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Abstract

The field of quickest change detection (QCD) concerns design and analysis of algorithms to estimate
in real time the time at which an important event takes place, and identify properties of the post-change
behavior.

It is shown in this paper that approaches based on reinforcement learning (RL) can be adapted based
on any “surrogate information state” that is adapted to the observations. Hence we are left to choose
both the surrogate information state process and the algorithm. For the former, it is argued that there
are many choices available, based on a rich theory of asymptotic statistics for QCD. Two approaches to
RL design are considered:

(a) Stochastic gradient descent based on an actor-critic formulation. Theory is largely complete
for this approach: the algorithm is unbiased, and will converge to a local minimum. However,
it is shown that variance of stochastic gradients can be very large, necessitating the need for
commensurately long run times.

(b) Q-learning algorithms based on a version of the projected Bellman equation. It is shown that the
algorithm is stable, in the sense of bounded sample paths, and that a solution to the projected
Bellman equation exists under mild conditions.

Numerical experiments illustrate these findings, and provide a roadmap for algorithm design in more
general settings.

∗ASC and SPM are with the University of Florida, Gainesville, FL 32611 Financial support from ARO award
W911NF2010055 and NSF award CCF 2306023 is gratefully acknowledged.
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1 Introduction

The goal of the research surveyed in this paper is to create algorithms for quickest change detection (QCD),
for applications in which statistics are only partially known, particularly after the change has occurred.
While the authors were initially motivated by applications in power systems, the setting here is entirely
general. Examples of events that we wish to detect include human or robotic intruders, computer attack,
faults in a power system, and onset of heart attack for a patient [11, 12].

The standard QCD model includes a sequence of observations {Yk : k ≥ 0}, assumed here to evolve as
a real-valued stochastic process. The statistics of these observations change at a time denoted τa ≥ 0. The
goal is to construct an estimate of the change time, denoted τs, that is adapted to the observations. That
is, for each k we may write 1{τs ≤ k} = sk(Y

k
0 ) for some Borel-measurable mapping sk : Rk+1 → {0, 1}.

The estimate must balance two costs: 1. Delay, which is expressed (τs − τa)+ :=max(0, τs − τa), and 2. false
alarm, meaning that τs − τa < 0.

There are two general models that lead to practical solutions: Bayesian and minimax approaches. Typical
measures of performance for the former approach are based on mean detection delay MDD and probability
of false alarm pFA:

MDD = E[(τs − τa)+] and pFA = P{τs < τa}. (1)

The focus of this paper is on the Bayesian approach, based on a partially observed Markov Decision
Process (POMDP). See Section 2.1 for canonical examples.

Successful approaches to algorithm design are typically based on the construction of a real-valued stochas-
tic process {Xn} that plays a role similar to the celebrated information state of POMDP theory, and a
threshold policy is adopted: for a pre-assigned threshold H > 0, the stopping rule is

τs = min{n ≥ 0 : Xn ≥ H} . (2)

Two famous examples are defined recursively: with X0 = 0,

1. Shiryaev–Roberts: Xn+1 = exp
(
Ln+1

)
[Xn + 1] (3a)

2. CUSUM: Xn+1 = max{0,Xn + Ln+1} (3b)

in which Ln = L(Yn) is a log-likelihood ratio for the conditional i.i.d. settings in which these models are
typically posed (see Section 2). In particular, the CUSUM statistic evolves as a reflected random walk
(RRW) with negative drift for 0 ≤ n < τa.

Analysis of the threshold policy (2) is typically posed in an asymptotic setting, considering a sequence
of models with threshold H tending to infinity. Approximate optimality results for either statistic may be
found in [15, 17]. See [18, 24] for further history.

Contributions This paper develops theory for QCD in a Bayesian setting, and demonstrates how the
solution structure lends itself to RL design. One theme is the application of observation-driven statistics
such as (3b) to form a “surrogate” information state for policy synthesis.

• Performance of the CUSUM test is approximated in the asymptotic setting in which there is a strong
penalty for false alarm. It is argued that the conclusions hold in far greater generality than the conditional
i.i.d. setting posed, which justifies the control architectures proposed for RL design. In particular:

▷ An actor-critic approach is introduced and shown to be consistent under mild conditions (see Prop. 3.2).

▷ A Q-learning algorithm is introduced and shown to be stable provided the input used for training is
sufficiently optimistic [14].

• The theory is illustrated with many experiments, comparing resulting policies with common heuristics as
well as the true optimal. Among the findings are

▷ Stability for the scalar gain algorithm requires extremely high level of optimism, resulting in poor numerical
performance. A version of Zap Q-learning is far more reliable.

▷ The resulting policies performed well using a basis obtained via binning, and a linear function class inspired
by results obtained via binning.
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Literature See [11, 12] for excellent recent surveys on QCD theory. Much of this theory is cast in a minimax
rather than Bayesian setting. Numerical techniques to solve the QCD problem in the Bayesian setting may
be found in [27].

The analysis in Section 2.2 is cast in the conditionally i.i.d. model of [19]. Extension to a conditionally
Markov model or hidden Markov model is possible by adapting techniques from the recent work [26, 25];
while cast in an adversarial setting, many approximations remain valuable in the Bayesian setting adopted
here.

Stability theory of Q-learning for optimal stopping was resolved in [21]; conditions for consistency are
similar to those for the simpler TD-learning algorithm. However, the specific algorithm considered required
that the cost function be fully observed. This is why Q-learning is re-considered in the present article.

In this prior work it is recognized that the state is inherently partially observed. In [21] along with many
papers in the RL literature, a a truncated history of observations is adopted as a surrogate information state,
Xk = (Yk; · · · ;Yk−m), with m > 1. An innovations process obtained from the Kalman filter is used to define
{Xk} in applications to power systems [9]. General theory surrounding the approximation of the information
state may be found in [20] (along with substantial history).

