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Abstract

The field of quickest change detection (QCD) concerns design and analysis of algorithms to estimate
in real time the time at which an important event takes place, and identify properties of the post-change
behavior.

It is shown in this paper that approaches based on reinforcement learning (RL) can be adapted based
on any “surrogate information state” that is adapted to the observations. Hence we are left to choose
both the surrogate information state process and the algorithm. For the former, it is argued that there
are many choices available, based on a rich theory of asymptotic statistics for QCD. Two approaches to
RL design are considered:

(a) Stochastic gradient descent based on an actor-critic formulation. Theory is largely complete
for this approach: the algorithm is unbiased, and will converge to a local minimum. However,
it is shown that variance of stochastic gradients can be very large, necessitating the need for
commensurately long run times.

(b) Q-learning algorithms based on a version of the projected Bellman equation. It is shown that the
algorithm is stable, in the sense of bounded sample paths, and that a solution to the projected
Bellman equation exists under mild conditions.

Numerical experiments illustrate these findings, and provide a roadmap for algorithm design in more
general settings.

*ASC and SPM are with the University of Florida, Gainesville, FL 32611 Financial support from ARO award
W911NF2010055 and NSF award CCF 2306023 is gratefully acknowledged.
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1 Introduction

The goal of the research surveyed in this paper is to create algorithms for quickest change detection (QCD),
for applications in which statistics are only partially known, particularly after the change has occurred.
While the authors were initially motivated by applications in power systems, the setting here is entirely
general. Examples of events that we wish to detect include human or robotic intruders, computer attack,
faults in a power system, and onset of heart attack for a patient [11, 12].

The standard QCD model includes a sequence of observations {Yj : & > 0}, assumed here to evolve as
a real-valued stochastic process. The statistics of these observations change at a time denoted T, > 0. The
goal is to construct an estimate of the change time, denoted s, that is adapted to the observations. That
is, for each k we may write 1{ts < k} = s(Y{) for some Borel-measurable mapping s;: Rt — {0,1}.
The estimate must balance two costs: 1. Delay, which is expressed (Ts — T,)4 :=max(0,Ts — Ta), and 2. false
alarm, meaning that Ts — T, < 0.

There are two general models that lead to practical solutions: Bayesian and minimax approaches. Typical
measures of performance for the former approach are based on mean detection delay MDD and probability
of false alarm pes:

MDD = E[(Ts — Ta)+] and pep = P{1s < Ta}. (1)

The focus of this paper is on the Bayesian approach, based on a partially observed Markov Decision
Process (POMDP). See Section 2.1 for canonical examples.

Successful approaches to algorithm design are typically based on the construction of a real-valued stochas-
tic process {X,} that plays a role similar to the celebrated information state of POMDP theory, and a
threshold policy is adopted: for a pre-assigned threshold H > 0, the stopping rule is

T, = min{n > 0: &, > H}. (2)
Two famous examples are defined recursively: with Xy = 0,

1. Shiryaev—Roberts: Xpi1 = exp (Ln+1) [Xn + 1] (3a)
2. CUSUM: X1 = max{0, Xy + Lpyr } (3b)

in which L, = L(Y;,) is a log-likelihood ratio for the conditional i.i.d. settings in which these models are
typically posed (see Section 2). In particular, the CUSUM statistic evolves as a reflected random walk
(RRW) with negative drift for 0 < n < T,.

Analysis of the threshold policy (2) is typically posed in an asymptotic setting, considering a sequence
of models with threshold H tending to infinity. Approximate optimality results for either statistic may be
found in [15, 17]. See [18, 24] for further history.

Contributions This paper develops theory for QCD in a Bayesian setting, and demonstrates how the
solution structure lends itself to RL design. One theme is the application of observation-driven statistics
such as (3b) to form a “surrogate” information state for policy synthesis.

e Performance of the CUSUM test is approximated in the asymptotic setting in which there is a strong
penalty for false alarm. It is argued that the conclusions hold in far greater generality than the conditional
i.i.d. setting posed, which justifies the control architectures proposed for RL design. In particular:

> An actor-critic approach is introduced and shown to be consistent under mild conditions (see Prop. 3.2).
> A Q-learning algorithm is introduced and shown to be stable provided the input used for training is
sufficiently optimistic [14].

e The theory is illustrated with many experiments, comparing resulting policies with common heuristics as
well as the true optimal. Among the findings are

> Stability for the scalar gain algorithm requires extremely high level of optimism, resulting in poor numerical
performance. A version of Zap Q-learning is far more reliable.

> The resulting policies performed well using a basis obtained via binning, and a linear function class inspired
by results obtained via binning.



Literature See [11, 12] for excellent recent surveys on QCD theory. Much of this theory is cast in a minimax
rather than Bayesian setting. Numerical techniques to solve the QCD problem in the Bayesian setting may
be found in [27].

The analysis in Section 2.2 is cast in the conditionally i.i.d. model of [19]. Extension to a conditionally
Markov model or hidden Markov model is possible by adapting techniques from the recent work [26, 25];
while cast in an adversarial setting, many approximations remain valuable in the Bayesian setting adopted
here.

Stability theory of Q-learning for optimal stopping was resolved in [21]; conditions for consistency are
similar to those for the simpler TD-learning algorithm. However, the specific algorithm considered required
that the cost function be fully observed. This is why Q-learning is re-considered in the present article.

In this prior work it is recognized that the state is inherently partially observed. In [21] along with many
papers in the RL literature, a a truncated history of observations is adopted as a surrogate information state,
Xt = (Yi;- -+ 3 Yiem), with m > 1. An innovations process obtained from the Kalman filter is used to define
{X}:} in applications to power systems [9]. General theory surrounding the approximation of the information
state may be found in [20] (along with substantial history).

