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Abstract

Universal Adversarial Perturbations (UAPs) are imperceptible, image-agnostic
vectors that cause deep neural networks (DNNs) to misclassify inputs with high
probability. In practical attack scenarios, adversarial perturbations may undergo
transformations such as changes in pixel intensity, scaling, etc. before being
added to DNN inputs. Existing methods do not create UAPs robust to these
real-world transformations, thereby limiting their applicability in practical attack
scenarios. In this work, we introduce and formulate UAPs robust against real-world
transformations. We build an iterative algorithm using probabilistic robustness
bounds and construct such UAPs robust to transformations generated by composing
arbitrary sub-differentiable transformation functions. We perform an extensive
evaluation on the popular CIFAR-10 and ILSVRC 2012 datasets measuring our
UAPs’ robustness under a wide range common, real-world transformations such
as rotation, contrast changes, etc. We further show that by using a set of primitive
transformations our method can generalize well to unseen transformations such as
fog, JPEG compression, etc. Our results show that our method can generate UAPs
up to 23% more robust than state-of-the-art baselines.

1 Introduction

Deep neural networks (DNNs) have achieved impressive results in many application domains such as
natural language processing [1, 11], medicine [18, 19], and computer vision [40, 42]. Despite their
performance, they can be fragile in the face of adversarial perturbations: small imperceptible changes
added to a correctly classified input that make a DNN misclassify. While there is a large amount
of work on generating adversarial perturbations [41, 21, 35, 33, 12, 46, 16, 14, 44, 50, 5, 43], these
works depend upon unrealistic assumptions about the power of the attacker: the attacker knows the
DNN input in advance, generates input-specific perturbations in real-time and exactly combines the
perturbation with the input before being processed by the DNN. Thus, we argue that these threat
models are not realizable in many real-world applications.

Practically feasible adversarial perturbations. In this work, we consider a more practical adversary
to reveal real-world vulnerabilities of state-of-the-art DNNs. We assume that the attacker (i) does not
know the DNN inputs in advance, (ii) can only transmit additive adversarial perturbations, and (iii)
their transmitted perturbations are susceptible to modification due to real-world effects. Examples of
attacks in our threat model include adding stickers to the cameras for fooling image classifiers [31] or
transmitting perturbations over the air for deceiving audio classifiers [30]. Note that our threat model
is distinct from directly generating adversarial examples (i.e. creating physical adversarial objects
[6]) which require access to the original input.

The first two requirements in our threat model can be fulfilled by generating Universal Adversarial
Perturbations (UAPs) [36]. Here the attacker can train a single adversarial perturbation that has a high
probability of being adversarial on all inputs in the training distribution. However, as our experimental
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Figure 1: Robust UAP Threat Model: Input Agnostic + Robust to Transmission Transformation

results show, the generated UAPs need to be combined with the DNN inputs precisely, otherwise
they fail to remain adversarial. In practice, changes to UAPs are likely due to real-world effects. For
example, the stickers applied to a camera can undergo changes in contrast due to weather conditions
or the transmitted perturbation in audio can change due to noise in the transmission channel. This non-
robustness reduces the efficiency of practical attacks created with existing methods [36, 38, 31, 30].

This work: Robust UAPs. To overcome the above limitation, we propose the concept of robust
UAPs: perturbations that have a high probability of remaining adversarial on inputs in the training
distribution even after applying a set of real-world transformations. The optimization problem
in generating robust UAPs [36] is made challenging as we are looking for perturbations that are
adversarial for a set of inputs as well as to a set of potentially unknown transformations applied to the
perturbations. To address this challenge, we make the following main contributions:

• We introduce Robust UAPs and formulate their generation as an optimization problem. We separate
our threat model into two scenarios depending on whether the transformation set is known apriori.

• We design a new method, RobustUAP, for constructing robust UAPs. Our method is general and
constructs UAPs robust to any transformations generated by composing arbitrary sub-differentiable
transformation functions. We provide an algorithm for computing provable probabilistic bounds
on the robustness of our UAPs against many practical transformations. We show that in the
vision domain we can use a set of primitive transforms (adapted from Modas et al. [34]) to create
Universally Robust UAPs.

• We perform an extensive evaluation of our method on state-of-the-art models for the popular
CIFAR-10 [29] and ILSVRC 2012 [15] datasets. We compare the robustness of our UAPs under
compositions of challenging real-world transformations, such as rotation, contrast change, etc.
We show that on both datasets, the UAPs generated by RobustUAP are significantly more robust,
achieving up to 23% more robustness, than the UAPs generated from the baselines.

Our work is complementary to the development of real-world attacks [30, 31] in various domains,
which require modeling how the universal perturbations change during transmission. RobustUAP
can improve the efficiency of such attacks by constructing perturbations that are more robust to
real-world transformations than with existing algorithms [36, 38, 30, 31]. Our results using primitive
transformations in vision suggest that we can forego domain specific modeling in other domains if
we can find a good set of primitives for that domain.

2 Background

In this section, we provide necessary background definitions and notation used in the rest of our work.
For the remainder of the paper, let µ ⊂ Rd be the input data distribution, x ∈ µ be an input point with
the corresponding true label y ∈ R, and f : Rd → Rd′ be our target classifier. For ease of notation,
we define fk(x) to be the kth element of f(x) and allow f̂(x) = argmaxk fk(x) to directly refer
to the classification label. We use v to reference image specific perturbations and u to reference
universal adversarial perturbations, vr and ur refer to the robust variants and will be defined in Sec.
3. We provide formal definitions in Appendix A.
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Adversarial Examples and Perturbations. An adversarial example is a misclassified data point
that is close (in some norm) to a correctly classified data point [21, 33, 12]. In this paper, we consider
examples x′ generated as x′ = x+ v where v is an adversarial perturbation.

Universal Adversarial Perturbations. UAPs are single vector, input-agnostic perturbations [36].
They differ from traditional adversarial attacks, which create perturbations dependent on each input
sample. To measure UAP performance, we introduce the notion of universal adversarial success rate
(ASRU ), which measures the probability that a perturbation u when added to x, sampled from µ,
causes a change in classification under f . Thus a perturbation, u, is a UAP given two conditions: its
ASRU is greater than a given threshold, γ, and its norm is small. If an additive perturbation has a
small lp-normit does not affect the semantic content of the image as it appears as noise. We pose the
construction of UAPs as an expectation minimization problem:

argmin
u

Ex∼µ[δ(f̂(x+ u), f̂(x))] s.t. ||u||p < ϵ (1)

where δ is the Kronecker Delta function [2].

❌

Misclassification
✔

Correct Classification

Robust UAP

Transformed

Standard UAP

Transformed

Figure 2: Robust UAPs (left) cause a classier to misclassify on most of the data distribution even
after transformations are applied on them. Standard UAPs (right) are not robust to transformations
and have a low probability of remaining UAPs after transformation.

3 Robust Universal Adversarial Perturbations

In this section, we first define our notion of transformation sets and neighborhoods in order to
define robust UAPs. Here, when we are referencing transformation sets as the ones applied during
transmission, if these are unknown, we detail our method for overcoming this in Section 4.1. Formal
definitions of all terms can be found in Appendix A.

Transformation Sets and Neighborhoods. We define a transformation set, T , as all transforms,
τ , which can be made by composing from a predefined set of bijective sub-differentiable transfor-
mation functions. The neighborhood, NT (v), of a point v is all points, v′ reachable from v using
transformations from T .

Example 3.1. Let T be all transformations represented by a rotation of ±30◦ and scaling of up to a
factor of 2, in this case one τ ∈ T could be {rotation of 8◦ and scaling a factor of 1.2} in that order
and NT (v) would include any point obtained by applying a transformation from T on v.

