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Abstract. In this paper, we describe our experience developing a framework for 
understanding AI systems that we use to drive the design of AI learning 
experiences for elementary-aged youth in an informal, free-choice environment. 
This framework—detect/interpret/respond (DIR)—shows promise as a flexible 
and age-adaptable model for youth to connect across learning experiences and 
work toward a coherent understanding of AI. As an application of DIR, we 
describe our experience designing and testing learning experiences related to a 
cutting-edge AI system (a Virtual Human). Insights from our initial studies 
suggest that this framework can help unify youth encounters with various AI 
systems and provide a productive schema that accommodates increasing 
complexity as youth advance in their understanding. DIR, therefore, offers a 
heuristic for sense-making and inspection of AI systems that is both accessible to 
very young children and robust enough to be useful as they mature. 
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1 Introduction: The Need for Pre-College AI Learning 
Experiences 

AI is a foundational technology that is profoundly reshaping our society, particularly 
through its power to transform the workforce [1]. AI has emerged as a tool with 
tremendous potential in STEM as well, as scientists begin to utilize it to make 
transformative improvements and discoveries in science, engineering, mathematics, 
and technology itself. It is imperative to develop a thoughtful response to this 
phenomenally transformative technology and address the need to make substantial 
investments in developing the AI workforce, not just through higher education, but 
beginning with childhood learning [2]. While a small percentage of youth will become 
the future AI developer workforce, a majority of them will utilize AI in their work, and 
all will become consumers of AI [3]. It is critical therefore to prepare future generations 
with basic knowledge of what AI is, its capability, and what impact it will have on their 
lives and career. Yet, in today’s society, there are widespread misconceptions about AI. 
In Elsevier’s interview with leading figures in AI, including Stuart Russell who co-
authored the most widely-used AI textbook for higher education, experts pointed out 
that the common misconceptions about AI roughly fall into two categories: 
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overestimating the capabilities of AI, especially artificial general intelligence [4], and 
underestimating the prevalence of AI in our daily lives [5]. A perception that AI is a 
powerful yet complex tool that is beyond the general public’s understanding could 
negatively impact the current generation of students. They may be discouraged from 
choosing career paths that require basic AI knowledge because of their lack of AI 
knowledge and low self-efficacy [6]. The lack of awareness of the prevalence of AI in 
our daily lives can also impact parents’ ability to make informed decisions about the 
ethics issues related to AI, such as data privacy, both for themselves and for their 
children. More recent studies of how youth build understanding of AI concepts [see, 
e.g., 7] suggest additional challenges such as youth encountering difficulty parsing a 
problem space in ways that enable an AI system to operate on it.  

The call to help youth learn AI is coming from practitioners as well. The AI4K12 
working group, organized by the Association for the Advancement of AI (AAAI) and 
the Computer Science Teachers Association (CSTA), has documented the demands 
from practitioners around the world for curricula and guidelines to help their youth 
learn AI [3]. This need is recognized by the National Science Foundation (NSF), from 
which there has been a surge of effort to develop research programs to make AI 
education accessible to the K-12 population. Efforts are underway to develop a national 
strategy for research and development in AI (NSTC, 2016), as well as to establish 
guidelines for K-12 AI education [8] from other organizations. This much-needed effort 
primarily focuses on community building, curriculum development, or teaching 
specific AI skills. There is yet a lack of research into education for youth on basic 
knowledge of AI, such as fundamental mechanisms, capabilities, ethics and 
implications of AI. There is particularly a gap in our understanding of how to help 
younger children learn about AI, as most of the current K-12 effort focuses on high-
school students, where AI education programs have been more well-established. 
Because students in their early years are at a critical time for developing their 
perceptions and dispositions toward STEM [see, e.g., 9], creating engaging AI learning 
experiences for youth is of paramount importance. 

2 Detect-Interpret-Respond: A Framework to Guide 
Instructional Design for AI Learning 

Context: Developing a Virtual Human. As AI is arguably the science of building 
intelligence that thinks and acts like humans [10], a virtual human provides an ideal 
vehicle to illustrate many fields of AI, including computer vision, natural language 
processing, automated reasoning, character animation, and machine learning. A virtual 
human is an embodied character that can not only see [11], hear [12; 13], and speak 
[14; 15], but also think [16; 17], feel [18; 19], and move [20; 21; 22] like real humans. 
The Integrated Virtual Human, developed through decades of collaborative effort from 
AI researchers at the Institute for Creative Technologies (ICT) at the University of 
Southern California (USC), is an exemplar of such AI technology [23]. The 
embodiment of AI through an interactive Virtual Human can make the abstract and 
mysterious “black-box” nature of AI concrete, relatable, and accessible to the general 
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public – as the public can relate to how AI is used in a virtual and artificial character to 
fulfill the same function of a real human. This is particularly important for making the 
concepts of AI accessible to younger populations. Additionally, a Virtual Human can 
also demonstrate the limitations of AI: while state-of-the-art AI excels in specific tasks, 
such as filtering spam emails, it pales in comparison with the human-level general 
intelligence [24]. In all, the Virtual Human technology introduces significant new 
possibilities for research into engaging the public in AI education in informal settings 
such as museums, engaging visitor groups across a wide range of backgrounds. 