There is a long history of application of techniques from reinforcement learning (RL) to approximate
the solution to the optimal stopping problem. The first stability analysis of Q-learning with linear function
approximation appeared in [21], which inspired significant research such as [10, 3]. The algorithms conceived
in this prior work are not applicable in the applications considered in this paper because the cost (or rewards)
is assumed to be fully observed. The RL algorithms introduced in this paper are more complex, and have a
weaker supporting stability theory, precisely because this assumption is violated.

Organization Section 2 provides background on the standard Bayesian QCD problem as well as an alternate
cost criterion for which approximations are formulated. Section 3 includes formulations of two RL approaches
to optimal stopping. The paper then turns to design and experimental findings of Q-learning applied to our
Bayesian QCD problem in Section 4. Section 5 provides concluding thoughts and directions for future work.

2 Bayesian QCD

This section contains background on approaches to modeling and algorithm design for QCD. We begin with
a canonical Bayesian model, cast as a POMDP.

2.1 POMDP model

In this model both the change time and the observations are deterministic functions of a time-homogeneous
Markov chain @, evolving on a state space X. It is assumed that Y = h(®x), k > 0, for a function h: X =Y
(measurable in an appropriate sense). Assume moreover that there is a decomposition X = XqUXj, for which
X1 is absorbing: @y, € X; for all k > 0 if &g € X;. The change time is defined by T, = min{k > 0: &} € X;}.

We arrive at a POMDP with input Uy, € U = {0, 1}, and 75 defined as the first value of k such that Uy, = 1.
The control problems of interest are optimal stopping problems: For any cost functions c,,ce: X — R, we
wish to minimize over all inputs adapted to the observations,

Ts—1

J(®o, US) = E[ 3 co(@r) + ca(®ey) (4)
k=0

Consistent with the standard QCD framework is ¢,(2) = 1{z € X1} and ce(2) = k1{z € X} with £ > 0, so
that J(®g, US®) = MDD + &pgs (recall (1)).

The structure of an optimal solution can be expressed as state feedback with suitable choice of state
process. We use the term information state, denoted {Xy : k > 0}. This is defined as a sufficient statistic
for optimal control, in the sense that an optimal solution is expressed as “information state feedback”,
U = ¢*(X). The canonical example is {&;} = {TT}, the sequence of conditional distributions (often
called the belief state) [5, 8]. This structure leads to a practical solution when X is finite, with K elements,
so that TT;, evolves on the K-dimensional simplex S¥, and ¢*: S¥ — U is measurable.



Shiryaev’s model The POMDP model is a generalization of Shiryaev’s conditional i.i.d. model, in which
observations are expressed
Vi = XPlier, + Xp1ion, k>0, (5)

with X° and X! i.i.d. and mutually independent stochastic processes; the change time T, is independent of
XY X', and has a geometric distribution. Under these strong assumptions, the real-valued process {pr =
P{ta < k| YJ}: k> 0} serves as an information state, and an optimal test is of the form U} = 1{p, > H}
for some threshold H > 0 (see [19] and the tutorial [23]).

The observation model (5) is valuable in analysis of common heuristics. Suppose that the marginal
distributions of {X}, X}} have densities on R, denoted fo, f1, and denote L(y) = log(f1(y)/fo(y))—the log
likelihood ratio (LLR). Crucial for analysis of either of the algorithms (3) is that L has positive mean under
f1 and negative mean under f.

It is known that either of the algorithms (3) is approximately optimal for Shiryaev’s model, for large
and large mean change time E[t,] [24].

Alternative to the standard cost criterion The standard cost criterion is MDD + kpg, is sensible in
Shiryaev’s model in which the change time is independent of {X?, X} : k > 0}. In the general POMDP
model there may be evidence that a change is imminent; in such cases, a (common sense) good decision rule
might make an early declaration of change. These decision rules might be far from optimal under the usual
cost criterion since it is insensitive to the value of eagerness, defined as (ts — T,)— := max(0, —[ts — Ta]). In
this paper we consider the mean detection eagerness MDE = E[(Ts—T,)_] in the cost criterion MDD + kMDE,
leading to what we believe is a more reasonable objective,

J(®0,Us®) = E[(Ts — Ta) 4 + £(Ts — Ta) -] (6)
This may be placed in the POMDP standard form (4), with

co(z) = 1{z € X1}, ce(2) = KE[Ta | Pg = 2] (7)

2.2 Asymptotic statistics

The remainder of this section concerns CUSUM test. Analysis is restricted to Shiryaev’s model (5) under
the standard independence assumptions on {X}, X}, T,}. It is assumed that the marginal densities f; and
f1 exist, and that the LLR L = log(f1/fo) exists is integrable with respect to either f; or fy.

Our interest is approximating the performance of the CUSUM test, and also approximating the optimal
threshold for a given value of k. The analysis allows for two significant relaxations:

1. We consider L,, = F(Y,,) for a Borel measurable function F': Y — R, not necessarily the LLR. Letting
m; = [ F(y) fi(y)dy for i = 0,1, it is assumed that mo < 0 and m; > 0. Hence the RRW (3b) is a positive
recurrent Markov chain if T, = oo.

