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Abstract. In this paper, we describe our experience developing a framework for
understanding Al systems that we use to drive the design of Al learning
experiences for elementary-aged youth in an informal, free-choice environment.
This framework—detect/interpret/respond (DIR)—shows promise as a flexible
and age-adaptable model for youth to connect across learning experiences and
work toward a coherent understanding of Al. As an application of DIR, we
describe our experience designing and testing learning experiences related to a
cutting-edge Al system (a Virtual Human). Insights from our initial studies
suggest that this framework can help unify youth encounters with various Al
systems and provide a productive schema that accommodates increasing
complexity as youth advance in their understanding. DIR, therefore, offers a
heuristic for sense-making and inspection of Al systems that is both accessible to
very young children and robust enough to be useful as they mature.

Keywords: Artificial Intelligence, Learning Design

1 Introduction: The Need for Pre-College AI Learning
Experiences

Al is a foundational technology that is profoundly reshaping our society, particularly
through its power to transform the workforce [1]. Al has emerged as a tool with
tremendous potential in STEM as well, as scientists begin to utilize it to make
transformative improvements and discoveries in science, engineering, mathematics,
and technology itself. It is imperative to develop a thoughtful response to this
phenomenally transformative technology and address the need to make substantial
investments in developing the Al workforce, not just through higher education, but
beginning with childhood learning [2]. While a small percentage of youth will become
the future Al developer workforce, a majority of them will utilize Al in their work, and
all will become consumers of Al [3]. It is critical therefore to prepare future generations
with basic knowledge of what Al is, its capability, and what impact it will have on their
lives and career. Yet, in today’s society, there are widespread misconceptions about Al.
In Elsevier’s interview with leading figures in Al, including Stuart Russell who co-
authored the most widely-used Al textbook for higher education, experts pointed out
that the common misconceptions about Al roughly fall into two categories:



overestimating the capabilities of Al, especially artificial general intelligence [4], and
underestimating the prevalence of Al in our daily lives [5]. A perception that Al is a
powerful yet complex tool that is beyond the general public’s understanding could
negatively impact the current generation of students. They may be discouraged from
choosing career paths that require basic Al knowledge because of their lack of Al
knowledge and low self-efficacy [6]. The lack of awareness of the prevalence of Al in
our daily lives can also impact parents’ ability to make informed decisions about the
ethics issues related to Al such as data privacy, both for themselves and for their
children. More recent studies of how youth build understanding of Al concepts [see,
e.g., 7] suggest additional challenges such as youth encountering difficulty parsing a
problem space in ways that enable an Al system to operate on it.

The call to help youth learn Al is coming from practitioners as well. The AI4K12
working group, organized by the Association for the Advancement of AI (AAAI) and
the Computer Science Teachers Association (CSTA), has documented the demands
from practitioners around the world for curricula and guidelines to help their youth
learn AI [3]. This need is recognized by the National Science Foundation (NSF), from
which there has been a surge of effort to develop research programs to make Al
education accessible to the K-12 population. Efforts are underway to develop a national
strategy for research and development in AI (NSTC, 2016), as well as to establish
guidelines for K-12 Al education [8] from other organizations. This much-needed effort
primarily focuses on community building, curriculum development, or teaching
specific Al skills. There is yet a lack of research into education for youth on basic
knowledge of AI, such as fundamental mechanisms, capabilities, ethics and
implications of Al There is particularly a gap in our understanding of how to help
younger children learn about Al, as most of the current K-12 effort focuses on high-
school students, where Al education programs have been more well-established.
Because students in their early years are at a critical time for developing their
perceptions and dispositions toward STEM [see, e.g., 9], creating engaging Al learning
experiences for youth is of paramount importance.

