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ABSTRACT

Constrained cooperative multi-agent reinforcement learning (MARL) is an emerg-
ing learning framework that has been widely applied to manage multi-agent sys-
tems, and many primal-dual type algorithms have been developed for it. However,
the convergence of primal-dual algorithms crucially relies on strong duality ± a
condition that has not been formally proved in constrained cooperative MARL.
In this work, we prove that strong duality fails to hold in constrained cooperative
MARL, by revealing a nonconvex quadratic type constraint on the occupation mea-
sure induced by the product policy. Consequently, our reanalysis of the primal-dual
algorithm shows that its convergence rate is hindered by the nonzero duality gap.
Then, we propose a decentralized primal approach for constrained cooperative
MARL to avoid the duality gap, and our analysis shows that its convergence is
hindered by another gap induced by the advantage functions. Moreover, we com-
pare these two types of algorithms via concrete examples, and show that neither
of them always outperforms the other one. Our study reveals that constrained
cooperative MARL is generally a challenging and highly nonconvex problem, and
its fundamental structure is very different from that of single-agent constrained RL.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) (Zhang et al., 2018; Oroojlooy and Ha-
jinezhad, 2022; Chen et al., 2022) is a popular learning framework where multiple agents interact with
a dynamic environment independently and communicate with each other to collaboratively optimize
their policies to gain more rewards. It has a wide range of applications including coordination of
drones (Hammami et al., 2019; Jeon et al., 2022), autonomous vehicles (Garces et al., 2023), and
directional sensors (Xu et al., 2020), etc.

Recently, cooperative MARL has been further generalized to constrained cooperative MARL ± a
more practical setting with safety constraints, in which the agents learn to gain more rewards while
constraining their behavior to reduce certain safety-related costs (Diddigi et al., 2019; Oroojlooy
and Hajinezhad, 2022). This is an important generalization of cooperative MARL that fits many
applications. For example, in multi-agent autonomous driving (Shalev-Shwartz et al., 2016), the
pursuit of fluent traffic flow should always obey speed limits and guarantee safety. In drone navigation
(Hammami et al., 2019), the drones are subject to constraints on bandwidth and battery power.

In the existing literature, the mainstream approach for solving constrained cooperative MARL
problems is primal-dual algorithm (Diddigi et al., 2019; Gu et al., 2021; Lu et al., 2021; Yang
et al., 2023; Ying et al., 2023), which applies alternating updates to optimize the Lagrange function
associated with the constrained cooperative MARL problem. This is a classic and popular algorithm
for solving constrained optimization problems, and it is well-known that its convergence crucially
relies on a strong duality condition of the underlying problem, which has been shown to hold for
constrained convex optimization problems (Bertsekas, 2014) and constrained RL problems (i.e.,
constrained cooperative MARL with a single agent) (Altman, 2004; Paternain et al., 2019). However,
strong duality has not been formally validated in constrained cooperative MARL, and therefore leaving
convergence of the existing primal-dual type algorithms obscure. In fact, constrained cooperative
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MARL can be more challenging than the special case of cooperative MARL (without any safety
constraint), since intuitively the optimal product policy of cooperative MARL can be ruled out by the
complex safety constraints. Hence, we are motivated to study the following fundamental problem.

Q1: Does strong duality hold for constrained cooperative MARL? Is constrained cooperative MARL
more challenging than its special cases of cooperative MARL and constrained RL?

The existing convergence analysis of primal-dual algorithms for constrained cooperative MARL
developed in (Lu et al., 2021; Ying et al., 2023) does not validate the strong duality condition, and
moreover, does not characterize the desired constraint violation and optimality of the output policy.
Instead, they only establish a convergence result to a certain stationary point with vanishing gradient
norm. In particular, Yang et al. (2023) decomposes the agents’ policy into a base policy and a
perturbation policy, and only the convergence of the perturbation policy update is established given a
fixed base policy. This result does not characterize the convergence of the full algorithm. In contrast,
the convergence of primal-dual algorithms is very well understood in the special case of constrained
RL (with a single agent). There, strong duality has been shown to hold, and the convergence rates
of constraint violation and optimality gap have been established (Li et al., 2021; Xu et al., 2021).
Therefore, we are further motivated to explore the following problem.

Q2: If strong duality fails to hold in constrained cooperative MARL, how does the duality gap affect
the convergence of the primal-dual algorithm? Moreover, can we develop an alternative algorithm
with convergence rates that do not depend on the duality gap?

1.1 OUR CONTRIBUTIONS

In this work, we provide comprehensive answers to the above questions, and show that constrained
cooperative MARL is more challenging than its special cases of cooperative MARL and constrained
RL. We summarize our contributions below.

We reformulate the constrained cooperative MARL problem as a constrained optimization problem on
the occupation measure associated with the agents’ product policy. It turns out that the reformulated
optimization problem involves a linear objective function, some linear inequality constraints and
certain highly nonconvex quadratic constraints, which are induced by the independence of the agents’
product policy in the occupation measure space. To the best of our knowledge, such a nonconvex
optimization problem has no known polynomial-time algorithm. In contrast, both constrained RL and
cooperative MARL, as special cases of constrained cooperative MARL, have provably convergent
polynomial-time algorithms. This indicates that the strong duality of constrained RL may no longer
hold in constrained cooperative MARL, as elaborated in the next point.

We further construct an example to show that constrained cooperative MARL problems can have a
strictly positive duality gap. Then, we reanalyze the convergence of the primal-dual algorithm in con-
strained cooperative MARL, and establish the first correct convergence rate result that characterizes
the impact of duality gap on the constraint violation and optimality of the output policy.

We then propose a decentralized primal algorithm that utilizes decentralized natural policy gradient
(NPG) updates to directly solve constrained cooperative MARL problems in their primal forms
and thus avoids the duality gap. We develop new technical tools and tight bounds to analyze the
convergence of this algorithm, and prove that both the constraint violation and the optimality gap

converge at the sub-linear rateO
(√

M
T (1−γ)5 +

maxk ζk
(1−γ)2

)
, where M denotes the number of agents and

ζk denotes an advantage gap induced by the global and local advantage functions. We will show that
this advantage gap vanishes if and only if the Q function satisfies a certain factorization structure (See
Appendix H for more details). In particular, in the single-agent case, the convergence rates of our
primal algorithm strictly improve those of the existing CRPO primal algorithm (Xu et al., 2021) by a

factor of
√
|S||A|(1− γ). We compare our convergence results with existing works on constrained

cooperative MARL in Table 1 in Appendix J.

Lastly, we compare the primal-dual algorithm with the primal algorithm and show that neither of them
always outperforms the other in constrained cooperative MARL, both theoretically and experimentally.
Specifically, we construct an example where the primal-dual algorithm always generates infeasible
policy whereas the primal algorithm converges to the optimal policy at a sublinear rate, vice versa. In
particular, the examples we construct involve highly nonconcave constrained maximization problems,

2



Published as a conference paper at ICLR 2024

making it challenging to study the convergence of the primal algorithm. Instead of using convex
optimization analysis techniques, we prove the convergence of two highly nonconvex potential
functions via multi-statement induction in various cases.

1.2 RELATED WORK

Cooperative MARL: Cooperative MARL has two tasks of interest, policy evaluation and policy
optimization. Policy evaluation has been solved by temporal difference type algorithms, including
(Wai et al., 2018; Doan et al., 2019; Wang et al., 2020; Sun et al., 2020; Liu and Olshevsky, 2023) for
on-policy evaluation and (Macua et al., 2014; StankoviÂc and StankoviÂc, 2016; Cassano et al., 2020;
Chen et al., 2021c) for off-policy evaluation. Multiple algorithms have been proposed to solve policy
optimization problem, including actor-critic (Foerster et al., 2018; Lin et al., 2019; Suttle et al., 2019;
Ma et al., 2021; Chen et al., 2022; Luo and Li, 2022), natural actor-critic (Chen et al., 2022; Luo and
Li, 2022), fitted-Q (Zhang et al., 2020), value iteration (Chen et al., 2021a) etc.

Constrained Markov Decision Processes: Constrained RL proposed by (Altman, 2004) is a
particular case of constrained cooperative MARL with safety constraints but only one agent. Primal-
dual algorithms are also popular for constrained RL (Achiam et al., 2017; Tessler et al., 2018; Altman,
2004; Yang et al., 2019; Yu et al., 2019; Stooke et al., 2020; Ding et al., 2020; 2021; Li et al., 2021).
There are also other kinds of algorithms for constrained RL, including Lyapunov function based
algorithm (Chow et al., 2018; 2019), interior point methods (Liu et al., 2020), policy network that
encodes safety constraints (Dalal et al., 2018), and CRPO algorithm (Xu et al., 2021). See (Gu et al.,
2022) for a comprehensive review of constrained RL.

Other constrained cooperative MARL frameworks: We mainly focus on the main-stream con-
strained cooperative MARL framework (1) with lower bounds on the total discounted safety score.
Some other constrained cooperative MARL frameworks have also been proposed. For example,
the constrained cooperative MARL framework in (Liu et al., 2021) has partially observable states
and bounds the total discounted safety score as well as the instantaneous safety score. Sheng et al.
(2023) proposes a primal-dual algorithm for constrained cooperative MARL with an upper bound
on the probability of safety violation. Mondal et al. (2022) uses a mean-field approximation to
constrained cooperative MARL with a very large number of agents, which reduces multi-agent policy
to a centralized policy, and this approximated problem is solved by a natural policy gradient-based
primal-dual algorithm. Shang et al. (2023) proposes a constrained cooperative MARL framework for
collaborative multi-phase tasks where each agent focuses on its own value and safety, and proposes a
primal algorithm without theoretical analysis.

2 CHALLENGE OF CONSTRAINED COOPERATIVE MARL

We consider the standard setting of constrained cooperative MARL (Yang et al., 2023; Diddigi et al.,
2019; Gu et al., 2021; Lu et al., 2021), in which M agents explore and make decisions in a common
environment. They communicate with each other via a decentralized network G = ([M ], E) where
[M ] := {1, 2, . . . ,M} denotes the set of agents and E denotes the set of communication links.

At time t, every agent m observes the global environment state st ∈ S and accordingly takes an

action a
(m)
t ∈ A(m) based on its own policy π(m)(·|st). These agents’ policies are independent,

and therefore their joint action at = [a
(1)
t ; . . . ; a

(M)
t ] ∈ A is generated by the product policy

π(at|st) :=
∏M

m=1 π
(m)(a

(m)
t |st). Then, the state st transfers to a new state st+1 ∼ P(·|st, at)

following the state transition kernel P , and every agent m receives a reward r
(m)
0,t = r

(m)
0 (st, at)

and various safety scores r
(m)
k,t = r

(m)
k (st, at) (k = 1, . . . ,K), which are assumed to be in [0, 1]

throughout. The goal of constrained cooperative MARL is to find the optimal product policy that
maximizes the cumulative average reward under various safety constraints, that is,

(Constrained cooperative MARL): max
product policy π

V0(π) := Eπ

[ ∞∑

t=0

γtr0,t

∣∣∣s0 ∼ ρ
]
, (1)

s.t. Vk(π) := Eπ

[ ∞∑

t=0

γtrk,t

∣∣∣s0 ∼ ρ
]
≥ ξk, k = 1, . . . ,K,
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where the value functions Vk(π), k = 0, ...,K denote the expected accumulation of the agents’

average reward/safety scores rk,t = 1
M

∑M
m=1 r

(m)
k,t with a discount factor γ ∈ (0, 1), ξk ∈ R

denotes the threshold for the k-th safety constraint, and ρ is the initial state distribution.

When there is no safety constraint, problem (1) reduces to a standard cooperative MARL problem
that can be solved by many decentralized policy optimization algorithms (Zhang et al., 2018; Chen
et al., 2022). On the other hand, when there is only a single agent, problem (1) reduces to a standard
constrained RL problem that can be solved by primal-dual algorithms (Altman, 2004; Achiam et al.,
2017; Ding et al., 2021). However, as we show next, when imposing safety constraints on multiple
cooperative agents, the problem becomes more challenging.

To illustrate the challenges to solve problem (1), we rewrite it using the following occupation measures
associated with policy π, where Pπ denotes the probability of visiting a certain (s, a) under π.

νπ(s, a) :=(1− γ)

∞∑

t=0

γt
Pπ(st = s, at = a|s0 ∼ ρ), νπ(s) :=

∑

a

νπ(s, a). (2)

In particular, there is an almost one-to-one correspondence between a policy π and its occupation

measure νπ(s, a), since π(a|s) = νπ(s,a)
νπ(s)

if νπ(s) > 0 (otherwise, π(·|s) can be any distribution on

A). Then, the value function Vk(π) in (1) can be rewritten as a linear function Ṽk(νπ) as follows.

Vk(π) = Ṽk(νπ) :=
1

1− γ

∑

s,a

rk(s, a)νπ(s, a), (3)

where rk(s, a) = 1
M

∑M
m=1 r

(m)
k (s, a) denotes the average reward/safety score. However, in the

multi-agent setting, νπ associated with a product policy π needs to satisfy the following additional

complex constraints. Below, a(\m) denotes the joint action of all the agents except agent m.

Theorem 1. The constrained cooperative MARL problem (1) is equivalent to the following con-
strained optimization problem on function ν : S ×A → R. That is, ν is the optimal solution to the
following problem if and only if ν = νπ where π is the optimal product policy of the problem (1).

max
ν

1

1− γ

∑

s,a

r0(s, a)ν(s, a) (4)

s.t. (Occupation constraints):

ν ≥ 0,
∑

s,a

ν(s, a) = 1,
∑

a

ν(s′, a) = (1− γ)ρ(s′) + γ
∑

s,a

ν(s, a)P(s′|s, a); ∀s′

(Product policy constraints):

ν(s, a)
∑

a′

ν(s, a′)=
∑

a′(m)

ν
(
s, [a′(m), a(\m)]

)
·
∑

a′(\m)

ν
(
s, [a(m), a′(\m)]

)
; ∀s, a

(Safety constraints):

1

1− γ

∑

s,a

rk(s, a)ν(s, a) ≥ ξk; k = 1, 2, . . . ,K.

Proof Sketch of Theorem 1. Note that both the objective function and the safety constraints in (1)
are rewritten using (3). The occupation constraints are standard for any occupation measure ν. The
challenge is to introduce the product policy constraints, which is equivalent to that the corresponding
joint policy is a product policy. To do this, we observe that a joint policy π is a product policy if

and only if π(a|s) = π(m)(a(m)|s)π(\m)(a(\m)|s) for all m, and also observe that the occupation

measure satisfies νπ(s, a) = νπ(s)π
(m)(a(m)|s)π(\m)(a(\m)|s). Based on these two observations,

we can show that any occupation measure νπ is associated with a product policy π if and only if

νπ(s, a)
∑

a′ νπ(s, a
′)=
∑

a′(m) νπ
(
s, [a′(m), a(\m)]

)
·∑a′(\m) νπ

(
s, [a(m), a′(\m)]

)
for all s, a.

Theorem 1 shows that the constrained cooperative MARL problem (1) is equivalent to an optimization
problem with quadratic equality constraints, which are induced by the product structure of the joint
policy. Unfortunately, optimization problems with both linear and quadratic equality constraints are

4



Published as a conference paper at ICLR 2024

highly nonconvex and there is no known polynomial-time algorithm. Moreover, some studies argued
that it is probably an NP-complete problem (Murty and Kabadi, 1987). Thus, constrained cooperative
MARL is a challenging problem due to the presence of safety and product policy constraints, and we
further illustrate this point in the perspective of duality gap in the next section.

