


with the system. Finally, Section V summarizes our conclu-

sions and directions for future work.

II. RELATED WORK

In this section, we provide a brief overview of the existing

approaches to OD.

A. GPS Receivers

GPS receivers are the standard for precise OD [7], [8],

[9], but are ill-suited for nanosatellites, such as CubeSats or

PocketQubes [10], [11], due to their size and cost. A space-

rated version of the NovAtel OEM719 GPS receiver [12]

is commonly used in CubeSats due to its relatively small

size, low cost, and ability to operate at the extreme speeds

(roughly 7.5 km/s) of a satellite in LEO. These receivers cost

around $5000. Modules that use these receivers to perform

OD on-orbit cost even more. One such system, [13], uses

a NovAtel OEM719 for position data to perform OD and

costs $10k-$19k. Standard GPS receivers for use on Earth are

restricted to speeds less than 515 m/s and altitudes less than

18 km due to limits placed by the Coordinating Committee

for Multilateral Export Controls (CoCom), its successor the

Wassenaar Arrangement, and the Missile Technology Control

Regime (MTCR) [14].

B. Ground Radar

An alternative to GPS is radio ranging from ground

stations or radar [8], [15], which can take weeks to months

to determine a satellites orbit after launch, and may even

fail to identify a satellite in a cluster [15]. Radio ranging

from ground stations requires significant infrastructure, and

positions from radar typically have errors of 20 km [16].

Table I compares the existing commonly used methods to

our approach.

TABLE I

COMPARISON OF ORBIT DETERMINATION (OD) METHODS

Property/Method GPS OD Ground Radar Visual OD

Largest Dimension 96 mm [13] Off Satellite < 50 mm

Mass 109 g [13] Off Satellite < 15 g

Power 1-2 W [12] Off Satellite < 5 W

Cost ∼ $10 k [13] $0− 10 k < $100

OD Time Secs [17] Wks-Mos [18] Secs-Hrs

Precision 1.5 m [17] ∼ 10 km [16] ∼ 1 km

C. Visual Methods

Prior work on visual satellite navigation such as [19]

and [20], obtains coarse satellite position estimates using

only visual inputs from cameras and classical computer

vision keypoint-matching techniques, such as SIFT [21],

FLANN [22] and RANSAC [23]. These approaches have

several limitations, including lack of robustness to clouds,

the use of pre-extracted coastlines for localization, and

localization errors of a few degrees of latitude and longitude.

III. SYSTEM DESIGN

This section describes the architecture of the VINSat

system. We provide a high-level overview, followed by a

detailed description of each subsystem.

A. System Overview

The VINSat system, as depicted in Fig. 2, has two main

components: an image-processing subsystem responsible for

extracting Earth landmarks from captured imagery and a

batch least-squares optimization solver that calculates the

satellite’s orbit based on these landmarks.

Initially, images are captured by a camera at a resolution of

4608×2592 pixels. Identifying landmark correspondences in

the captured images is challenging, particularly without prior

knowledge of the satellite’s pose, and is further compounded

by the computational constraints imposed by a nanosatellite’s

limited power and processing capacity.

VINSat geolocates captured imagery by matching image

features to landmarks on Earth. First, the system identifies

the coarse geographic region over which the satellite is

orbiting. Second, it matches ground landmarks with known

locations to pixels in the image. VINSat performs region

identification using a Region Classification (RC) Network.

An RC network is a deep neural network that is trained

to process each captured image at a downscaled resolution

of 640 × 360 pixels to identify the region of Earth that

the image depicts. Additionally, the RC network eliminates

uninteresting images, such as those containing only clouds or

ocean. These outputs are subsequently used to route the full-

resolution images to specialized landmark detection (LD)

deep neural networks, each trained for a specific region. The

LD networks produce a mapping from pixel coordinates to

landmarks with known location coordinates on Earth. These

coordinates are the input to a batch optimization solver that

produces an estimate of the satellite’s orbit. Further details

of each subsystem are elaborated upon in the sections that

follow.

B. Region Classification

The RC network takes an image as input and produces

the regions that the image most likely depicts as output. The

purpose of the RC network is to narrow the scope of the

later search for landmarks to a small set of regions on Earth,

rather than all of Earth.

The RC network’s output classes are region identifiers

corresponding to regions defined in the Military Grid Refer-

ence System (MGRS), a NATO international standard for

locating points on the Earth. The largest regions of the

MGRS divide the Earth into a grid delineated by 22 North-

South regions and 60 East-West regions. Each region is

typically six degrees of longitude by eight degrees of latitude,

with some variation near the poles.

The RC network does not consider all regions in the

MGRS, instead focusing on the most salient 16 regions.