Robust UAPs. In order to define robust UAPs we introduce robust universal adversarial success
rate. The robust universal adversarial success rate, ASRR, measures the probability that a neighbor
of ur is also an UAP on µ, i.e. after transformation it maintains high universal ASR above some
threshold γ. We note that even though ||ur||p ≤ ϵ, it can happen that a u′

r ∈ NT (ur) has ||u′
r||p > ϵ.

Therefore, we require that the norm of u′
r is small.

Definition 3.2. A robust UAP, ur, is one which most points within a neighborhood of ur when added
to most points in µ fool the classifier, f . ur satisfies ||ur||p < ϵ and ASRR(f, µ, T, γ,ur) > ζ.

In order to construct robust UAPs, we can pose the following expectation minimization problem:

argmin
ur

E
u′

r∈NT (ur)
[I(||u′

r|| < ϵ)× E
x∼µ

[δ(f̂(x+ u′
r), f̂(x))]] s.t. ||ur||p < ϵ (2)
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Here I : Rd → R denotes an indicator function. The inner expectation represents the UAP
condition for the transformed perturbation u′

r while the outer expectation represents the neighborhood
robustness condition. The composition of these conditions in Equation 2 makes it computationally
harder than minimizing over only the transformation set, as in EOT [6], or than minimizing over only
the data distribution, as in Equation 1.

4 Generating Robust Universal Adversarial Perturbations

In this section we discuss how we deal with both known and unknown transformation sets, then
describe our approach for optimizing Equation 2. As it would be computationally prohibitive to
precisely compute the expected value, we estimate the expected value per batch, x̂ ⊂ µ, and random
set of transformations sampled from T , τ̂ ⊂ T . We can approximate Equation 2 using:

I(||τ̂j(ur)|| < ϵ)

|x̂| × |τ̂ |

|x̂|∑
i=1

|τ̂ |∑
j=1

L[f(x̂i + τ̂j(ur)), f(x̂i)]− λ||ur||p (3)

We describe our two threat models and some intuitive baselines for optimizing Equation 2. We then
present our new algorithm, RobustUAP.

4.1 Threat Models: Known vs Unknown Transformation Sets
In the above section, we have assumed that the transformations applied during transmission is known
to the attacker and used to train the UAP. However, in a real-world attack scenario the attacker may not
know precisely what transformations its perturbation will undergo. In such scenarios, they may want
their attack to be robust to unseen perturbations. In this case, we propose generating robust UAPs
using a set of primitive transformations. For the image domain, we draw from existing work in the
data augmentation area. In their paper, PRImitives of Maximum Entropy (PRIME), Modas et al. [34]
define three primitive transformations: spectral, spatial, and color. Using random combinations of
these transformations to train, they find that they are able to generalize well to unseen transformations
such as frost, JPEG compression, motion blur, etc. We can use these primitive transformations to
generate robust UAPs and we show that in practice this generates robust UAPs which generalize well
to a variety of unseen transforms. In other domains, we hope that this work helps to inspire finding
similar primitive transformation sets.

4.2 Baseline Algorithms
We propose two baseline algorithms for generating robust UAPs. The first method is momemtum
based Stochastic Gradient Descent (SGD). We can directly solve Equation 2 using gradient descent.
The second baseline is leveraging the standard UAP algorithm from Moosavi-Dezfooli et al. [36],
but instead of computing an adversarial perturbation at each point, we compute a robust adversarial
perturbation at each point. More details about both of these baseline algorithms can be found in
Appendix E. Both of these algorithms can be seen as naively combining the EoT and UAP algorithms,
in the next section we describe RobustUAP our algorithm which takes a more principled approach at
robust UAP generation.

4.3 Robust UAP Algorithm
The baseline algorithms have two fundamental limitations: (i) they rely on random sampling over
the symbolic transformation region, but the sampling strategy does not explicitly try to maximize
the robustness of the generated UAP over the entire symbolic region, and (ii) they do not estimate
robustness on unsampled transformations. These baselines can be seen as naive combinations of the
EoT and UAP algorithms. As a result, the baselines yield suboptimal UAPs (as confirmed by our
experiments below). To overcome these fundamental limitations, we create a method to compute
probabilistic bounds for expected robustness on an entire symbolic region. We leverage this method
for approximating expected robustness in a new algorithm to generate robust UAPs with guarantees.
We make a simplifying assumption that NT (ur) has a well defined, sampleable probability density
function (PDF) as we cannot bound robustness for arbitrary transformations. Our experiments show
that even though our assumptions do not hold for all the transformation sets considered in this work,
they significantly improve the robustness of our generated UAPs. Our approximation of the expected
robustness relies on the following theoretical result:

Theorem 4.1. Given a perturbation ur, a neural network f , a finite set of inputs X, a set
of transformations T , and minimum universal adversarial success rate γ ∈ R. Let p(γ) =
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Pu′
r∼NT (ur)(ASRU (f,X,u

′
r) > γ). For i ∈ 1 . . . n, let ui

r ∼ NT (ur) be random variables
with a well defined PDF and I : Rd → R be the indicator function, let

p̂n(γ) =
1

n

n∑
i=1

I(ASRU (f,X,u
i
r) > γ) (4)

For accuracy level, ψ ∈ (0, 1), and confidence, ϕ ∈ (0, 1), where (0, 1) is the open interval between
0 and 1. If n ≥ 1

2ψ2 ln
2
ϕ then

P (|p̂n(γ)− p(γ)| < ψ) ≥ 1− ϕ (5)

The proof of this theorem can be found in Appendix B. Theorem 4.1 states that with enough
samples from the neighborhood of a perturbation, ur, the adversarial success rate of ur on the entire
neighborhood is arbitrarily close to the adversarial success rate of ur on sampled transformations
with probability greater than 1− ϕ.

Leveraging Theorem 4.1, we create EstRobustness which given accuracy, ψ, and confidence,
ϕ, returns the ASRR on a finite set of inputs with probabilistic robustness guarantees under the
assumptions of Theorem 4.1. The pseudocode for EstRobustness is in Appendix H.

Our algorithm: RobustUAP. We leverage Theorem 4.1 and EstimateRobustness to develop
RobustUAP, the pseudocode for which is seen in Algorithm 1. Similar to the SGD baseline, we
approximate the expectation in Equation 2 in batches. We first sample transformations from the
PDF of the neighborhood. We set the number of transformations, n, based on Theorem 4.1 to
satisfy the desired confidence level and accuracy. For each gradient step, we compute the mean loss
over the current batch and set of sampled transforms (line 8). For each set of batch and sampled
transformations, instead of making a single gradient update like SGD, we use Projected Gradient
Descent (PGD) to iteratively compute a more robust update to the universal perturbation and end
only when the estimated robustness on the batch satisfies a given threshold (line 10). At the end of
each epoch, we check the robustness across the entire training set and transformation space using
EstRobustness (ER) and stop when we have reached the desired performance (line 14).

Algorithm 1 Robust UAP Algorithm
1: Initialize ur ← 0, n← ⌈ 1

2ψ2 ln
2
ϕ⌉

2: repeat
3: for B ⊂ X do
4: For i = 1 . . . n sample τi ∼ T
5: if ER(f,B, T, γ,ur, ψ, ϕ) < ζ then
6: ∆ur ← 0
7: repeat
8: Compute LB,τ = 1

|B|×n
∑|B|
i=1

∑n
j=1 L[f(Bi + τj(ur +∆ur)), f(Bi)]

9: ∆ur = Pp,ϵ(∆ur + αsign(∇LB,τ ))
10: until ER(f,B, T, γ,ur +∆ur, ψ, ϕ) < ζ
11: ur ← Pp,ϵ(ur +∆ur)
12: end if
13: end for
14: until ER(f,X, T, γ,ur, ψ, ϕ) < ζ

5 Evaluation

Our RobustUAP framework is applicable to all transformation sets in a variety of domains. We
empirically evaluate our method RobustUAP and three baseline approaches (SGD, StandardUAP_RP,
StandardUAP [36]) on popular models from the vision domain. We show that RobustUAP is more
robust on both uniform random noise and compositions of real-world transformations such as rotation,
scaling, etc. We did not have the hardware to print high resolution transparent stickers so we
could not produce real-world results in the vision domain. We show that training RobustUAP on
a set of primitive transforms results in a universally robust UAP which generalizes well to unseen
transformations allowing for successful attacks without the need for domain specific modeling.
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Figure 3: For each method, a point (x, y) in the corresponding line represents the percentage of
sampled UAPs (y%) with Universal ASR > x for the different semantic transformations on ILSVRC.