There is a long history of application of techniques from reinforcement learning (RL) to approximate
the solution to the optimal stopping problem. The first stability analysis of Q-learning with linear function
approximation appeared in [21], which inspired significant research such as [10, 3]. The algorithms conceived
in this prior work are not applicable in the applications considered in this paper because the cost (or rewards)
is assumed to be fully observed. The RL algorithms introduced in this paper are more complex, and have a
weaker supporting stability theory, precisely because this assumption is violated.

Organization Section 2 provides background on the standard Bayesian QCD problem as well as an alternate
cost criterion for which approximations are formulated. Section 3 includes formulations of two RL approaches
to optimal stopping. The paper then turns to design and experimental findings of Q-learning applied to our
Bayesian QCD problem in Section 4. Section 5 provides concluding thoughts and directions for future work.

2 Bayesian QCD

This section contains background on approaches to modeling and algorithm design for QCD. We begin with
a canonical Bayesian model, cast as a POMDP.

2.1 POMDP model

In this model both the change time and the observations are deterministic functions of a time-homogeneous
Markov chain Φ, evolving on a state space X. It is assumed that Yk = h(Φk), k ≥ 0, for a function h : X → Y
(measurable in an appropriate sense). Assume moreover that there is a decomposition X = X0∪X1, for which
X1 is absorbing : Φk ∈ X1 for all k ≥ 0 if Φ0 ∈ X1. The change time is defined by τa = min{k ≥ 0 : Φk ∈ X1}.

We arrive at a POMDP with input Uk ∈ U = {0, 1}, and τs defined as the first value of k such that Uk = 1.
The control problems of interest are optimal stopping problems: For any cost functions c◦, c• : X → R, we
wish to minimize over all inputs adapted to the observations,

J(Φ0, U
∞
0 ) = E

[ τs−1∑
k=0

c◦(Φk) + c•(Φτs)
]

(4)

Consistent with the standard QCD framework is c◦(z) = 1{z ∈ X1} and c•(z) = κ1{z ∈ X0} with κ > 0, so
that J(Φ0, U

∞
0 ) = MDD+ κpFA (recall (1)).

The structure of an optimal solution can be expressed as state feedback with suitable choice of state
process. We use the term information state, denoted {Xk : k ≥ 0}. This is defined as a sufficient statistic
for optimal control, in the sense that an optimal solution is expressed as “information state feedback”,
U∗
k = ϕ∗(Xk). The canonical example is {Xk} = {Πk}, the sequence of conditional distributions (often

called the belief state) [5, 8]. This structure leads to a practical solution when X is finite, with K elements,
so that Πk evolves on the K-dimensional simplex SK , and ϕ∗ : SK → U is measurable.
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Shiryaev’s model The POMDP model is a generalization of Shiryaev’s conditional i.i.d. model, in which
observations are expressed

Yk = X0
k1k<τa +X1

k1k≥τa , k ≥ 0 , (5)

with X0 and X1 i.i.d. and mutually independent stochastic processes; the change time τa is independent of
X0,X1, and has a geometric distribution. Under these strong assumptions, the real-valued process {pk =
P{τa ≤ k | Y k

0 } : k ≥ 0} serves as an information state, and an optimal test is of the form U∗
k = 1{pk ≥ H}

for some threshold H > 0 (see [19] and the tutorial [23]).
The observation model (5) is valuable in analysis of common heuristics. Suppose that the marginal

distributions of {X0
k , X

1
k} have densities on R, denoted f0, f1, and denote L(y) = log(f1(y)/f0(y))—the log

likelihood ratio (LLR). Crucial for analysis of either of the algorithms (3) is that L has positive mean under
f1 and negative mean under f0.

It is known that either of the algorithms (3) is approximately optimal for Shiryaev’s model, for large κ
and large mean change time E[τa] [24].

Alternative to the standard cost criterion The standard cost criterion is MDD + κpFA is sensible in
Shiryaev’s model in which the change time is independent of {X0

k , X
1
k : k ≥ 0}. In the general POMDP

model there may be evidence that a change is imminent; in such cases, a (common sense) good decision rule
might make an early declaration of change. These decision rules might be far from optimal under the usual
cost criterion since it is insensitive to the value of eagerness, defined as (τs − τa)− := max(0,−[τs − τa]). In
this paper we consider the mean detection eagerness MDE = E[(τs−τa)−] in the cost criterion MDD+κMDE,
leading to what we believe is a more reasonable objective,

J(Φ0, U
∞
0 ) = E

[
(τs − τa)+ + κ(τs − τa)−

]
(6)

This may be placed in the POMDP standard form (4), with

c◦(z) = 1{z ∈ X1} , c•(z) = κE[τa | Φ0 = z] (7)

2.2 Asymptotic statistics

The remainder of this section concerns CUSUM test. Analysis is restricted to Shiryaev’s model (5) under
the standard independence assumptions on {X0

k , X
1
k , τa}. It is assumed that the marginal densities f0 and

f1 exist, and that the LLR L = log(f1/f0) exists is integrable with respect to either f1 or f0.
Our interest is approximating the performance of the CUSUM test, and also approximating the optimal

threshold for a given value of κ. The analysis allows for two significant relaxations:

1. We consider Ln = F (Yn) for a Borel measurable function F : Y → R, not necessarily the LLR. Letting
mi =

∫
F (y) fi(y)dy for i = 0, 1, it is assumed that m0 < 0 and m1 > 0. Hence the RRW (3b) is a positive

recurrent Markov chain if τa = ∞.

2. The strong distributional assumption on the change time is replaced by a regularity condition:

Regular geometric tail: for some ϱa <∞,

lim
n→∞

1

n
logP{τa ≥ n} = −ϱa (8)

We allow for ϱa = 0, in which case our conclusions are similar to what is expected in the minimax setting.
The regularity assumption obviously holds in Shiryaev’s model, in which case ϱa > 0 is the parameter in

the geometric distribution. We obtain ϱa > 0 in the POMDP model under mild assumptions. The proof of
Lemma 2.1 may be found in the Appendix.

Lemma 2.1 Consider the POMDP model with X finite, P{τa = ∞} = 0, yet P{τa > N} > 0 for each N > 0
and Φ0 ∈ X1. Then (8) holds for some ϱa > 0.