2. The strong distributional assumption on the change time is replaced by a regularity condition:

Regular geometric tail: for some p, < o0,

1
lim —logP{t, >n}=—
Jim Z logP{T, > n) = —o, ®)
We allow for g, = 0, in which case our conclusions are similar to what is expected in the minimax setting.
The regularity assumption obviously holds in Shiryaev’s model, in which case g, > 0 is the parameter in
the geometric distribution. We obtain g, > 0 in the POMDP model under mild assumptions. The proof of
Lemma 2.1 may be found in the Appendix.

Lemma 2.1 Consider the POMDP model with X finite, P{t, = oo} = 0, yet P{t, > N} > 0 for each N > 0
and g € X;. Then (8) holds for some o0, > 0.

The cost of delay is easily approximated for this model: After a change has occurred, the most likely
path is linear with slope m; > 0. For a threshold H >> 1, the delay (Ts — Ta)+ is overwhelmingly likely to be
close to H/mj.



Approximation of the mean of (Ts — T,)_ is based on well-established large deviations theory for RRWs.
The main results of this theory require that the log moment generating functions A;(6):=log [ exp(0z) f;(z) dz,
i =0, 1, be finite over a suitable range of § € R.

Denote by J(H, k) the value of the expectation (6) using CUSUM with threshold H > 0. Approximations
for this cost, minimized over H, and the optimal threshold are denoted,
= [+ H ()]

_ 1 _
H: (k) = o log(km10%), Ji(k) = o
+

} m
Proposition 2.2 Suppose the following conditions hold: 1) the limit (8) holds with o, € [0,00), 2) Ay has

two distinct roots {0,0%}, a unique solution 0% > 0* to Ao(0%) = 0a, and Ag is finite-valued in a neighborhood
of [0,0%], 8) Ay is finite-valued in a neighborhood of the origin. Then,

J(H, k) = H[1/m1 + o(1)] + kexp(=H[07] + o(1)]) (9a)

in which o(1) — 0 as H — oo fori =1,2. Consequently,

arg}IInin J(H, k) = H: (k) + o(log(k)) (9b)
min J(H, k) = J, (k) + o(log(x)) (9c)

Approximations for two choices of F' are shown in Fig. 1 compared to estimates obtained through Monte
Carlo. Details can be found in Section 4.

12 r 80 r

Threshold Approximations Cost Approximations
10l 70
60
8 L
50
6 L
407 Laplace Mismatch
4l Laplace Mismatch MC
30 - —— Gaussian LLR
— — - Gaussian LLR MC
2 : : : : : 20 : : : : :
0 20 40 4 60 80 100 0 20 40 4 60 80 100

Figure 1: Approximations Hy(x) and Jo (k).

3 Reinforcement Learning and QCD

In the few examples we have considered we have found that the approximations in Prop. 2.2 are highly
accurate. In non-ideal settings the proposition is valuable in the construction of RL algorithms. We pro-
vide algorithms, and full justification in some cases. Algorithm design and analysis is set in the POMDP
(Bayesian) setting, with cost criterion (6).

Assumed given is a surrogate belief state: a stochastic process {X} : k > 0}, evolving on a closed subset
of Euclidean space S, and which is adapted to the observations Vi = o{Yo,...,Yr}. We do not require
that X} is in any sense an approximation of an information state. In particular, the numerical experiments
largely focus on the CUSUM statistic (3b).

We first consider a version of the actor-critic method, followed by approaches to Q-learning.



s[ (a) Variance Estimates 107 (b) Gradient Estimates 70 (c) Objective and Estimate

10

— Estimate of X¢ _ %F(@) 50

| A~ —1()
301 A f(@ )

‘ R ‘ ‘
0 9* 5 10 0 9* 5 10 0 9* 5 10 60

Figure 2: Statistics of the gradient estimate as a function of 6, based on the Actor Critic method: (a)
Empirical variance of the gradient estimates. (b) Gradient estimates using N = 10* episodes. (c) Objective
and its approximation obtained from integrating the gradient estimate.

Actor-critic method Assumed given is a collection of randomized stationary policies {50 : 0 € R4}, For
each 6 the statistics of the decision rule is defined for each k via

PlUy=u|YpXs =2t =0¢"u|2z), uelU, z€$S

We fix an initial distribution v for the Markov chain ¥, and denote ug(&,u) = v(€)$?(u | ) for &€ =
(¢;2) € X x S and u € U. Our goal is to minimize

Ts

M) =€, [ (@, U)] (10)

k=0

The subscript indicates that (g, Xy, Uy) ~ pg, and the superscript “0” indicates that the policy 2139 deter-
mines the input.
We consider stochastic gradient descent (SGD),

0n+1 - 971 - an+1Gnvr(n) 5 (11)

in which the stepsize a,+1 and the matrix gain G,, are design choices.
In the actor-critic algorithm the stochastic gradient Vir(n) is represented in terms of the score function,

A (@, u) = Vg logld® (u | )] (12)

defined to be zero for any values for which ¢ (u | z) = 0.
The following result follows from a long history surveyed in the Notes section of [13, Ch. 10]:

Proposition 3.1 Suppose that T and VT are continuous. Then VT (0) = EZ(9 [6r], for either of the two
options:

ﬁr = ZC((I)kaUk)Sz (13&)
k=0
9] s

or  Vr=>_ Qo(¥ Up)A], (13b)
k=0

in which A% := A%(Xy,,Ug), SE = A§+ -+ AL, and

Ts

Qo(&, u) = E [ZC(‘I’k, Ur) | Wo=¢&,Up = U] (13c)

k=0

The two representations for the stochastic gradient (13a) or (13b) lead to two algorithms for SGD without
bias. Each of those described here are episodic: data is collected over the period 0 < k < 15(n) with 6,

fixed, and the input defined using 5139".