Experimental evaluation. We consider two popular image recognition datasets: CIFAR-10[29]
and ILSVRC 2012[15]. We evaluate on a pretrained VGG16 [40] and Inception-v3 [42] network on
CIFAR-10 and ILSVRC 2012 respectively. For both we evaluate on a random subset (1000 images)
for the test set. All experiments were performed on a desktop PC with a GeForce RTX(TM) 3090
GPU and a 16-core Intel(R) Core(TM) i9-9900KS CPU @ 4.00GHz.

We report the results for l2-norm with ϵ = 100 for ILSVRC 2012 and ϵ = 10 for CIFAR-10. These
values were chosen based on the values presented by the original UAP paper [36]. We use an image
normalization function given by our pretrained models and thus scaled our ϵ values accordingly.
We note that the ϵ-values are significantly smaller than the image norms resulting in imperceptible
perturbations that do not affect the semantic content of the image. Due to the hardness of the
optimization problem, for the same norm value, the effectiveness of a UAP is less than input-specific
perturbations; however, crafting input-specific perturbations requires making unrealistic assumptions
about the power of the attacker as mentioned in the introduction and therefore we do not consider
them part of our threat model which aims to generate practically feasible perturbations. We use
ψ = 0.05 and ϕ = 0.05 resulting in n = 738 for generating samples for our RobustUAP algorithm
as well as reporting robust ASR in our evaluation. The UAPs are trained on 2,000 images, other
parameters for evaluation are given in Appendix I. Error bars/variances are reported in Appendix Z.
5.1 Robustness to Random Noise
We first generate UAPs robust against uniform random noise. Here since our neighborhood has a well-
defined PDF we get the robustness guarantees from EstimateRobustness, in the following sections
when we consider semantic and unknown transformations we won’t have the same gaurantees. The
results and future discussion can be found in Appendix M.
5.2 Robustness to Semantic Transformations
Next, we consider transformation sets generated by composing five popular semantic transformations
in existing literature [6, 8]: brightness/contrast, rotation, scaling, shearing, and translation.

We use a variety of different compositions to show that our algorithm works under different conditions,
and base our parameters for the transformations on [8]. For our experiments, R(θ) corresponds to
rotations with angles between ±θ; T (x, y), to translations of ±x horizontally and ±y vertically;
Sc(p) to scaling the image between ±p%; Sh(m) to shearing by shearing factor between ±m%; and
B(α, β) to changes in contrast between±α% and brightness between±β. Further details about these
transformations can be seen in Appendix C. We consider compositions of different subsets and ranges
of these transformations shown in Table 1 including composing all transformations together. The
hardness of generating robust UAPs depends on the effect that the transformation set has on the UAP
(i.e. random noise has a relatively small effect compared to rotation). The hardness also increases
with the number of transformations in the composition as well as the range of parameters for each
individual transformation. For example, generating robust UAPs is harder for the composition shown
in the first and last row for ILSVRC 2012 in Table 1 compared to the second and third row. The same
is true for generating a UAP robust to uniform random noise.

Robust ASR (ASRR). Figure 3 shows performance of UAPs obtained by applying 738 randomly
sampled transformations to the original UAPs generated by different methods on ILSVRC, similar
graphs for CIFAR-10 can be found in Appendix K. The RobustUAP algorithm outperforms all others
in each case, we observe that for these harder transformation sets StandardUAP loses its effectiveness
completely. In Table 1 we compare robust universal adversarial success rate ASRR with γ = 0.6,
in other words, we are finding the percentage of sampled neighbors of the perturbation that are still
UAPs with 60% effectiveness on the testing set. We provide average ASRU scores as well as ASRR
for different γ levels in Appendix L.
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Our RobustUAP algorithm achieves at least 53.4% higher robust ASR when compared to the standard
UAP algorithm on both datasets and all transformation sets. Furthermore, our RobustUAP algorithm
significantly outperforms both robust baseline approaches. Except for the T (2, 2) case which we
observe to be the easiest, RobustUAP achieves at least 11.6% performance gain over the baselines.
SGD is the best performing baseline and achieves high robust ASR on relatively easier transformation
sets performing within 1% of RobustUAP on T (2, 2). On harder transformation sets, this gap widens
considerably, see Table 1.

5.3 Universally Robust UAPs
Using the set of primitive transformations discussed by PRIME, we generate robust UAPs on
ILSVRC using the same parameters as above. For each sampled transform, we randomly apply
three transformations from identity, spectral, spatial, and color. This means that we can get multiple
of the same transformation or even no transformation. We follow the setup from PRIME for the
parameters of each transformation type. Table 2 shows the robust ASR when training a RobustUAP
on PRIME, Affine (R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001)), and Fog transformation sets and how
they perform on common corruptions [34, 27, 24]. Although prime does not inherently contain any
specific affine or common corruption in its training it has generally high robustness (>58.3%) against
all transformation sets tested. We observe that training on the target transformation set does bring
higher robustness than training on PRIME (i.e. Affine-trained robust UAP has best performance on
Gaussian, Contrast, Affine while Fog-trained robust UAP has best performance on fog); however,
we find that PRIME has much better performance on unseen transformations (i.e. Fog-trained or
Affine-trained robust UAP on JPEG). Our results suggest that a set of good primitive transformations
is sufficient for generating universally robust UAPs that generalize well to unseen transformations.

Figure 4: Examples of perturbed images with labels. The top row is unperturbed ILSVRC 2012 test
set images, the second row has a randomly transformed robust UAP added to it, the third row has a
randomly transformed robust UAP trained with Prime added to it, and the bottom row has a randomly
transformed standard UAP added to it. Labels calculated using Inception-v3.

Table 1: Robust ASR of RobustUAP compared to the three baselines.

DATASET TRANSFORMATION SET
Standard SGD Standard Robust

UAP UAP_RP UAP

R(20) 0.0% 69.9% 2.9% 93.2%
ILSVRC T (2, 2) 35.9% 96.1% 38.8% 97.1%
2012 Sc(5), R(5), B(5, 0.01) 22.3% 85.4% 43.7% 96.1%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 0.0% 63.1% 2.9% 86.4%

CIFAR-10
R(30), B(2, 0.001) 0.0% 64.1% 2.9% 75.7%
R(2), Sh(2) 42.7% 88.3% 52.4% 96.1%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 0.0% 58.3% 7.8% 79.6%
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Table 2: Robust ASR (%) of RobustUAP trained on PRIME, Affine (R(10), T (2, 2), Sh(2), Sc(2),
B(2, 0.001)), and Fog when applied to Prime, Affine, and common corruption transforms

EVALUATION CORRUPTION SET

TRAIN NOISE BLUR WEATHER DIGITAL
SET PRIME AFF. GAUS. SHOT IMP. DEFO. GLASS MOTI. ZOOM SNOW FOG FROST BRIGHT CONTR. ELAST. PIXEL JPEG

PRIME 68.4 58.3 72.1 81.3 88.6 66.5 75.2 81.0 74.6 77.8 78.8 65.3 85.3 90.4 74.2 69.2 73.3
AFFINE 10.1 86.4 91.2 93.2 85.4 45.1 31.4 76.1 92.4 65.2 70.1 50.1 80.1 94.1 39.1 30.5 37.3