The cost of delay is easily approximated for this model: After a change has occurred, the most likely
path is linear with slope m1 > 0. For a threshold H ≫ 1, the delay (τs − τa)+ is overwhelmingly likely to be
close to H/m1.
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Approximation of the mean of (τs − τa)− is based on well-established large deviations theory for RRWs.
The main results of this theory require that the log moment generating functions Λi(θ):=log

∫
exp(θx)fi(x) dx,

i = 0, 1, be finite over a suitable range of θ ∈ R.
Denote by J̄(H, κ) the value of the expectation (6) using CUSUM with threshold H > 0. Approximations

for this cost, minimized over H, and the optimal threshold are denoted,

H̄∗
∞(κ) =

1

θ∗+
log(κm1θ

∗
+) , J̄∗

∞(κ) =
1

m1

[ 1

θ∗+
+ H̄∗

∞(κ)
]

Proposition 2.2 Suppose the following conditions hold: 1) the limit (8) holds with ϱa ∈ [0,∞), 2) Λ0 has
two distinct roots {0, θ∗}, a unique solution θ∗+ > θ∗ to Λ0(θ

∗
+) = ϱa, and Λ0 is finite-valued in a neighborhood

of [0, θ∗+], 3) Λ1 is finite-valued in a neighborhood of the origin. Then,

J̄(H, κ) = H[1/m1 + o(1)] + κ exp(−H[θ∗+ + o(1)]) (9a)

in which o(1) → 0 as H → ∞ for i = 1, 2. Consequently,

argmin
H

J̄(H, κ) = H̄∗
∞(κ) + o(log(κ)) (9b)

min
H
J̄(H, κ) = J̄∗

∞(κ) + o(log(κ)) (9c)

■

Approximations for two choices of F are shown in Fig. 1 compared to estimates obtained through Monte
Carlo. Details can be found in Section 4.
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Figure 1: Approximations H̄2(κ) and J̄2(κ).

3 Reinforcement Learning and QCD

In the few examples we have considered we have found that the approximations in Prop. 2.2 are highly
accurate. In non-ideal settings the proposition is valuable in the construction of RL algorithms. We pro-
vide algorithms, and full justification in some cases. Algorithm design and analysis is set in the POMDP
(Bayesian) setting, with cost criterion (6).

Assumed given is a surrogate belief state: a stochastic process {Xk : k ≥ 0}, evolving on a closed subset
of Euclidean space S, and which is adapted to the observations Yk = σ{Y0, . . . , Yk}. We do not require
that Xk is in any sense an approximation of an information state. In particular, the numerical experiments
largely focus on the CUSUM statistic (3b).

We first consider a version of the actor-critic method, followed by approaches to Q-learning.
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Figure 2: Statistics of the gradient estimate as a function of θ, based on the Actor Critic method: (a)
Empirical variance of the gradient estimates. (b) Gradient estimates using N = 104 episodes. (c) Objective
and its approximation obtained from integrating the gradient estimate.

Actor-critic method Assumed given is a collection of randomized stationary policies {ϕ̃θ : θ ∈ Rd}. For
each θ the statistics of the decision rule is defined for each k via

P{Uk = u | Yk;Xk = x} = ϕ̃θ(u | x) , u ∈ U , x ∈ S

We fix an initial distribution ν for the Markov chain Ψ, and denote µθ(ξ, u) = ν(ξ)ϕ̃θ(u | x) for ξ =
(ϕ;x) ∈ X× S and u ∈ U. Our goal is to minimize

Γ(θ) = Eθ
µθ

[ τs∑
k=0

c(Φk, Uk)
]

(10)

The subscript indicates that (Φ0,X0, U0) ∼ µθ, and the superscript “θ” indicates that the policy ϕ̃θ deter-
mines the input.

We consider stochastic gradient descent (SGD),

θn+1 = θn − αn+1Gn∇̆Γ (n) , (11)

in which the stepsize αn+1 and the matrix gain Gn are design choices.
In the actor-critic algorithm the stochastic gradient ∇̆Γ (n) is represented in terms of the score function,

Λθ(x, u) = ∇θ log[ϕ̃
θ(u | x)] (12)

defined to be zero for any values for which ϕ̃θ(u | x) = 0.
The following result follows from a long history surveyed in the Notes section of [13, Ch. 10]:

Proposition 3.1 Suppose that Γ and ∇Γ are continuous. Then ∇Γ (θ) = Eθ
µθ
[∇̆Γ ], for either of the two

options:

∇̆Γ =

τs∑
k=0

c(Φk, Uk)S
θ
k (13a)

or ∇̆Γ =

τs∑
k=0

Qθ(Ψk, Uk)Λ
θ
k (13b)

in which Λθ
k :=Λθ(Xk, Uk), S

θ
k = Λθ

0 + · · ·+Λθ
k, and

Qθ(ξ, u) = Eθ
[ τs∑
k=0

c(Φk, Uk) | Ψ0 = ξ, U0 = u
]

(13c)

The two representations for the stochastic gradient (13a) or (13b) lead to two algorithms for SGD without
bias. Each of those described here are episodic: data is collected over the period 0 ≤ k ≤ τs(n) with θn
fixed, and the input defined using ϕ̃θn .

7



The natural gradient descent algorithm updates the matrix gain via Gn = R̂−1
n , where R̂0 > 0 with

updates obtained recursively,

R̂n = R̂n−1 + βn[−R̂n−1 +Rn] , n ≥ 1 ,

Rn =

τs(n)∑
k=0

Λθn
k [Λθn

k ]⊺ , Λθn
k = Λθn(Xk, Uk)

(14)

with βn ≫ αn (see [13, Ch. 10]).
The two representations for the gradients prompt two choices for the stochastic gradient. We focus here

on the first,

∇̆Γ (n) =

τs(n)∑
k=0

c(Φk, Uk)S
θn
k

leaving out the extension of the standard algorithm based on TD(1) learning to estimate the Q-function [13,
Ch. 10].