As a comparison, both the constrained RL problem (with a single agent) and the cooperative MARL
problem (without safety constraints), as special cases of the constrained cooperative MARL problem,
can be solved in polynomial-time. To briefly explain, note that the constrained RL problem is
equivalent to the problem (4) without the quadratic product policy constraints (not required in the
single agent case), and the problem is simply a linear programming problem that can be solved in
polynomial time (Altman, 2004). For the cooperative MARL problem, it is equivalent to the problem
(4) without the safety constraints. In this case, it is well known that the problem always has an
optimal product policy that is both deterministic and greedy, which can be obtained by standard value
iteration or policy iteration approaches (Agarwal et al., 2022).

3 DUALITY GAP AND PRIMAL-DUAL ALGORITHM

In the existing literature, the mainstream studies proposed to apply the popular primal-dual algorithm
to solve constrained cooperative MARL problems (Diddigi et al., 2019; Gu et al., 2021; Lu et al.,
2021; Yang et al., 2023; Ying et al., 2023). However, this algorithm converges only when the strong
duality holds, which has not been formally justified in the constrained cooperative MARL setting. In
this section, we prove that constrained cooperative MARL problems can have strictly positive duality
gap, and consequently the primal-dual algorithm does not have exact convergence guarantee.

3.1 CONSTRAINED COOPERATIVE MARL HAS NONZERO DUALITY GAP

The constrained cooperative MARL problem (1) is equivalent to the following optimization problem.

max
π

min
λ∈R

K
+

L(π, λ) :=V0(π) +

K∑

k=1

λk

[
Vk(π)− ξk

]
, (5)

where L(π, λ) denotes the Lagrange function with multiplier λ = [λ1, . . . , λK ]. The primal-dual
algorithm is based on a key assumption that the following duality gap equals zero.

(Duality gap): ∆ := min
λ∈R

K
+

max
π

L(π, λ)−max
π

min
λ∈R

K
+

L(π, λ). (6)

In the special case of a single agent, the problem reduces to a constrained RL problem that has been
shown to have zero duality gap (Altman, 2004; Paternain et al., 2019). This can be easily seen by

rewriting L(π, λ) = Ṽ0(νπ)+
∑K

k=1 λk[Ṽk(νπ)− ξk] using (3), which reduces to a bilinear function

of (νπ, λ) ∈ V × R
K
+ . Since both of the sets V := {νπ|π is a policy} and R

K
+ are convex sets, zero

duality gap follows from the standard minmax theorem (Lemma 9.2 of (Altman, 2004)). However,
in constrained cooperative MARL, the set V changes to Vp := {νπ|π is a product policy}, which is
nonconvex due to the product policy constraints in Theorem 1. Consequently, the duality gap ∆ does
not necessarily equal zero, which is formally proved in the following fact.

Fact 1. Constrained cooperative MARL problems can have a strictly positive duality gap.

Remark: Alatur et al. (2023) also obtains a similar result of positive duality gap for constrained
Markov potential game with competitive agents. Their result applies to constrained cooperative
MARL when all the agents use the same reward function r0. Moreover, it can be easily seen that the
duality gap has a constant upper bound ∆≤ 1

1−γ as rk,t ∈ [0, 1].

Proof Sketch of Fact 1. We construct Example 1 (see Appendix A) and show that it has a positive

duality gap ∆ = 3
4 (see Appendix C for the detailed proof). The reward r

(m)
0 and safety scores

r
(m)
1 , r

(m)
2 of this example are carefully selected based on the key observation that ∆ > 0 if and only

if every optimal joint policy π̃∗ of the constrained cooperative MARL problem (1) is a non-product
policy. To elaborate, we show the following equivalent conditions on the Lagrange function.

min
λ∈R

K
+

max
product policy π

L(π, λ)
(i)
= min

λ∈R
K
+

max
joint policy π

L(π, λ)
(ii)
= max

joint policy π
min
λ∈R

K
+

L(π, λ) = V0(π̃
∗),
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where (i) holds since maxproduct policy π L(π, λ) is essentially a cooperative MARL problem,
which has an optimal deterministic policy that also solves maxjoint policy π L(π, λ), and (ii) fol-
lows from the strong duality of constrained RL. Hence, ∆ > 0 if and only if V0(π̃

∗) >
maxproduct policy π minλ∈R

K
+
L(π, λ) = V0(π

∗) where π∗ is an optimal product policy of the con-

strained cooperative MARL problem (1), which implies that π̃∗ cannot be a product policy.

3.2 REANALYSIS OF PRIMAL-DUAL ALGORITHM

Based on the positive duality gap result, we are further motivated to reanalyze the convergence
guarantee of the primal-dual algorithm for constrained cooperative MARL. Throughout, we adopt the
following standard Slater’s condition (Paternain et al., 2019; Ding et al., 2020; 2021).

Assumption 1 (Slater’s condition). There exists a policy π̃ and constants δk > 0 such that Vk(π̃) ≥
ξk + δk for all k = 1, . . . ,K.

The primal-dual algorithm is a popular method for solving constrained RL type problems. We present
the algorithm updates in Algorithm 1, whose main idea is to optimize the Largrange function L(π, λ)
alternatively between π and λ. Specifically, in the primal update step (line 4), we fix λ and update
the policy π by solving the subproblem maxπ L(π, λ). In particular, define the surrogate reward

rλ,t := r0,t +
∑K

k=1 λkrk,t and then the subproblem reduces to a standard cooperative MARL
problem with this surrogate reward. One can apply any of the existing MARL algorithms to solve
this subproblem up to arbitrary precision ϵ1 > 0, e.g., decentralized policy gradient (Bai et al.,
2021) and decentralized actor-critic (Zhang et al., 2018; Heredia and Mou, 2019; Chen et al., 2020;
2022). Moreover, in the dual update step (line 6), we fix π and update λ by solving the subproblem
minλ L(π, λ) via projected gradient descent. Note that for the policy evaluation step in line 5, one
can apply the existing decentralized TD learning algorithms (Sun et al., 2020; Chen et al., 2021c).

We obtain the following new convergence result of Algorithm 1 in constrained cooperative MARL.

Theorem 2. Consider a constrained cooperative MARL problem with duality gap ∆, and let Assump-
tion 1 hold. Apply the primal-dual Algorithm 1 to solve it with hyperparameters λk,max = 2

δk(1−γ) +

2∆
δk

, ϵ1 = 1
1−γ

√
K
2T

∑K
k=1 λ

2
k,max, ϵ2 = 1

1−γ

√ ∑
K
k=1 λ2

k,max

2T (
∑

K
k=1 λk,max)2

, β = (1−γ)
√

1
2KT

∑K
k=1 λ

2
k,max.

We obtain the following results on optimality gap and constraint violation ((·)+ := max(·, 0)).

V0(π
∗)− ET̃ [V0(πT̃ )] ≤

7

1− γ

√√√√ K

2T

K∑

k=1

λ2
k,max , (7)

K∑

k=1

λk,maxET̃

(
ξk − Vk(πT̃ )

)
+
≤ 22

1− γ

√√√√ K

2T

K∑

k=1

λ2
k,max + 2∆. (8)

Furthermore, using the decentralized natural actor-critic algorithm (Chen et al., 2022) to obtain

πt and model-based policy evaluation (Li et al., 2020) to obtain V̂k(πt), the sample complexity is

O(ϵ−5 ln ϵ−1) to achieve V0(π
∗)−ET̃ [V0(πT̃ )]≤ϵ and

∑K
k=1 λk,maxET̃

(
ξk−Vk(πT̃ )

)
+
≤ϵ+2∆.

Theorem 2 shows that in constrained cooperative MARL, the optimality gap V0(π
∗)− E[V0(πT̃ )] of

the primal-dual algorithm achieves a sub-linear convergence rateO
(
1/
√
T
)
. Moreover, the constraint

violation
∑K

k=1 λk,maxET̃

(
ξk − Vk(πt)

)
+

converges at a similar rate, but up to a convergence error

that depends on the duality gap ∆ of the problem. Therefore, it is possible that the algorithm
converges to a sub-optimal policy that strictly violates the safety constraints.

Comparison with the existing art. We note that the above sub-linear convergence rates match those
of primal-dual algorithm in single-agent constrained RL (∆ = 0) (Ding et al., 2020; 2021). Moreover,
compared with the existing studies of the primal-dual algorithm for constrained cooperative MARL
that only establish convergence to stationary points (Lu et al., 2021; Ying et al., 2023), our Theorem 2
directly characterizes the optimality and constraint violation of the output policy πT̃ . To the best
of our knowledge, this is the first convergence result of the primal-dual algorithm in constrained
cooperative MARL that characterizes the impact of the nonzero duality gap ∆.
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Algorithm 1 Primal-Dual Algorithm

1: Inputs: ϵ1, ϵ2, β > 0, λk,max > 0 for k = 1, . . . ,K,
2: Initialize: λk,0 = 0 for k = 1, . . . ,K.
3: for iterations t = 0, 1, 2, . . . , T − 1 do
4: Solve the cooperative MARL problem with surrogate

reward rλ,t. Obtain an ϵ1-accurate solution πt, i.e.,

max
π

L(π, λt)− L(πt, λt) ≤ ϵ1. (9)

5: Perform TD learning to estimate V̂k(πt) such that

|V̂k(πt)− Vk(πt)| ≤ ϵ2.
6: Update the multipliers for k = 1, 2, . . . ,K using pro-

jected gradient descent as follows.

λt+1,k = Proj[0,λk,max]

[
λt,k − β

(
V̂k(πt)− ξk

)]
. (10)

7: end for

8: Output: πT̃ with T̃
uniform∼ {0, 1, . . . , T − 1}.

Proof logic. The proof logic
mainly follows that of primal-dual
algorithm in constrained RL
(Ding et al., 2020). However,
since the duality gap ∆ > 0, we
need to adopt a different bound
for any product policy π′, i.e.,
L(π′, λ∗) ≤ maxπ L(π, λ

∗) =
V0(π

∗) − ∆, where λ∗ ∈
argminλ∈R

K
+
maxπ L(π, λ),

and π∗ is the optimal product
policy of the constrained coop-
erative MARL problem (1). The
above bound is used to bound
the constraint violation of the
policies π′ = πt obtained by the
primal-dual algorithm, and also
bound λ∗ via π′ = π̃ in Assumption
1 (See Lemma 1 in Appendix I for
detail). The duality gap ∆ in the above bound further affects the subsequent proof.

4 DECENTRALIZED PRIMAL ALGORITHM

In this section, we propose a primal-based algorithm for constrained cooperative MARL whose
convergence does not involve the duality gap. Our algorithm extends the centralized CRPO algo-
rithm (Xu et al., 2021) to the constrained cooperative setting, and involves new designs to enable
decentralized implementation and new proof techniques that lead to improved convergence rates.

Our decentralized primal algorithm is presented in Algorithm 2. To explain, the main idea is to use
(decentralized) TD learning to estimate the value functions {Vk(πt)}Kk=1 associated with the safety
scores and select one that violates its constraint threshold by a pre-determined amount η as the target
value function. If no such violation exists, then we select V0 as the target value function. After that,
we update the current policy πt using a decentralized natural policy gradient algorithm based on the
selected target value function. Compared to the existing CRPO algorithm for single-agent constrained
RL (Xu et al., 2021), our algorithm design introduces several new elements. To elaborate, we update
the agents’ product policies via the following decentralized natural policy gradient (NPG) update

π
(m)
t+1(a

(m)|s) ∝ π
(m)
t (a(m)|s) exp

(
αQ̂

(m)
kt

(πt; s, a
(m))

)
; ∀s, a(m), (11)

where α > 0 is the stepsize and Q̂
(m)
k (π; s, a(m)) is an estimation of the local Q function

Q
(m)
k (π; s, a(m)) = Eπ

[∑∞
t=0 γ

trk,t
∣∣s0 = s, a

(m)
0 = a(m)

]
, which can be efficiently estimated by

sample average estimation of Q
(m)
k (π; s, a(m)) = E

[
rk(s, a)+γVk(π; s

′)|a(\m) ∼ π(\m)(·|s), s′ ∼
P(·|s, a)

]
(Wei et al., 2021; Chen et al., 2021b). In particular, such a decentralized update is crucial

for performing optimization in the product policy space. Moreover, when we estimate the value
functions {Vk(πt)}Kk=1 in line 5, we randomly permute their order and break the loop once a target
value function is found. This helps avoid the undesirable situation where the same value function is
frequently selected so that the policy stays at a stationary point (possibly infeasible) in the policy
update (11), and also reduces computation. As a comparison, the CRPO algorithm requires to
estimate Vk(πt) for all k = 1, 2, ...,K in every iteration, and therefore is less efficient.

Next, define the advantage gap ζk := sups,a,π
∣∣Ak(π; s, a) −

∑M
m=1 A

(m)
k (π; s, a(m))

∣∣, which

corresponds to the gap between the local advantage function A
(m)
k (π; s, a(m)) := Q

(m)
k (π; s, a(m))−

Vk(π; s) and the global advantage function Ak(π; s, a) := Qk(π; s, a)− Vk(π; s).

7
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Theorem 3. Apply Algorithm 2 with α = O
(√ (1−γ)3

MT

)
, ϵ2 = O

(√
M

T (1−γ)5

)
, ϵ3 = O

(√
1−γ
MT

)
,

η = O
(√

M
T (1−γ)5 +

max1≤k≤K ζk
(1−γ)2

)
(see Appendix E for details). Then the output policy πT̃ satisfies

V0(π
∗)− ET̃ [V0(πT̃ )] ≤ O

(√ M

T (1− γ)5
+

ζ0
(1− γ)2

)
, (12)

ξk − ET̃ [Vk(πT̃ )] ≤ O
(√ M

T (1− γ)5
+

max1≤k≤K ζk
(1− γ)2

)
; k = 1, . . . ,K. (13)

Furthermore, using the model-based policy evaluation (Li et al., 2020) to obtain V̂k(πt) and

Q̂
(m)
kt

(πt; s, a
(m)), the sample complexity is O(ϵ−4) to achieve V0(π

∗) − ET̃ [V0(πT̃ )] ≤ O
(
ϵ +

ζ0
(1−γ)2

)
and

∑K
k=1 λk,maxET̃

(
ξk − Vk(πT̃ )

)
+
≤O

(
ϵ+

max1≤k≤K ζk
(1−γ)2

)
.

Theorem 3 shows that both the optimality gap and the constraint violation converge at the sublinear

rate O
(√

M/[T (1− γ)5]
)
, up to certain convergence errors that depend on the advantage gaps ζk.

Thus, the above convergence result has a very different nature from that of the primal-dual algorithm,
which involves the problem’s duality gap ∆ instead. Moreover, ζk vanishes if and only if the Q
function satisfies a certain factorization structure (See Appendix H for more details) (Guestrin et al.,
2001; Son et al., 2019; Rashid et al., 2020). Therefore, when the Q function can be approximated by
a factorized form, ζk is small, so the primal algorithm is preferable to the primal-dual algorithm.

Comparison with the existing art. In the single-agent case M = 1, the advantage gap ζk vanishes,

and the convergence rates in Theorem 3 reduce to O
(√

M/[T (1− γ)5]
)
, which strictly improves

that of the CRPO algorithm (Xu et al., 2021) by a factor of
√
|S||A|(1− γ) for large state and action

spaces 1. In particular, this improvement crucially relies on proving our new Lemma 3, which proves

the bound Vkt
(πt+1; ρ

′)− Vkt
(πt; ρ

′) ≤ Mα
(1−γ)3 + 2Mαϵ3

(1−γ)2 that tightens the corresponding bound in

(Xu et al., 2021) by a factor of O(1/[|S||A|(1− γ)]) using two novel techniques as elaborated below.

Technical novelty. First, denote pi, p
′
i as the distributions of state si under πt and πt+1, respectively.