2 Detect-Interpret-Respond: A Framework to Guide
Instructional Design for AI Learning

Context: Developing a Virtual Human. As Al is arguably the science of building
intelligence that thinks and acts like humans [10], a virtual human provides an ideal
vehicle to illustrate many fields of Al, including computer vision, natural language
processing, automated reasoning, character animation, and machine learning. A virtual
human is an embodied character that can not only see [11], hear [12; 13], and speak
[14; 15], but also think [16; 17], feel [18; 19], and move [20; 21; 22] like real humans.
The Integrated Virtual Human, developed through decades of collaborative effort from
Al researchers at the Institute for Creative Technologies (ICT) at the University of
Southern California (USC), is an exemplar of such Al technology [23]. The
embodiment of Al through an interactive Virtual Human can make the abstract and
mysterious “black-box” nature of Al concrete, relatable, and accessible to the general



public — as the public can relate to how Al is used in a virtual and artificial character to
fulfill the same function of a real human. This is particularly important for making the
concepts of Al accessible to younger populations. Additionally, a Virtual Human can
also demonstrate the limitations of Al: while state-of-the-art Al excels in specific tasks,
such as filtering spam emails, it pales in comparison with the human-level general
intelligence [24]. In all, the Virtual Human technology introduces significant new
possibilities for research into engaging the public in Al education in informal settings
such as museums, engaging visitor groups across a wide range of backgrounds.
Driven by the demand for Al education for pre-college aged youth, there has been a
recent surge of after-school programs to engage K-12 students in hands-on experience
to learn Al. For example, the EmpowStudio, in collaboration with the MIT Media Lab,
has developed a week-long summer camp to help youth learn Al using personal robots
developed by MIT [8]. The AI4All also organizes summer Al learning camps in
collaboration with universities across the US to provide underrepresented high school
students with hands-on learning experiences, mentored by Al practitioners at the
participating universities [25]. In museum settings, Al is commonly used as an
advanced technology to enhance visitor experiences, including pioneering work with
Virtual Humans as museum guides at the Boston Museum of Science [26]. Virtual
humans have been used in museum settings to discuss computer science and
engineering topics with middle school students as well [27]. During the exhibit,
installed at the Orlando Science Center, visitors were able to customize the appearance
and text-to-speech voice of a computer avatar of Alan Turing, a pioneer in Al to discuss
topics such as planets, dinosaurs, natural disasters, and the science center information.

General DIR model of Al systems
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Fig. 1. The Detect-Interpret-Respond Framework for Understanding Al Systems

A Flexible Framework for a Variety of Al Systems. While a Virtual Human offers a
rich context for demonstrating cutting-edge Al capabilities, it has yet to be implemented
as an object of inquiry to support Al learning for young children. Our work, supported
by a grant from the National Science Foundation, has been to do just that: to develop
and study learning experiences that can foster youth inquiry into the Virtual Human as



an Al system. To ground our work, our team of learning designers, Al developers, and
learning science researchers developed and have begun testing an overarching “DIR”
framework (detect-interpret-respond) to structure experiences across the portfolio of
activities related to the virtual human exhibit (VHX). As illustrated in Figure 1, the
intent is for this framework to serve as a working schema for participants to attach their
building understanding of Al systems, as embodied in the virtual human. That is to say,
participants will come to understand the Virtual Human as a series of interconnected
Al subsystems that together enable the VH to detect salient objects in its environment
(e.g., faces/mouths/eyes), interpret those features (e.g., as expressions), and respond
to that interpretation in human-like ways (e.g., to smile back at a visitor whose detected
expression is interpreted to be smiling). While data analysis is ongoing, early review of
data from pilot studies have led to initial insights about the DIR framework and
learners’ interactions along the detect-interpret-respond continuum.

While this paper focuses on the application of the DIR framework to the design of
learning experiences related to the Virtual Human, an important part of what makes the
framework useful is that it is applicable to a wide range of Al systems that youth might
encounter in their daily lives. For example, a self-driving car needs to detect road and
traffic conditions, interpret that information in terms of the goal of getting to a particular
place safely, and then respond to that interpretation with appropriate actions (e.g.,
applying brakes). Or, with an Al personal assistant, it must detect the user’s input (voice
or text), interpret that as a request for a particular type of information, then respond
with an appropriate answer to that inferred request. While we do not expect the DIR
framework to perfectly map onto all Al systems, our hope is that it can serve as a
flexible heuristic for initial encounters with many forms of Al so that their basic
functionality can be explored and brought into coherence as a case of Al, thereby
supporting learners to develop a generalizable explanatory account of how such
systems work.