The Polyak-Ruppert (PR) estimates are defined by

θPR

n =
1

n

n∑
i=1

θi , n ≥ 1 . (15)

Its asymptotic covariance is defined as

ΣPR

Θ = lim
n→∞

nE[θ̃PR

n {θ̃PR

n }⊺] (16)

When this exists and is finite, then the estimates achieve the optimal mean-square convergence rate of
O(1/n).

The following is a consequence of recent stochastic approximation theory in [2].

Proposition 3.2 Suppose that the assumptions of Prop. 3.1 hold, and in addition (i) Γ is coercive with
unique minimum θ∗ and ∇Γ is globally Lipschitz continuous. (ii) A∗ :=∇2Γ (θ∗) is Hurwitz, and the steady-
state covariance R∗ = Cov(Λθ∗

) is full rank. (iii) The stepsize sequence is αn = α0n
−ρ with 1/2 < ρ < 1

and α0 > 0.
Then, the SGD algorithm (11) is convergent almost surely and in mean square. The PR-estimates are

also convergent in both senses.
The Central Limit Theorem (CLT) holds, as well as the limit (16), in which the asymptotic covariance

is ΣPR
Θ = [(R∗)−1A∗]⊺Σ∗

∇(R∗)−1A∗ with Σ∗
∇ is the steady-state covariance of (13b) using the policy ϕ̃θ∗

. ■

Example Consider the one-dimensional family of policies in which θ approximates a threshold rule: for
a fixed large constant β > 0, define ϕ̃θ(u | w) = [1 + exp(β[w − θ])]−1 exp(βu[w − θ]), so that the score
function is

Λθ(u | w) = −βu+ βϕ̃θ(1 | w)
In this scalar example we can adapt the natural gradient actor critic method to estimate ∇Γ (θ) for any fixed
θ.

Fig. 2 shows results from a typical experiment using β = 20. Details on the simulation environment
designed to obtain these approximations are postponed to the Appendix.

Rather than demonstrate results from an application of SGD, the first two plots show estimates of the
mean and variance of the random variable in the expectation (13b) for a range of values of θ; the precise
means are Σ∇ (θ) and ∇Γ (θ).

Part (c) shows estimates of the objective function Γ(θ) obtained via standard Monte-Carlo, and the

estimate obtained from gradient estimates via Γ̂(θ) := κ+
∫ θ

0
∇̂Γ(r) dr. It was found that the plots of Γ and

Γ̂ closely match the cost plots obtained from the threshold policies (2) using H = θ.
Plot (b) indicates good news: in spite of the enormous variance shown in (a), especially high for smaller

values of θ, the zero of the gradient estimate ∇̂Γ (θ) is very close to the optimal threshold value for CUSUM.
However, the massive variance presents a challenge in running the actor-critic algorithm to estimate θ∗.

8



Q-learning Recall the solution to the POMDP model in which the optimal policy is a function of an
information state. Consider the canonical example in which this is the belief state (the sequence of conditional
distributions), and assume that the underlying Markov chain Φ evolves on a finite set so that the simplex S
is finite-dimensional.

The Q-function Q∗ : S ×U → R is the optimal value function associated with the objective (4). To place
the equations in standard form denote c(x, u) = (1− u)c◦(x) + uc•(x) for x ∈ X and u ∈ {0, 1} (recall (4)).
For any β, u denote C(β, u) =

∑
x β(x)c(x, u).

The value Q∗(β, u) is defined to be the minimum of
∑

ϕ β(ϕ)J(ϕ,U
∞
0 ) over all admissible U∞

1 , subject
to (Π0, U0) = (β, u). It satisfies the dynamic programming (DP) equation,

Q∗(β, u) = C(β, u) + E[Q∗(Πk+1) | Πk = β, Uk = u]

with H(β) = min{H(β, 0), H(β, 1)} for any function H : S × U → R.
Q-learning algorithms are based on the characterization: E

[
D∗

k+1 | Yk

]
= 0 or each k and any adapted

input, with D∗
k+1 = −Q∗(Πk, Uk) + ck +Q∗(Πk+1). with ck = (1− Uk)1{τa < k}+ κUk(τa − k)+.

This motivates typical Q-learning algorithms.
Given a parameterized family of real-valued functions {Qθ : θ ∈ Rd} on S × U, the goal is to solve the

projected Bellman equation : sf(θ∗) = 0 with

sf(θ) := E
[
{−Qθ(Xk, Uk) + ck +Qθ(Xk+1)}ζk

]
(17)

where {ζk} is a d-dimensional stochastic process adapted to the observations.
It is typical to take ζk = ∇θQ

θ(Xk, Uk)
∣∣
θk
, with θk the estimate at iteration k. Theory to-date is largely

restricted to a linear function class in which Qθ = θ⊺ψ with ψ : S×U → Rd, and in this case ζk = ψ(Xk, Uk).
Data required in an algorithm is based on successive runs up to time τs(n) for n ≥ 1, which results in

the observations {Xn
k ,Xn

k+1, U
n
k , c(Φ

n
k , U

n
k )} for 0 ≤ k < τs(n). We suppress dependency on n by stringing

data together, so that for example

Uk := Un
k−τs(n−1) for τs(n− 1) ≤ k < τs(n) and n ≥ 1,

with τs(0) := 0.
A version of Q-learning is expressed as the recursion

θk+1 = θk + αk+1GkζkDk+1 , k ≥ 0 (18a)

Dk+1 = −Qθk(Xk, Uk) + ck +Qθk(Xk+1) (18b)

where the matrix gain sequence {Gk} is a design choice; Zap Q-learning is in some sense optimal [13]; This
matrix gain was used in [3] for applications to optimal stopping.

We cannot apply [3], based on the elegant algorithm of [21], since the resulting policy will depend on the
cost {c(Φk, Uk)} (assumed observed in this prior work).

While there is great empirical success in the history of Q-learning, to-date we only have general conditions
for stability of the algorithm, and existence of a solution to the projected Bellman equation [14]. Most crucial
is the requirement that the input used for training is an ε-greedy policy (or a smoothed variant). It is shown
that, subject to a mild full rank condition for ψ, that for sufficiently small ε > 0 the algorithm (18a) is
stable in the sense of ultimate boundedness, and there exists at least one solution θ∗ ∈ Rd to the projected
Bellman equation sf(θ∗) = 0. Convergence remains a topic of research.