Then, by Markov decision process, we can show that ∥p′i+1−pi+1∥1 ≤ maxs ∥πt+1(·|s)−πt(·|s)∥1+
∥p′i − pi∥1, which implies that ∥p′i − pi∥1 ≤ imaxs ∥πt+1(·|s)− πt(·|s)∥1. Hence, we have

Vkt
(πt+1; ρ

′)− Vkt
(πt; ρ

′) =
∑∞

i=0 γ
i
∑

s,a rkt
(s, a)[p′i(s)πt+1(a|s)− pi(s)πt(a|s)]

≤ (1− γ)−2 maxs ∥πt+1(·|s)− πt(·|s)∥1,
where the second inequality upper bounds

∑
s by maxs without introducing the factor |S|. Second,

we further prove the following non-trivial tight bound

∥πt+1(·|s)− πt(·|s)∥1 ≤
∑M

m=1

∑
a(m) |π(m)

t+1(a
(m)|s)− π

(m)
t (a(m)|s)|

≤∑M
m=1 α

(
maxa(m) Q̂kt

(πt; s, a
(m))−mina(m) Q̂kt

(πt; s, a
(m))

)
,

where the inequality is obtained by taking π
(m)
t+1(a

(m)|s) in the update rule (11) as a function of

α and bounding
∣∣ d
dαπ

(m)
t+1(a

(m)|s)
∣∣ (see the proof of Lemma 2 for details). This bound upper

bounds
∑

a(m) by maxa(m) Q̂kt
(πt; s, a

(m)) − mina(m) Q̂kt
(πt; s, a

(m)). In contrast, (Xu et al.,

2021) uses the Lipschitz property Vkt
(πt+1; ρ

′)−Vkt
(πt; ρ

′) ≤ 2
1−γ ∥wt+1−wt∥2 under the softmax

policy parameterization πt(a|s) ∝ exp[wt(s, a)]. However, this further leads to the upper bound

∥wt+1 − wt∥2 = α∥Q̂kt
(πt; ·, ·)∥2 ≤ α

1−γ |S||A| that is much looser than our ∥πt+1 − πt∥1.

5 PRIMAL-DUAL ALGORITHM V.S. PRIMAL ALGORITHM

We have shown that the primal-dual Algorithm 1 and the primal Algorithm 2 suffer from non-
vanishing convergence errors that depend on the duality gap and the advantage gap, respectively.
Next, we show that each of the two algorithms can offer advantages over the other in certain scenarios.

1The convergence rates of CRPO established in (Xu et al., 2021) should be O
(

1
(1−γ)2

√

|S||A|
T

)

. In the proof

of their Lemma 7, (iii) should have used the update rule wt+1−wt =
α

1−γ
Q

i

t, but they used wt+1−wt = αQ
i

t.

8
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Algorithm 2 Decentralized Primal Algorithm

1: Inputs: α, ϵ2, ϵ3 > 0, η
2: Initialize: Policy π0.
3: for primal iterations t = 0, 1, 2, . . . , T − 1 do
4: ▶ Let kt ← 0.
5: for k = σt(1), . . . , σt(K) where σt is a random

permutation on {1, 2, . . . ,K} do

6: ▶ Perform TD learning to estimate V̂k(πt) such

that |V̂k(πt)− Vk(πt)| ≤ ϵ2.

7: ▶ If V̂k(πt) < ξk − η, let kt ← k and break.
8: end for
9: for agents m = 1, 2, . . . ,M in parallel do

10: ▶ Estimate Q̂
(m)
kt

(πt; s, a
(m)) such that

|Q̂(m)
kt

(πt; s, a
(m))−Q

(m)
kt

(πt; s, a
(m))| ≤ ϵ3.

11: ▶ Update local policy to π
(m)
t+1 following the

decentralized NPG update rule (11).
12: end for
13: end for

14: Output: πT̃ with T̃
uniform∼ {0 ≤ t ≤ T −1 : kt = 0}.

First, we revisit Example 1 and show that
Algorithm 2 outperforms Algorithm 1 in
the following theorem. Here, the product
policy πt is fully characterized by pt :=

π
(1)
t (0|s) and qt := π

(2)
t (0|s).

Theorem 4. In Example 1, if we run
Algorithm 1 with ϵ1 = ϵ2 = 0, then
the generated policy πt is infeasible for
all t. In contrast, if we run Algorithm
2 with ϵ2 = ϵ3 = 0, α ≤ 10−3,
η = −6α and an initial policy that sat-
isfies 2

3q0 ≤ p0 ≤ 3
2q0 and 0.06 ≤

p0q0 ≤ 0.135, then the generated pol-
icy πt for all t ≥ 13

α ln
(

1
20α

)
is feasible

and close to the optimal solution
(
1
4 ,

1
4

)

with max
(∣∣pt − 1

4

∣∣,
∣∣qt − 1

4

∣∣) ≤ 14α.

Technical novelty: The major challenge
to prove Theorem 4 lies in the conver-
gence analysis of Algorithm 2 in Exam-
ple 1, which can be written as a noncon-
cave constrained maximization problem
(37). Moreover, the primal update rule differs for kt = 0, 1, 2. Hence, we cannot follow the standard
convergence analysis for convex optimization. Instead, we utilize the multiplicative structure of the
primal updates of pt and qt in Eqs. (42) and (43) to obtain the convergence of the potential functions
ptqt and pt

qt
to 1

16 and 1, respectively. To elaborate, we prove the statement (At):
2
3qt ≤ pt ≤ 3

2qt

and 0.06 ≤ ptqt ≤ 0.135, and the statement (Ct):
∣∣pt+1

qt+1
− 1
∣∣ ≤ (1 − 0.079α)

∣∣pt

qt
− 1
∣∣ whenever∣∣pt

qt
− 1
∣∣ > 5α, via inductions that (At), (Ct) ⇒ (At+1) and that (At) ⇒ (Ct). In particular,

(At) ⇒ (Ct) is proved in 4 separate cases: either pt ≥ qt or pt < qt, and either ptqt ≥ 1
16 + 3α

or ptqt <
1
16 + 3α. (At), (Ct) imply that

∣∣pT

qT
− 1
∣∣ ≤ 10α for a certain T ≤ O

(
α−1 ln(α−1)

)
. To

further show that
∣∣pt

qt
− 1
∣∣ ≤ 10α; ∀t ≥ T , it suffices to prove

∣∣pt+1

qt+1
− pt

qt

∣∣ ≤ 4.66α, so that the ring

area 5α <
∣∣pt

qt
− 1
∣∣ ≤ 10α is sufficiently wide to drag pt

qt
back towards 1. The convergence rate of

ptqt is proved similarly via inductions in two separate cases where ptqt ≥ 1
16 +3α or ptqt <

1
16 +3α.

Next, we prove that Algorithm 1 outperforms Algorithm 2 in Example 2 (See Appendix A).

Theorem 5. In Example 2, Algorithm 1 obtains the optimal policy in one iteration. In contrast, if
we run Algorithm 2 with ϵ2 = ϵ3 = η = 0 and an initial policy that satisfies p0 + q0 = 1, then the
generated policy πt is infeasible for all t.

Since Example 2 is also a nonconcave maximization problem, proving the infeasibility of the function
value V1(πt) obtained by the primal algorithm also cannot follow the standard convex optimization
convergence analysis. Instead, we prove that pt + qt = 1 via induction and show the constraint
violation V1(πt) = 4pt(1− pt) ≤ 1 < ξ1.

In Appendix A, we conduct simulations to verify the above theoretical comparison of both algorithms.

6 CONCLUSION

In this work, we have shown that constrained cooperative MARL is a highly nonconvex problem
that is more challenging than cooperative MARL and single-agent constrained RL in the occupation
measure space. Due to the challenges, the strong duality condition required by the mainstream
primal-dual algorithms no longer holds in constrained cooperative MARL. Therefore, we reanalyze
the convergence rates of the primal-dual algorithms with nonzero duality gap. Then, we propose a
decentralized primal algorithm for constrained cooperative MARL to avoid the duality gap, and our
analysis shows that its convergence is hindered by another gap induced by the advantage functions.
We expect that our study will spark new research directions in multi-agent RL, and motivate to design
better algorithms with rigorous convergence guarantee for constrained cooperative MARL.
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A NUMERIC EXAMPLES AND EXPERIMENTS

In this section, we implement the primal-dual algorithm (Algorithm 1) and the primal algorithm
(Algorithm 2) to the following two numeric examples to verify Theorems 4 and 5.

Example 1. Consider a constrained cooperative MARL problem with two agents, a single state
S = {s}. Both agents share the same action space A(m) = {0, 1} and the same reward and safety
scores listed below. The discount factor is γ = 1

2 and the safety thresholds are ξ1 = ξ2 = 1
8 .

r
(m)
0 (s, [0, 0]) = 1, r

(m)
1 (s, [0, 0]) = 1, r

(m)
2 (s, [0, 0]) = 0

r
(m)
0 (s, [0, 1]) = 0, r

(m)
1 (s, [0, 1]) = 0, r

(m)
2 (s, [0, 1]) = 0

r
(m)
0 (s, [1, 0]) = 0, r

(m)
1 (s, [1, 0]) = 0, r

(m)
2 (s, [1, 0]) = 0

r
(m)
0 (s, [1, 1]) = 1, r

(m)
1 (s, [1, 1]) = 0, r

(m)
2 (s, [1, 1]) = 1

Example 2. Consider modifying Example 1 so that both agents share the following reward and a
single safety score. The safety threshold is ξ1 = 1.8.

r
(m)
0 (s, [0, 0]) = 1, r

(m)
1 (s, [0, 0]) = 1

r
(m)
0 (s, [0, 1]) = 0, r

(m)
1 (s, [0, 1]) = 0

r
(m)
0 (s, [1, 0]) = 0, r

(m)
1 (s, [1, 0]) = 0

r
(m)
0 (s, [1, 1]) = 0, r

(m)
1 (s, [1, 1]) = 1.

For Example 1, we implement the primal Algorithm 2 with α = 10−3, ϵ2 = ϵ3 = 0, η = −6α, and
try various initial policies (p0, q0) ∈ {(0.45, 0.3), (0.2, 0.3), (0.3, 0.3), (0.25, 0.25), (0.35, 0.35)}
which satisfy the conditions of Theorem 4. We obtain the results as shown in the first five figures of
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Figure 1: Results of the primal algorithm on Examples 1 (the first 5 figures) and 2 (the last figure).

Figure 1. The first two figures at the top of Figure 1 indicate that (pt, qt) with various initializations
converge to the same value which is close to the optimal solution ( 14 ,

1
4 ). The top right figure of

Figure 1 shows that V0(πt) converges and is close to the optimal value 5
4 . The first two figures at the

bottom of Figure 1 show that the policy πt is feasible (i.e., V1(πt) ≥ ξ1, V2(πt) ≥ ξ2) after t ≥ 2500
iterations. In contrast, we implement the primal-dual Algorithm 1 with α = β = 0.1, ϵ1 = ϵ2 = 0
and initial multiplier λ = [0, 0]. The policy parameter (pt, qt) alternates between (1, 1) and (0, 0),
both of which are infeasible since they satisfy V2(πt) = 0 < ξ2 and V1(πt) = 0 < ξ1 respectively.
These results verify Theorem 4.

For Example 2, we implement the primal Algorithm 2 with α = 0.1, ϵ2 = ϵ3 = η = 0, and try
various initial policies (p0, q0) ∈ {(0, 1), (0.2, 0.8), (0.4, 0.6), (0.7, 0.3), (0.9, 0.1)} which satisfy
the conditions of Theorem 5. The learning curve of the value function V1(πt) is shown in the last
figure of Figure 1. It can be seen that V1(πt) is always far below the safety threshold ξ1 = 1.8. In
contrast, implementing the primal-dual Algorithm 1 with α = β = 0.1, ϵ1 = ϵ2 = 0 and initial
multiplier λ = 0, we obtain (pt, qt) ≡ (1, 1) which is the optimal solution to Example 2. These
results verify Theorem 5.

B PROOF OF THEOREM 1

Proof for the product policy constraints: We will first prove that π is a product policy if and only if
νπ satisfies the product policy constraints in Eq. (4).

Note that the following equality always holds for νπ of any joint policy π.

νπ(s, a)
∑

a′

νπ(s, a
′)−

∑

a′(m)

νπ
(
s, [a′(m), a(\m)]

)
·
∑

a′(\m)

νπ
(
s, [a(m), a′(\m)]

)

(i)
= νπ(s)π(a|s)

∑

a′

νπ(s)π(a
′|s)−

[ ∑

a′(m)

νπ(s)π([a
′(m), a(\m)]|s)

]

[ ∑

a′(\m)

νπ(s)π([a
(m), a′(\m)]|s)

]

(ii)
= ν2π(s)

[
π(a|s)− π(\m)(a(\m)|s)π(m)(a(m)|s)

]
, (14)

where (i) uses νπ(s, a) = νπ(s)π(a|s), and (ii) uses π(m)(a(m)|s) :=∑
a′(m) νπ(s)π([a

′(m), a(\m)]|s) and π(\m)(a(\m)|s) :=∑a′(m) π([a′(m), a(\m)]|s).
If π is a product policy, then π(a|s) = π(\m)(a(\m)|s)π(m)(a(m)|s) where π(\m)(a(\m)|s) =∏M

m′=1,m′ ̸=m π(m′)(a(m
′)|s), which implies that Eq. (14) equals 0, i.e., νπ satisfies the product

policy constraints in Eq. (4).
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Conversely, suppose that νπ satisfies the product policy constraints in Eq. (4), i.e., Eq. (14) equals 0.
Then for any state s, consider the following two cases.

If νπ(s) ̸= 0, we have π(a|s) = π(\m)(a(\m)|s)π(m)(a(m)|s), which means for any agent m, a(\m)

and a(m) are independent given s. Therefore, a(1), a(2), . . . , a(M) are independent under the policy

π(·|s), which means π(a|s) =∏M
m=1 π

(m)(a(m)|s).
If νπ(s) = 0, π(·|s) can be arbitrarily defined, and thus we can define it such that the product policy

condition π(a|s) =∏M
m=1 π

(m)(a(m)|s) holds.

Therefore, π can be a product policy if νπ satisfies the product policy constraints.

Proof of equivalence between the problems (1) and (4): Suppose π∗ is the optimal product policy
for the constrained cooperative MARL problem (1). Then νπ∗ satisfies the occupation constraints
in problem (4) based on Theorem 3.2 of (Altman, 2004), and further satisfies the product policy
constraints as π∗ is a product policy. Therefore νπ∗ is a feasible point of the problem (4).

Then consider any function ν′ : S ×A → R that satisfies all the constraints of the problem (4). Since
ν′ satisfies the occupation constraints, ν′ = νπ′ for some policy π′ based on Theorem 3.2 of (Altman,
2004). As proved above, since νπ′ satisfies the product policy constraints, π′ is a product policy. Also,

the safety constraint Vk(π
′)

(i)
= 1

1−γ

∑
s,a rk(s, a)νπ′(s, a) ≥ ξk (k = 1, . . . ,K) holds where (i)

uses Eq. (2). Therefore, π′ is a feasible policy of the problem (1) and thus we have V0(π
′) ≤ V0(π

∗),
i.e., 1

1−γ

∑
s,a r0(s, a)ν

′(s, a) ≤ 1
1−γ

∑
s,a r0(s, a)νπ∗(s, a). Since ν′ is an arbitrary feasible point

of the problem (4), the feasible point νπ∗ is also the optimal solution to the problem (4).

Conversely, suppose ν∗ : S × A → R is the optimal solution to the problem (4). Then as ν∗

satisfies the occupation constraints and product policy constraints of the problem (4), ν∗ = νπ∗

for some product policy π∗. Hence, the safety constraint Vk(π
∗) = 1

1−γ

∑
s,a rk(s, a)νπ∗(s, a)

(k = 1, . . . ,K) means π∗ is a feasible product policy of the problem (1).