Driven by the demand for AI education for pre-college aged youth, there has been a 
recent surge of after-school programs to engage K-12 students in hands-on experience 
to learn AI. For example, the EmpowStudio, in collaboration with the MIT Media Lab, 
has developed a week-long summer camp to help youth learn AI using personal robots 
developed by MIT [8]. The AI4All also organizes summer AI learning camps in 
collaboration with universities across the US to provide underrepresented high school 
students with hands-on learning experiences, mentored by AI practitioners at the 
participating universities [25]. In museum settings, AI is commonly used as an 
advanced technology to enhance visitor experiences, including pioneering work with 
Virtual Humans as museum guides at the Boston Museum of Science [26]. Virtual 
humans have been used in museum settings to discuss computer science and 
engineering topics with middle school students as well [27]. During the exhibit, 
installed at the Orlando Science Center, visitors were able to customize the appearance 
and text-to-speech voice of a computer avatar of Alan Turing, a pioneer in AI, to discuss 
topics such as planets, dinosaurs, natural disasters, and the science center information. 

 

 

Fig. 1. The Detect-Interpret-Respond Framework for Understanding AI Systems 

A Flexible Framework for a Variety of AI Systems. While a Virtual Human offers a 
rich context for demonstrating cutting-edge AI capabilities, it has yet to be implemented 
as an object of inquiry to support AI learning for young children. Our work, supported 
by a grant from the National Science Foundation, has been to do just that: to develop 
and study learning experiences that can foster youth inquiry into the Virtual Human as 
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an AI system. To ground our work, our team of learning designers, AI developers, and 
learning science researchers developed and have begun testing an overarching “DIR” 
framework (detect-interpret-respond) to structure experiences across the portfolio of 
activities related to the virtual human exhibit (VHX). As illustrated in Figure 1, the 
intent is for this framework to serve as a working schema for participants to attach their 
building understanding of AI systems, as embodied in the virtual human. That is to say, 
participants will come to understand the Virtual Human as a series of interconnected 
AI subsystems that together enable the VH to detect salient objects in its environment 
(e.g., faces/mouths/eyes), interpret those features (e.g., as expressions), and respond 
to that interpretation in human-like ways (e.g., to smile back at a visitor whose detected 
expression is interpreted to be smiling). While data analysis is ongoing, early review of 
data from pilot studies have led to initial insights about the DIR framework and 
learners’ interactions along the detect-interpret-respond continuum. 

While this paper focuses on the application of the DIR framework to the design of 
learning experiences related to the Virtual Human, an important part of what makes the 
framework useful is that it is applicable to a wide range of AI systems that youth might 
encounter in their daily lives. For example, a self-driving car needs to detect road and 
traffic conditions, interpret that information in terms of the goal of getting to a particular 
place safely, and then respond to that interpretation with appropriate actions (e.g., 
applying brakes). Or, with an AI personal assistant, it must detect the user’s input (voice 
or text), interpret that as a request for a particular type of information, then respond 
with an appropriate answer to that inferred request. While we do not expect the DIR 
framework to perfectly map onto all AI systems, our hope is that it can serve as a 
flexible heuristic for initial encounters with many forms of AI so that their basic 
functionality can be explored and brought into coherence as a case of AI, thereby 
supporting learners to develop a generalizable explanatory account of how such 
systems work. 