FOG 1.5 0.1 10.2 11.3 9.3 15.1 7.6 10.1 5.5 69.5 95.2 21.3 10.1 12.6 18.4 2.8 3.9

5.4 Visualization
We visualize UAPs generated with different algorithms transformed randomly from R(10), T (2, 2),
Sh(2), Sc(2), B(2, 0.001) and added to images in ILSVRC 2012 in Figure 4. Our robust UAPs have
a similar level of imperceptibility to standard UAPs. Robust UAPs affect the model classification after
transformation with high probability, unlike standard UAPs. We further visualize UAPs generated
with our three robust algorithms on the same transformation set and dataset in Appendix Y.
5.5 Transferability of Robust UAPs
We evaluate the transferability of RobustUAP. Previous works on UAPs [36] show that UAPs are
transferable across different models. Here, we will evaluate whether robust UAPs exhibit the
same behavior for robustness. The robust UAPs studied here are generated with RobustUAP on
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) for ILSVRC-2012 with γ = 0.6. We use a variety of mod-
els: Inception-v3 [42], MobileNet [25], Inception-v3 trained to be robust on R(20) (InceptionR20),
Inception-v3 trained to be robust on horizontal flips (InceptionHF), and ViT [17]. Table 3 shows us
that our robust UAPs are transferable between different architectures. Our results show that robust
UAPs transfer their robustness properties between architectures and models. Ignoring ViT, on all of
the Inception and MobileNet models, the generated UAPs maintain at least 65% robust ASR when
transferred to each other. This transfer is less but still significant for ViT where it maintains at least
32% robustness when transferred to or from the other models.

Table 3: Robust ASR when UAP is learned on source model and transfered to target model.

TARGET MODEL

SOURCE MODEL INCEPTION MOBILENET INCEPTIONR20 INCEPTIONHF VIT

INCEPTION 86.4% 65.2% 75.2% 78.5% 35.1%
MOBILENET 74.3% 86.2% 67.3% 68.6% 38.3%
INCEPTIONR20 80.1% 67.3% 81.3% 73.1% 32.0%
INCEPTIONHF 77.8% 70.9% 75.8% 83.8% 34.6%
VIT 41.2% 32.4% 43.2% 39.7% 88.5%

5.6 Robustness against Robust UAPs
Traditional methods for robustness, such as adversarial training, focus on being robust in scenarios
where the attacker is powerful (i.e. PGD), but with this comes a significant tradeoff in accuracy. In a
preliminary study of practical robustness, we train for robustness against practical attacks such as
Robust UAP, while maintaining high accuracy and faster training times. We perform our experiments
on CIFAR-10, with a VGG16 model architecture, and with our most challenging transformation
set (R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001)). We use a batch-wise variant of our robust UAP
algorithm to do adversarial training. With this training method, our model obtains a Robust ASR
of 0.4% and an accuracy of 90.1%. In contrast, standard adversarial training obtains a Robust ASR
of 0.2% and an accuracy of 83.5%. Here, we can see that our training method obtains almost the
same practical robustness without a significant reduction in accuracy. Further, our adversarial training
method with robust UAP takes 12 minutes while standard adversarial training takes 48 minutes,
which is one indication that our proposed training method is more efficient. We believe that further
study can find improvement in robustness, accuracy, and efficiency of this type of training method
which allows us to be practically robust while sacrificing less accuracy.
5.7 Additional Experiments
In Appendix N we show how our robust UAPs compare to standard UAPs on the non-robust universal
ASR metric. In Appendix O, we evaluate our methods on ResNet18 [22] and MobileNet [25] for
CIFAR-10 and ILSVRC 2012 respectively. The results follow the same trends as those reported in
Table 1. To address additional real-world transformations, we investigate fog perturbations from [27]
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in Appendix P finding similar results. We show that our methods work well in the targeted attack
domain as well, results can be see in Appendix S. In Appendix U, we show that RobustUAP has good
data efficiency and obtains good performance with less data. In Appendix T, we find that RobustUAP
beats out SGD even at the same runtime. The recent popularity of transformer based models has also
led us to show that our methods work on transformer based networks, results in Appendix V. In
Appendix W, we find that traditional model robustness does not seem to effect ability to create robust
UAPs. Finally, in Appendix X, we perform an ablation study on optimization strategy and show that
SGD outperforms other popular optimizers.

6 Related Work

UAP Algorithms. Most works focusing on UAPs [36, 37, 48, 28, 3, 23, 49] generate singular vectors
and do not consider perturbation robustness. Bahramali et al. [7] introduces a perturbation generator
model (PGM) for the wireless domain which creates UAPs. They show that both adversarial training
and noise subtracting defenses used in the wireless domain are highly effective in mitigating the
effects of a single vector UAP attack; they further show that their method of generating a set of UAPs
is an effective way for an attacker to circumvent these defenses. Although PGM provides a method
for efficiently sampling unique UAPs, it is not robust to real-world transformations. In contrast, our
method enables efficient sampling of UAPs that are robust to transformations.

Robust Adversarial Examples. The following papers introduce notions of robustness under different
viewpoints and environmental conditions for constructing realizable adversarial examples. This is a
different threat model compared to the additive perturbations discussed in this paper. Luo et al. [32]
constructs adversarial examples which minimize human detectability, further introducing the idea of
robustness for adversarial examples. They show that their attacks are robust against jpeg compression.
Sharif et al. [39] attack facial recognition systems by putting adversarial perturbations on glass frames.
Their work demonstrates a successful physical attack under stable conditions and poses. Eykholt et al.
[20] proposes Robust Physical Perturbations (RP2) in order to show that adding graffiti on a stop sign
can cause it to be misclassified in both simulations and in the real world. Athalye et al. [6] introduce
Expectation over Transformation (EOT) and use it to print real-world objects which are adversarial
given a range of physical and environmental conditions.

Robust Adversarial Perturbations. Li et al. [30] generates music which affects a voice assistant
based system from picking up its wake word. Li et al. [31] presents a method for generating a targeted
adversarial sticker which changes an image classifier’s classification from one pre-specified class
to another. Both of these methods rely on specific use cases and are tailored towards generating
adversaries coming from strict distributions, e.g. [30] generates guitar music while [31] generates a
small grid of dots. These works build on algorithms akin to our baseline approaches and are limited in
scope to domain specific transformations. Our work provides a framework for improving robustness
against a wide range of transformations in diverse domains and can be leveraged for improving the
effectiveness of these attacks.

7 Limitations and Ethics
We have shown the benefits of RobustUAP and would like to outline a few limitations and ethical
concerns. Firstly, we note that our methods do not have a way to address non-differentiable trans-
formations. We hope that future work leverges methods such as REINFORCE which do not have
dependence on differentiability [45]. Secondly, RobustUAP would not work against models trained
with standard adversarial training since to have a UAP you need to be able to generate standard
adversarial examples. However, currently, robustly trained models are seldom used since adversarial
attacks are hard to realize (i.e. UAPs) and these models come with a large tradeoff with accuracy. Our
preliminary research suggests that defending against practical attacks such as robust UAP does not
come with the same tradeoff, allowing for more practical robustness while retaining similar accuracy.
We understand that our proposed methods could cause harm to existing deployed ML methods. Our
hope is to expose vulnerabilities in existing safety and security critical applications of ML to spawn
further research into practical robustness against real-world implementable attacks.

8 Conclusion

In this paper, we demonstrate that standard UAPs fail to be universally adversarial under transfor-
mation. We propose a new method, RobustUAP, to generate robust UAPs based upon obtaining
probabilistic bounds on UAP robustness across an entire transformation space. We show that
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RobustUAP works for both known and unknown transformation sets. Our experiments provide
empirical evidence that our principled approach generates UAPs that are more robust than those
from the existing/baseline methods. Our preliminary work suggests that robustness against practical
adversaries such as robust UAPs may require much less tradeoff with accuracy and we hope that
inspires research into robustness against practical attacks.
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[8] Mislav Balunović, Maximilian Baader, Gagandeep Singh, Timon Gehr, and Martin Vechev.
Certifying geometric robustness of neural networks. Advances in Neural Information Processing
Systems 32, 2019.