For any feasible product policy π′ of the problem (1), νπ′ satisfies the occupation constraints and prod-
uct policy constraints, as well as the safety constraints that 1

1−γ

∑
s,a rk(s, a)νπ′(s, a) = Vk(π

′) ≥
ξk (k = 1, . . . ,K). Due to the optimality of ν∗ = νπ∗ , we have 1

1−γ

∑
s,a r0(s, a)νπ′(s, a) ≤

1
1−γ

∑
s,a r0(s, a)νπ∗(s, a), i.e. V0(π

′) ≤ V0(π
∗). Hence, the feasible policy π∗ is also the optimal

solution to the problem (1).

C PROOF OF FACT 1

We repeat Example 1 as follows.

Example 1. Consider a constrained cooperative MARL problem with two agents, a single state
S = {s}. Both agents share the same action space A(m) = {0, 1} and the same reward and safety
scores listed below. The discount factor is γ = 1

2 and the safety thresholds are ξ1 = ξ2 = 1
8 .

r
(m)
0 (s, [0, 0]) = 1, r

(m)
1 (s, [0, 0]) = 1, r

(m)
2 (s, [0, 0]) = 0

r
(m)
0 (s, [0, 1]) = 0, r

(m)
1 (s, [0, 1]) = 0, r

(m)
2 (s, [0, 1]) = 0

r
(m)
0 (s, [1, 0]) = 0, r

(m)
1 (s, [1, 0]) = 0, r

(m)
2 (s, [1, 0]) = 0

r
(m)
0 (s, [1, 1]) = 1, r

(m)
1 (s, [1, 1]) = 0, r

(m)
2 (s, [1, 1]) = 1

In the above example, any product policy π(a|s) = π(1)(a(1)|s)π(2)(a(2)|s) can be fully charac-

terized by p = π(1)(0|s) and q = π(2)(0|s). Then the aim of the constrained cooperative MARL
problem in Example 1 can be formulated as





max
p,q∈[0,1]

V0(π) := 2pq + 2(1− p)(1− q)

s.t. V1(π) := 2pq ≥ 1

8

V2(π) := 2(1− p)(1− q) ≥ 1

8
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The above problem has two optimal solutions, p = q = 1
4 and p = q = 3

4 . Both of them have

V0(π) =
5
4 . Therefore, maxproduct policy π minλ∈R

K
+
L(π, λ) = 5

4 .

Now consider the following dual problem.

min
λ∈R

2
+

max
p,q∈[0,1]

L(π, λ) := 2pq(1 + λ1) + 2(1− p)(1− q)(1 + λ2)−
1

8
(λ1 + λ2) (15)

Fixing λ ∈ R
2
+, maxp,q∈[0,1] L(π, λ) is equivalent to

max
p,q∈[0,1]

(
p− 1 + λ2

2 + λ1 + λ2

)(
q − 1 + λ2

2 + λ1 + λ2

)

If 1+λ2

2+λ1+λ2
≤ 1

2 (i.e. λ1 ≥ λ2), then the above problem has solution p∗ = q∗ = 1 which yields

L(p∗, q∗;λ) = 2(1 + λ1) − 1
8 (λ1 + λ2); Otherwise if λ1 < λ2, p∗ = q∗ = 0 which yields

L(p∗, q∗;λ) = 2(1+λ2)− 1
8 (λ1+λ2). Hence, maxp,q∈[0,1] L(π, λ) = 2+2max(λ1, λ2)− 1

8 (λ1+
λ2), which has minimizer λ∗ = [0, 0] and the corresponding value minλ∈R

2
+
maxp,q∈[0,1] L(π, λ) =

2. As a result, ∆ = 2− 5
4 = 3

4 .

D PROOF OF THEOREM 2

Note that since rk,t ∈ [0, 1], the value function Vk(π) has the following bound for all policy π and
k = 0, 1, . . . ,K.

0 ≤ Vk(π) = Eπ

[ ∞∑

t=0

γtrk,t

∣∣∣s0 ∼ ρ
]
≤ 1

1− γ
. (16)

Hence, the norm of V (π) := [V1(π); . . . ;VK(π)] ∈ [0, 1]K has the following bound

∥V (π)∥ ≤
√
K

1− γ
. (17)

Furthermore, Assumption 1 implies that there is a feasible product policy π̃ such that 0 ≤ ξk ≤ Vk(π̃),
so the norm of ξ := [ξ1; . . . ; ξK ] ∈ R

K has the following bound

∥ξ∥ ≤ ∥V (π̃)∥ ≤
√
K

1− γ
. (18)

Then,

0 ≤ ∥λT ∥2

(i)
=

T−1∑

t=0

(
∥λt+1∥2 − ∥λt∥2

)

(ii)

≤
T−1∑

t=0

(∥∥λt − β
(
V̂ (πt)− ξ

)∥∥2 − ∥λt∥2
)

(iii)

≤ 2β

T−1∑

t=0

λ⊤
t

(
ξ − V̂ (πt)

)
+ β2

T−1∑

t=0

(∥∥V̂ (πt)− V (πt)
∥∥+

∥∥V (πt)
∥∥+ ∥ξ∥

)2

(iv)

≤ 2β

T−1∑

t=0

λ⊤
t

(
V (π∗)− V (πt)

)
+ 2β

T−1∑

t=0

λ⊤
t

(
V (πt)− V̂ (πt)

)
+ Tβ2

(2
√
K

1− γ
+ ϵ2
√
K
)2

(v)

≤ 2β

T−1∑

t=0

λ⊤
t

(
V (π∗)− V (πt)

)
+ 2Tβϵ2

K∑

k=1

λk,max +
8KTβ2

(1− γ)2
+ 2KTβ2ϵ22 (19)

where (i) uses the initialization λ0 = 0, (ii) uses the update rule (10), (iii) uses triangular inequality,

and (iv) uses |V̂k(πt) − Vk(πt)| ≤ ϵ2, Eqs. (17) and (18), λt,k ≥ 0 as well as the constraint that
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V (π∗) ≥ ξ satisfied by the optimal policy π∗ of the constrained cooperative MARL problem in Eq. (1),

and (v) uses λt,k ∈ [0, λk,max] (based on the update rule (10)) as well as |V̂k(πt) − Vk(πt)| ≤ ϵ2.
Rearranging the above inequality, we obtain that

T−1∑

t=0

λ⊤
t

(
V (πt)− V (π∗)

)
≤ Tϵ2

K∑

k=1

λk,max +
4KTβ

(1− γ)2
+KTβϵ22. (20)

Note that

0 ≤
T−1∑

t=0

(
max
π

L(π, λt)− L(π∗, λt)
)

(i)

≤
T−1∑

t=0

(
ϵ1 + L(πt, λt)− L(π∗, λt)

)

(ii)
=

T−1∑

t=0

(
ϵ1 + V0(πt)− V0(π

∗) + λ⊤
t

(
V (πt)− V (π∗)

))
(21)

(iii)

≤
T−1∑

t=0

(
ϵ1 + V0(πt)− V0(π

∗)
)
+ Tϵ2

K∑

k=1

λk,max +
4KTβ

(1− γ)2
+KTβϵ22,

where (i) uses Eq. (9), (ii) uses the definition of the Lagrange function in Eq. (5), and (iii) uses Eq.
(20). Rearranging the above inequality yields that

V0(π
∗)− ET̃

[
V0(πt)

]
=

1

T

T−1∑

t=0

[
V0(π

∗)− V0(πt)
]

≤ ϵ2

K∑

k=1

λk,max +
4Kβ

(1− γ)2
+ ϵ1 +Kβϵ22

(i)

≤ 7

1− γ

√√√√ K

2T

K∑

k=1

λ2
k,max,

where (i) uses the hyperparameter choices ϵ1 = 1
1−γ

√
K
2T

∑K
k=1 λ

2
k,max, ϵ2 =

1
1−γ

√ ∑
K
k=1 λ2

k,max

2T (
∑

K
k=1 λk,max)2

≤ 1
1−γ , β = (1 − γ)

√
1

2KT

∑K
k=1 λ

2
k,max. This proves the optimality

gap in Eq. (7).

Next, we will prove the convergence rate (8) of the constraint violation.

For any λ̃ := [λ̃1; . . . ; λ̃K ] ∈ [0, λk,max]
K , it holds that

∥λt+1 − λ̃∥2
(i)

≤
∥∥λt − β

(
V̂ (πt)− ξ

)
− λ̃

∥∥2

(ii)

≤ ∥λt − λ̃∥2 − 2β(λt − λ̃)⊤
(
V (πt)− ξ

)
− 2β(λt − λ̃)⊤

(
V̂ (πt)− V (πt)

)

+ β2
(
∥V̂ (πt)− V (πt)∥+ ∥V (πt)∥+ ∥ξ∥

)2

(iii)

≤ ∥λt − λ̃∥2 − 2β(λt − λ̃)⊤
(
V (πt)− ξ

)
+ 2βϵ2

K∑

k=1

λk,max + β2
(
ϵ2
√
K +

2
√
K

1− γ

)2

≤ ∥λt − λ̃∥2 − 2β(λt − λ̃)⊤
(
V (πt)− ξ

)
+ 2βϵ2

K∑

k=1

λk,max + 2Kβ2ϵ22 +
8Kβ2

(1− γ)2
,

where (i) uses the update rule (10) and λ̃k ∈ [0, λk,max], (ii) uses triangular inequality, (iii) uses

λt,k, λ̃k ∈ [0, λk,max], |V̂k(πt)− Vk(πt)| ≤ ϵ2, Eqs. (17) and (18). Telescoping the above inequality
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over t = 0, 1, . . . , T − 1 and using λ0 = 0, we obtain that

β
T−1∑

t=0

(λt − λ̃)⊤
(
V (πt)− ξ

)
≤ 1

2

∥∥λ̃
∥∥2 + Tβϵ2

K∑

k=1

λk,max +KTβ2ϵ22 +
4TKβ2

(1− γ)2
. (22)

Since V (π∗) ≥ ξ and λt ∈ R
K
+ , Eq. (21) implies that

β

T−1∑

t=0

λ⊤
t

(
ξ − V (πt)

)
≤ β

T−1∑

t=0

(
ϵ1 + V0(πt)− V0(π

∗)
)

(23)

Summing up Eqs. (22) and (23) yields that

β

T−1∑

t=0

λ̃⊤
(
ξ − V (πt)

)

≤ β

T−1∑

t=0

(
ϵ1 + V0(πt)− V0(π

∗)
)
+

1

2

∥∥λ̃
∥∥2 + Tβϵ2

K∑

k=1

λk,max +KTβ2ϵ22 +
4KTβ2

(1− γ)2
. (24)

Note that

V0(π
∗) = max

π
min

λ∈R
dm
+

L(π, λ)

(i)
= max

π
L(π, λ∗)−∆

≥ L(πt, λ
∗)−∆

(ii)
= V0(πt) + (λ∗)⊤

(
V (πt)− ξ

)
−∆

(iii)

≥ V0(πt)− (λ∗)⊤
(
ξ − V (πt)

)
+
−∆ (25)

where (i) uses the definition of the duality gap ∆ in Eq. (6), (ii) uses the definition of the Lagrange

function (5), and (iii) uses λ∗ ∈ R
dm

+ . Substituting the above inequality into Eq. (24) and rearranging
it, we obtain that

β

T−1∑

t=0

(
λ̃⊤
(
ξ − V (πt)

)
− (λ∗)⊤

(
ξ − V (πt)

)
+

)

≤ βT (∆ + ϵ1) +
1

2

∥∥λ̃
∥∥2 + Tβϵ2

K∑

k=1

λk,max +KTβ2ϵ22 +
4KTβ2

(1− γ)2
. (26)

Using Eq. (64) and selecting λ̃k = λk,maxI{Vk(πt) ≤ ξk} where I{·} is an indicator function, we
obtain that

λ̃⊤
(
ξ − V (πt)

)
− (λ∗)⊤

(
ξ − V (πt)

)
+
≥ 1

2

K∑

k=1

λk,max

(
ξk − Vk(πt)

)
+
,

Substituting the above inequality into Eq. (26) yields that

β

2

T−1∑

t=0

K∑

k=1

λk,max

(
ξk − Vk(πt)

)
+

≤ βT (∆ + ϵ1) +
1

2

∥∥λ̃
∥∥2 + Tβϵ2

K∑

k=1

λk,max +KTβ2ϵ22 +
4KTβ2

(1− γ)2

(i)

≤ βT (∆ + ϵ1) + 2

K∑

k=1

λ2
k,max + Tβϵ2

K∑

k=1

λk,max +KTβ2ϵ22 +
4KTβ2

(1− γ)2
,
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where (i) uses ∥λ̃∥2 =
∑K

k=1 λ̃
2
k ≤ 4

∑K
k=1 λ

2
k,max. Finally, by dividing both sides of the above

inequality by Tβ, we prove the convergence rate (8) of the constraint violation as follows.

K∑

k=1

λk,maxET̃

(
ξk − Vk(πT̃ )

)
+

=
1

T

T−1∑

t=0

K∑

k=1

λk,max

(
ξk − Vk(πt)

)
+

≤ 2∆ + 2ϵ1 +
4

Tβ

K∑

k=1

λ2
k,max + 2ϵ2

K∑

k=1

λk,max +Kβϵ22 +
8Kβ

(1− γ)2

≤ 2∆ +
22

1− γ

√√√√ K

2T

K∑

k=1

λ2
k,max,

where (i) uses the hyperparameter choices ϵ1 = 1
1−γ

√
K
2T

∑K
k=1 λ

2
k,max, ϵ2 =

1
1−γ

√ ∑
K
k=1 λ2

k,max

2T (
∑

K
k=1 λk,max)2

≤ 1
1−γ , β = (1− γ)

√
1

2KT

∑K
k=1 λ

2
k,max.

Furthermore, for any ϵ > 0, implementing Algorithm 1 for T = 242
K(1−γ)2ϵ2

∑K
k=1 λ

2
k,max = O(ϵ−2)

iterations, the output policy πT̃ satisfies the following convergence results based on the convergence
rates (7) and (8).

V0(π
∗)− ET̃ [V0(πT̃ )] ≤

7

1− γ

√√√√ K

2T

K∑

k=1

λ2
k,max ≤

7ϵ

22
,

K∑

k=1

λk,maxET̃

(
ξk − Vk(πT̃ )

)
+
≤ 22

1− γ

√√√√ K

2T

K∑

k=1

λ2
k,max + 2∆ ≤ ϵ+ 2∆.

Each iteration of Algorithm 1 uses decentralized natural actor-critic algorithm (Chen et al., 2022)

to obtain πt and model-based policy evaluation (Li et al., 2020) to obtain V̂k(πt), which require

O(ϵ−3
1 ln ϵ−1

1 ) and O(ϵ−2
2 ) samples to achieve precisions ϵ1 = 1

1−γ

√
K
2T

∑K
k=1 λ

2
k,max = O(ϵ) and

ϵ2 = 1
1−γ

√ ∑
K
k=1 λ2

k,max

2T (
∑

K
k=1 λk,max)2

= O(ϵ) respectively. Hence, the sample complexity of Algorithm 1 is

TO(ϵ−3
1 ln ϵ−1

1 + ϵ−2
2 ) = O(ϵ−2)O(ϵ−3 ln ϵ−1 + ϵ−2) = O(ϵ−5 ln ϵ−1).

E PROOF OF THEOREM 3

First, we list the hyperparameter choices of Algorithm 2 as follows.