The natural gradient descent algorithm updates the matrix gain via G,, = R-1, where ﬁo > 0 with

n )
updates obtained recursively,

ﬁn :Enfl +ﬁn[_§n71 +Rn]7 n> 17
Ts(n)

Rp= Y APIART, AR =A% (X, Uy)
k=0

with B, > a, (see [13, Ch. 10]).
The two representations for the gradients prompt two choices for the stochastic gradient. We focus here
on the first,

Vr(n) = C(‘I)k, Uk)Sz"
0

k
leaving out the extension of the standard algorithm based on TD(1) learning to estimate the Q-function [13,
Ch. 10].
The Polyak-Ruppert (PR) estimates are defined by

1 n
HPR —— ) > .
n n Z 0; n>1 (15)
i=1
Its asymptotic covariance is defined as
S = lim n E[7{677)7) (16)

When this exists and is finite, then the estimates achieve the optimal mean-square convergence rate of
O(1/n).
The following is a consequence of recent stochastic approximation theory in [2].

Proposition 3.2 Suppose that the assumptions of Prop. 3.1 hold, and in addition (i) T is coercive with
unique minimum 0* and VT is globally Lipschitz continuous. (i) A* := V2T (0*) is Hurwitz, and the steady-
state covariance R* = Cov(AY") is full rank. (iii) The stepsize sequence is o, = agn™" with 1/2 < p < 1
and ag > 0.

Then, the SGD algorithm (11) is convergent almost surely and in mean square. The PR-estimates are
also convergent in both senses.

The Central Limit Theorem (CLT) holds, as well as the limit (16), in which the asymptotic covariance

is X0 = [(R*) LAY TS (R*) LAY with $% is the steady-state covariance of (13b) using the policy 7. m

Example Consider the one-dimensional family of policies in which 6 approximates a threshold rule: for
a fixed large constant B > 0, define ¢%(u | w) = [1 + exp(Blw — 0])] L exp(Bufw — 6]), so that the score
function is »

A(u | w) = —Bu+ B’ (1 | w)
In this scalar example we can adapt the natural gradient actor critic method to estimate VT (6) for any fixed
6.

Fig. 2 shows results from a typical experiment using § = 20. Details on the simulation environment
designed to obtain these approximations are postponed to the Appendix.

Rather than demonstrate results from an application of SGD, the first two plots show estimates of the
mean and variance of the random variable in the expectation (13b) for a range of values of 6; the precise
means are Yy (0) and VT (0).

Part (¢) shows estimates of the objective function I'(8) obtained via standard Monte-Carlo, and the
estimate obtained from gradient estimates via F(G) =K+ foe VI(r) dr. It was found that the plots of I' and

T closely match the cost plots obtained from the threshold policies (2) using H = 6.

Plot (b) indicates good news: in spite of the enormous variance shown in (a), especially high for smaller
values of 6, the zero of the gradient estimate vr (9) is very close to the optimal threshold value for CUSUM.
However, the massive variance presents a challenge in running the actor-critic algorithm to estimate 6*.



Q-learning Recall the solution to the POMDP model in which the optimal policy is a function of an
information state. Consider the canonical example in which this is the belief state (the sequence of conditional
distributions), and assume that the underlying Markov chain @ evolves on a finite set so that the simplex S
is finite-dimensional.

The Q-function Q*: & x U — R is the optimal value function associated with the objective (4). To place
the equations in standard form denote c¢(z,u) = (1 — u)co(x) + uce(z) for x € X and u € {0,1} (recall (4)).
For any 3, u denote C(3,u) =) B(z)c(z,u).

The value Q*(3,u) is defined to be the minimum of Z¢ B(p)J (¢, US®) over all admissible U®, subject
to (Mo, Up) = (B, u). It satisfies the dynamic programming (DP) equation,

Q" (B,u) = C(B,u) + E[Q " (Myt1) [ Ty = B, Ux = u]

with H(8) = min{H(5,0), H(8,1)} for any function H: S x U — R.

Q-learning algorithms are based on the characterization: E[D,’; 41 | J)k] = 0 or each k and any adapted
input, with DZ—H = —Q*(ﬂ;ﬁ Uk> + ¢k +Q*(ﬂk+1) with ¢, = (1 — Uk)l{Ta < k} + KUk(Ta - k)+

This motivates typical Q-learning algorithms.

Given a parameterized family of real-valued functions {QY : §# € R?} on S x U, the goal is to solve the

projected Bellman equation: f(0*) =0 with

F(0) == E[{—Q° (X, Ur) + cx + Q° (Xi11) Y] (17)
where {(x} is a d-dimensional stochastic process adapted to the observations.
It is typical to take (x = VoQ% (X%, Uk)‘ak’ with 0 the estimate at iteration k. Theory to-date is largely

restricted to a linear function class in which Q? = 0T with ¢): S x U — R, and in this case ( = ¥(Xy, Uy).

Data required in an algorithm is based on successive runs up to time ts(n) for n > 1, which results in
the observations {7, A7, Ui, e(®F, Upl)} for 0 < k < t5(n). We suppress dependency on n by stringing
data together, so that for example

Uk = U _ryn—1) for ts(n—1) <k <ts(n) andn > 1,

with t5(0) := 0.
A version of Q-learning is expressed as the recursion

Dis1 = —Q% (X, Ur) + cr + Qek (Xrs1) (18b)

Or+1 = Ok + 1GRCe D1 k>0 (18a)

where the matrix gain sequence {Gy} is a design choice; Zap Q-learning is in some sense optimal [13]; This
matrix gain was used in [3] for applications to optimal stopping.