[9] Philipp Benz, Chaoning Zhang, Tooba Imtiaz, and In So Kweon. Double targeted universal
adversarial perturbations. In Proceedings of the Asian Conference on Computer Vision, 2020.

[10] Philipp Benz, Soomin Ham, Chaoning Zhang, Adil Karjauv, and In So Kweon. Adver-
sarial robustness comparison of vision transformer and mlp-mixer to cnns. arXiv preprint
arXiv:2110.02797, 2021.

[11] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[12] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[13] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics, pages 493–507, 1952.

[14] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast
adaptive boundary attack, 2019.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[16] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li.
Boosting adversarial attacks with momentum. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

10



[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[18] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and
Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.
nature, 542(7639):115–118, 2017.

[19] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark DePristo,
Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. A guide to deep
learning in healthcare. Nature medicine, 25(1):24–29, 2019.

[20] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning
visual classification. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1625–1634, 2018.

[21] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[22] Kaiming He, X Zhang, S Ren, and J Sun. Deep residual learning for image recognition."
computer vision and pattern recognition (2015). Google Scholar There is no corresponding
record for this reference, pages 770–778, 2015.

[23] Jan Hendrik Metzen, Mummadi Chaithanya Kumar, Thomas Brox, and Volker Fischer. Universal
adversarial perturbations against semantic image segmentation. In Proceedings of the IEEE
international conference on computer vision, pages 2755–2764, 2017.

[24] Dan Hendrycks and Thomas G Dietterich. Benchmarking neural network robustness to common
corruptions and surface variations. arXiv preprint arXiv:1807.01697, 2018.

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[26] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks.
Advances in neural information processing systems, 28:2017–2025, 2015.
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Appendix

A Definitions

In this section, we will formally define the terms used in the main body of the paper. We first start
with adversarial examples.
Definition A.1. Given a correctly classified point x, a distance function d(·, ·) : Rd × Rd → R, and
bound ϵ ∈ R, x′ is an adversarial example iff d(x′,x) < ϵ and f̂(x′) ̸= y.

We distinguish between adversarial examples and perturbations. An adversarial perturbation added
to the point it is attacking is an adversarial example, x′ = x+ v. We can construct v by solving the
following optimization problem:

argmin
v
||v||p s.t. f̂(x+ v) ̸= f̂(x) (6)

Here, we are looking for the smallest v such that f ’s classification changes from the original output
(assuming f correctly classified x).

Next, we define the adversarial success rate which measures whether or not a given perturbation is
adversarial.
Definition A.2. Given a datapoint x, and perturbation v, adversarial success, AS, is defined as

AS(f, x, v) = 1− δ(f̂(x+ v), f̂(x)) (7)

Here, δ(i, j) refers to the Kronecker Delta function [2], formally,

δ(i, j) =

{
0 if i ̸= j

1 if i = j
(8)

With AS, we measure whether v changes f ’s classification of x.

Using the definision of adversarial success we can now define unniversal adversarial success rate.
Definition A.3. Given a data distribution µ, and perturbation u, universal adversarial success rate,
ASRU , for u, is

ASRU (f, µ,u) = P
x∼µ

(f̂(x+ u) ̸= f̂(x)) (9)

Using Definition A.3, we formally define a UAP.
Definition A.4. A universal adversarial perturbation is a vector u ∈ Rd which, when added to
almost all datapoints in µ causes the classifier f to misclassify. Formally, given γ, a bound on
universal ASR, and lp-norm with corresponding bound ϵ, u is a UAP iff ASRU (f, µ,u) > γ and
||u||p < ϵ.

Now, we move onto definitions pertaining to robust UAPs. We start by formally defining transforma-
tion sets and neighborhoods.
Definition A.5. A transformation, τ , is a composition of bijective sub-differentiable transforma-
tion functions. A transformation set, T , is a set of distinct transformations. A point v′ is in the
neighborhood NT (v), of v, if there is a transform in T that maps v to v′. Formally,

v′ ∈ NT (v) ⇐⇒ ∃τ ∈ T s.t. τ(v) = v′ (10)

Finally, we formally define robust universal adversarial success rate.
Definition A.6. Given a data distribution µ, transformation set T , universal ASR level γ, bound ϵ on
lp-norm, and perturbation ur, robust universal adversarial success rate, ASRR, is defined as,

ASRR(f, µ, T, γ,ur) = P
u′

r∼NT (ur)
(ASRU (f, µ,u′

r) > γ ∧ ||u′
r||p < ϵ) (11)
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B Proof of Theorem 4.1

This proof relies heavily on similar proofs provided by Chernoff [13] and by Alippi [4]. We refer to
the reader to these texts for further details. In our proof, we show how to adapt universal ASR to
these proofs.

Proof. The bound on n is derived via the Chernoff inequality applied to p̂n(γ) and E[p̂n(γ)] =
p(γ) [13, 4]. Equation 5 holds since computing universal ASR is Lebesgue measurable over the data
distribution and since we assume NT (ur) has a well defined PDF.

C Semantic Transformations

In this section, we discuss the semantic transformations used in the paper. Brightness and contrast can
be represented via bias (β) and gain (α > 0) parameters respectively. Formally, if x is the original
image, then the transformed image, x′, can be represented as

x′ = αx+ β (12)

Rotation, scaling, shearing, and translation are all affine transformations acting on the coordinate
system, c, of the images instead of the pixel values, x. In order to recover the pixel values and
differentiate over the transformation, we will need sub-differentiable interpolation, see Appendix D.
For finite dimensions, affine transformations can be represented as a linear coordinate map where
the original coordinates are multiplied by an invertible augmented matrix and then translated with
additional bias vector. Below, we give the general form for an affine transformation given augmented
matrix A, bias matrix b, and input coordinates c. We can compute the output coordinates, c′, as[

c′

1

]
=

[
[ccc|c] A b

0 . . . 0 1

] [
c
1

]
(13)

Below, we give the augmented matrix A and additional bias matrix b for rotation, scaling, shearing,
and translation.

Rotation, R(θ), by θ degrees:

A =

(
cos θ − sin θ
sin θ cos θ

)
, b =

(
0
0

)
(14)

Scaling, Sc(p), by p%:

A =

(
1 + p

100 0
0 1 + p

100

)
, b =

(
0
0

)
(15)

Shearing, Sh(m), by shear factor m%:

A =

(
1 1 + m

100
0 1

)
, b =

(
0
0

)
(16)

Translation, T (x, y), by x pixels horizontally and y pixels vertically:

A =

(
0 0
0 0

)
, b =

(
x
y

)
(17)

D Interpolation

Affine transformations may change a pixel’s integer coordinates into non-integer coordinates. Inter-
polation is typically used to ensure that the resulting image can be represented on a lattice (integer)
pixel grid. For this paper, we will be using bilinear interpolation, a common interpolation method
which achieves a good trade-off between accuracy and efficiency in practice and is commonly used
in literature [47, 8]. Let xi,j , x′i,j represent the pixel value at position i, j for the original and
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transformed image respectively. Let c′xi,j , c
′y
i,j represent the x-coordinate and y-coordinate of the

pixel at i, j after transformation. We define our transformed image by summing over all pixels
n,m ∈ [1 . . . H ]× [1 . . .W ] where H and W represent the height and width of the image.

x′i,j =
H∑
n

W∑
m

xn,mmax(0, 1− |c′xi,j −m|)max(0, 1− |c′yi,j − n|) (18)