Stability of Zap Q-learning with an oblivious policy (independent of parameter) is virtually universal [4],
but this paper makes no claims of existence of θ∗ in this setting. It is very likely that the main result of [4]
can be extended to ε-greedy policies.

4 Numerical Results

The results surveyed here consider conditionally Gaussian observations, X0
k ∼ N (0, σ2) = f̆0 and X1

k ∼
N (µ1, σ

2) = f̆1 with µ1 = 0.5 and σ = 1. We present findings using L̂ = log(f̆1/f̆0) for three choices of

{f̆0, f̆1}:
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Case 1: The ideal Gaussian case, in which f̆0 and f̆1 are the true densities.
Case 2: f̆0 is Laplace(0, b) and f̆1 Laplace(µ1, b) with µ1 = 0.5 and b =

√
σ/2 (matching second order

statistics).

Case 3: f̆0 is Cauchy(0, γ) and f̆1 Cauchy(x1, γ) with x1 = 0.5 and γ chosen so that the Gaussian and
Cauchy cdfs evaluated at σ = 1 are equal.

Ground truth The observations were specified by Shiryaev’s conditional i.i.d. model (5) and with τa ∼
Geometric(0.02), so that we have in hand the optimal policy for comparison.

The policies of interest will be functions of the the RRW (3b). The term optimal CUSUM refers to the
test obtained with threshold HCU(κ) obtained via

HCU(κ) = argmin
H≥0

{κMDE(H) +MDD(H)} (19)

where MDE(H) and MDD(H) are obtained using CUSUM with threshold H ≥ 0. These thresholds and those
for Shiryaev’s optimal test were estimated via Monte-Carlo—details are postponed to the Appendix.

We find that optimal CUSUM is nearly optimal, even in non-asymptotic settings, for the model considered
(see Fig. 8 and discussion below).

4.1 Cost approximation

Approximations based on the analysis in Section 2.2 were obtained for ϱa = 0.02 (recall (8)).

For the ideal case L̂ is the true LLR with respect to the observations, so that F (x) = L̂(x) = µ1x−µ2
1/2.

The log moment generating function is Λ0(θ) = m1θ(θ − 1). The equation ϱa = Λ0(θ
∗
+) is easily inverted to

obtain θ∗+ > 0. For the mismatched cases θ∗+ was approximated through simulation: see Fig. 3.
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Figure 3: Λ0(θ) for ideal Gaussian and Laplace mismatched detector

For each choice of F we obtained threshold and cost approximations H̄∗
∞(κ) and J̄∗

∞(κ) as defined in
Section 2. In the plots that follow, approximations are shifted:

H̄2(κ) = H̄∗
∞(κ)− H̄∗

∞(2) + H̄∗
true(2)

J̄2(κ) = J̄∗
∞(κ)− J̄∗

∞(2) + J̄true(2)

where the true values are based on results for κ = 2, the smallest in our selected range.
The final approximations are shown in Fig. 1, compared to ground truth estimates with 1σ confidence

intervals. We find that the approximations are remarkably accurate. Compared to the ideal, the results
predict a 25% increase in cost for Case 2 and a 43% increase for Case 3 at the highest value in our experimental
range κ = 100.

4.2 Q-learning

The remainder of this section presents the design and evaluation of Q-learning for our Bayesian QCD problem.
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Basis selection Bases considered for Q-learning took the form ψ(x, u) = (1 − u)ψ0(x) + uψ1(x). The
numerical results shown in the following used

ψ0(x) = [x; q(x); 0; 0; 0]

ψ1(x) = [0; 0; 1; x; q(x))] (20)

with q(x) = x exp(−x/bq) for a choice of constant bq.
This basis was designed based on preliminary experiments with a particular choice of binning: ψi(x, u) =

1{x ∈ Ski , u = ui} for a collection of intervals {Sj} and input values {uj}. Further details are provided
below.

Exploration. Recent theory recalled in Section 3 shows that exploration implies stability of the algorithm
under mild assumptions on the basis and the oblivious policy. The value of ε was taken to be time varying,
with a typical choice illustrated in Fig. 4: εn = max{εf , ε0+(1−n/n0)(εf−ε0)}, defined so that εn = εf < ε0
for n ≥ n0. The values ε0 = 0.75 and εf = 0.1 worked well with Zap Q-learning, whereas standard scalar
gain Q-learning required εf ≪ 0.1 for stability.
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Figure 4: Parameter estimates using a decaying exploration schedule.

Exploration was designed to depend on κ based on properties of the CUSUM statistic (3b). It is known
that a threshold H∗ = |log υ| is optimal in the minimax setting where υ is a constraint on false alarm
rate (FAR) [23]. In our Bayesian setting, we show that a similar logarithmic relationship exists between
H∗ and κ in Prop. 2.2. We leveraged this analysis for the oblivious policy, which is described as follows:
at the start of episode i, a threshold Hε,i(κ) was drawn uniformly at random from interval [aκ, bκ], where
aκ = η log (κ+ 1− κmin) and bκ = aκ + δ. Parameters δ and η determine the width and rate of increase of
[aκ, bκ] as κ increases. κmin is the smallest multiplier in our range. Then, Un = 1{Xn ≥ Hκ,i} for each n in
this episode. This ensured significant exploration, even when considering high dimensional bases obtained
through binning.

Numerical experiments Recall that in Q-learning any parameter θ ∈ Rd defines a policy, ϕθ(x) =
argminuQ

θ(x, u) for x ∈ R+. In the applications considered here this becomes

ϕθ(x) = 1{Qθ(x, 0) ≥ Qθ(x, 1)} , x ∈ R+ . (21)

In every successful application of Q-learning it was found that this policy had a threshold form

ϕθ(x) = 1{x ≥ Hθ} , Hθ > 0 (22)

Algorithm performance is investigated in the remainder of this section. For each algorithm, PR-averaging

is used to define the final estimate θ̂, and from this a final policy ϕ̂ :=ϕθ̂ whose performance is compared to
the optimal.