An Extensible Model for Increasingly Sophisticated Understanding of AI Systems.
In addition to allowing for flexibility in its application across a variety of Al systems,
DIR offers promise as an extensible mental model to ground a learner’s increasingly
sophisticated understanding of Al systems over time. For example, while detection can
be reduced to the idea of a camera or microphone for very young children, it can also
be expanded to include the computational capacity involved in converting light into
pixels, or sound into a waveform. From this perspective, DETECT locates the notion
of perception represented in “Big Idea #1” [28] within the context of a functioning Al
system, providing a model for Al perception that can be built upon as a learner
advances. It also offers a way to integrate broader notions of computational thinking
within a learner’s emerging understanding of Al: to detect, an Al system needs to render
the analog world in computational form. By the same token, INTERPRET can be
expanded to include increasingly technical explication of the algorithms that enable an
Al system to, for example, parse a waveform into language, or a visual image into
recognizable objects. While the technical features of different machine learning
algorithms for speech recognition, for example, are beyond the learning goals for early-
elementary children, the more basic notion that an Al system needs to solve the problem



of recognizing speech—parsing sounds into words—offers a foundation upon which
the more technical knowledge can eventually be built. Similarly, RESPONSE can be
expanded to include the algorithms or policies that determine whether a particular
action should be taken in a given circumstance and/or the mechanics of how that
response takes place (e.g., syncing voiced language to animated facial movements).

3 Experience Report: Applying DIR to the Design of a
Virtual Human Learning Experience

Methods. This report is based on a series of small-scale pilots of activities related to
(and including) the Virtual Human. The pilots support the ongoing iterative design of a
museum-based learning experience centered around an interactive Virtual Human as an
exemplar of Al technologies. Two critical considerations for the eventual experience
are: 1) that it can succeed in a free-choice environment, like a public museum, where
learners can choose, or not, to approach the exhibit, and decide how long to dwell within
it; and 2) that it can succeed with the typical visitors to the museum: early elementary
youth and their adult caregivers.

Insights about the promise of the DIR model are drawn from a series of cognitive
interviews conducted with 26 children from ages 6-13. Interviews participants were
asked to think aloud as they interact with the activities in order to understand how youth
of this age make sense of Al and how these activities can be made engaging and
interesting to youth in a free-choice environment. The cognitive interviews employed
a semi-structured protocol, with a series of prompts to elicit student thinking as they:
a) initially encountered each activity; b) attempted to engage with the activity (e.g., “I
see that you [did X], tell me about your thinking; and, how did you decide to do X?”);
and c) after they had completed the activity (e.g., “how do you think this Al worked?”).
In-the-moment scaffolding was provided during interviews to: a) enable students to
reveal thinking across each phase of the activity; b) surface and test emerging ideas
about why a student might be stuck or lose interest; and c) disambiguate between
superficial challenges, such as unfamiliar vocabulary or confusing UI, and more
conceptual difficulties. Some activities were piloted with actual Al systems in their
current state and others were conducted as Wizard-of-Oz (WOZ) style studies in which
a human worked behind the scenes to approximate desired Al functionality. The WOZ
studies were particularly useful to test youth sensemaking around the “Response” side
of the DIR framework, as it enabled us to probe for the range of responses that would
be likely to arouse youth curiosity prior to the technical development of those features.

Helping Youth Get Purchase on Understanding Al as a System. The learning design
task entailed taking an existing Al technology (the Virtual Human) and positioning it
as an artifact that learners, ages 5-13, could engage with in an informal science museum
setting in order to build their understanding of Al. Before putting this technology in
front of visitors, we did an audit to better understand what Al technologies were at work
within the system so that we could create surrounds that may better position learners to
build their understanding of those specific technologies.



Through identifying how the subsystems worked in a coordinated manner to enable
the full Al system, we recognized that some of the subcomponents hung together in
terms of their function relative to the larger Al system. Thus, we derived three
categories: Detection, Interpretation, and Response (See Figure 2). Detection
components function to detect the human who was interacting with the Al system.
Specifically, the VH uses cameras and microphones to take in visual and audio data.
From this data, the Al system can do a number of detections: your face, your body,
whether you are speaking, and more. Each of these Detection components feeds into
the Interpretation components. The Interpretation components, in turn, function to
“make sense” of what has been detected. While an Al does not make sense of human
actions in the same ways that humans do, they can be designed to functionally appear
to do so. Notably, the Al system we were using has the ability to categorize a facial
expression as: Angry, Sad, Happy, Disgusted, Surprised, or Neutral. Similarly, body
posture in conjunction with head position can be used to infer whether the learner is
paying attention or not, and so on. The interpretation components then feed into the
Response components of the Al system. The Response components function to provide
feedback to the learner based on the outcome of the Interpretation components. Our Al
system was designed as a Virtual Human, that is, an Al controlled avatar that is
supposed to be human-like in its responses to humans: this includes text-to-speech
behaviors as well as human body animations and gestures. The Virtual Human we were
working with had a number of responses it could make based on the outcome of the
Interpretation components; as one example, if the Virtual Human interpreted your facial
expression as a smile, and interpreted that you were paying attention with your body
position, it would smile back at you.
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Fig. 2. VH represents an Al system built from integrated subsystems.