This interpolation can be computed for each channel in the image. While interpolation is typically
not differentiable, in order to generate adversarial examples using standard techniques we need a
differentiable version of interpolation. [26] introduces differentiable image sampling. Their method
works for any interpolation method as long as the (sub-)gradients can be defined with respect to
x, c′i,j . For bilinear interpolation this becomes,

∂x′i,j
∂xn,m

=
H∑
n

W∑
m

max(0, 1− |c′xi,j −m|)max(0, 1− |c′yi,j − n|) (19)

∂x′i,j
∂c′xi,j

=
H∑
n

W∑
m

xn,mmax(0, 1− |c′yi,j − n|)


1 if m ≥ |c′xi,j −m|
−1 if m < |c′xi,j −m|
0 otherwise

(20)

E Baseline Algorithms

E.1 Stochastic Gradient Descent

The first baseline directly solves Equation 2 using gradient descent. Since we are solving a constrained
optimization problem, we cannot use gradient descent directly. Instead, we can solve the Lagrangian-
relaxed form of the problem (adding a weighted norm term to the minimization problem), as in [12, 6],
using a momentum based Stochastic Gradient Descent (SGD). Shafahi et al. [38] suggests that this is
an effective method for generating standard UAPs. Our SGD algorithm is in Appendix F. In order to
implement it, we replace the Delta function with a loss function, L. We iteratively converge towards
the inner expectation by computing it in batches, and towards the outer expectation by sampling a
large number of transformations. Given that we would like to estimate on a batch, x̂ ⊂ µ, and a
random set of transformations sampled from T , τ̂ ⊂ T , we can approximate using:

I(||τ̂j(ur)|| < ϵ)

|x̂| × |τ̂ |

|x̂|∑
i=1

|τ̂ |∑
j=1

L[f(x̂i + τ̂j(ur)), f(x̂i)]− λ||ur||p (21)

E.2 Standard UAP Algorithm with Robust Adversarial Perturbations

For our second baseline, we leverage the standard UAP algorithm from Moosavi-Dezfooli et al. [36]
(see Appendix G for the algorithm). The standard UAP algorithm takes each input, xi, computes the
smallest additive change, ∆u, to the current perturbation, u, that would make u+∆u an adversarial
perturbation for xi. Intuitively, over time the algorithm will approach a perturbation that works
on most inputs in the training dataset. We modify this approach by computing robust adversarial
perturbations rather than standard adversarial perturbations. At each point xi, we compute the
smallest additive change, ∆ur, to the current robust adversarial perturbation, ur, that would make
ur +∆ur a robust adversarial perturbation for xi. We search for robust adversarial perturbations by
optimizing the expectation that a point in the neighborhood of vr is adversarial while restricting the
perturbation to an lp norm of ϵ.

F SGD Algorithm

Our SGD UAP algorithm is based on standard momentum based SGD while optimizing over the
objective proposed in 2, the algorithm details can be seen in Algorithm 2.
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Algorithm 2 Stochastic Gradient Descent UAP Algorithm
1: Initialize ur ← 0,∆ur ← 0
2: repeat
3: for B ∈ X do
4: Sample t̂ ⊂ T
5: ∆ur ← α∆ur − ν

|x̂|×|t̂|
∑|x̂|
i=1

∑|t̂|
j=1∇L[f(x̂i + t̂j(ur)), f(x̂i)]

6: Update the perturbation with projection:
7: u← Pp,ϵ(ur +∆ur)
8: end for
9: until ASRR(f,X, T, γ,ur) < ζ

G Iterative UAP Algorithm

Moosavi-Dezfooli et al. [36] introduces an iterative UAP algorithm, the algorithm can be seen in
Algorithm 3.

Algorithm 3 Iterative Universal Perturbation Algorithm (Moosavi-Dezfooli et al. [36])
1: Initialize u← 0
2: repeat
3: for xi ∈ X do
4: if f̂(xi + u) = f̂(xi) then
5: Compute minimal adversarial perturbation:
6: ∆u← argminr ||r||2 s.t. f̂(xi + u+ r) ̸= f̂(xi)
7: Update the perturbation with projection:
8: u← Pp,ϵ(u+∆u)
9: end if

10: end for
11: until ASRU (f,X,u) < γ

H Estimate Robustness Algorithm

In this section, we give our algorithm for estimating the robustness of a UAP.

Algorithm 4 EstRobustness
1: Draw n = ⌈ 1

2ψ2 ln
2
ϕ⌉ samples τi ∼ T

2: Return p̂n(γ) = 1
n

∑n
i I(ASRU (f,X, τi(ur)) > γ)

I Experiment Parameters

In our experiments, we have capped all algorithms at 5 epochs or if they have achieved an ASRR
of 0.95. The UAPs are trained with the same transformation set that they are evaluated on. For
algorithms running PGD internally, we have capped the number of iterations to 40.

J Further Evaluation of Uniform Noise

A table of results for uniform random noise can be seen in Table 4.

K UAP performance against semantic transformations on CIFAR-10

In this section, we show similar results as shown in ILSVRC-2012 but on CIFAR-10. Here, we again
see that RobustUAP outperforms all other baselines.
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Table 4: Robust ASR with uniform random noise, γ = 0.8.

DATASET TRANSFORMATION SET
Standard SGD Standard Robust

UAP UAP_RP UAP

ILSVRC U(0.1) 81.6% 94.2% 91.3% 99.0%
2012 U(0.3) 10.7% 68.9% 42.7% 96.1%

CIFAR-10 U(0.1) 66.0% 98.1% 96.1% 100%
U(0.3) 5.8% 96.1% 47.6% 100%

0 0.2 0.4 0.6 0.8 1

(a) R(30),B(2,0.001)

0

25

50

75

100

0 0.2 0.4 0.6 0.8 1

(b) R(2),Sh(2)

StandardUAP
SGD
StandardUAP_RP
RobustUAP

0 0.2 0.4 0.6 0.8 1

(c) R(10),T(2,2),Sh(2),Sc(2),B(2, 0.001)

%
of

Sa
m

pl
es

Universal ASR

Figure 5: For each method, a point (x, y) in the corresponding line represents the percentage of
sampled UAPs (y%) with Universal ASR > x for the different semantic transformations on CIFAR-
10.

L Average ASRU and ASRR with different γ’s

We provide additional metrics computed on the same set of transformations, datasets, and models as
in Table 1. In Table 5, we present the Average ASRU rather than ASRR. The average shows us that
our RobustUAP algorithm creates UAPs which after transformation on average are better UAPs than
all other algorithms. We observe that the average shows us that even standard UAPs aren’t completely
ineffective after transformation they just have a very low chance of being highly effective.

Table 5: Average Universal ASR of our Robust UAP algorithms and the standard UAP [36] method.

DATASET TRANSFORMATION SET
Standard SGD Standard Robust

UAP UAP_RP UAP

R(20) 16.3% 71.5% 24.7% 81.3%
ILSVRC T (2, 2) 52.6% 82.6% 55.4% 85.4%
2012 Sc(5), R(5), B(5, 0.01) 44.9% 76.3% 58.5% 82.2%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 13.6% 64.8% 29.0% 75.3%

CIFAR-10
R(30), B(2, 0.001) 9.9% 66.8% 22.2% 73.4%
R(2), Sh(2) 57.1% 78.8% 61.2% 82.9%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 16.2% 61.2% 32.6% 76.4%

In Table 6, we present ASRR computed at γ = [0.5, 0.7] rather than γ = 0.6. This table shows a
similar story to above, and shows that our algorithm produces better results under a variety of success
thresholds.