An Extensible Model for Increasingly Sophisticated Understanding of AI Systems. 
In addition to allowing for flexibility in its application across a variety of AI systems, 
DIR offers promise as an extensible mental model to ground a learner’s increasingly 
sophisticated understanding of AI systems over time. For example, while detection can 
be reduced to the idea of a camera or microphone for very young children, it can also 
be expanded to include the computational capacity involved in converting light into 
pixels, or sound into a waveform. From this perspective, DETECT locates the notion 
of perception represented in “Big Idea #1” [28] within the context of a functioning AI 
system, providing a model for AI perception that can be built upon as a learner 
advances. It also offers a way to integrate broader notions of computational thinking 
within a learner’s emerging understanding of AI: to detect, an AI system needs to render 
the analog world in computational form. By the same token, INTERPRET can be 
expanded to include increasingly technical explication of the algorithms that enable an 
AI system to, for example, parse a waveform into language, or a visual image into 
recognizable objects. While the technical features of different machine learning 
algorithms for speech recognition, for example, are beyond the learning goals for early-
elementary children, the more basic notion that an AI system needs to solve the problem 
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of recognizing speech—parsing sounds into words—offers a foundation upon which 
the more technical knowledge can eventually be built. Similarly, RESPONSE can be 
expanded to include the algorithms or policies that determine whether a particular 
action should be taken in a given circumstance and/or the mechanics of how that 
response takes place (e.g., syncing voiced language to animated facial movements). 

3 Experience Report: Applying DIR to the Design of a 
Virtual Human Learning Experience 

Methods. This report is based on a series of small-scale pilots of activities related to 
(and including) the Virtual Human. The pilots support the ongoing iterative design of a 
museum-based learning experience centered around an interactive Virtual Human as an 
exemplar of AI technologies. Two critical considerations for the eventual experience 
are: 1) that it can succeed in a free-choice environment, like a public museum, where 
learners can choose, or not, to approach the exhibit, and decide how long to dwell within 
it; and 2) that it can succeed with the typical visitors to the museum: early elementary 
youth and their adult caregivers. 

Insights about the promise of the DIR model are drawn from a series of cognitive 
interviews conducted with 26 children from ages 6-13. Interviews participants were 
asked to think aloud as they interact with the activities in order to understand how youth 
of this age make sense of AI and how these activities can be made engaging and 
interesting to youth in a free-choice environment. The cognitive interviews employed 
a semi-structured protocol, with a series of prompts to elicit student thinking as they: 
a) initially encountered each activity; b) attempted to engage with the activity (e.g., “I 
see that you [did X], tell me about your thinking; and, how did you decide to do X?”); 
and c) after they had completed the activity (e.g., “how do you think this AI worked?”). 
In-the-moment scaffolding was provided during interviews to: a) enable students to 
reveal thinking across each phase of the activity; b) surface and test emerging ideas 
about why a student might be stuck or lose interest; and c) disambiguate between 
superficial challenges, such as unfamiliar vocabulary or confusing UI, and more 
conceptual difficulties. Some activities were piloted with actual AI systems in their 
current state and others were conducted as Wizard-of-Oz (WOZ) style studies in which 
a human worked behind the scenes to approximate desired AI functionality. The WOZ 
studies were particularly useful to test youth sensemaking around the “Response” side 
of the DIR framework, as it enabled us to probe for the range of responses that would 
be likely to arouse youth curiosity prior to the technical development of those features.  

Helping Youth Get Purchase on Understanding AI as a System. The learning design 
task entailed taking an existing AI technology (the Virtual Human) and positioning it 
as an artifact that learners, ages 5-13, could engage with in an informal science museum 
setting in order to build their understanding of AI. Before putting this technology in 
front of visitors, we did an audit to better understand what AI technologies were at work 
within the system so that we could create surrounds that may better position learners to 
build their understanding of those specific technologies. 
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Through identifying how the subsystems worked in a coordinated manner to enable 
the full AI system, we recognized that some of the subcomponents hung together in 
terms of their function relative to the larger AI system. Thus, we derived three 
categories: Detection, Interpretation, and Response (See Figure 2). Detection 
components function to detect the human who was interacting with the AI system. 
Specifically, the VH uses cameras and microphones to take in visual and audio data. 
From this data, the AI system can do a number of detections: your face, your body, 
whether you are speaking, and more. Each of these Detection components feeds into 
the Interpretation components. The Interpretation components, in turn, function to 
“make sense” of what has been detected. While an AI does not make sense of human 
actions in the same ways that humans do, they can be designed to functionally appear 
to do so. Notably, the AI system we were using has the ability to categorize a facial 
expression as: Angry, Sad, Happy, Disgusted, Surprised, or Neutral. Similarly, body 
posture in conjunction with head position can be used to infer whether the learner is 
paying attention or not, and so on. The interpretation components then feed into the 
Response components of the AI system. The Response components function to provide 
feedback to the learner based on the outcome of the Interpretation components. Our AI 
system was designed as a Virtual Human, that is, an AI controlled avatar that is 
supposed to be human-like in its responses to humans: this includes text-to-speech 
behaviors as well as human body animations and gestures. The Virtual Human we were 
working with had a number of responses it could make based on the outcome of the 
Interpretation components; as one example, if the Virtual Human interpreted your facial 
expression as a smile, and interpreted that you were paying attention with your body 
position, it would smile back at you. 