Reconciling a System of Systems for Learners. The DIR framework positions the
different Al components in relation to each other and to the overarching VH capabilities
of taking in data from the environment and processing that data to generate appropriate
responses. As illustrated in Figure 2, the VH can be conceived of as an interconnected



set of Al components that work in concert to activate different functionalities. Some of
these components serve to detect specific types of data from the surrounding
environment; some components are focused on processing the data for interpretation;
and some components on determining the appropriate VH response based on the
interpreted data. This framework can help demystify Al systems for learners by
decomposing the complex set of functionalities that comprise the VH into component
parts focused on detection, interpretation, and response determination & execution.
These capabilities share some commonalities with the ways in which humans (often
unconsciously) make sense of their environment in their interactions with other
humans. In this way, the DIR model offers an avenue for learners to relate to VH as
just that - a virtual human programmed to interact with other humans in naturalistic
ways.
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Fig. 3. Examples of activities designed to break down the complexity of the VH.

Building Coherence Across Activities. The development team first implemented a
Behind-the-Scenes UI design, which includes a comprehensive display of head-
tracking, facial action units tracking, facial expression recognition, speech recognition,
etc. The learning design team reviewed the Ul and pointed out that such design may be
too complex for young learners in a museum setting, presenting cognitive load
challenges that could hinder engagement in a free-choice museum environment and
thus limit learning about the different AI components that comprise the VH. Instead,
the team has begun creating a series of breakout activities, each focusing on a



component of the Al technologies embodied in the main VH exhibit. The conceptual
design of the exhibit is to have a central VH exhibit (imagined as a pair of visitors, one
interacting with VH and a second viewing the comprehensive Behind-the-Scenes Ul),
and a number of “stations” surrounding the central VH, that visitors can interact with.
Figure 3 provides an illustra- tion of two of these activities: the first activity, Expression
Detection, activity supports the connection between DETECT and INTERPRET and
enables the interactant to play with how an Al system can recognize salient facial
features (technically, action units) to classify a particular combination of features as
happy, sad, surprised, etc.; the second activity, Teach Me Silly, is designed to suport
deeper engage- ment with the INTERPRET functionality of AI and enables the
interactant to use an Al classifier to teach the Al to recognize the interactant’s
expression of a “silly face.” This revised exhibit design can better engage visitors in
active learning (hands-on with breakout learning activities at the surrounding stations
instead of passively viewing the Behind-the-Scenes Ul on a big screen). It also greatly
increases the number of visitors the exhibit can engage at the same time, addressing
throughput concerns. Important for its implementation, the revised design provides a
greater variety of activities (beyond just conversing with the VH) to engage visitors in
hands-on and in-depth learning about Al embodied through a VH.

Because each “station,” and the VH experience as a whole is grounded in the DIR
framework, the suite of activities work to complement each other. The hope is that this
will enable the visitor to attach understanding constructed at the individual activity level
to their working DIR model of the Virtual Human as an Al system, thus building
coherency across activities.

DIR as a Heuristic for Inspection of AI Systems. While DIR has provided an
important touchstone to support coherent learning design across a series of activities
and to help unpack a complex system-of-systems like the Virtual Human, early piloting
suggests it may also provide a useful heuristic for learners as they encounter new Al
systems. In effect, DIR represents a working, and workable, model of (artificial)
cognition [29] for Al systems. For example, in a round of piloting in which youth
moved between 2 different Al systems (each a subsystem of the VH), we saw some
evidence that youth were able to leverage encounters with one Al system to inform
their experience of the other by focusing on what each system was noticing about them
(DETECT) and how each system was using what it noticed (INTERPRET) to
categorize their behaviors (facial expressions, in this case) in meaningful ways (as
expressions). Research is ongoing to determine how best to support youth to recognize
and apply DIR as a heuristic for these and similar activities. Research will also
investigate the extent to which learners are able to apply DIR to encounters with novel
Al systems, beyond intentionally designed activities, and explore how applying the
heuristic mediates knowledge construction among learners.