M Robustness to Random Noise

First, we show that our algorithm generates UAPs robust against uniform random noise. Here our
neighborhood is defined as an L∞ ball of radius ϵ around the perturbation. U(ϵ) represents noise
drawn uniformly from such a ball. Figure 6 shows the performance of each algorithm. For example,
the RobustUAP algorithm achieves a ASRU of 0.9 greater than 97% of the time under U(0.1) on
CIFAR-10, where all other algorithms achieve 0.9 at most 30% of the time. RobustUAP outperforms
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Table 6: Robust ASR of our Robust UAP algorithms and the standard UAP [36] method with
γ = [0.5, 0.7].

DATASET TRANSFORMATION SET
Standard SGD Standard Robust

UAP UAP_RP UAP
0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7

R(20) 1.9% 0.0% 88.3% 58.3% 10.7% 1.0% 98.1% 76.7%
ILSVRC T (2, 2) 51.5% 21.4% 100% 84.5% 57.3% 23.3% 100% 91.3%
2012 Sc(5), R(5), B(5, 0.01) 38.8% 11.7% 96.1% 67.0% 64.1% 25.2% 99.0% 87.4%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 1.9% 0.0% 82.5% 38.8% 12.6% 1.0% 95.1% 59.2%

CIFAR-10
R(30), B(2, 0.001) 1.0% 0.0% 80.6% 43.7% 12.6% 1.0% 93.2% 49.5%
R(2), Sh(2) 62.1% 22.3% 96.1% 68.9% 68.0% 30.1% 99.0% 89.3%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 2.9% 0.0% 67.0% 38.8% 19.4% 1.0% 93.2% 55.3%

all other algorithms for both noise sizes. StandardUAP has a lower mean and higher variance in
universal ASR and is much less robust to transformation. A table of Robust ASR results for γ = 0.8
can be seen in Appendix J. Our Robust ASR results are guaranteed to be ±0.05 from the actual result
with a probability of 95%. For example, we estimate that RobustUAP has ASRR of 96.1% for U(0.3),
we are guaranteed that the true robustness is > 91.1% with a probability of 95%. Note that we get
robustness guarantees from EstRobustness as our neighborhood has a well-defined PDF.
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Figure 6: For each method, a point (x, y) in the corresponding line represents the percentage of
sampled UAPs (y%) with Universal ASR > x for U(0.1) and U(0.3) on ILSVRC and CIFAR-10.

N Comparison on non-Robust Universal ASR metric

We compare our robust UAPs to standard UAPs on the non-robust universal ASR metric, see Table 7.
All robust UAPs are generated to be robust against R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001). We
observe that at the same l2-norm all robust UAPs achieve a lower universal ASR than the standard
UAP algorithm. This result is not too surprising as solving the optimization problem for robust UAP
is significantly more difficult. We further observe that our RobustUAP algorithm is the most effective
in comparison to the other robust baseline approaches.

Table 7: Universal ASR of our Robust UAP algorithms and the standard UAP method.

DATASET StandardUAP SGD StandardUAP_RP RobustUAP

ILSVRC 2012 95.5% 85.6% 82.3% 91.3%

CIFAR-10 96.2% 89.3% 84.0% 93.7%
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O Additional Models

We also provide additional data on our methods evaluated on the same transformations and datasets
but on different models. In this case, we use ResNet-18 [22] for CIFAR-10 and MobileNet [25]
for ILSVRC 2012. Results can be seen in Table 8. We observe similar performance across models
suggesting that the performance of the attacks is more directly tied to transformation set and dataset.

Table 8: Robust ASR on Resnet-18 for CIFAR-10 and MobileNet for ILSVRC 2012.

DATASET MODEL TRANSFORMATION SET
Standard SGD Standard Robust

UAP UAP_RP UAP

MOBILENET

R(20) 8.1% 71.2% 2.6% 85.0%
ILSVRC T (2, 2) 40.9% 98.7% 54.3% 99.6%
2012 Sc(5), R(5), B(5, 0.01) 16.3% 94.5% 44.3% 96.3%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 4.1% 75.7% 8.6% 86.2%

CIFAR-10 RESNET-18
R(30), B(2, 0.001) 0.9% 67.8% 6.4% 74.9%
R(2), Sh(2) 49.9% 99.5% 49.1% 99.8%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 8.0% 70.8% 12.2% 83.8%

P Common Corruptions

We also evaluate robust UAP against the 2D fog transformations in [27]. We set the shift intensity of
the fog to be 1 and train our robust UAPs to be robust against random fog perturbations. We observe
similar results to the transformations we experiment with above. The graph of the results can be seen
in Figure 7.
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Figure 7: For each method, a point (x, y) in the corresponding line represents the percentage of
sampled UAPs (y%) with Universal ASR > x for the different semantic transformations on ILSVRC-
2012.

Q Algorithm Runtimes

We compare the average runtimes of the different methods on one of our most challenging
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) transformation set on ILSVRC-2012 and n = 738. The
results are in Table 9. We observe that RobustUAP is the slowest algorithm and SGD is the
fastest. RobustUAP uses EstimateRobustness in each loop and thus with high n it requires
much more time to compute. The extra computation enables Robust UAP to obtain better ro-
bustness than all baselines. On the same set of transformations and dataset we observe that one
iteration of EstimateRobustness on the entire test set takes on average 19 minutes. When running
EstimateRobustness in the RobustUAP loop, each call takes 36 seconds for a batch size of 32.
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Table 9: Average Runtime for Robust UAP algorithms

ALGORITHM TIME(MIN)

Standard UAP 37
SGD 32
Standard UAP_RP 43
Robust UAP 118

R Effect of Compute Time on Robustness

Previous sections highlight SGD as the most competitive algorithm to RobustUAP in terms of perfor-
mance. However, in the previous section we note that SGD takes significantly less time to run. In this
section, we investigate how RobustUAP performs with limited compute time as well as how SGD
performs with increased runtime. We first add results to the ILSVRC 2012 part of Table 1 by also
computing RobustUAP performance when limited to the same amount of time that SGD takes. Table
10 shows that RobustUAP outperforms SGD even when its compute time is limited with up to 9%
more robustness on our most challenging transformation R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001).

Table 10: Robust ASR of RobustUAP restricted to the same amount of compute time as SGD.

DATASET TRANSFORMATION SET
SGD Robust Restricted

UAP Robust UAP

R(20) 69.9% 93.2% 72.9%
ILSVRC T (2, 2) 96.1% 97.1% 96.9%
2012 Sc(5), R(5), B(5, 0.01) 85.4% 96.1% 86.3%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 63.1% 86.4% 72.0%

Next, we vary the number of SGD iterations. We compute the robust ASR on ILSVRC for robustness
against R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001). Figure 8, shows the robust ASR achieved by
SGD over time, here we observe that SGD’s performance flatlines after a small number of iterations
and seems to be unable to surpass about 65. Here SGD is allowed to continue to run past where it
would usually stop (at around 250 iterations), in this experiment we allow it to go to 1250 iterations
which is about the same amount of time that RobustUAP takes to run. RobustUAP is able to achieve
a performance of 72 even when restricted to the amount of compute time of base SGD (It achieves
86.4 when unrestricted). These two results in combination show that RobustUAP is able to find more
robust UAPs than SGD whose performance stabilizes.

0 200 400 600 800 1000 1200

SGD Performance over Time

0

20

40

60

R
ob

us
tA

SR

Number of Iterations

Figure 8: The Robust ASR with γ = 0.6 for SGD over time
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S Targeted Attack

So far in this paper we have focused on untargeted attacks, i.e. attacks which aim to degrade the
general performance of the model. Targeted attacks are also possible with both standard adversarial
attack methods and universal adversarial perturbation methods. Here, we can simply turn our
algorithm from untargeted to targeted by replacing the loss function. We would like to have target
class, A, be classified as target class, B. Instead of maximizing the expected value of the cross entropy
loss we can instead formulate the loss based on maximizing B while minimizing A similar to [9]. For
ILSVRC 2012, we randomly select a couple of target classes and perform this attack, for each of these
cases, we train our robust UAP to be robust to R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001). Table 11
shows our results for robust ASR with γ = 0.6. We are measuring our robust ASR of turning class A
into class B and observe similar results with RobustUAP being the most robust followed by SGD. It
is also interesting to note that different random combinations lead to more or less success, i.e. it is
easier to turn a dog into another dog than perfume into a padlock.