α =

√
(1− γ)3

MT
Es∼νπ∗ KL[π∗(·|s)||π0(·|s)], (27)

η = 8

√
MEs∼νπ∗ KL[π∗(·|s)||π0(·|s)]

T (1− γ)5
+

2max1≤k≤K ζk
(1− γ)2

, (28)

ϵ2 =

√
MEs∼νπ∗ KL[π∗(·|s)||π0(·|s)]

T (1− γ)5
, (29)

ϵ3 =

√
(1− γ)Es∼νπ∗ KL[π∗(·|s)||π0(·|s)]

MT
. (30)

Specifically, α ≤ 1 if we choose the number of iterations T ≥ (1−γ)3

M Es∼νπ∗ KL[π∗(·|s)||π0(·|s)].
Furthermore, if we select uniform policy π0 such that π0(a|s) = 1

|A| , then KL[π∗(·|s)||π0(·|s)] ≤
ln |A| and thus we only require T ≥ (1−γ)3

M ln |A| to let α ≤ 1.
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Based on Eq. (75), we have

lnZ
(m)
t (s)− αVkt

(πt; s)

= ln
( ∑

a′(m)

π
(m)
t (a′(m)|s) exp

(
αQ̂

(m)
kt

(πt; s, a
′(m))

))
− αVkt

(πt; s)

≥
∑

a′(m)

π
(m)
t (a′(m)|s) ln exp

(
αQ̂

(m)
kt

(πt; s, a
′(m))

)
− αVkt

(πt; s)

= α
∑

a′(m)

π
(m)
t (a′(m)|s)

(
Q̂

(m)
kt

(πt; s, a
′(m))−Q

(m)
kt

(πt; s, a
′(m))

)

≥ −α max
s,a(m)

∣∣Q̂(m)
kt

(πt; s, a
(m))−Q

(m)
kt

(πt; s, a
(m))

∣∣ ≥ −αϵ3,

which means

1

α
lnZ

(m)
t (s)− Vkt

(πt; s) + ϵ3 ≥ 0. (31)

Therefore, we have

(1− γ)
(
Vkt

(πt+1; ρ
′)− Vkt

(πt; ρ
′)
)

(i)
= Es,a∼νt+1;ρ′

Akt
(πt; s, a)

(ii)
= Es∼νt+1;ρ′

M∑

m=1

∑

a(m)

π
(m)
t+1(a

(m)|s)
(
Q̂

(m)
kt

(πt; s, a
(m))− Vkt

(πt; s)
)

− Es∼νt+1;ρ′

M∑

m=1

∑

a(m)

π
(m)
t+1(a

(m)|s)
(
Q̂

(m)
kt

(πt; s, a
(m))−Q

(m)
kt

(πt; s, a
(m))

)

+ Es,a∼νt+1;ρ′

(
Akt

(πt; s, a)−
M∑

m=1

A
(m)
kt

(πt; s, a
(m))

)

(iii)

≥ Es∼νt+1;ρ′

M∑

m=1

( 1
α
lnZ

(m)
t (s)− Vkt

(πt; s) +
1

α

∑

a(m)

π
(m)
t+1(a

(m)|s) ln π
(m)
t+1(a

(m)|s)
π
(m)
t (a(m)|s)

)

−
M∑

m=1

max
s,a(m)

∣∣Q̂(m)
kt

(πt; s, a
(m))−Q

(m)
kt

(πt; s, a
(m))

∣∣− ζk

(iv)

≥ Es∼νt+1;ρ′

M∑

m=1

( 1
α
lnZ

(m)
t (s)− Vkt

(πt; s) + ϵ3

)
− 2Mϵ3 − ζkt

(v)

≥ (1− γ)Es∼ρ′

M∑

m=1

( 1
α
lnZ

(m)
t (s)− Vkt

(πt; s) + ϵ3

)
− 2Mϵ3 − ζkt

where (i) denotes the occupation measure νt+1;ρ′ := (1 − γ)
∑∞

t=0 γ
t
Pπt+1(st = s|s0 ∼ ρ′)

and uses the performance difference lemma (Lemma 6.1 of Kakade and Langford (2002)), (ii)

uses A
(m)
kt

(πt; s, a
(m)) = Q

(m)
kt

(πt; s, a
(m)) − Vkt

(πt; s), (iii) uses the policy update rule (76)

and ζk := sups,a,π
∣∣Ak(π; s, a)−

∑M
m=1 A

(m)
k (π; s, a(m))

∣∣, (iv) uses KL
(
π
(m)
t+1(·|s)

∥∥π(m)
t (·|s)

)
=

∑
a(m) π

(m)
t+1(a

(m)|s) ln π
(m)
t+1 (a

(m)|s)

π
(m)
t (a(m)|s)

≥ 0 and maxs,a(m)

∣∣Q̂(m)
kt

(πt; s, a
(m))−Q

(m)
kt

(πt; s, a
(m))

∣∣ ≤
ϵ3, and (v) uses Eq. (31) and νt+1;ρ′(s) ≥ (1− γ)ρ′(s). The above inequality can be rearranged as
follows.

Es∼ρ′

M∑

m=1

(
lnZ

(m)
t (s) + αϵ3 − αVkt

(πt; s)
)

≤ 2αMϵ3
1− γ

+
αζkt

1− γ
+ α

(
Vkt

(πt+1; ρ
′)− Vkt

(πt; ρ
′)
)
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(i)

≤ 2αMϵ3
1− γ

+
αζkt

1− γ
+ α

( Mα

(1− γ)3
+

2Mαϵ3
(1− γ)2

)

(ii)

≤ αζkt

1− γ
+

4Mαϵ3
(1− γ)2

+
Mα2

(1− γ)3
(32)

where (i) uses Eq. (69) and (ii) uses α ≤ 1. Then, we have

Es∼νπ∗

[
KL
(
π∗(·|s)||πt+1(·|s)

)
− KL

(
π∗(·|s)||πt(·|s)

)]

= Es∼νπ∗Ea∼π∗(·|s)

[
ln

π∗(a|s)
πt+1(a|s)

− ln
π∗(a|s)
πt(a|s)

]

= Es,a∼νπ∗

M∑

m=1

[
lnπ

(m)
t (a(m)|s)− lnπ

(m)
t+1(a

(m)|s)
]

(i)
= Es,a∼νπ∗

M∑

m=1

[
lnZ

(m)
t (s) + αϵ3 − αVkt

(πt; s) + αVkt
(πt; s)− αϵ3 − αQ̂

(m)
kt

(πt; s, a
(m))

]

(ii)

≤ αζkt

1− γ
+

4Mαϵ3
(1− γ)2

+
Mα2

(1− γ)3
− αEs,a∼νπ∗

M∑

m=1

(
Q

(m)
kt

(πt; s, a
(m))− Vkt

(πt; s)
)

(iii)
=

αζkt

1− γ
+

4Mαϵ3
(1− γ)2

+
Mα2

(1− γ)3
− αEs,a∼νπ∗

M∑

m=1

A
(m)
kt

(πt; s, a
(m))

(iv)

≤ αζkt

1− γ
+

4Mαϵ3
(1− γ)2

+
Mα2

(1− γ)3
− αEs,a∼νπ∗Akt

(πt; s, a) + αζkt

(v)

≤ αζkt

1− γ
+

4Mαϵ3
(1− γ)2

+
Mα2

(1− γ)3
− α(1− γ)

(
Vkt

(π∗)− Vkt
(πt)

)
, (33)

where (i) uses the update rule (76), (ii) uses maxs,a(m)

∣∣Q̂(m)
kt

(πt; s, a
(m)) − Q

(m)
kt

(πt; s, a
(m))

∣∣ ≤
ϵ3 and Eq. (32) for ρ′ = νπ∗ , (iii) uses the definition of the advantage function that

A
(m)
kt

(πt; s, a
(m)) = Q

(m)
kt

(πt; s, a
(m))−V (m)

kt
(πt; s), (iv) denotes that ζk := sups,a,π

∣∣Ak(π; s, a)−∑M
m=1 A

(m)
k (π; s, a(m))

∣∣, and (v) uses α ≤ 1 as well as the performance difference lemma (Lemma

6.1 of Kakade and Langford (2002)) which implies that Es,a∼νπ∗Akt
(πt; s, a) = (1− γ)

(
Vkt

(π∗)−
Vkt

(πt)
)
. Rearranging and averaging the above inequality (33) over t = 0, 1, . . . , T − 1, we obtain

that

1

T

T−1∑

t=0

(
Vkt

(π∗)− Vkt
(πt)−

ζkt

(1− γ)2
− 4Mϵ3

(1− γ)3
− Mα

(1− γ)4

)

≤ Es∼νπ∗ KL
(
π∗(·|s)||π0(·|s)

)

Tα(1− γ)
. (34)

Denote Nk := {0 ≤ t ≤ T − 1 : kt = k}. Then based on the design of Algorithm 2, for any t ∈ N0

(including t = T̃ ) and 1 ≤ k ≤ K, we have V̂k(πt) ≥ ξk − η, so the convergence rate (13) of the
constraint violation can be proved as follows.

Vk(πT̃ ) ≥ V̂k(πT̃ )− |V̂k(πT̃ )− Vk(πT̃ )|
(i)

≥ ξk − η − ϵ2

(ii)
= ξk − 9

√
MEs∼νπ∗ KL[π∗(·|s)||π0(·|s)]

T (1− γ)5
− 2max1≤k≤K ζk

(1− γ)2

where (i) uses V̂k(πt) ≥ ξk−η and |V̂k(πt)−Vk(πt)| ≤ ϵ2, and (ii) uses the hyperparameter choices

(28) and (29). Conversely, for any t ∈ Nk (1 ≤ k ≤ K), we have V̂k(πt) < ξk − η ≤ Vk(π
∗)− η,

so in a similar way we can prove that

Vk(πt) ≤ V̂k(πt) + |V̂k(πt)− Vk(πt)| ≤ Vk(π
∗)− η + ϵ2. (35)
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Substituting Eq. (35) into Eq. (34), we obtain that

Es∼νπ∗ KL
(
π∗(·|s)||π0(·|s)

)

Tα(1− γ)

≥ 1

T

∑

t∈N0

(
V0(π

∗)− V0(πt)−
ζ0

(1− γ)2
− 4Mϵ3

(1− γ)3
− Mα

(1− γ)4

)

+
1

T

K∑

k=1

∑

t∈Nk

(
Vk(π

∗)− Vk(πt)−
ζk

(1− γ)2
− 4Mϵ3

(1− γ)3
− Mα

(1− γ)4

)

(i)

≥ 1

T

∑

t∈N0

(
V0(π

∗)− V0(πt)−
ζ0

(1− γ)2
− 4Mϵ3

(1− γ)3
− Mα

(1− γ)4

)

+
1

T

K∑

k=1

∑

t∈Nk

(
η − ϵ2 −

max1≤k≤K ζk
(1− γ)2

− 4Mϵ3
(1− γ)3

− Mα

(1− γ)4

)

(ii)
=

1

T

∑

t∈N0

(
V0(π

∗)− V0(πt)−
ζ0

(1− γ)2
− 4Mϵ3

(1− γ)3
− Mα

(1− γ)4

)

+
T − |N0|

T

(
η − ϵ2 −

max1≤k≤K ζk
(1− γ)2

− 4Mϵ3
(1− γ)3

− Mα

(1− γ)4

)
,

where (i) uses Eq. (35) and (ii) uses
∑K

k=1 |Nk| = T − |N0|. Substituting the hyperparameters
choices (27)-(30) into the above inequality, we obtain that

ϵ2 ≥
1

T

∑

t∈N0

(
V0(π

∗)− V0(πt)− 5ϵ2 −
2ζ0

(1− γ)2

)
+

2ϵ2(T − |N0|)
T

(36)

If N0 = ∅, then Eq. (36) above implies the contradiction that |N0| ≥ T
2 > 0. Hence, N0 ̸= ∅.

Then we prove the convergence rate (12) of the policy optimality in the following two cases.

(Case 1) If
∑

t∈N0

(
V0(π

∗)−V0(πt)− 5ϵ2− ζ0
(1−γ)3

)
> 0, then Eq. (36) implies that |N0| ≥ T

2 > 0

and that
∑

t∈N0

(
V0(π

∗)− V0(πt)− 5ϵ2 − ζ0
(1−γ)3

)
≤ Tϵ2. Then the convergence rate (12) can be

proved as follows

E
(
V0(π

∗)− V0(πT̃ )
)

=
1

|N0|
∑

t∈N0

(
V0(π

∗)− V0(πt)
)

=
1

|N0|
∑

t∈N0

(
V0(π

∗)− V0(πt)− 5ϵ2 −
2ζ0

(1− γ)2

)
+ 5ϵ2 +

2ζ0
(1− γ)2

≤ Tϵ2
T/2

+ 5ϵ2 +
2ζ0

(1− γ)2

≤ 7ϵ2 +
2ζ0

(1− γ)2
= 7

√
MEs∼νπ∗ KL[π∗(·|s)||π0(·|s)]

T (1− γ)5
+

2ζ0
(1− γ)2

.

(Case 2) If
∑

t∈N0

(
V0(π

∗)− V0(πt)− 5ϵ2 − ζ0
(1−γ)3

)
≤ 0, then the convergence rate (12) can be

proved as follows.

E
(
V0(π

∗)− V0(πT̃ )
)

=
1

|N0|
∑

t∈N0

(
V0(π

∗)− V0(πt)− 5ϵ2 −
2ζ0

(1− γ)2

)
+ 5ϵ2 +

2ζ0
(1− γ)2

≤ 5ϵ2 +
2ζ0

(1− γ)3
= 5

√
MEs∼νπ∗ KL[π∗(·|s)||π0(·|s)]

T (1− γ)5
+

2ζ0
(1− γ)2

.

23



Published as a conference paper at ICLR 2024

Furthermore, for any ϵ > 0, the output policy πT̃ of Algorithm 2 after T = O(ϵ−2) iterations satisfies
the following convergence results based on the convergence rates (12) and (13).

V0(π
∗)− ET̃ [V0(πT̃ )]≤O

(√ M

T (1− γ)5
+

ζ0
(1− γ)2

)
≤O

(
ϵ+

ζ0
(1− γ)2

)
,

ξk − ET̃ [Vk(πT̃ )]≤O
(√ M

T (1− γ)5
+
max1≤k≤K ζk

(1− γ)2

)
≤O

(
ϵ+

max1≤k≤K ζk
(1− γ)2

)
; 1 ≤ k ≤ K.

Each iteration of Algorithm 2 uses model-based policy evaluation (Chen et al., 2022) to obtain V̂k(πt)

and Q̂
(m)
kt

(πt; s, a
(m)), which require O(ϵ−2

2 ) and O(ϵ−2
3 ) samples to achieve precisions ϵ2 = O(ϵ)

(by substituting T = O(ϵ−2) into Eq. (29)) and ϵ3 = O(ϵ) (by substituting T = O(ϵ−2) into Eq.
(30)) respectively. Therefore, the sample complexity of Algorithm 2 is

TO(ϵ−2
2 + ϵ−2

3 ) = O(ϵ−2)O(ϵ−2 + ϵ−2) = O(ϵ−4).

F PROOF OF THEOREM 4

We repeat Example 1 as follows.