 
Fig. 2. VH represents an AI system built from integrated subsystems. 

Reconciling a System of Systems for Learners. The DIR framework positions the 
different AI components in relation to each other and to the overarching VH capabilities 
of taking in data from the environment and processing that data to generate appropriate 
responses. As illustrated in Figure 2, the VH can be conceived of as an interconnected 
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set of AI components that work in concert to activate different functionalities. Some of 
these components serve to detect specific types of data from the surrounding 
environment; some components are focused on processing the data for interpretation; 
and some components on determining the appropriate VH response based on the 
interpreted data. This framework can help demystify AI systems for learners by 
decomposing the complex set of functionalities that comprise the VH into component 
parts focused on detection, interpretation, and response determination & execution. 
These capabilities share some commonalities with the ways in which humans (often 
unconsciously) make sense of their environment in their interactions with other 
humans. In this way, the DIR model offers an avenue for learners to relate to VH as 
just that - a virtual human programmed to interact with other humans in naturalistic 
ways. 

 
Fig. 3. Examples of activities designed to break down the complexity of the VH. 

Building Coherence Across Activities. The development team first implemented a 
Behind-the-Scenes UI design, which includes a comprehensive display of head-
tracking, facial action units tracking, facial expression recognition, speech recognition, 
etc. The learning design team reviewed the UI and pointed out that such design may be 
too complex for young learners in a museum setting, presenting cognitive load 
challenges that could hinder engagement in a free-choice museum environment and 
thus limit learning about the different AI components that comprise the VH. Instead, 
the team has begun creating a series of breakout activities, each focusing on a 
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component of the AI technologies embodied in the main VH exhibit. The conceptual 
design of the exhibit is to have a central VH exhibit (imagined as a pair of visitors, one 
interacting with VH and a second viewing the comprehensive Behind-the-Scenes UI), 
and a number of “stations” surrounding the central VH, that visitors can interact with. 
Figure 3 provides an illustra- tion of two of these activities: the first activity, Expression 
Detection, activity supports the connection between DETECT and INTERPRET and 
enables the interactant to play with how an AI system can recognize salient facial 
features (technically, action units) to classify a particular combination of features as 
happy, sad, surprised, etc.; the second activity, Teach Me Silly, is designed to suport 
deeper engage- ment with the INTERPRET functionality of AI and enables the 
interactant to use an AI classifier to teach the AI to recognize the interactant’s 
expression of a “silly face.” This revised exhibit design can better engage visitors in 
active learning (hands-on with breakout learning activities at the surrounding stations 
instead of passively viewing the Behind-the-Scenes UI on a big screen). It also greatly 
increases the number of visitors the exhibit can engage at the same time, addressing 
throughput concerns. Important for its implementation, the revised design provides a 
greater variety of activities (beyond just conversing with the VH) to engage visitors in 
hands-on and in-depth learning about AI embodied through a VH.  
 Because each “station,” and the VH experience as a whole is grounded in the DIR 
framework, the suite of activities work to complement each other. The hope is that this 
will enable the visitor to attach understanding constructed at the individual activity level 
to their working DIR model of the Virtual Human as an AI system, thus building 
coherency across activities.  

DIR as a Heuristic for Inspection of AI Systems. While DIR has provided an 
important touchstone to support coherent learning design across a series of activities 
and to help unpack a complex system-of-systems like the Virtual Human, early piloting 
suggests it may also provide a useful heuristic for learners as they encounter new AI 
systems. In effect, DIR represents a working, and workable, model of (artificial) 
cognition [29] for AI systems. For example, in a round of piloting in which youth 
moved between 2 different AI systems (each a subsystem of the VH), we saw some 
evidence that youth were able to leverage encounters with one AI system to inform 
their experience of the other by focusing on what each system was noticing about them 
(DETECT) and how each system was using what it noticed (INTERPRET) to 
categorize their behaviors (facial expressions, in this case) in meaningful ways (as 
expressions). Research is ongoing to determine how best to support youth to recognize 
and apply DIR as a heuristic for these and similar activities. Research will also 
investigate the extent to which learners are able to apply DIR to encounters with novel 
AI systems, beyond intentionally designed activities, and explore how applying the 
heuristic mediates knowledge construction among learners. 
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4 Discussion 

Guiding ongoing design iterations. The interdisciplinary team of AI developers, 
researchers, and learning designers continues to make use of DIR to guide ongoing 
design iterations on the VHX and its suite of activities. In particular, we are exploring 
ways that UI design elements (such as visual coherency in representation of each of D, 
I, and R components) and activity features (such as prompts to inspect an AI system for 
DIR) can better arouse curiosity about the VHX as a case of AI—as a system that can 
detect salient features of its environment, interpret those features in meaningful ways, 
and respond to the user based on those interpretations. 