4 Discussion

Guiding ongoing design iterations. The interdisciplinary team of Al developers,
researchers, and learning designers continues to make use of DIR to guide ongoing
design iterations on the VHX and its suite of activities. In particular, we are exploring
ways that UI design elements (such as visual coherency in representation of each of D,
I, and R components) and activity features (such as prompts to inspect an Al system for
DIR) can better arouse curiosity about the VHX as a case of AI—as a system that can
detect salient features of its environment, interpret those features in meaningful ways,
and respond to the user based on those interpretations.

Initial pilot testing and collaborative sense-making of pilot data has led to a number
of insights about the application of DIR to support youth understanding of Al, and has
surfaced awareness of tensions between the DIR framework and certain kinds of Al
systems. First, the design team noted that the that explainability of Al components
decreases as one moves from left to right in the DIR framework. Detection is wholly
explainable for learners. For example, it is relatively straightforward to describe the
mechanism underlying the machine learning model that detects facial keypoints from
the webcam-generated image: the Ul enables youth to see their face mapped with
keypoints that roughly correspond to “high interest” areas such as the corners of the
mouth, which rise and fall with expressions. The explainability of Interpretation varies
across different VH model components. For example, we have explored different
models for interpreting visitors’ facial expressions ranging from rule-based (i.e., based
on calculations of facial action units derived from facial keypoints) to black-boxed
neural net models. While rule-based systems are easier to explain, they no longer reflect
the cutting-edge of Al in many cases. The response dimension of the framework is most
opaque. The nonverbal VH responses — arguably the ones that make the VH so
innovative with respect to naturalistic human interaction — are backchannel behaviors
generated by neural networks. The behaviors are apparent from the software
configuration file (e.g., head nod, smile), but it is far from clear what determines the
backchannel behaviors. These observations bring up interesting connections to
explainable Al, and highlight a challenge of “getting under the hood” of advanced Al
systems: when an Al model is more explainable, it is also easier for a learner to make
sense of the Al capabilities driving the model. At the same time, many state-of-the-art
Al models involve opaque Al functionality, and therefore may require additional
scaffolding to make them more explainable and understandable to learners. With this
challenge in mind, future piloting will explore ways to support visitors in developing a
working “theory of cognition” for the VH through the DIR schema that can account for
these more opaque systems.

Limitations. This paper reflects emerging insights from initial testing with a series of
Al learning activities related to a Virtual Human system. Our analysis of these data has
been exploratory, and our findings are tentative. As we continue to develop learning
experiences and conduct research to study them, we are attuned to possible limitations
of DIR as a framework. One concern we are examining is that while the DIR model can
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be applied to support a basic understanding of a wide variety of Al systems, it may risk
introducing an artificial step for some Al approaches, such as neural nets. Specifically,
as alluded to above, these more opaque systems, in essence, collapse the
“Interpretation” and “Response” steps and apply algorithms to input data and provide
aresponse directly. In such systems, there is no system-specific need to parse input data
into meaningful (to a human) chunks prior to determining a response. In such cases,
DIR may risk introducing misconceptions, such as a problematic anthropomorphizing
of Al as something that needs to make human-like sense of the world in order to operate.
At the same time, this potential challenge intersects in important ways with recent calls
to improve the explainability of Al, work that can involve reverse engineering opaque
algorithms to determine a set of human-comprehensible rules that tie inputs to outputs.
It may be that the explainability of an Al system is a requirement for DIR to be a useful
framework to support learning.