Example 1. Consider a constrained cooperative MARL problem with two agents, a single state
S = {s}. Both agents share the same action space A(m) = {0, 1} and the same reward and safety
scores listed below. The discount factor is γ = 1

2 and the safety thresholds are ξ1 = ξ2 = 1
8 .

r
(m)
0 (s, [0, 0]) = 1, r

(m)
1 (s, [0, 0]) = 1, r

(m)
2 (s, [0, 0]) = 0

r
(m)
0 (s, [0, 1]) = 0, r

(m)
1 (s, [0, 1]) = 0, r

(m)
2 (s, [0, 1]) = 0

r
(m)
0 (s, [1, 0]) = 0, r

(m)
1 (s, [1, 0]) = 0, r

(m)
2 (s, [1, 0]) = 0

r
(m)
0 (s, [1, 1]) = 1, r

(m)
1 (s, [1, 1]) = 0, r

(m)
2 (s, [1, 1]) = 1

In the above example, any product policy π(a|s) = π(1)(a(1)|s)π(2)(a(2)|s) can be parameterized

by p = π(1)(0|s) ∈ [0, 1] and q = π(2)(0|s) ∈ [0, 1]. Then the aim of the constrained cooperative
MARL problem in Example 1 can be formulated as





max
p,q∈[0,1]

V0(π) := 2pq + 2(1− p)(1− q)

s.t. V1(π) := 2pq ≥ 1

8

V2(π) := 2(1− p)(1− q) ≥ 1

8

(37)

Proof for the primal-dual algorithm: Since ϵ1 = 0, (pt, qt) in the primal-dual algorithm (Algorithm
1) is obtained by solving argmaxπ L(π, λt). In Appendix B, we have obtained that (pt, qt) = (1, 1)
where V1(πt) = 1 > ξ1 if λ1 ≥ λ2 and (pt, qt) = (0, 0) where V2(πt) = 1 > ξ2 if λ1 < λ2. Hence,
the policy πt is infeasible for all t.

Update rules of the primal algorithm for Example 1:

Next, we analyze the primal algorithm (Algorithm 2) on Example 1. Note that there is only one state
s in Example 1, so Vk(π) ≡ Vk(π)(s), and thus the local Q function can be computed by Bellman
equation as follows.

Q
(m)
kt

(πt; s, a
(m)) =

∑

a(\m)

π(\m)(a(\m)|s)rk(s, a) + γVk(π). (38)

Hence, the NPG update rule (11) becomes

π
(m)
t+1(0|s) =

π
(m)
t (0|s) exp

(
αQ̂

(m)
kt

(πt; s, 0)
)

π
(m)
t (0|s) exp

(
αQ̂

(m)
kt

(πt; s, 0)
)
+ π

(m)
t (1|s) exp

(
αQ̂

(m)
kt

(πt; s, 1)
)
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(i)
=

π
(m)
t (0|s)

π
(m)
t (0|s) + π

(m)
t (1|s) exp

(
αQ

(m)
kt

(πt; s, 1)− αQ
(m)
kt

(πt; s, 0)
) (39)

where (i) uses |Q̂(m)
k (π; s, a(m))−Q

(m)
k (π; s, a(m))| ≤ ϵ3 = 0. Note that Eq. (38) implies that

Q
(1)
kt

(πt; s, 1)−Q
(1)
kt

(πt; s, 0)

= qt
(
rkt

(s, [1, 0])− rkt
(s, [0, 0])

)
+ (1− qt)

(
rkt

(s, [1, 1])− rkt
(s, [0, 1])

)
(40)

Q
(2)
kt

(πt; s, 1)−Q
(2)
kt

(πt; s, 0)

= pt
(
rkt

(s, [0, 1])− rkt
(s, [0, 0])

)
+ (1− pt)

(
rkt

(s, [1, 1])− rkt
(s, [1, 0])

)
(41)

Substituting Eqs. (40) and (41) as well as the expressions of r
(m)
k (s, a) defined by Example 1 into the

update rule (39), we further obtain the following update rules of pt := π
(1)
t (0|s) and qt := π

(2)
t (0|s).

pt+1 =





pt

pt + (1− pt) exp
(
α(1− 2qt)

) ; if kt = 0

pt

pt + (1− pt) exp
(
− αqt

) ; if kt = 1

pt

pt + (1− pt) exp
(
α(1− qt)

) ; if kt = 2

(42)

qt+1 =





qt

qt + (1− qt) exp
(
α(1− 2pt)

) ; if kt = 0

qt

qt + (1− qt) exp
(
− αpt

) ; if kt = 1

qt

qt + (1− qt) exp
(
α(1− pt)

) ; if kt = 2

. (43)

Next, we prove the convergence of the above primal update rules (42) and (43) to the optimal solution
p, q = 1

4 . Starting from an initial policy satisfying 2
3q0 ≤ p0 ≤ 3

2q0 and 0.06 ≤ p0q0 ≤ 0.135, we
will prove the following three useful statements for all t ≥ 0:
(At): 0.06 ≤ ptqt ≤ 0.135 and 2

3 ≤
pt

qt
≤ 1.5, which implies that pt, qt ∈ [0.2, 0.45].

(Bt): If ptqt ≥ 1
16 −

η
2 = 1

16 + 3α, pt+1qt+1 ≤ ptqt
1+0.11α ; Otherwise, pt+1qt+1 ≥ ptqt

1−0.19α .

(Ct): If
∣∣pt

qt
− 1
∣∣ > 5α, then

∣∣pt+1

qt+1
− 1
∣∣ ≤ (1− 0.079α)

∣∣pt

qt
− 1
∣∣.

Since (A0) holds, we will prove the above three statements by proving the induction arguments that
(At), (Bt), (Ct)⇒ (At+1) and that (At)⇒ (Bt), (Ct).

Upper bound the change of ptqt and pt

qt
under (At): Next, we will prove that under the statement

(At), the change of the potential functions ptqt and pt

qt
will always be upper bounded by O(α).

Substituting M = 2 and ϵ3 = 0 into Eq. (68), we have

M∑

m=1

∑

a(m)

|π(m)
t+1(a

(m)|s)− π
(m)
t (a(m)|s)|

= 2|pt+1 − pt|+ 2|qt+1 − qt| ≤Mα
( 1

1− γ
+ 2ϵ3

)
= 4α. (44)

Therefore, we have

∣∣∣pt+1qt+1

ptqt
− 1
∣∣∣ ≤

∣∣∣pt+1(qt+1 − qt) + qt(pt+1 − pt)

ptqt

∣∣∣
(i)

≤ 17|pt+1 − pt|+ 17|qt+1 − qt|
(ii)

≤ 34α, (45)

and
∣∣∣pt+1

qt+1
− pt

qt

∣∣∣
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=
∣∣∣qt(pt+1 − pt)− pt(qt+1 − qt)

qt+1qt

∣∣∣

(iii)

≤ 1

0.43
(|pt+1 − pt|+ |qt+1 − qt|)

(iv)

≤ 4.66α, (46)

where (i) uses pt+1, qt ≤ 1 and ptqt ≥ 0.06 (based on (At)), (ii) and (iv) use Eq. (44), and (iii) uses
pt, qt ≤ 0.45 and qt+1qt ≥ q2t − qt|qt+1 − qt| ≥ qt(qt − 2α) ≥ (0.45)(0.43) (based on Eq. (44)).

Proof of (At), (Bt), (Ct) ⇒ (At+1): Based on the statement (At), we will prove that 0.06 ≤
pt+1qt+1 ≤ 0.135 in the following two cases of ptqt.

(Case I) If 0.06 ≤ ptqt < 1
16 + 3α, then on one hand, based on the statement (Bt), pt+1qt+1 ≥

ptqt ≥ 0.06. On the other hand, based on Eq. (45), we have pt+1qt+1 ≤ (1 + 34α)ptqt ≤
(1 + 34α)

(
1
16 + 3α

)
≤ 0.135.

(Case II) If 1
16 + 3α ≤ ptqt ≤ 0.135, then on one hand, based on the statement (Bt), pt+1qt+1 ≤

ptqt ≤ 0.135. On the other hand, based on Eq. (45), we have pt+1qt+1 ≥ (1 − 34α)ptqt ≥
(1− 34× 10−3) 1

16 > 0.06.

Then, we prove that 2
3 ≤

pt+1

qt+1
≤ 1.5 in the following two cases of pt

qt
.

(Case I) If
∣∣pt

qt
− 1
∣∣ > 5α, then based on the statement (Ct), we have

∣∣pt+1

qt+1
− 1
∣∣ ≤

∣∣pt

qt
− 1
∣∣ ≤

1.5 − 1 = 0.5 which implies that
pt+1

qt+1
≤ 1.5. Then suppose

pt+1

qt+1
< 2

3 ≤
pt

qt
, which along with

Eq. (46) implies that pt

qt
≤ pt+1

qt+1
+ 4.66α ≤ 2

3 + 4.66× 10−3 < 1. Hence, based on the statement

(Ct), 1 − pt+1

qt+1
≤ 1 − pt

qt
, i.e.,

pt+1

qt+1
≥ pt

qt
, which contradicts with

pt+1

qt+1
< 2

3 ≤
pt

qt
. Therefore,

2
3 ≤

pt+1

qt+1
≤ 1.5 holds in Case I.

(Case II) If
∣∣pt

qt
− 1
∣∣ ≤ 5α, then based on Eq. (46), we have

∣∣∣pt+1

qt+1
− 1
∣∣∣ ≤

∣∣∣pt
qt
− 1
∣∣∣+
∣∣∣pt+1

qt+1
− pt

qt

∣∣∣ ≤ 9.66α ≤ 9.66× 10−3, (47)

which implies that 2
3 ≤

pt+1

qt+1
≤ 1.5.

Proof of (At)⇒ (Bt), (Ct): Since pt, qt ∈ [0.2, 0.45] and η = −6α ≥ −0.006, the corresponding
value function V2(πt) = 2(1− pt)(1− qt) ≥ 2(0.55)2 > 1

8 − η. Hence, we only need to consider

the following two cases, V1(πt) ≥ 1
8 − η (i.e., kt = 0) and V1(πt) <

1
8 − η (i.e., kt = 1).

(Case I) If V1(πt) = 2ptqt ≥ 1
8 − η, then the case kt = 0 of the update rules (42) and (43) is

implemented. We will first bound the involved terms exp
(
α(1 − 2qt)

)
and exp

(
α(1 − 2pt)

)
as

follows.

exp
(
α(1− 2qt)

) (i)

≤ exp(0.6α)
(ii)

≤ 1 + 0.6α exp(0.6α)
(iii)

≤ 1 + 0.7α, (48)

exp
(
α(1− 2qt)

) (iv)

≥ exp(0.1α)
(v)

≥ 1 + 0.1α, (49)

where (i) and (iv) use qt ∈ [0.2, 0.45], (ii) and (v) use ex = 1 +
∫ x

0
etdt ≤ 1 + xex and ex ≥ 1 + x

respectively for any x ≥ 0, and (iii) uses α ≤ 10−3. In a similar way, we can obtain that

1 + 0.1α ≤ exp
(
α(1− 2pt)

)
≤ 1 + 0.7α. (50)

As the case kt = 0 of the update rules (42) and (43) is implemented, we have

ptqt
pt+1qt+1

=
[
pt + (1− pt) exp

(
α(1− 2qt)

)][
qt + (1− qt) exp

(
α(1− 2pt)

)]

(i)

≥
[
pt + (1− pt)(1 + 0.1α)

][
qt + (1− qt)(1 + 0.1α)

]

=
[
1 + 0.1α(1− pt)

][
1 + 0.1α(1− qt)

]

26



Published as a conference paper at ICLR 2024

(ii)

≥ (1 + 0.055α)2

≥ 1 + 0.11α, (51)

where (i) uses Eqs. (49) and (50), and (ii) uses pt, qt ≤ 0.45.

When pt ≥ qt, we have

pt+1

qt+1
− 1

(i)
=

pt
qt

qt + (1− qt) exp
(
α(1− 2pt)

)

pt + (1− pt) exp
(
α(1− 2qt)

) − 1

=
pt
qt

(
1− pt − qt + (1− pt) exp

(
α(1− 2qt)

)
− (1− qt) exp

(
α(1− 2pt)

)

pt + (1− pt) exp
(
α(1− 2qt)

)
)
− 1

=
pt
qt
− 1− pt

qt

(1−qt)
[
exp

(
α(1− 2qt)

)
−exp

(
α(1− 2pt)

)]
−(pt−qt)

[
exp

(
α(1− 2qt)

)
−1
]

pt + (1− pt) exp
(
α(1− 2qt)

)

(ii)

≤ pt
qt
− 1− pt

qt

(0.55)2α(pt − qt)− 0.7α(pt − qt)

1 + 0.7α
(iii)

≤ pt
qt
− 1− 0.079α

(pt
qt
− 1
)

≤ (1− 0.079α)
(pt
qt
− 1
)
, (52)

where (i) uses the case kt = 0 of the update rules (42) and (43), (ii) uses qt ≤ 0.45, pt − qt ≥ 0,
Eq. (48) and exp

(
α(1 − 2qt)

)
− exp

(
α(1 − 2pt)

)
≥ 2α(pt − qt) ≥ 0, (iii) uses α ≤ 10−3 and

pt ≥ 0.2. Similarly, when pt < qt, we have

1− pt+1

qt+1

= 1− pt
qt

(
1+

(1−qt)
[
exp
(
α(1−2pt)

)
−exp

(
α(1−2qt)

)]
−(qt−pt)

[
exp

(
α(1−2qt)

)
−1
]

pt + (1− pt) exp
(
α(1− 2qt)

)
)

≤ 1− pt
qt
− pt

qt

(0.55)2α(qt − pt)− 0.7α(qt − pt)

1 + 0.7α

≤ 1− pt
qt
− 0.079αpt

(
1− pt

qt

)

(i)

≤ (1− 0.079α)
(
1− pt

qt

)
(53)

where (i) uses qt ≤ 0.45.

(Case II) If V1(πt) = 2ptqt < 1
8 − η, then the case kt = 1 of the update rules (42) and (43) is

implemented. Hence, we obtain that

ptqt
pt+1qt+1

=
[
pt + (1− pt) exp(−αqt)

][
qt + (1− qt) exp(−αpt)

]

(i)

≤
[
pt + (1− pt)(1− 0.19α)

][
qt + (1− qt)(1− 0.19α)

]

= [1− 0.19α(1− pt)][1− 0.19α(1− qt)]

(ii)

≤ (1− 0.1α)2 ≤ 1− 0.2α+ 0.01α2
(iii)

≤ 1− 0.19α, (54)

where (i) uses the following Eq. (55), (ii) uses pt, qt ≤ 0.45, and (iii) uses α ≤ 10−3.

exp(−αqt) ≤ 1− αqt +
1

2
(αqt)

2

≤ 1− αqt +
(10−3)(0.45)

2
αqt
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≤ 1− 0.99αqt ≤ 1− 0.99α(0.2) ≤ 1− 0.19α. (55)

When pt ≥ qt, we have

pt+1

qt+1
− 1

(i)
=

pt
qt

qt + (1− qt) exp(−αpt)
pt + (1− pt) exp(−αqt)

− 1

=
pt
qt

(
1− pt − qt + (1− pt) exp(−αqt)− (1− qt) exp(−αpt)

)

pt + (1− pt) exp(−αqt)
)
− 1

=
pt
qt
− 1− pt

qt

(1− qt)
[
exp(−αqt)− exp(−αpt)

]
+ (pt − qt)

[
1− exp(−αqt)

]

pt + (1− pt) exp(−αqt)
(ii)

≤ pt
qt
− 1− pt

qt

[
(0.55)(0.99α)(pt − qt) + 0.19α(pt − qt)

]

(iii)

≤ pt
qt
− 1− 0.14α

(pt
qt
− 1
)

≤ (1− 0.14α)
(pt
qt
− 1
)
, (56)

where (i) uses the case kt = 1 of the update rules (42) and (43), (ii) uses qt ≤ 0.45, pt − qt ≥ 0, Eq.
(55) and the following Eq. (57), (iii) uses α ≤ 10−3 and pt ∈ [0.2, 0.45].

exp(−αqt)− exp(−αpt)≥exp(−αpt)α(pt − qt)≥α(1− αpt)(pt − qt)≥0.99α(pt − qt). (57)

Similarly, when pt < qt, we have

1− pt+1

qt+1

= 1− pt
qt

(
1 +

(1− qt)
[
exp(−αpt)− exp(−αqt)

]
+ (qt − pt)

[
1− exp(−αqt)

]

pt + (1− pt) exp(−αqt)
)

≤ (1− 0.14α)
(
1− pt

qt

)
. (58)

Now we will integrate the above two cases. Statement (Bt) follows by combining Eqs. (51) and (54)
in Cases I and II respectively. Combining Eqs. (52) & (53) in Case I and Eqs. (56) & (58) in Case II,
we obtain that Eq. (52) always holds whenever pt ≥ qt and Eq. (53) always holds whenever pt < qt.
Note that when

∣∣pt

qt
− 1
∣∣ > 5α, Eq. (46) implies that pt

qt
− 1 and

pt+1

qt+1
− 1 have the same sign. In this

case, we can further combine Eqs. (52) and (53) and obtain the following inequality, which proves
the statement (Ct).

