oy v 2 TR

Our Primal-Dual Algorithm
—— Our Primal Algorithm
—-— CNAC Algorithm
Threshold §; =-1.1
------ m"invl(n) =-1

Our Primal-Dual Algorithm
—— Our Primal Algorithm 2.2
—-— CNAC Algorithm

------ Vo =-2.6695 of the near-optimal path.

0 20 40 60 80 100 0 20 40 60 80 100
t t

Figure 4: Results on the constrained grid task with constraint V4 (m;) > —1.1.
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