Initial pilot testing and collaborative sense-making of pilot data has led to a number 
of insights about the application of DIR to support youth understanding of AI, and has 
surfaced awareness of tensions between the DIR framework and certain kinds of AI 
systems. First, the design team noted that the that explainability of AI components 
decreases as one moves from left to right in the DIR framework. Detection is wholly 
explainable for learners. For example, it is relatively straightforward to describe the 
mechanism underlying the machine learning model that detects facial keypoints from 
the webcam-generated image: the UI enables youth to see their face mapped with 
keypoints that roughly correspond to “high interest” areas such as the corners of the 
mouth, which rise and fall with expressions. The explainability of Interpretation varies 
across different VH model components. For example, we have explored different 
models for interpreting visitors’ facial expressions ranging from rule-based (i.e., based 
on calculations of facial action units derived from facial keypoints) to black-boxed 
neural net models. While rule-based systems are easier to explain, they no longer reflect 
the cutting-edge of AI in many cases. The response dimension of the framework is most 
opaque. The nonverbal VH responses — arguably the ones that make the VH so 
innovative with respect to naturalistic human interaction — are backchannel behaviors 
generated by neural networks. The behaviors are apparent from the software 
configuration file (e.g., head nod, smile), but it is far from clear what determines the 
backchannel behaviors. These observations bring up interesting connections to 
explainable AI, and highlight a challenge of “getting under the hood” of advanced AI 
systems: when an AI model is more explainable, it is also easier for a learner to make 
sense of the AI capabilities driving the model. At the same time, many state-of-the-art 
AI models involve opaque AI functionality, and therefore may require additional 
scaffolding to make them more explainable and understandable to learners. With this 
challenge in mind, future piloting will explore ways to support visitors in developing a 
working “theory of cognition” for the VH through the DIR schema that can account for 
these more opaque systems. 

Limitations. This paper reflects emerging insights from initial testing with a series of 
AI learning activities related to a Virtual Human system. Our analysis of these data has 
been exploratory, and our findings are tentative. As we continue to develop learning 
experiences and conduct research to study them, we are attuned to possible limitations 
of DIR as a framework. One concern we are examining is that while the DIR model can 
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be applied to support a basic understanding of a wide variety of AI systems, it may risk 
introducing an artificial step for some AI approaches, such as neural nets. Specifically, 
as alluded to above, these more opaque systems, in essence, collapse the 
“Interpretation” and “Response” steps and apply algorithms to input data and provide 
a response directly. In such systems, there is no system-specific need to parse input data 
into meaningful (to a human) chunks prior to determining a response. In such cases, 
DIR may risk introducing misconceptions, such as a problematic anthropomorphizing 
of AI as something that needs to make human-like sense of the world in order to operate. 
At the same time, this potential challenge intersects in important ways with recent calls 
to improve the explainability of AI, work that can involve reverse engineering opaque 
algorithms to determine a set of human-comprehensible rules that tie inputs to outputs. 
It may be that the explainability of an AI system is a requirement for DIR to be a useful 
framework to support learning. 

Directions for future research. As a project in its early phases, we continue to iterate 
on designed experiences and conduct research to examine the usefulness of DIR as a 
framework to ground learning design and support learner consolidation of ideas. Thus 
far, we have found DIR to be a useful framework to ground our learning design work, 
but considerable work is need to empirically evaluate its affordances and constraints 
for fostering understanding of AI systems among young children. At the same time, we 
seek to investigate the applicability of DIR to AI systems beyond the Virtual Human: 
is it broad enough to support the design of learning experiences for a range of AI 
systems and across a range of experience levels, while being specific enough to provide 
traction for advancing understanding of each one. These dual attributes of DIR— 
applicability across a range of AI systems and extensibility as expertise develops—also 
create opportunities to explore its usefulness in the design of interdisciplinary learning 
experiences. One could imagine, for example, how a team of students in computer 
science, robotics, engineering, science, and psychology could apply their developing 
expertise to the design and development of a complex AI system like the VH. Future 
research, then, could explore how a framework like DIR might serve as a boundary 
object to facilitate communication and coordinate work across disciplines. 
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