∣∣∣pt+1

qt+1
− 1
∣∣∣ ≤ (1− 0.079α)

∣∣∣pt
qt
− 1
∣∣∣.

Proof of the convergence rate for ptqt → 1
16 :

Next, we will prove that T1 :=
{
t : 0 ≤ ptqt − 1

16 ≤ 6α
}
≤ 8

α in the following three cases.

(Case I) If 0 ≤ p0q0 − 1
16 ≤ 6α, then T1 = 0.

(Case II) If 1
16 + 6α < p0q0 ≤ 0.135, then we have 1

16 + 6α < ptqt ≤ 0.135 for all 0 ≤ t ≤ T1 − 1.

Otherwise, there must exists 0 ≤ t ≤ T1 − 2 such that 1
16 + 6α < ptqt ≤ 0.135 and pt+1qt+1 < 1

16 ,

so
pt+1qt+1

ptqt
< 1/16

1/16+6α < 1 − 34α (since α ≤ 10−3) which contradicts with Eq. (45). Therefore,
1
16 −

η
2 ≤ 1

16 + 6α < ptqt ≤ 0.135 for all 0 ≤ t ≤ T1 − 1, so based on the statement (Bt), we have

1

16
< pT1−1qT1−1 ≤

p0q0
(1 + 0.11α)T1−1

≤ 0.135

(1 + 0.11α)T1−1
,
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which implies that

T1 ≤ 1 +
ln 2.16

ln(1 + 0.11α)
≤ 1 +

7.1

α
≤ 8

α
,

where we use α ≤ 10−3.

(Case III) If 0.06 ≤ p0q0 < 1
16 , then similarly we can prove that 0.06 ≤ ptqt < 1

16 for all
0 ≤ t ≤ T1 − 1. Hence, based on the statement (Bt), we have

1

16
> pT1−1qT1−1 ≥

p0q0
(1− 0.19α)T1−1

≥ 0.06

(1− 0.19α)T1−1
, (59)

which implies that

T1 ≤ 1 +
ln 0.96

ln(1− 0.19α)
≤ 8

α
,

where we use α ≤ 10−3.

Next, we will prove that 0 ≤ ptqt − 1
16 ≤ 6α for all t ≥ T1 via induction. It holds at t = T1 based

on the definition of T1. Then suppose 0 ≤ ptqt − 1
16 ≤ 6α holds for a certain t ≥ T1 and we will

prove that 0 ≤ pt+1qt+1 − 1
16 ≤ 6α in the following two cases.

(Case I) If 3α ≤ ptqt − 1
16 ≤ 6α, then on one hand, based on the statement (Bt), we have

pt+1qt+1 ≤ ptqt ≤ 1
16 + 6α. On the other hand, based on Eq. (45), pt+1qt+1 ≥ (1− 34α)ptqt ≥

1
16 (1− 0.034) > 0.06.

(Case II) If 0 ≤ ptqt− 1
16 < 3α, then on one hand, based on the statement (Bt), we have pt+1qt+1 ≥

ptqt ≥ 1
16 . On the other hand, based on Eq. (45), pt+1qt+1 ≤ (1+34α)ptqt ≤ (1+34α)

(
1
16+3α

)
≤

1
16 + 6α.

As a result, 0 ≤ ptqt − 1
16 ≤ 6α for all t ≥ 8

α ≥ T1.

Proof of the convergence rate for pt

qt
→ 1:

Next, we will prove that T2 :=
{
t :
∣∣pt

qt
− 1
∣∣ ≤ 10α

}
≤ 13

α ln
(

1
20α

)
. Then based on the statement

(Ct), we have

10α ≤
∣∣∣pT2−1

qT2−1
− 1
∣∣∣ ≤ (1− 0.079α)T2−1

∣∣∣p0
q0
− 1
∣∣∣
(i)

≤ 1

2
(1− 0.079α)T2−1,

where (i) uses 2
3 ≤

p0

q0
≤ 1.5. The above inequality along with α ≤ 10−3 implies that

T2 ≤ 1 +
ln(20α)

ln(1− 0.079α)
≤ 13

α
ln
( 1

20α

)
.

Next, we will prove that
∣∣pt

qt
− 1
∣∣ ≤ 10α for all t ≥ T2 by induction. This holds for t = T2

and suppose that it holds for a certain t ≥ T2. Then if
∣∣pt

qt
− 1
∣∣ ≤ 5α, Eq. (46) implies that∣∣pt+1

qt+1
− 1
∣∣ ≤

∣∣pt

qt
− 1
∣∣+ 4.66α ≤ 10α; Otherwise, if 5α <

∣∣pt

qt
− 1
∣∣ ≤ 10α, then the statement (Ct)

implies that
∣∣pt+1

qt+1
− 1
∣∣ ≤

∣∣pt

qt
− 1
∣∣ ≤ 10α. Hence,

∣∣pt+1

qt+1
− 1
∣∣ ≤

∣∣pt

qt
− 1
∣∣ ≤ 10α always holds and

thus we have proved that
∣∣pt

qt
− 1
∣∣ ≤ 10α for all t ≥ 13

α ln
(

1
20α

)
≥ T2.

Obtain the final convergence rates: Combining the convergence rates for ptqt → 1
16 and pt

qt
→ 1,

we obtain that 0 ≤ ptqt − 1
16 ≤ 6α and

∣∣pt

qt
− 1
∣∣ ≤ 10α for all t ≥ 13

α ln
(

1
20α

)
. Therefore, we

conclude the proof by providing the ranges of pt, qt and the lower bounds of V1(πt) and V2(πt) for

t ≥ 13
α ln

(
1

20α

)
as follows.

pt =

√
ptqt ·

pt
qt
∈
[√ 1

16
(1− 10α),

√( 1

16
+ 6α

)
(1 + 10α)

]
⊆
[1
4
− 2α,

1

4
+ 14α

]
,
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qt =

√
ptqt

(pt
qt

)−1

∈
[√ 1/16

1 + 10α
,

√
1/16 + 6α

1− 10α

]
⊆
[1
4
− 2α,

1

4
+ 14α

]
,

where the two ⊆ use α ≤ 10−3. Therefore, we can prove that πt is feasible as follows.

V1(πt) = 2ptqt ≥ 2
( 1

16

)
= ξ1,

V2(πt) = 2(1− pt)(1− qt) = 2− 2(pt + qt) + 2ptqt
(i)

≥ 2− 2
(1
2
+ 28α

)
+

1

8

(ii)
>

1

8
= ξ2,

where (i) uses pt, qt ≥ 1
4 + 14α and ptqt ≥ 1

16 , and (ii) uses α ≤ 10−3.

G PROOF OF THEOREM 5

Example 2 is equivalent to the following constrained optimization problem
{

max
p,q∈[0,1]

V0(π) := 2pq

s.t. V1(π) := 2pq + 2(1− p)(1− q) ≥ 1.8
, (60)

which has the unique optimal solution p = q = 1.

Proof for the primal-dual algorithm: For the problem (60), the Lagrange function (5) can be
computed as follows.

L(π, λ) = V0(π) + λ1[V1(π)− ξ1]

= 2pq + λ1(2pq + 2(1− p)(1− q)− 1.8)

= 2(1 + 2λ1)pq − 2λ1(p+ q) + 0.2λ1

= 2(1 + 2λ1)
(
p− λ1

1 + 2λ1

)(
q − λ1

1 + 2λ1

)
+ 0.2λ1 −

2λ2
1

1 + 2λ1
.

For all λ1 > 0, λ1

1+2λ1
< 1

2 , so argmaxp,q L(π, λ) = {(1, 1)}. Therefore, the primal-dual algorithm

always achieves the optimal solution p = q = 1 in the first iteration.

Proof for the primal algorithm: In the same way as the proof of item 1 for Example 1, we obtain
the update rules of the primal algorithm as follows.

pt+1 =





pt

pt + (1− pt) exp
(
− αqt

) ; if kt = 0

pt

pt + (1− pt) exp
(
α(1− 2qt)

) ; if kt = 1
(61)

qt+1 =





qt

qt + (1− qt) exp
(
− αpt

) ; if kt = 0

qt

qt + (1− qt) exp
(
α(1− 2pt)

) ; if kt = 1
. (62)

With initialization p0 + q0 = 1 and p0 ∈ [0.1, 0.9], we will first prove that pt + qt ≡ 1 by induction.
Suppose pt+ qt = 1 holds for a certain t. Then V1(πt) = 2ptqt+2(1−pt)(1− qt) = 4pt(1−pt) ≤
1 < ξ1 = 1.8. Hence, the case kt = 1 of the update rules (42) and (43) is implemented which implies
that

pt+1 + qt+1 =
pt

pt + (1− pt) exp
(
α(1− 2qt)

) + qt

qt + (1− qt) exp
(
α(1− 2pt)

)

=
pt

pt + (1− pt) exp
(
α(1− 2qt)

) + 1− pt

1− pt + pt exp
(
α(2qt − 1)

)

=
pt

pt + (1− pt) exp
(
α(1− 2qt)

) + (1− pt) exp
(
α(1− 2qt)

)

(1− pt) exp
(
α(1− 2qt)

)
+ pt

= 1.

Hence, pt + qt ≡ 1, which proves that V1(πt) = 2ptqt + 2(1 − pt)(1− qt) = 4pt(1− pt) ≤ 1 <
ξ1 = 1.8 for all t.
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H EQUIVALENT CONDITION OF ζk = 0

Theorem 6. ζk = 0 if and only if the Q function has the commonly used factorization structure
below (Guestrin et al., 2001; Son et al., 2019; Rashid et al., 2020)

Qk(π; s, a) =
M∑

m=1

Q̃
(m)
k (π; s, a(m)). (63)

Proof. Proof of ªifº: Suppose Eq. (63) holds. Then for any s, a and product policy π, we have

M∑

m=1

A
(m)
k (π; s, a(m))

(i)
=

M∑

m=1

[Q
(m)
k (π; s, a(m))− Vk(π; s)]

(ii)
=

M∑

m=1

[ ∑

a(\m)

[π(\m)(a(\m)|s)Qk(π; s, a
(m))]− Vk(π; s)

]

(iii)
=
( M∑

m=1

∑

a(\m)

π(\m)(a(\m)|s)
M∑

m′=1

Q̃
(m′)
k (π; s, a(m

′))
)
−MVk(π; s)

=

M∑

m=1

∑

a(\m)

π(\m)(a(\m)|s)
(
Q̃

(m)
k (π; s, a(m)) +

M∑

m′=1,m′ ̸=m

Q̃
(m′)
k (π; s, a(m

′))
)
−MVk(π; s)

=
( M∑

m=1

∑

a(\m)

π(\m)(a(\m)|s)Q̃(m)
k (π; s, a(m))

)

+
( M∑

m=1

M∑

m′=1,m′ ̸=m

∑

a(m′)

π(m′)(a(m
′)|s)Q̃(m′)

k (π; s, a(m
′))
)
−MVk(π; s)

(iv)
=
( M∑

m=1

Q̃
(m)
k (π; s, a(m))

)
+
( M∑

m′=1

M∑

m=1,m ̸=m′

∑

a(m′)

π(m′)(a(m
′)|s)Q̃(m′)

k (π; s, a(m
′))
)

−MVk(π; s)

(v)
= Qk(π; s, a)− Vk(π; s) + (M − 1)

( M∑

m′=1

∑

a(m′)

π(m′)(a(m
′)|s)Q̃(m′)

k (π; s, a(m
′))
)

− (M − 1)Vk(π; s)

(vi)
= Ak(π; s, a) + (M − 1)

( M∑

m′=1

∑

a(m′)

∑

a(\m′)

π(a(m
′)|s)π(\m′)(a(\m

′)|s)Q̃(m′)
k (π; s, a(m

′))
)

− (M − 1)Vk(π; s)

(vii)
= Ak(π; s, a) + (M − 1)

( M∑

m′=1

∑

a

π(a|s)Q̃(m′)
k (π; s, a(m

′))
)
− (M − 1)Vk(π; s)

= Ak(π; s, a) + (M − 1)
(∑

a

π(a|s)
M∑

m′=1

Q̃
(m′)
k (π; s, a(m

′))
)
− (M − 1)Vk(π; s)

(viii)
= Ak(π; s, a) + (M − 1)

(∑

a

π(a|s)Qk(π; s, a)
)
− (M − 1)Vk(π; s)

(ix)
= Ak(π; s, a),
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where (i) uses the definition of the local advantage function A
(m)
k (π; s, a(m)), (ii) uses the rela-

tionship that Q
(m)
k (π; s, a(m)) =

∑
a(\m) [π(\m)(a(\m)|s)Qk(π; s, a

(m))] where π(\m)(a(\m)|s) :=∏M
m′=1,m′ ̸=m π(m′)(a(m

′)|s) denotes the policy of all the agents except the agent m, which can

be seen from the definition of the local Q function Q
(m)
k (π; s, a(m)) = Eπ

[∑∞
t=0 γ

trk,t
∣∣s0 =

s, a
(m)
0 = a(m)

]
and the global Q function Q

(m)
k (π; s, a) = Eπ

[∑∞
t=0 γ

trk,t
∣∣s0 = s, a0= a

]
, (iii),

(v) and (viii) use Eq. (63), (iv) uses
∑

a(\m) π(\m)(a(\m)|s) = 1, (vi) uses the definition of the

advantage function Ak(π; s, a) := Qk(π; s, a) − Vk(π; s) and uses
∑

a(\m′) π(\m′)(a(\m
′)|s) = 1,

(vii) uses π(a(m
′)|s)π(\m′)(a(\m

′)|s) = π(a|s) for the joint action a = [a(m
′), a(\m

′)], and (ix) uses
Vk(π; s) =

∑
a π(a|s)Qk(π; s, a). This indicates that ζk = 0.

Proof of ªonly ifº: If ζk = 0, then Ak(π; s, a) =
∑M

m=1 A
(m)
k (π; s, a(m)). Hence, we can prove

Eq. (63) as follows.

Qk(π; s, a) = Vk(π; s) +Ak(π; s, a) = Vk(π; s) +

M∑

m=1

A
(m)
k (π; s, a(m)) =

M∑

m=1

Q̃
(m)
k (π; s, a(m)),

where Q̃
(m)
k (π; s, a(m)) := A

(m)
k (π; s, a(m)) + 1

M Vk(π; s).

I SUPPORTING LEMMAS

Lemma 1. Any optimal Lagrange multiplier λ∗ ∈ argminλ∈R
K
+
maxπ L(π, λ) satisfies the following

range.