Table 11: Robust ASR of RobustUAP for target to target attack compared to the three baselines with
γ = 0.6.

DATASET TARGET CLASS
Standard SGD Standard Robust

UAP UAP_RP UAP

ILSVRC-2012 TOY POODLE → MALTESE DOG 42.4% 99.1% 85.6% 99.8%
PERFUME → PADLOCK 0.0% 63.8% 5.1% 76.4%

T RobustUAP vs SGD Performance.

When comparing our baselines to RobustUAP we observe that the SGD algorithm has the most
comparable performance to RobustUAP. In Appendix Q, we report the runtimes for the different
algorithms and observe that SGD runs four times as fast as RobustUAP. Although this seems to suggest
that SGD is more efficient, we further investigate restricting the runtime of RobustUAP in Appendix
R. We find that RobustUAP beats out SGD at the same runtime. Furthermore, we observe that SGD’s
performance flatlines and does not reach the performance of RobustUAP even when allowed to run
for longer. Finally, we note that since UAPs only need to be computed a single time and can be done
in advance, the runtime considerations are not a big factor for most practical use cases.

U Data Efficiency

In this section, we will evaluate the data efficiency of RobustUAP. We use RobustUAP to generate
UAPs robust to R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) on ILSVRC-2012 with differing amounts
of training data. The results can be seen in Figure 9. These results show that the algorithm is able to
achieve good performance at 500 data points but continues to improve up to 4000 data points. After
that it seems to stagnate.

V Transformer-based Models

Recently, transformers have become popular as a new architecture for deep learning models for
computer vision tasks. In this section, we evaluate the effectiveness of robust UAPs against one such
model, ViT [17]. Benz et al. [10] has shown that standard UAPs are still effective against transformer
based architectures. In Table 12 we can see that we get similar results compared to our results on
Inception and MobileNet. This shows that our methods work against transformer based models as
well.

W Robust UAPs against Robustly Trained Networks

In this section, we are interested in seeing whether training networks to be robust against the same
transformations that the UAP is trying to be robust against is helpful. For this, we trained two new
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Figure 9: Robust ASR with γ = 0.6 for RobustUAP with differing amounts of training data

Table 12: Robust ASR of RobustUAPcompared to the three baselines for ViT.

DATASET MODEL TRANSFORMATION SET
Standard SGD Standard Robust

UAP UAP_RP UAP

ILSVRC-2012 VIT R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 2.0% 72.1% 12.9% 88.5%

Inception-v3 networks. Because of time limitations, we started with our base Inception-v3 network
and fine-tuned it using data augmentations. For the first network InceptionR20, we augmented
the data by adding random rotations within 20 degrees. For the second network InceptionHF, we
augmented the data by adding horizontal flips. We then crafted UAPs robust against rotations and
flips on InceptionR20 and InceptionHF respectively. The results can be seen in Table 13. We can
compare the R(20) results to those from our normal inception network. We postulate that since the
network has received some additional robustness training it is harder to attack, and thus we should see
slightly lower robustness scores. However, it seems that training the network to be robust to R(20)
does not significantly effect the ability to create robust UAPs. The horizontal flips seems like it might
be too easy of a transformation as even standard UAP performs quite well for robust ASR.

Table 13: Robust ASR of RobustUAP compared to the three baselines for robust networks.

DATASET MODEL TRANSFORMATION SET
Standard SGD Standard Robust

UAP UAP_RP UAP

ILSVRC-2012 INCEPTIONR20 R(20) 6.3% 72.4% 10.2% 81.3%
INCEPTIONHF HF 81.3% 99.5% 89.7% 99.6%

X Ablation on optimization strategy

In this section, we study the effect of using different optimizers in addition to SGD. We use a
variety of standard PyTorch optimizers, Adam, Adamax, Adagrad, and RMSProp. We formu-
late the optimization problem in the same way but instead use these algorithms in order to op-
timize our perturbation. We compute these results on ILSVRC-2012 with Inception-v3 and use
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) as the transformation set and with γ = 0.6. The results
can be seen in Table 14. We see that the optimization strategy has some affect on the results and that
SGD performs the best. We also found that SGD performed marginally faster than the rest of the
approaches.
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Table 14: Comparison of different optimization strategies.

OPTIMIZER ASRR

SGD 63.1%
ADAM 59.7%
ADAMAX 60.1%
ADAGRAD 62.3%
RMSPROP 58.3%

Y Visualization of Robust UAPs generated with Different Algorithms

We further visualize UAPs generated with our three robust algorithms on the same transformation set
against a standard UAP generated on ILSVRC 2012 in Figure 10. We observe that StandardUAP
UAPs resemble StandardUAP_RP UAPs, but StandardUAP_RP algorithm concentrates its budget
towards the center as the center is least likely to be perturbed under our transformation set. Both the
RobustUAP and the SGD algorithm generate larger patterns across the image.

Figure 10: Comparison of UAPs on ILSVRC 2012 generated with (a) StandardUAP, (b) RobustUAP,
(c) Standard UAP_RP, (d) RobustUAP, and (e) RobustUAP generated on Prime.

Z Error Bars

In this section, we will provide error bars/standard deviations for results reported in the paper.

Z.1 Table 1

First, we report the standard deviations for Table 1 which we obtain by learning each UAP 10 times
then evaluating them on each their respective dataset/transformation set combinations.

Table 15: Standard Deviation of Robust ASR values reported in Table 1

DATASET TRANSFORMATION SET
Standard SGD Standard Robust

UAP UAP_RP UAP

R(20) 1.1% 7.2% 10.2% 1.5%
ILSVRC T (2, 2) 11.4% 1.8% 6.3% 2.3%
2012 Sc(5), R(5), B(5, 0.01) 10.1% 5.2% 7.4% 3.1%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 0.0% 8.6% 4.9% 2.8%

CIFAR-10
R(30), B(2, 0.001) 0.2% 7.5% 9.0% 5.2%
R(2), Sh(2) 11.3% 5.5% 8.2% 0.9%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 1.8% 6.8% 5.1% 3.7%

Z.2 Table 2

First, we report the standard deviations for Table 2 which we obtain by learning each UAP 10 times
then evaluating them on each their respective dataset/transformation set combinations.
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Table 16: Robust ASR (%) of RobustUAP trained on PRIME, Affine (R(10), T (2, 2), Sh(2), Sc(2),
B(2, 0.001)), and Fog when applied to Prime, Affine, and common corruption transforms

EVALUATION CORRUPTION SET

TRAIN NOISE BLUR WEATHER DIGITAL
SET PRIME AFF. GAUS. SHOT IMP. DEFO. GLASS MOTI. ZOOM SNOW FOG FROST BRIGHT CONTR. ELAST. PIXEL JPEG

PRIME 3.7 4.6 6.1 3.2 4.6 1.3 3.8 4.9 6.7 2.4 7.5 4.3 1.4 5.2 3.1 4.6 2.7
AFFINE 9.7 5.9 3.0 2.7 5.2 8.7 7.6 5.2 0.7 11.2 6.9 6.6 5.2 0.6 3.8 9.6 6.8

FOG 3.1 5.2 4.7 6.6 4.6 1.9 8.4 3.5 5.1 17.8 1.6 12.1 4.0 3.6 7.3 1.1 12.6

Z.3 Remaining Values

We find that the standard deviations are pretty similar across both tables reported and in some testing
of the remaining results. For time reasons we have left the remaining standard deviations out as we
don’t find them informative. We are happy to provide these numbers for any results in the main body
or appendix of the paper.
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