Directions for future research. As a project in its early phases, we continue to iterate
on designed experiences and conduct research to examine the usefulness of DIR as a
framework to ground learning design and support learner consolidation of ideas. Thus
far, we have found DIR to be a useful framework to ground our learning design work,
but considerable work is need to empirically evaluate its affordances and constraints
for fostering understanding of Al systems among young children. At the same time, we
seek to investigate the applicability of DIR to Al systems beyond the Virtual Human:
is it broad enough to support the design of learning experiences for a range of Al
systems and across a range of experience levels, while being specific enough to provide
traction for advancing understanding of each one. These dual attributes of DIR—
applicability across a range of Al systems and extensibility as expertise develops—also
create opportunities to explore its usefulness in the design of interdisciplinary learning
experiences. One could imagine, for example, how a team of students in computer
science, robotics, engineering, science, and psychology could apply their developing
expertise to the design and development of a complex Al system like the VH. Future
research, then, could explore how a framework like DIR might serve as a boundary
object to facilitate communication and coordinate work across disciplines.

5 Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grant No. 2116109. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

6 References

1. McKinsey Global Institute (2017). A Future That Works: Automation, Employment, and
Productivity.



10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

11

. Office of Science and Technology Policy, White House (2018) Summary of the 2018 White

House Summit on Artificial Intelligence for American Industry.

. Gardner-McCune, C., Touretzky, D., Martin, F., & Sechorn, D. (2019). Al for K-12: Making

Room for Al in K-12 CS Curricula. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (pp. 1244-1244). ACM.

Goertzel, B. (2007). Artificial general intelligence (Vol. 2). C. Pennachin (Ed.). New York:
Springer.

. Roffel, S., & Evans, 1. (2018) The biggest misconceptions about Al: the experts’ view.

Retrieve from https://www.elsevier.com/connect/the-biggest-misconceptions-about-ai-the-
experts-view

Ritter, Caroline. "User-based barriers to the adoption of artificial intelligence in healthcare."
PhD diss., Capella University, 2019.

Greenwald, Eric, Maxyn Leitner, and Ning Wang. "Learning Artificial Intelligence: Insights
into How Youth Encounter and Build Understanding of Al Concepts." In Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 17, pp. 15526-15533. 2021.
EmpowStudios (2019). Learn and Design Artificial Intelligence, with Ethics in Mind: One-
week workshop taught in collaboration with MIT Media Lab. Retrieved from:
https://empow.me/ai-ethics-summer-program-mit

. Bybee, Rodger W., and Bruce Fuchs. "Preparing the 21st century workforce: A new reform

in science and technology education." (2006).

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited,.

Stratou, G., Morency, L. P., DeVault, D., Hartholt, A., Fast, E., Lhommet, M., Lucas, G.,
Morbini, F., Georgilia, K., Scherer, S. Gratch, J., Marsella, S., Traum, D. & Rizzo, A. (2015,
September). A demonstration of the perception system in SimSensei, a virtual human
application for healthcare interviews. In 2015 international conference on affective
computing and intelligent interaction (ACII) (pp. 787-789). IEEE.

Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. F. (2015). A
review of depression and suicide risk assessment using speech analysis. Speech
Communication, 71, 10-49.

Degottex, G., Kane, J., Drugman, T., Raitio, T., & Scherer, S. (2014, May). COVAREP—
A collaborative voice analysis repository for speech technologies. In 2014 ieee international
conference on acoustics, speech and signal processing (icassp) (pp. 960-964). IEEE.
Govind, D., & Prasanna, S. M. (2013). Expressive speech synthesis: a review. International
Journal of Speech Technology, 16(2), 237-260.

Leuski, A., & Traum, D. (2011). NPCEditor: Creating virtual human dialogue using
information retrieval techniques. Ai Magazine, 32(2), 42-56.

Pynadath, D. V., Si, M., & Marsella, S. C. (2011). Modeling theory of mind and cognitive
appraisal with decision-theoretic agents. Social emotions in nature and artifact: emotions in
human and human-computer interaction, 70-87.

Ustun, V., & Rosenbloom, P. S. (2016). Towards Truly Autonomous Synthetic Characters
with the Sigma Cognitive Architecture. In Integrating Cognitive Architectures into Virtual
Character Design (pp. 213-237). IGI Global.

Gratch, J., & Marsella, S. (2005). Evaluating a computational model of
emotion. Autonomous Agents and Multi-Agent Systems, 11(1), 23-43.

. Morency, L. P. (2014). The role of context in affective behavior understanding. Social

Emotions in Nature and Artifact, 2.
Office of Science and Technology Policy, White House (2018) Summary of the 2018 White
House Summit on Artificial Intelligence for American Industry.