VINSat computes the saliency of a region by computing

the cross-correlation of the NASA Blue Marble imagery

data available for that region. Fig. 3 shows a map of the
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satellite’s estimated position r and assuming nadir orientation

qn, along with the camera matrix K, we can project 3D

landmarks p to their expected pixel positions ŵ in the

camera frame. The error term ϕm quantifies the discrepancy

between these predicted pixel positions and the actually

observed positions w:

ϕm = ∥ŵ(rm,K,pm)−wm∥2R, (2)

where R is a weight matrix. One challenge with this error

term is its sensitivity to outliers, particularly when the

landmark measurements are noisy. Thus, instead of using

a constant R, we compute it as proposed in [24] to obtain

an adaptive kernel :

Rk = c2
(

(ϵpk/c)
2

|α− 2|
+ 1

)1−α

2

, (3)

where Rk is the k-th diagonal term in R, ϵpk is the corre-

sponding residual term, and α and c are hyperparameters

that control the shape and scale of the kernel, respectively.

We set c to the median of the residuals to automatically

adapt the scale of the kernel to the specific problem. We

compute α = max(2 − 2 ∗ i/5,−1), as a function of the

optimizer iteration count, i. α = 2 corresponds to a least-

squares kernel, and lower α′s correspond to increasingly

more robust kernels. Setting α = max(2− 2i/5,−1) allows

us to compute an initial estimate using all points and then

progressively make the estimates more robust to outliers.

Algorithm 1 Batch Least-Squares Optimization

LSQ(rm,K,pm, rt−1,vt−1,∆t, rt,vt)

for i in num iters do

ŵm, Jg,m = CameraProjection(rm,K,pm)
r̂t, Jd,t, Ht = Dynamics(rt−1,vt−1)
Compute ψt, ϕm using Eq 1, 2.

v̂:, r̂: = LM Optimizer(Jg,:, Jd,:, ψ:, ϕ:)
end for

return ŵ, r̂

Finally, we aggregate these costs across detections and

time-steps and solve a joint optimization problem as follows:

min
(r,v)1:N

∑

m

ϕm + λ
∑

t

ψt (4)

We solve this optimization problem over all the poses jointly

using a Levenberg-Marquardt (LM) method [25]. We provide

an overview of the system for solving the batch least-squares

problem in Algorithm 1.

IV. EVALUATION

The purpose of this evaluation is to demonstrate the ability

of the VINSat system to sufficiently perform OD from typical

CubeSat orbits in a reasonable time frame. This section

details evaluations of the individual components of VINSat,

as well as the end-to-end system. Our simulation results show

that VINSat achieves kilometer-level OD in just a few orbits.

To evaluate VINSat, we require a large dataset of images

captured from a low-cost and wide field of view camera

on a satellite orbiting Earth, as well as images containing

clouds, which are typically discarded by satellite imagery

distributors. Unfortunately, such a dataset is not currently

available. Consequently, we divide our evaluation into three

main components:

1) Cross-Dataset Generalization: We test generalization

to different cameras and data sources by training on

Sentinel 2 imagery and testing on Landsat imagery.

2) Ablations and Sensitivity Analysis: We perform ab-

lation experiments to understand the importance of

various design decisions on the batch optimizer.

3) Simulation: We simulate satellites in random polar and

ISS-like orbits to evaluate the end-to-end pipeline.

A. Cross-Dataset Generalization

We test cross-dataset generalization by training on Sen-

tinel 2 imagery and testing on Landsat imagery. We do

this by first training on 2000 randomly mosaiced Sentinel-2
images for each of the 16 regions. The images are made

from randomly selecting points in the region of interest,

buffering around the point, mosaicing random Sentinel 2
images captured between 2020 and 2022, and exporting the

image at a scale of 150 meters per pixel, similar to our

reference camera. An example of one of these images is

shown on the left of Fig. 5. We then validate the performance

of each network on 500 Sentinel 2 images made the same

way, but from data captured between 2018 and 2019. 250
raw Landsat 8 and 250 raw Landsat 9 scenes captured during

2023 are used for testing. An example Landsat 8 scene can be

seen on the right of Fig. 5. All images were downloaded from

Google Earth Engine [26] in GeoTIFF format containing

affine transformations of pixel points to ground points to

maintain accurate ground truth when labeling landmarks.

For clarity the training, validation, and test datasets for

each region are listed again below:

• Training: 2000 Sentinel 2 mosaics made from imagery

captured between 2020 and 2022.

• Validation: 500 Sentinel 2 mosaics made from imagery

captured between 2018 and 2020.

• Test: 250 Landsat 8 and 250 Landsat 9 images captured

during 2023.

a) Region Classification Network: The RC network

dataset is annotated by projecting landmarks onto the cam-

era’s image plane and identifying regions with visible land-

marks. Each image is assigned a 16-value multi-hot label

corresponding to the regions containing visible landmarks in

the image. The RC network is validated by measuring the

performance of the network on the validation dataset using

network precision, recall, and F1 score.

The RC network achieves an overall accuracy of 99.2%
on the validation set. The mean precision for all classes is

0.95, the mean recall for all classes is 0.97, and the mean

F1 score for all classes is 0.96. These values demonstrate

that the appropriate regions have high likelihood of being

recognized in an image and passed to the corresponding

landmark detection networks.
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