Recall that initial experiments involved a choice of binning, resulting in d = 2(d0 − 1), with d0 the
number of bins. Given the structure of the problem it was decided that the bin boundaries should be spaced
logarithmically. We assigned wider bins to capture larger values of x, which are expected to occur less
frequently given an adequate threshold policy of the form (22). However, binning proved insufficient for
obtaining thresholds close to optimal over all κ, due in part to a tradeoff between the choice of bin spacing
and granularity of the linear interpolation required to obtain Hθ.

11
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Figure 5: Insights from binning led to the basis in (20)
.

This shortcoming is illustrated in Fig. 5, where bin spacing influences the intersection Qθ(w, 0) = Qθ(w, 1)
and the policy (recall (21)). This inspired the “smooth” basis defined in (20) for which we observed two
advantages compared to binning: 1/ consistent improvement of Hθ compared to optimal over all κ, and 2/
reduced computation time.

Histograms were generated to evaluate the variance of the parameter estimates. Let ξ = ξ(N) ≥ N

denote the total number of samples (Xk, Uk) collected over N episodes, so that θ̂ = θPR

ξ is the final estimate.

The batch means method was used to estimate the asymptotic covariance of the error θ̃PR

ξ := θPR

ξ − θ∗, defined
on scaling, taking expectations, and letting N → ∞:

ΣPR

Θ = lim
N→∞

E[ξ θ̃PR

ξ {θ̃PR

ξ }⊺]

This was estimated by performing M > 1 independent runs to obtain {θPR

ξi , ξi : 1 ≤ i ≤M}, and a histogram

of Zi =
√
ξi[θPR

ξi − θ̄PR] to estimate the variance of each entry. An example is shown in Fig. 6 for the case
κ = 27, using M = 400 and three different values of N . Only the fourth component of the five dimensional
histogram is shown—the others are similar.

-1 0 1 -1 0 1 104-1 0 1

Figure 6: Histograms of {Zi
1 : 1 ≤ i ≤M} for three values of N .

What is crucial here is that the empirical variance is nearly identical for the last two values of N chosen.
This is an example of how the CLT can be used to estimate required run lengths by first conducting a large

-26 -25-25.5

-58 -56 -54 -52

6.5 6.6 6.7

7.6 7.7 7.8

Figure 7: Histograms of {Hi
N , θ

i
N (4) : 1 ≤ i ≤M} for N = 106
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number of independent experiments with a relatively short run length—in this example, N = 104 provides
a reasonable estimate of the variance of Zi =

√
ξi[θPR

ξi − θ̄PR] for each i and N ≫ 104.
We further observed a relative sensitivity between thresholds obtained through Q-learning and param-

eter estimates: thresholds Hi
N consistently yielded smaller empirical variance than θiN for all κ. Example

histograms showing the fourth parameter θiN (4) are included in Fig. 7 for M = 30 and N = 106.

Fig. 8 shows the average cost of the policy ϕ̂ for the ideal Gaussian case, along with what is obtained with
the optimal test and optimal CUSUM with confidence intervals of σ/3 standard deviation. As κ increases,
Q-learning quickly yields average cost close to optimal.

Mismatched cases. We consider a setting where the goal is achieving the best performance for the ideal
Gaussian case, while evaluating performance of the mismatched cases in parallel. The surrogate information
state {Xn} differs between each case based on the three respective log-likelihood ratios, shown in Fig. 9.
Laplace and Cauchy are very far from the ideal.

Clues for tuning exploration parameters values η and δ came from asymptotic analysis of our eagerness
and delay costs. The interval [aκ, bκ] was designed such that threshold approximations H̄2(κ) follow uniform
interval mean 1

2 (aκ+bκ) for all κ. Initial experiments sought to produce random thresholds Hε(κ) encouraging
an equal balance of eagerness and delay throughout each episode, but it was later found that a greater ratio
of eagerness yielded Hθ closer optimal.

A choice of large δ was tried universally for each case, leading to Hθ far greater than their respective
CUSUM optimal threshold. Resulting average costs were highest for Case 3, followed by Case 2 and Case
1 for all κ. This was consistent with cost approximations J̄2(κ) for each case. Another metric for success
is that the shape of the average cost curve obtained through Q-learning resembles its optimal counterpart.
This indicates flexibility in learning near-optimal policies of the form (22) over a wide range of κ, as shown
in Fig. 8 for Case 1. For each case with was not yet observed until δ was lowered, narrowing [aκ, bκ]. This
lowered the average cost across all three cases, with Case 1 improving the most. As the exploration strategy
improved to produce near-optimal average cost for Case 1, we obtain Hθ = ∞ for Cases 2 and 3 for κ > 11,
where Qθ(w, 1) > Qθ(w, 0) for all w. These findings suggest a tight link between our choice of exploration
and the asymptotic statistics for our Bayesian QCD problem–as Q-learning for the ideal case improves, the
mismatched cases fail for higher κ.

Alternatives to Zap. Associated with any stochastic approximation algorithm such as the Q-learning algo-
rithm (18a) is an ODE d

dtϑ = G(θ) sf(ϑ), in which sf is the mean increment of the recursion without matrix
gain. For Zap Q-learning we have G = −Ā−1, with Ā(θ) :=−∂θ sf (θ). To see if the algorithm is convergent
without a matrix gain we examine the linearization to see if the ODE is locally asymptotically stable. In all
cases it was not : some eigenvalues of Ā(θ∗) lay in the strict right half plane.