We cannot apply [3], based on the elegant algorithm of [21], since the resulting policy will depend on the
cost {c(Pg, Uk)} (assumed observed in this prior work).

While there is great empirical success in the history of Q-learning, to-date we only have general conditions
for stability of the algorithm, and existence of a solution to the projected Bellman equation [14]. Most crucial
is the requirement that the input used for training is an e-greedy policy (or a smoothed variant). It is shown
that, subject to a mild full rank condition for %, that for sufficiently small ¢ > 0 the algorithm (18a) is
stable in the sense of ultimate boundedness, and there exists at least one solution §* € R? to the projected
Bellman equation f(#*) = 0. Convergence remains a topic of research.

Stability of Zap Q-learning with an oblivious policy (independent of parameter) is virtually universal [4],
but this paper makes no claims of existence of 6* in this setting. It is very likely that the main result of [4]
can be extended to e-greedy policies.

4 Numerical Results

The results surveyed here consider conditionally Gaussian observations, Xy ~ N(0,0%) = fo and X} ~
N(u1,0%) = f* with 11 = 0.5 and ¢ = 1. We present findings using L = log(fl/fo) for three choices of
{70, ')



Case 1: The ideal Gaussian case, in which fo and f L are the true densities.
Case 2: fOis Laplace(0,b) and f Laplace(u1,b) with g1 = 0.5 and b = /0 /2 (matching second order
statistics).
Case 3: f0 is Cauchy(0,~) and f' Cauchy(z1,7) with #; = 0.5 and ~ chosen so that the Gaussian and
Cauchy cdfs evaluated at o = 1 are equal.
Ground truth The observations were specified by Shiryaev’s conditional i.i.d. model (5) and with T, ~
Geometric(0.02), so that we have in hand the optimal policy for comparison.
The policies of interest will be functions of the the RRW (3b). The term optimal CUSUM refers to the
test obtained with threshold He, (k) obtained via
Hey (k) = argmin{xMDE(H) + MDD(H)} (19)
H>0
where MDE(H) and MDD(H) are obtained using CUSUM with threshold H > 0. These thresholds and those
for Shiryaev’s optimal test were estimated via Monte-Carlo—details are postponed to the Appendix.
We find that optimal CUSUM is nearly optimal, even in non-asymptotic settings, for the model considered
(see Fig. 8 and discussion below).

4.1 Cost approximation

Approximations based on the analysis in Section 2.2 were obtained for g, = 0.02 (recall (8)).

For the ideal case L is the true LLR with respect to the observations, so that F(z) = L(z) = pyz — /2.
The log moment generating function is Ag(#) = m16(6 — 1). The equation g, = Ag(67) is easily inverted to
obtain 67 > 0. For the mismatched cases 0} was approximated through simulation: see Fig. 3.

%1072 Gaussian - ideal x107*  Laplace - mismatched
4 i

Ao(6) > &

0 Ol.2 Ol.4 Ol.6 0 Ol.8 1 1‘.2 0 Ol.2 Ol.4 016 O‘.8
Figure 3: Ag(@) for ideal Gaussian and Laplace mismatched detector

For each choice of F' we obtained threshold and cost approximations H’ (k) and J* (k) as defined in
Section 2. In the plots that follow, approximations are shifted:

Hy(k) = HZ, (k) — H3,(2) + Hipe(2)
Jo (k) = 5 (K) = T3 (2) + Terue(2)

where the true values are based on results for k = 2, the smallest in our selected range.

The final approximations are shown in Fig. 1, compared to ground truth estimates with 1o confidence
intervals. We find that the approximations are remarkably accurate. Compared to the ideal, the results
predict a 25% increase in cost for Case 2 and a 43% increase for Case 3 at the highest value in our experimental
range kK = 100.

4.2 Q-learning

The remainder of this section presents the design and evaluation of Q-learning for our Bayesian QCD problem.
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Basis selection Bases considered for Q-learning took the form ¢ (z,u) = (1 — u)y°(x) + u*(z). The
numerical results shown in the following used

¥0(z) = [;¢(2); 0;0; 0]
P (z) = [0;0;1; 23 ()] (20)

with ¢(z) = z exp(—z/b,) for a choice of constant b,.

This basis was designed based on preliminary experiments with a particular choice of binning: ;(x, u) =
1{x € Sj,,u = u'} for a collection of intervals {S;} and input values {u/}. Further details are provided
below.

Exploration. Recent theory recalled in Section 3 shows that exploration implies stability of the algorithm
under mild assumptions on the basis and the oblivious policy. The value of ¢ was taken to be time varying,
with a typical choice illustrated in Fig. 4: ¢, = max{es,eo+(1—n/ng)(ef—eo)}, defined so that &, = ey < &
for n > ng. The values eg = 0.75 and ey = 0.1 worked well with Zap Q-learning, whereas standard scalar
gain Q-learning required ey < 0.1 for stability.
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Figure 4: Parameter estimates using a decaying exploration schedule.

Exploration was designed to depend on x based on properties of the CUSUM statistic (3b). It is known
that a threshold H* = |logv| is optimal in the minimax setting where v is a constraint on false alarm
rate (FAR) [23]. In our Bayesian setting, we show that a similar logarithmic relationship exists between
H* and k in Prop. 2.2. We leveraged this analysis for the oblivious policy, which is described as follows:
at the start of episode i, a threshold H*"(k) was drawn uniformly at random from interval [a,, by, where
arx =nlog (k4 1 — Kmin) and b, = a, + §. Parameters § and n determine the width and rate of increase of
[ax,by] as K increases. fmin is the smallest multiplier in our range. Then, U,, = 1{X,, > H™'} for each n in
this episode. This ensured significant exploration, even when considering high dimensional bases obtained
through binning.

