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Introduction

 In air, acid-base chemistry plays an important role in new particle formation

(NPF). However, there are still gaps in understanding which species
govern this process due to lack of instrumentation to measure chemical
composition in the aerosol nanocluster (AN) size range (1-10 nm).1-3
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» While new particle formation (NPF) is often HyC \\O

associated with H,SO,,** there is evidence from  pethanesulfonic acid (MSA)
field observations that methanesulfonic acid

(MSA) can also play a role.® MSA HO\/\NHz
concentrations can be 10-100% that of H,SO, in  Monoethanolamine (MEA)
air,”? and the relative MSA contribution to NPF
may increase in the future as anthropogenic
SO, declines worldwide.10.11

4-Aminobutanol (4AB)

« We previously showed that MSA binary reactions with NH; or alkylamines
can be a significant source of new particles.’>” Reactions with
methylamine (MA) in particular are extremely efficient at forming
nanoparticles that are neutral above 10 nm, whereas smaller particles are
more acidic.8

* We have extended these studies to multifunctional amines, including two
alkanolamines (MEA and 4AB) that are used in carbon capture and
storage technology, and are expected to be released into the air.™®

Goal

— Characterize the chemical composition of sub-10nm
nanoparticles and clusters from reactions of MSA with
two alkanolamines.

Methodology

Flow Tube Experiments
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Fig. 2 — Flow tube diagram2°

« Experiments were performed at relative humidities ranging from 0% to
~60%.

« Size distributions were acquired at various reaction times using a nano
scanning mobility particle sizer (TSI, sheath flow 15 L min-'; aerosol flow
1.5 L min).

» Acid:base ratios were measured using thermal desorption chemical
ionization mass spectrometry (TDCIMS).18:21

Reactants

« Gas phase MEA/4AB were generated using a diffusion vial method.
Their concentrations were measured using ion chromatography2? and
UPLC-ESI-MS/MS.

« (Gas phase MSA was generated by flowing air over the pure liquid
standard maintained in a glass trap. Its concentration was determined
by filter collection followed by UPLC-ESI-MS/MS.

Acid:Base Molar Ratio
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Results

TDCIMS Measurements
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Fig. 3 — schematic of
the TDCIMS inlet
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Fig. 4 — MSA-MEA nanoparticles TDCIMS mass spectra
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Fig. 5 — Thermodesorption profiles from the analysis
of MSA-MEA nanopatrticles

* Particles are first charged using a unipolar charger, then size-selected
using either a radial DMA or a Half-Mini DMA (SEADM)?4 before entering
the inlet of the TDCIMS featuring a high-resolution time-of-flight (H-TOF,

 The TDCIMS measures the size-resolved chemical composition of
nanoparticles formed from MSA+MEA and MSA+4AB systems down to

~4 nm.23

APIiTOF-MS Measurements
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Fig. 6 — Schematic of the bipolar ESI system coupled to the Half-Mini DMA and H-TOF-MS

« To measure the composition of charged clusters <4 nm, a bipolar ESI
system was used in combination with a Half-Mini DMA and the H-TOF-MS.

« Equimolar salt solutions of MSA and 4AB, or MSA and MEA (1.5 umol mL)
were prepared and sprayed in both ESI(-) and ESI(+). The bipolar spray
allows the formation of only singly charged clusters.

« The Half-Mini DMA was operated in both (+) and (-) mode to select
negatively and positively charged clusters, respectively, with a sheath flow of
~205 LPM and an aerosol flow of ~8 LPM.

* For analysis, the TDCIMS inlet was removed and the clusters were directly
introduced into the inlet aperture of the mass spectrometer.

Results

Flow tube studies

— Alkanolamines are extremely efficient at
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Fig. 7 — Size distributions of MSA+MEA
and MSA+4AB particles exiting the flow
tube at ~4 s reaction time
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systems.

—More results from MSA+ME
flow tube studies can be found

here:23
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nucleating nanoparticles with MSA,
consistent with their high gas phase
basicity and —OH group that increases
H-bonding capabilities in the clusters.

—>Water has very little influence on these
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Fig. 8 — Acid:base molar ratios measured with the TDCIMS

— In contrast to MSA+MA, 18 both alkanolamines show an acid:base ratio close to
unity with no size-dependence.

Conclusions

MSA+4AB system | | | |
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— Results from the APiTOF-MS confirm the presence of 1:1
positively charged acid:base clusters for both the MSA+MEA and
MSA+4AB systems at the very low size range (< 2.4 nm),
consistent with the TDCIMS measurements of particles >4 nm.

= Flow tube studies show that alkanolamines nucleate particles
extremely fast with MSA.

— Both MSA+MEA and MSA+4AB systems form particles with a
constant acid:base ratio across all diameters.

— Analysis of sub-2nm aerosol clusters show similarly a prevalence
for the 1:1 positively charged acid:base clusters consistent with the
flow tube studies.

— Ongoing work is underway to expand these studies to more
multifunctional amines, including a C4 diamine (putrescine) and
corresponding simple alkylamine (butylamine).
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