Theory in [14] predicts stability without a matrix gain, so further testing was performed to investigate
the behavior with a scalar gain, and also the popular choice G = R−1 in which R(θ) = E[ψkψ

⊺
k ] (expectation

in steady-state with fixed policy ϕθ). Estimates are obtained precisely through the recursion (14), with Λθn
k

replaced by ψk = ψ(Xk;Uk). The scalar gain algorithm used gn = 1/trace (Rn), so that Gn = gnI in (18a).
The parameter estimates were unbounded using the exploration schedule with εf = 0.1. Theory in [14]

predicts stability with a sufficiently small value, and indeed we observed convergence with εf = 0.001.
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We consistently find that the policy is of the threshold form (22) but with Hθ smaller than optimal,
leading to high eagerness cost. We further observed a lack of sensitivity between Hθ and κ compared to Zap
Q-learning. This resulted in worsening average cost for higher κ, which is the regime of greatest interest in
typical applications. Very similar results are obtained using Gn = R−1

n .
In all Zap Q-learning applications, Ā(θ∗) was non-Hurwitz even for exploration schedules with values as

small as εf = 10−4. This suggests there are solutions to the projected Bellman equation using Zap Q-learning
that could never be found using standard scalar gain algorithms.

5 Conclusions

The theory and numerical results in this paper motivate many directions for future research. For actor critic
methods it is crucial to find ways to reduce variance, perhaps through other approaches to gradient free
optimization. Within the ideal setting of Section 4, we present results closely matching the performance of
optimal CUSUM using Q-learning.

This work is intended to be a starting point for consideration of highly non-ideal settings faced in practice.
In applications of interest to us there may be well understood behavior before a change (which might represent
a fault in a transmission line, or a computer attack). We cannot expect to have a full understanding of post-
change behavior. The choice of surrogate information state must be reconsidered in these settings. We must
take into account correlation of observations before a change has occurred.

Prior work in [11] provides a roadmap for analysis of non-stationary post-change behavior. Design of
new architectures, that may be trained using techniques surveyed in this paper, might be inspired by the
rich literature on composite hypothesis testing (see [22, 7] and the references therein).
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A Appendix

Below we include proofs the asymptotic analysis of our Bayesian QCD problem, followed by simulation
details for the QCD and RL experiments.

A.1 Asymptotic statistics for Bayesian QCD

Most of this subsection is devoted to a proof of Prop. 2.2. We begin with the simpler,

Proof of Lemma 2.1 Let M denote the non-negative sub-matrix Mi,j = Pi,j1{j ∈ X1}, defined only
for i, j ∈ X1. The assumptions on τa imply irreducibility in a weak sense: for some i0 ∈ X1 we have∑n

k=1M
k
i,i0

> 0 for all i ∈ X1 and all n ≥ 1 sufficiently large. Let (λ, v) denote the Perron Frobenious
eigenvalue/eigenvector [16]. The eigenvalue λ > 0 is maximal, the vector v entries that are strictly positive,
and

∑
j∈X1

Mi,jvj = λvi for i ∈ X1.

The twisted transition matrix has entries P̌i,j = λ−1v−1
i Mi,jvj : i, j ∈ X1; the finiteness assumption for

X1 is imposed to ensure that P̌ defines a Markov chain on X1 that is positive recurrent. Let π̌ denote its
unique invariant pmf.

Positive recurrence implies something far stronger than the limit claimed in the proposition: We have
for each i, j ∈ X1,

π̌(j) = lim
n→∞

P̌n
i,j = v−1

i vj lim
n→∞

λ−nMn
i,j

where convergence holds at a geometric rate. Multiplying each side by 1/vj and summing over j gives

π̌(1/v) = v−1
i lim

n→∞
λ−nP{τa > n}

where the probability is conditional on Φ0 = i. Again, the rate of convergence is geometric, so for each i
there is a geometrically decaying sequence {εn(i)} such that

P{τa ≥ n+ 1} = [π̌(1/v) + εn(i)]λ
nvi

Consequently, (8) holds with ϱa = − log(λ). ■

The bulk of the proof of Prop. 2.2 is based on approximating the cost of eagerness.
For each i = 0, 1, the log moment generating function for fi is denoted Λi(θ) = log

∫
exp(θF (y))fi(y) dy,

θ ∈ R, with convex dual Ii(m) = supθ{mθ − Λi(θ)}, m ∈ R. Each is a convex, possibly extended-valued
function on R.

Most significant in this analysis is the case i = 0:

Lemma A.1 The log moment generating function Λ0 is convex. Provided it is finite in a neighborhood of
the origin, it satisfies Λ′

0(0) = m0 < 0 and Λ′′
0(0) = σ2

0, the variance of F (Y ) under f0. If there is a second
root θ∗ > 0, then Λ0(θ) < 0 on the open interval (0, θ∗).

The special case F = log(f1/f0) gives Λ′
0(0) = m0 = −D(f0∥f1); θ∗ = 1, and Λ′

0(θ
∗) = m1 = D(f1∥f0).

■

For any τ ≥ 0, the approximation of E[(τs − τa)− | τa = τ ] is made possible through the rich literature
on rare events for RRWs, e.g. [1, 6]: It is known that the most likely path for the random walk to hit a
high level is piecewise linear, with identifiable slope equal to m∗ = Λ′

0(θ
∗). Since θ∗ is a second root of Λ0

it easily follows that I0(m
∗) = m∗θ∗.

To make precise the term “likely path” we perform the standard temporal and spatial scaling. Suppose
that {Xn} is defined as the RRW (3b) initialized with X0 = 0, and τa = ∞ so that Ln = F (X0

k) for all k.
For a given threshold H > 0 denote by {x(H)

t : t ≥ 0} the continuous function defined by x(H)

t = H−1Xk for
t = k/H, and by piecewise linear interpolation for all other t ≥ 0. When τs is defined using threshold H,
then τs ≤ TH if and only if x(H)

t ≥ 1 for some t ≤ T .
For any T > 0, denote m(T ) = max(1/T,m∗) and e0(T ) = I0(m(T ))/m(T ).
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Figure 10: Most likely paths: the path shown on the left is far more probable than the one shown on the
right.

Lemma A.2 Under the assumptions of Prop. 2.2 we have

lim
H→∞

1

H
logP

{
sup

0≤t≤T
x(H)

t ≥ 1
}
= −e0(T ) , T > 0 .

The exponent e0(T ) is minimized when T ≥ 1/m∗.