Numerical experiments Recall that in Q-learning any parameter § € R? defines a policy, ¢?(z) =
argmin, Q%(x,u) for z € R,. In the applications considered here this becomes

¢’ (2) = {Q"(¢,0) > Q"(x, 1)},  zcRy. (21)
In every successful application of Q-learning it was found that this policy had a threshold form
d?(x) = 1{z > H}, H’>0 (22)

Algorithm performance is investigated in the remainder of this section. For each algorithm, PR-averaging
is used to define the final estimate é, and from this a final policy (T) = ¢? whose performance is compared to
the optimal.

Recall that initial experiments involved a choice of binning, resulting in d = 2(dg — 1), with dy the
number of bins. Given the structure of the problem it was decided that the bin boundaries should be spaced
logarithmically. We assigned wider bins to capture larger values of x, which are expected to occur less
frequently given an adequate threshold policy of the form (22). However, binning proved insufficient for
obtaining thresholds close to optimal over all k, due in part to a tradeoff between the choice of bin spacing
and granularity of the linear interpolation required to obtain H?.
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Figure 5: Insights from binning led to the basis in (20)

This shortcoming is illustrated in Fig. 5, where bin spacing influences the intersection Q?(w,0) = Q%(w, 1)
and the policy (recall (21)). This inspired the “smooth” basis defined in (20) for which we observed two
advantages compared to binning: 1/ consistent improvement of H? compared to optimal over all s, and 2 /
reduced computation time.

Histograms were generated to evaluate the variance of the parameter estimates. Let & = &E(N) > N
denote the total number of samples (Xj, Uy) collected over N episodes, so that 6 = 0% is the final estimate.
The batch means method was used to estimate the asymptotic covariance of the error ézR =0% — 0%, defined
on scaling, taking expectations, and letting N — oo:

25 = Jim E£67{67)T)
This was estimated by performing M > 1 independent runs to obtain {923, £ :1<i < M}, and a histogram
of Zt = & [023 — H_PR] to estimate the variance of each entry. An example is shown in Fig. 6 for the case

Kk = 27, using M = 400 and three different values of N. Only the fourth component of the five dimensional
histogram is shown—the others are similar.
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Figure 6: Histograms of {Z% : 1 <i < M} for three values of N.

What is crucial here is that the empirical variance is nearly identical for the last two values of N chosen.
This is an example of how the CLT can be used to estimate required run lengths by first conducting a large
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Figure 7: Histograms of {HY, 0% (4) : 1 <i < M} for N = 10°
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Figure 8: Average cost comparisons.

number of independent experiments with a relatively short run length—in this example, N = 10* provides
a reasonable estimate of the variance of Z* = /& [923 — éPR] for each i and N > 10%.

We further observed a relative sensitivity between thresholds obtained through Q-learning and param-
eter estimates: thresholds Hﬁv consistently yielded smaller empirical variance than 6% for all k. Example
histograms showing the fourth parameter 6% (4) are included in Fig. 7 for M = 30 and N = 106.

Fig. 8 shows the average cost of the policy (/j\) for the ideal Gaussian case, along with what is obtained with
the optimal test and optimal CUSUM with confidence intervals of ¢/3 standard deviation. As x increases,
Q-learning quickly yields average cost close to optimal.

Mismatched cases. We consider a setting where the goal is achieving the best performance for the ideal
Gaussian case, while evaluating performance of the mismatched cases in parallel. The surrogate information
state {X,} differs between each case based on the three respective log-likelihood ratios, shown in Fig. 9.
Laplace and Cauchy are very far from the ideal.

Clues for tuning exploration parameters values 1 and é came from asymptotic analysis of our eagerness
and delay costs. The interval [a,, b,] was designed such that threshold approximations Hy (%) follow uniform
interval mean %(a,{—i—b,{) for all . Initial experiments sought to produce random thresholds H®(x) encouraging
an equal balance of eagerness and delay throughout each episode, but it was later found that a greater ratio
of eagerness yielded H? closer optimal.

A choice of large § was tried universally for each case, leading to H? far greater than their respective
CUSUM optimal threshold. Resulting average costs were highest for Case 3, followed by Case 2 and Case
1 for all x. This was consistent with cost approximations Jo(k) for each case. Another metric for success
is that the shape of the average cost curve obtained through Q-learning resembles its optimal counterpart.
This indicates flexibility in learning near-optimal policies of the form (22) over a wide range of &, as shown
in Fig. 8 for Case 1. For each case with was not yet observed until § was lowered, narrowing [a,, b;]. This
lowered the average cost across all three cases, with Case 1 improving the most. As the exploration strategy
improved to produce near-optimal average cost for Case 1, we obtain H? = o for Cases 2 and 3 for x > 11,
where Q% (w,1) > Q(w,0) for all w. These findings suggest a tight link between our choice of exploration
and the asymptotic statistics for our Bayesian QCD problem—as Q-learning for the ideal case improves, the
mismatched cases fail for higher «.

Alternatives to Zap. Associated with any stochastic approximation algorithm such as the Q-learning algo-
rithm (18a) is an ODE 49 = G(0) f(9), in which f is the mean increment of the recursion without matrix
gain. For Zap Q-learning we have G = —A~! with A(#) := —pf (9). To see if the algorithm is convergent
without a matrix gain we examine the linearization to see if the ODE is locally asymptotically stable. In all
cases it was not: some eigenvalues of A(6*) lay in the strict right half plane.