12

21.

22.

23.

24.

25.

26.

27.

28.

29.

Lee, J., & Marsella, S. (2006, August). Nonverbal behavior generator for embodied
conversational agents. In International Workshop on Intelligent Virtual Agents (pp. 243-
255). Springer, Berlin, Heidelberg.

Lhommet, M., Xu, Y., & Marsella, S. (2015, March). Cerebella: automatic generation of
nonverbal behavior for virtual humans. In Twenty-Ninth AAAI Conference on Artificial
Intelligence.

Swartout, W. R., Gratch, J., Hill Jr, R. W., Hovy, E., Marsella, S., Rickel, J., & Traum, D.
(2006). Toward virtual humans. Al Magazine, 27(2), 96.

Goertzel, B. (2007). Artificial general intelligence (Vol. 2). C. Pennachin (Ed.). New York:
Springer.

Al4All (2019). Learn About a Creative New Technology that Can Help the World and Have
Your Best Summer Yet. Retrieved from: http://ai-4-all.org/summer-programs/

Swartout, W., Traum, D., Artstein, R., Noren, D., Debevec, P., Bronnenkant, K, Williams.
J., Leuski, A., Narayanan, S., Piepol, D., Lane, C., Morie, J., Aggarwal, P., Liewer, M,
Chiang, J-Y, Gerten. J., Chu. S., & White, K. (2010, September). Ada and Grace: Toward
realistic and engaging virtual museum guides. In International Conference on Intelligent
Virtual Agents (pp. 286-300). Springer, Berlin, Heidelberg.

Hollister, J., Parker, S. T., Gonzalez, A. J., & DeMara, R. (2013, October). An extended
Turing test: A context based approach designed to educate youth in computing.
In International and Interdisciplinary Conference on Modeling and Using Context (pp. 213-
221). Springer, Berlin, Heidelberg.

Touretzky, David, Christina Gardner-McCune, Fred Martin, and Deborah Seechorn.
"Envisioning Al for K-12: What should every child know about AI?." In Proceedings of the
AAAI conference on artificial intelligence, vol. 33, no. 01, pp. 9795-9799. 2019.

Brown, Nathaniel JS, and Mark Wilson. "A model of cognition: The missing cornerstone of
assessment." Educational Psychology Review 23, no. 2 (2011): 221-234.



	1 Introduction: The Need for Pre-College AI Learning Experiences
	2 Detect-Interpret-Respond: A Framework to Guide Instructional Design for AI Learning
	A Flexible Framework for a Variety of AI Systems. While a Virtual Human offers a rich context for demonstrating cutting-edge AI capabilities, it has yet to be implemented as an object of inquiry to support AI learning for young children. Our work, sup...
	An Extensible Model for Increasingly Sophisticated Understanding of AI Systems. In addition to allowing for flexibility in its application across a variety of AI systems, DIR offers promise as an extensible mental model to ground a learner’s increasin...

	3 Experience Report: Applying DIR to the Design of a Virtual Human Learning Experience
	Helping Youth Get Purchase on Understanding AI as a System. The learning design task entailed taking an existing AI technology (the Virtual Human) and positioning it as an artifact that learners, ages 5-13, could engage with in an informal science mus...
	Reconciling a System of Systems for Learners. The DIR framework positions the different AI components in relation to each other and to the overarching VH capabilities of taking in data from the environment and processing that data to generate appropri...
	Building Coherence Across Activities. The development team first implemented a Behind-the-Scenes UI design, which includes a comprehensive display of head-tracking, facial action units tracking, facial expression recognition, speech recognition, etc. ...
	DIR as a Heuristic for Inspection of AI Systems. While DIR has provided an important touchstone to support coherent learning design across a series of activities and to help unpack a complex system-of-systems like the Virtual Human, early piloting sug...

	4 Discussion
	Limitations. This paper reflects emerging insights from initial testing with a series of AI learning activities related to a Virtual Human system. Our analysis of these data has been exploratory, and our findings are tentative. As we continue to devel...
	Directions for future research. As a project in its early phases, we continue to iterate on designed experiences and conduct research to examine the usefulness of DIR as a framework to ground learning design and support learner consolidation of ideas....

	5 Acknowledgements
	6 References