Proof This is explained in [6, Section 6.4] through the contraction principle of large deviations theory.
A rate function on sample paths is defined by I(m,x) = I0(m) for x > 0 and I(m,x) = 0 otherwise; the
contraction principle gives

lim
H→∞

1

H
logP

{
sup

0≤t≤T
x(H)

t ≥ 1
}
= − inf

∫ T

0

I(ẋt, xt) dt

where the infimum is over all absolutely continuous paths {xt : 0 ≤ t ≤ T} satisfying x0 = 0 and
max0≤t≤T xt ≥ 1. An optimal solution is known to be piecewise linear, with a single value t1 ∈ (0, T ]
at which x∗t1 = 1. Two possible cases are illustrated in Fig. 10.

The figure on the left hand side illustrates x∗ when T > 1/m∗. In this case the optimal solution is not
unique: for any value 1/m∗ ≤ t1 ≤ T , an optimal solution is obtained with x∗t = 0 for 0 ≤ t ≤ t0 = t1−1/m∗,
d
dtx

∗
t = m∗ > 0 for t0 < t < t1, and x

∗
t = max(0, 1 +m0(t− t1) for t ≥ t1.

If 0 < T ≤ 1/m∗ then t0 = 0 and t1 = T so that x∗t = max(0,min(t/T, 1 + (t− T )m0)), as shown on the
right hand side of the figure.

In either case we have by the definitions d
dtx

∗
t = m(T ) for t0 < t < t1 = t0 + 1/m(T ), and∫ T

0

I(ẋ∗t , x
∗
t ) dt = [t1 − t0]I0(m(T )) =

1

m(T )
I0(m(T ))

■

Proof of Prop. 2.2 To approximate the cost of eagerness we require approximations of P{τs ≤ n | τa = n+k}
for any n and all k ≥ 1. Since τa is independent of {X0

k}, it suffices to restrict to the setting of Lemma A.2
in which τa = ∞. In particular, for any n ≥ 1 let Tn = n/H. Independence combined with Lemma A.2
gives, for any k ≥ 1,

P{τs ≤ n | τa = n+ k} = P{ max
0≤t≤Tn

x(H)

t ≥ 1}

= exp
(
−H[e0(Tn) + εs(H, Tn)]

)
in which εs(H, T ) → 0 as H → ∞, uniformly for T in compact sets of (0,∞).

The expected eagerness is thus

E[(τs − τa)−] =
∞∑
τ=1

τ−1∑
n=0

P{τs ≤ n | τa = τ}P{τa = τ}

=
∞∑

n=0

P{ max
0≤t≤Tn

x(H)

t ≥ 1}P{τa > n}
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We next write P{τa > n} = exp(−n[ϱa + εc(n)]) where εc(n) → 0 as n → ∞. Combining these approxima-
tions, we write the expected eagerness as

∞∑
n=0

exp
(
−H[e0(Tn) + εs(H, Tn)]− n[ϱa + εc(n)]

)
The dominant term in the exponent is He0(Tn) + nϱa = H[e0(Tn) + Tnϱa], which is affine with slope ϱa

for Tn ≥ 1/m∗. This is illustrated in Fig. 11 in which n∗0 = ⌊H/m∗⌋ with m∗ = Λ′
0(θ

∗), and we will see that
the minimizer is approximately n∗ = ⌊H/m∗

+⌋ with m∗
+ = Λ′

0(θ
∗
+).

Figure 11: Negative logarithm of eagerness cost approximation.

To minimize over Tn, we considerm = max(m∗, 1/Tn) as a variable, so that e0(Tn)+Tnϱa = [I0(m)+ϱa]/m
for m ≥ m∗. This is a convex function of m, whose unique minimum is found by computing the stationary
point: 0 = [mI ′0(m)− [I0(m) + ϱa]/m

2. We have I0(m) = θ(m)m−Λ(θ(m)) and I ′0(m) = θ(m), from which
it follows that θ∗+ is the unique minimizer. This completes the proof of (9a).

To establish (9b) we optimize the approximation,

J̄∞(H, κ) := H/m1 + κ exp(−Hθ∗+)

Letting H̄∗
∞(κ) denote its minimizer,

1

m1
= θ∗+κ exp(−H̄∗

∞(κ)θ∗+) =⇒ H̄∗
∞(κ) =

1

θ∗+
log(κm1θ

∗
+)

The approximation of minH J̄(H, κ) in (9b) is precisely J̄∗
∞(κ). ■

A.2 Details on numerical experiments

The remainder of the Appendix concerns details on the QCD numerical results.

Actor-critic method Estimates of Σ∇ were obtained by averaging N = 107 independent episodes. The
gradient estimates ∇̆Γ (θ) were obtained using a much shorter run, with N = 104. Two estimates of the
objective were produced with N = 104: Γ(θ) using Monte-Carlo to estimate the expectation in (10) directly.

Q-learning for QCD For the ideal and mismatched cases, Monte Carlo simulations were used to estimate
MDE and MDD for optimal CUSUM and optimal Shiryaev. Parameters for the stochastic processes {X0

k , X
1
k}

and τa matched those used for Q-learning. The test statistic for optimal Shiryaev is Xn = pn = P{τa ≤ n |
Y n
0 }. For both simulations, N = 2e4 sample paths were run. To evaluate eagerness and delay with respect

to τa, a range of T = 103 thresholds 0 ≤ H ≤ 20 was used for optimal CUSUM, and 0 ≤ H ≤ 1 for optimal
Shiryaev. For each H, a pair MDE(H) and MDD(H) was obtained by averaging over N runs. This repeated
for M = 200 independent runs, averaging again to obtain for each optimal test a T × 2 matrix [MDE,MDD],
where each row corresponds to a different threshold H. Estimates of these quantities are random variables,
whose variances were found to be very small.

A range of 2 ≤ κ ≤ 100 was generated. For each κ, the matrix [MDE,MDD] was used to calculate

the average cost vector Ĉ(κ) = κMDE + MDD. After minimizing over all rows, following (19) for optimal
CUSUM, the minimizing H and average cost were obtained for each κ.
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