Theory in [14] predicts stability without a matrix gain, so further testing was performed to investigate
the behavior with a scalar gain, and also the popular choice G = R~! in which R(f) = E[¢rt]] (expectation
in steady-state with fixed policy ¢?). Estimates are obtained precisely through the recursion (14), with /\Z”
replaced by 9y = ¥(Xg; Ug). The scalar gain algorithm used g, = 1/trace (R,), so that G,, = g, I in (18a).

The parameter estimates were unbounded using the exploration schedule with 5 = 0.1. Theory in [14]
predicts stability with a sufficiently small value, and indeed we observed convergence with 5 = 0.001.

13
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Figure 9: Three LLRs

We consistently find that the policy is of the threshold form (22) but with H? smaller than optimal,
leading to high eagerness cost. We further observed a lack of sensitivity between H? and x compared to Zap
Q-learning. This resulted in worsening average cost for higher x, which is the regime of greatest interest in
typical applications. Very similar results are obtained using G,, = R, .

In all Zap Q-learning applications, A(#*) was non-Hurwitz even for exploration schedules with values as
small as e, = 10~%. This suggests there are solutions to the projected Bellman equation using Zap Q-learning
that could never be found using standard scalar gain algorithms.

5 Conclusions

The theory and numerical results in this paper motivate many directions for future research. For actor critic
methods it is crucial to find ways to reduce variance, perhaps through other approaches to gradient free
optimization. Within the ideal setting of Section 4, we present results closely matching the performance of
optimal CUSUM using Q-learning.

This work is intended to be a starting point for consideration of highly non-ideal settings faced in practice.
In applications of interest to us there may be well understood behavior before a change (which might represent
a fault in a transmission line, or a computer attack). We cannot expect to have a full understanding of post-
change behavior. The choice of surrogate information state must be reconsidered in these settings. We must
take into account correlation of observations before a change has occurred.

Prior work in [11] provides a roadmap for analysis of non-stationary post-change behavior. Design of
new architectures, that may be trained using techniques surveyed in this paper, might be inspired by the
rich literature on composite hypothesis testing (see [22, 7] and the references therein).
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A Appendix

Below we include proofs the asymptotic analysis of our Bayesian QCD problem, followed by simulation
details for the QCD and RL experiments.

A.1 Asymptotic statistics for Bayesian QCD

Most of this subsection is devoted to a proof of Prop. 2.2. We begin with the simpler,

Proof of Lemma 2.1 Let M denote the non-negative sub-matrix M; ; = P, ;1{j € X;}, defined only
for i,j € Xy. The assumptions on T, imply irreducibility in a weak sense: for some iy € X; we have
Y oreq Ml"lO > 0 for all i € X; and all n > 1 sufficiently large. Let (A,v) denote the Perron Frobenious
eigenvalue/eigenvector [16]. The eigenvalue A > 0 is maximal, the vector v entries that are strictly positive,
and ZjEX1 MiJ"Uj = AUZ‘ for ¢ € Xl.

The twisted transition matriz has entries Pi,j = )\*lvi_lMi,jvj : 1,7 € Xy; the finiteness assumption for
X, is imposed to ensure that P defines a Markov chain on X; that is positive recurrent. Let 7 denote its
unique invariant pmf.

Positive recurrence implies something far stronger than the limit claimed in the proposition: We have
for each 4,5 € Xy, 5

#(j) = lim PPy =v; vy lim A7"M,

where convergence holds at a geometric rate. Multiplying each side by 1/v; and summing over j gives
#(1/v) = v;t lim A\™"P{t, > n}
n— o0

where the probability is conditional on &y = i. Again, the rate of convergence is geometric, so for each i
there is a geometrically decaying sequence {e, (i)} such that

P{t, > n+1} = [7(1/v) + n (i) \"0;

Consequently, (8) holds with g, = —log(A). "

The bulk of the proof of Prop. 2.2 is based on approximating the cost of eagerness.

For each i = 0,1, the log moment generating function for f; is denoted A;(#) = log [ exp(0F (v))fi(y) dy,
0 € R, with convex dual I;(m) = supy{mb — A;(0)}, m € R. Each is a convex, possibly extended-valued
function on R.

Most significant in this analysis is the case ¢ = 0:

Lemma A.1 The log moment generating function Ay is convex. Provided it is finite in a neighborhood of
the origin, it satisfies Aj(0) = mgo < 0 and AY(0) = o3, the variance of F(Y) under fy. If there is a second
root 0* > 0, then Ag(0) < 0 on the open interval (0,6%).

The special case F =log(f1/fo) gives Ay(0) = mo = —D(follf1); 0* =1, and AH(0*) = m1 = D(f1|fo)-

For any 7 > 0, the approximation of E[(Ts — Ta)— | T. = 7] is made possible through the rich literature
on rare events for RRWs, e.g. [1, 6]: It is known that the most likely path for the random walk to hit a
high level is piecewise linear, with identifiable slope equal to m* = A{(6*). Since 0* is a second root of Ag
it easily follows that Ip(m*) = m*6*.

To make precise the term “likely path” we perform the standard temporal and spatial scaling. Suppose
that {X,,} is defined as the RRW (3b) initialized with Xy = 0, and T, = oo so that L,, = F(X})) for all k.
For a given threshold H > 0 denote by {z!” : t > 0} the continuous function defined by z\’ = H™ X}, for
t = k/H, and by piecewise linear interpolation for all other ¢ > 0. When Ty is defined using threshold H,
then 1, < TH if and only if 2" > 1 for some t < T..