λ∗
k ≤

1

2
λk,max :=

1

δk(1− γ)
+

∆

δk
, k = 1, . . . ,K. (64)

Proof. Use the policy π̃ in Assumption 1, (i.e., Vk(π̃) ≥ ξk + δk) and denote π∗ as the optimal
solution to the constrained cooperative MARL problem (1). Then we have

1

1− γ

(i)

≥ V0(π
∗)

= max
π

min
λ∈R

K
+

L(π, λ)

(ii)
= max

π
L(π, λ∗)−∆

≥ L(π̃, λ∗)−∆

= V0(π̃) +

K∑

k=1

λ∗
k

(
Vk(π̃)− ξk

)
−∆

(iii)

≥
K∑

k=1

λ∗
kδk −∆,

where (i) and (iii) use Vk(π) ∈ [0, 1/(1 − γ)] since rk(s, a) ∈ [0, 1], (ii) uses the definition of the
duality gap ∆ in Eq. (6), and (iii) also uses λ∗

k ≥ 0 and Vk(π̃) ≥ ξk + δk. Since λ∗
k, δk > 0, the

above inequality implies Eq. (64).

Lemma 2. For any probability vector p ∈ R
d (every entry pk ≥ 0 and

∑d
k=1 pk = 1) and any

b ∈ R
d, denote the probability vector q ∈ R

d with entries qk = pke
bk

∑
d
j=1 pje

bj
. Then the distance

between p and q has the following upper bound.

∥q − p∥1 :=

d∑

k=1

|qk − pk| ≤ bmax − bmin (65)

where bmax = max1≤k≤d bk and bmin = min1≤k≤d bk.
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Proof. For t ∈ [0, 1] and k = 1, 2, . . . , d, define the following function

vk(t) =
pke

tbk

∑d
j=1 pje

tbj
, (66)

which has the following derivative bound.

|v′k(t)| =
∣∣∣
pkbke

tbk
∑d

j=1 pje
tbj − pke

tbk
∑d

j=1 pjbje
tbj

(
∑d

j=1 pje
tbj )2

∣∣∣

=
pke

tbk |∑d
j=1 pj(bk − bj)e

tbj |
(
∑d

j=1 pje
tbj )2

≤
pke

tbk
∑d

j=1 pj |bk − bj |etbj

(
∑d

j=1 pje
tbj )2

≤
pke

tbk(bmax − bmin)
∑d

j=1 pje
tbj

(
∑d

j=1 pje
tbj )2

=
pke

tbk(bmax − bmin)∑d
j=1 pje

tbj
(67)

As a result,

d∑

k=1

|qk − pk| =
d∑

k=1

|vk(1)− vk(0)| =
d∑

k=1

∣∣∣
∫ 1

0

v′k(t)dt
∣∣∣ ≤

∫ 1

0

d∑

k=1

|v′k(t)|dt ≤ bmax − bmin.

Next, we change initial state distribution ρ to be any state distribution ρ′, and replace the value
function Vk(π) (defined in Eq. (1)) and occupation measure νt+1 := νπt+1 (defined in Eq. (2)) with
Vk;ρ′(π) and νt+1;ρ′ respectively to emphasis their dependence on ρ′.

Lemma 3. The policy πt and index kt generated from Algorithm 2 satisfy the following bounds for
any state s ∈ S .

M∑

m=1

∑

a(m)

|π(m)
t+1(a

(m)|s)− π
(m)
t (a(m)|s)| ≤Mα

( 1

1− γ
+ 2ϵ3

)
(68)

Vkt
(πt+1; ρ

′)− Vkt
(πt; ρ

′) ≤ Mα

(1− γ)2
+

2Mαϵ3
1− γ

(69)

Proof. First, consider two MDPs {Si, Ai}i, {S′
i, A

′
i}i following the same transition kernel P and

policies πt and πt+1 respectively. Then the state transition distribution of the two MDPs are
respectively p(s′|s) = P (Si+1 = s′|Si = s) =

∑
a P(s′|s, a)πt(a|s) and p′(s′|s) = P (S′

i+1 =
s′|S′

i = s) =
∑

a P(s′|s, a)πt+1(a|s) respectively. Denote pi and p′i as the distribution of Si and S′
i

respectively under the same initial distribution p0 = p′0 = ρ′. Then we have

∥p′i+1 − pi+1∥1 =
∑

s′

|p′i+1(s
′)− pi+1(s

′)|

=
∑

s′

∣∣∣
∑

s

(
p′(s′|s)p′i(s)− p(s′|s)pi(s)

)∣∣∣

≤
∑

s′

∣∣∣
∑

s

p′i(s)
(
p′(s′|s)− p(s′|s)

)∣∣∣+
∑

s′

∣∣∣
∑

s

p(s′|s)
(
p′i(s)− pi(s)

)∣∣∣

≤
∑

s′

∑

s

p′i(s)|p′(s′|s)− p(s′|s)|+
∑

s′

∑

s

p(s′|s)|p′i(s)− pi(s)|

=
∑

s

p′i(s)
∑

a

∑

s′

P(s′|s, a)|πt+1(a|s)− πt(a|s)|+ ∥p′i − pi∥1

≤ max
s
∥πt+1(·|s)− πt(·|s)∥1 + ∥p′i − pi∥1. (70)

33



Published as a conference paper at ICLR 2024

Since p′0 = p0, iterating the above inequality yields that

∥p′i − pi∥1 ≤ imax
s
∥πt+1(·|s)− πt(·|s)∥1. (71)

Hence, the state occupation measure difference can be upper bounded as follows.

∥νt+1;ρ′(·)− νt;ρ′(·)∥1 ≤ (1− γ)

∞∑

i=0

γi∥p′i − pi∥1

(i)

≤ (1− γ)max
s
∥πt+1(·|s)− πt(·|s)∥1

∞∑

i=0

iγi

(ii)
=

γ

1− γ
max

s
∥πt+1(·|s)− πt(·|s)∥1, (72)

where (i) uses Eq. (71) and (ii) uses the fact that the function f(γ) =
∑∞

i=0 γ
i = (1− γ)−1 has the

following derivative

f ′(γ) =

∞∑

i=0

iγi−1 = (1− γ)−2. (73)

Therefore, the state action occupation measure difference can be bounded as follows.

∥νt+1;ρ′(·, ·)− νt;ρ′(·, ·)∥1
=
∑

s,a

|νt+1;ρ′(s)πt+1(a|s)− νt;ρ′(s)πt(a|s)|

≤
∑

s,a

νt+1;ρ′(s)|πt+1(a|s)− πt(a|s)|+
∑

s,a

πt(a|s)|νt+1;ρ′(s)− νt;ρ′(s)|

≤
∑

s

νt+1;ρ′(s)∥πt+1(·|s)− πt(·|s)∥1 + ∥νt+1;ρ′(·)− νt;ρ′(·)∥1

(i)

≤ max
s
∥πt+1(·|s)− πt(·|s)∥1 +

γ

1− γ
max

s
∥πt+1(·|s)− πt(·|s)∥1

=
1

1− γ
max

s
∥πt+1(·|s)− πt(·|s)∥1, (74)

where (i) uses Eq. (72).

To bound the policy difference ∥πt+1(·|s)− πt(·|s)∥1, we rewrite the NPG rule (11) as follows

Z
(m)
t (s) =

∑

a′(m)

π
(m)
t (a′(m)|s) exp

(
αQ̂

(m)
kt

(πt; s, a
′(m))

)
, (75)

π
(m)
t+1(a

(m)|s) =π
(m)
t (a(m)|s)
Z

(m)
t (s)

exp
(
αQ̂

(m)
kt

(πt; s, a
(m))

)
. (76)

Therefore,

∥πt+1(·|s)− πt(·|s)∥1

=
∑

a

∣∣∣
M∏

m=1

π
(m)
t+1(a

(m)|s)−
M∏

m=1

π
(m)
t (a(m)|s)

∣∣∣

(i)

≤
∑

a

M∑

m′=1

∣∣∣
m′∏

m=1

π
(m)
t+1(a

(m)|s)
M∏

m=m′+1

π
(m)
t (a(m)|s)−

m′−1∏

m=1

π
(m)
t+1(a

(m)|s)
M∏

m=m′

π
(m)
t (a(m)|s)

∣∣∣

=

M∑

m′=1

∑

a

(m′−1∏

m=1

π
(m)
t+1(a

(m)|s)
M∏

m=m′+1

π
(m)
t (a(m)|s)

)
|π(m′)

t+1 (a(m
′)|s)− π

(m′)
t (a(m

′)|s)|

(ii)
=

M∑

m=1

∑

a(m)

|π(m)
t+1(a

(m)|s)− π
(m)
t (a(m)|s)|
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(iii)

≤
M∑

m=1

α
(
max
a(m)

Q̂
(m)
kt

(πt; s, a
(m))−min

a(m)
Q̂

(m)
kt

(πt; s, a
(m))

)

≤ α
M∑

m=1

(
max
a(m)

Q
(m)
kt

(πt; s, a
(m))−min

a(m)
Q

(m)
kt

(πt; s, a
(m))

+ 2max
a(m)
|Q̂(m)

kt
(πt; s, a

(m))−Q
(m)
kt

(πt; s, a
(m))|

)

(iv)

≤ Mα
( 1

1− γ
+ 2ϵ3

)
, (77)

where (i) uses the following relation for any joint action a where Cm′(a) :=∏m′

m=1 π
(m)
t+1(a

(m)|s)∏M
m=m′+1 π

(m)
t (a(m)|s), (ii) and (iv) prove Eq. (68), (iii) applies Lemma

2 where the a(m)-th entries of vectors p, b, q ∈ R
|A(m)| are π

(m)
t (a(m)|s), αQ̂(m)

kt
(πt; s, a

(m)) and

π
(m)
t+1(a

(m)|s) respectively, and (iii) uses Q
(m)
k (π; s, a(m)) ∈ [0, 1/(1− γ)] since rk,t ∈ [0, 1].

|CM (a)− C0(a)| =
∣∣∣

M∑

m′=1

[Cm′(a)− Cm′−1(a)]
∣∣∣ ≤

M∑

m′=1

|Cm′(a)− Cm′−1(a)|.

As a result, Eq. (69) can be proved as follows.

|Vkt
(πt+1; ρ

′)− Vkt
(πt; ρ

′)|
=
∣∣∣
∑

s,a

rkt
(s, a)

[
νt+1;ρ′(s, a)− νt;ρ′(s, a)

]∣∣∣

(i)

≤ 1

1− γ
∥νt+1;ρ′(·, ·)− νt;ρ′(·, ·)∥1

(ii)

≤ 1

(1− γ)2
max

s
∥πt+1(·|s)− πt(·|s)∥1

(iii)

≤ Mα

(1− γ)3
+

2Mαϵ3
(1− γ)2

where (i) uses rkt
(s, a) ∈ [0, 1], (ii) uses Eq. (74) and (iii) uses Eq. (77).
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J COMPARISON OF CONVERGENCE RESULTS ON CONSTRAINED

COOPERATIVE MARL

Table 1: Comparison of Convergence Results on Constrained Cooperative MARL

Works Algorithm Assumptions Convergence measure

Lu et al. (2021) primal-dual
bounded reward,

gradientLipschitz continuity,
Slater’s condition

Ying et al. (2023) primal-dual

bounded reward,

gradient
Lipschitz continuity,

bounded optimal

Lagrange multiplier2

Yang et al. (2023) primal-dual
Fixing base policy, perturbation convergence of
policy in compact convex space perturbation policy

Lipschitz continuity

Algorithm 1 (Ours) primal-dual
bounded reward constraint violation

Slater’s condition optimality gap

Algorithm 2 (Ours) primal bounded reward
constraint violation

optimality gap

K EXPERIMENT ON CONSTRAINED GRID-WORLD

Figure 2: Constrained grid-world.

We slightly adapt the constrained grid-world task (Diddigi
et al., 2019) where two agents explore the 4× 4 grid-world
in Figure 2. The agents start from position 3 and aim at
the target 11. Both agents can observe their positions and
accordingly select to move up, down, left or right. If an agent
m has reached the destination (target 11), then it will always

stay there and obtains reward r
(m)
0,t = 0 regardless of the

selected action. If an agent is at a non-target marginal grid
and the action points outside the grid, then the agent stays
there and obtains reward -5 (For example, an agent will stay
at position 7 if it selects to move right.). In all the other cases,
the agent moves one step and obtains reward -1. The safety

score r
(m)
1,t = −1 for both agents m = 1, 2 if they collide at

a non-target position (including initial position 3). Otherwise,

r
(m)
1,t = 0. The discount factor is γ = 0.9 and the safety

threshold is ξ1 = −1, which allows no collision between
the agents except at the initial time. Therefore, the optimal
solution is to let the agents deterministically select the two
paths shown in Figure 2 respectively with V0(π) = −2.6695 and V1(π) = −1, which indicates that
this problem has zero duality gap.

We compare the non-stochastic versions of the primal-dual algorithm (Algorithm 1), the primal
algorithm (Algorithm 2) and the centralized nested actor-critic (CNAC) algorithm (Diddigi et al.,
2019) on this constrained grid-world task where transition kernel and reward/safety score functions
are available. Specifically, in Algorithm 1, we use 50 value iterations to obtain the greedy policy

πt, exactly evaluate V̂k(πt) = Vk(πt) =
1

1−γ

∑
s,a r0(s, a)νπt

(s, a) where the occupation measure

νπt
(s, a) is known to be the stationary distribution of the mixed transition kernel Pρ(·|s, a) :=

γP(·|s, a)+(1−γ)ρ(·), and update the multipliers with stepsize β = 1 and threshold λ1,max = 10. In

Algorithm 2, we also exactly evaluate V̂k(πt) = Vk(πt) and Q̂
(m)
kt

(πt; s, a
(m)) = Q

(m)
kt

(πt; s, a
(m)),

and select stepsize α = 1 and tolerance η = 10−3. The CNAC algorithm essentially follows
the primal-dual framework (Algorithm 1) except that the policy πt is updated with one projected
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stochastic policy gradient ascent step as follows.

π ← ProjVp

[
π + α∇̂πL(π, λt)

]
.

Here, Vp is the product policy space, and we use the exact policy gradient ∇̂πL(π, λt) = ∇πL(π, λt)
and select stepsize α = 0.2. The update rule of the multipliers for the CNAC algorithm is the same
as that for our primal-dual algorithm.

We implement these algorithms for 100 iterations. The initial policy of each agent at each state
is randomly generated from Dirichlet distribution Dir(1, 1, 1, 1). We plot the learning curves of
V0(πt) and V1(πt) in Figure 3. It can be seen from Figure 3 that all these algorithms converge fast to
the feasible region V1(πt) ≥ −1 within 10 iterations. As to optimality, our primal-dual algorithm
and primal algorithm converge to the optimal value V0(πt) = −2.6695 within 3 iterations and 70
iterations respectively. The CNAC algorithm converges to a sub-optimal value V0(πt) ≈ −4.5 within
10 iterations, since it uses policy gradient ascent update which may stuck at a stationary point.

Figure 3: Results on the constrained grid task with constraint V1(πt) ≥ −1.

Furthermore, we decrease the threshold ξ1 to −1.1, where the deterministic paths in Figure 2 become
near-optimal and the duality gap becomes nonzero. We implement these algorithms for 100
iterations using the same initial policy as that for the threshold ξ1 = −1. Our primal-dual algorithm
uses stepsize β = 1 and 50 value iterations. Our primal algorithm uses stepsize α = 0.4 and tolerance
η = 10−3. The CNAC algorithm uses stepsizes α = 0.8 and β = 1. From the result in Figure 4,
we can see that all the algorithms become less stable in the constrained-related value V1(πt) and
occasionally falls below the threshold −1.1 due to the nonzero duality gap. Regarding the objective
V0(πt), our primal-dual algorithm and primal algorithm converge to the near-optimal value, and
primal-dual converges faster, but CNAC converges to a lower sub-optimal value.

Figure 4: Results on the constrained grid task with constraint V1(πt) ≥ −1.1.
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