For any T > 0, denote m(T") = max(1/T,m*) and eo(T) = Io(m(T))/m(T).
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Figure 10: Most likely paths: the path shown on the left is far more probable than the one shown on the
right.

Lemma A.2 Under the assumptions of Prop. 2.2 we have

1
lim —logP{ sup a}" > 1} =—eo(T), T>0.
H—oo H 0<t<T

The exponent eo(T') is minimized when T > 1/m™*.

Proof This is explained in [6, Section 6.4] through the contraction principle of large deviations theory.
A rate function on sample paths is defined by I(m,z) = Iy(m) for z > 0 and I(m,z) = 0 otherwise; the
contraction principle gives

T
lim - log P{ sup 2t > 1} - —inf/ (@4, ) dt

H—oo H 0<t<T 0
where the infimum is over all absolutely continuous paths {z; : 0 < ¢t < T} satisfying zp = 0 and
maxo<i<7 ¥ > 1. An optimal solution is known to be piecewise linear, with a single value t; € (0,7
at which xy = 1. Two possible cases are illustrated in Fig. 10.

The figure on the left hand side illustrates * when T' > 1/m*. In this case the optimal solution is not
unique: for any value 1/m* <t; < T, an optimal solution is obtained with z; = 0for 0 <t <ty =t; —1/m*,
4yy =m* >0 for tg <t <t and 2} = max(0,1+mg(t —t1) for t > ;.

If0<T <1/m* then to =0 and ¢t; = T so that &} = max(0, min(¢/T,1 + (¢ — T)my)), as shown on the
right hand side of the figure.

In either case we have by the definitions £} = m(T) for to <t < t; = to+ 1/m(T), and

/O I(a.a7) dt = [ = tolfo(m(T) = = To(m(T))

Proof of Prop. 2.2 To approximate the cost of eagerness we require approximations of P{ts < n | T, = n+k}
for any n and all k¥ > 1. Since T, is independent of {X7}, it suffices to restrict to the setting of Lemma A.2
in which T, = co. In particular, for any n > 1 let T,, = n/H. Independence combined with Lemma A.2
gives, for any k > 1,
P{ts < 2 = k} =P >1
{te<n|ta=n+k}= {Ogg);xt }
= exp ( — Hleo(Ty) + es(H, Tn)])

in which es(H,T) — 0 as H — oo, uniformly for 7" in compact sets of (0, co).
The expected eagerness is thus

El(ts —Ta)-] = Z z_: P{ts <n |t =7}P{t. =7}
= Z P{Oggx ) > 1}P{t, > n}
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We next write P{t, > n} = exp(—n[ga + ec(n)]) where ec(n) — 0 as n — co. Combining these approxima-
tions, we write the expected eagerness as

Z eXp(_H[QO(Tn) +e&s(H, T5)] — nfoa + 56(”)])
n=0
The dominant term in the exponent is Heo(7},) + noa = Hleo(T},) + T 0a], which is affine with slope g,

for T,, > 1/m*. This is illustrated in Fig. 11 in which n§ = [H/m*| with m* = A{(6*), and we will see that
the minimizer is approximately n* = |[H/m? | with m% = A((07%).

i [60 (Tn) + TnQa]H

Figure 11: Negative logarithm of eagerness cost approximation.

To minimize over T,,, we consider m = max(m*,1/T,,) as a variable, so that eq(T,,)+Tn0a = [lo(m)+0.]/m
for m > m*. This is a convex function of m, whose unique minimum is found by computing the stationary
point: 0 = [mIj(m) — [Io(m) + ga]/m?. We have Iy(m) = 0(m)m — A(f(m)) and I}(m) = 6(m), from which
it follows that % is the unique minimizer. This completes the proof of (9a).

To establish (9b) we optimize the approximation,

Joo(H, k) :=H/my + rexp(—HO})

Letting H’ (k) denote its minimizer,

1 _ _ 1
— =0 rkexp(—H} (r)0}) = HX (k) = - log(km67)
mq 0+
The approximation of ming J(H, x) in (9b) is precisely J* (). "

A.2 Details on numerical experiments

The remainder of the Appendix concerns details on the QCD numerical results.

Actor-critic method Estimates of Yy were obtained by averaging N = 107 independent episodes. The
gradient estimates Vi () were obtained using a much shorter run, with N = 10*. Two estimates of the
objective were produced with N = 10%: T'(#) using Monte-Carlo to estimate the expectation in (10) directly.

Q-learning for QCD For the ideal and mismatched cases, Monte Carlo simulations were used to estimate
MDE and MDD for optimal CUSUM and optimal Shiryaev. Parameters for the stochastic processes { X}, X} }
and T, matched those used for Q-learning. The test statistic for optimal Shiryaev is X,, = p,, = P{1. < n |
Yg'}. For both simulations, N = 2e4 sample paths were run. To evaluate eagerness and delay with respect
to T,, a range of T = 10% thresholds 0 < H < 20 was used for optimal CUSUM, and 0 < H < 1 for optimal
Shiryaev. For each H, a pair MDE(H) and MDD(H) was obtained by averaging over N runs. This repeated
for M = 200 independent runs, averaging again to obtain for each optimal test a T' x 2 matrix [MDE, MDD],
where each row corresponds to a different threshold H. Estimates of these quantities are random variables,
whose variances were found to be very small.

A range of 2 < k < 100 was generated. For each k, the matrix [MDE, MDD] was used to calculate
the average cost vector a(n) = kKMDE + MDD. After minimizing over all rows, following (19) for optimal
CUSUM, the minimizing H and average cost were obtained for each k.
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