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Abstract6

In the Time-Windows TSP (TW-TSP) we are given requests at di�erent locations on a network;7

each request is endowed with a reward and an interval of time; the goal is to find a tour that8

visits as much reward as possible during the corresponding time window. For the online version of9

this problem, where each request is revealed at the start of its time window, no finite competitive10

ratio can be obtained. We consider a version of the problem where the algorithm is presented with11

predictions of where and when the online requests will appear, without any knowledge of the quality12

of this side information.13

Vehicle routing problems such as the TW-TSP can be very sensitive to errors or changes in the14

input due to the hard time-window constraints, and it is unclear whether imperfect predictions can15

be used to obtain a finite competitive ratio. We show that good performance can be achieved by16

explicitly building slack into the solution. Our main result is an online algorithm that achieves a17

competitive ratio logarithmic in the diameter of the underlying network, matching the performance of18

the best o�ine algorithm to within factors that depend on the quality of the provided predictions. The19

competitive ratio degrades smoothly as a function of the quality and we show that this dependence20

is tight within constant factors.21
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2:2 Online Time-Windows TSP with Predictions

1 Introduction29

Many optimization problems exhibit a large gap in how well they can be optimized o�ine30

versus when their input arrives in online fashion. In order to obtain meaningful algorithmic31

results in the online setting, a natural direction of investigation is to consider "beyond32

worst case" models that either limit the power of the adversary or increase the power of the33

algorithm. A recent line of work in this direction has considered the use of predictions in34

bridging the o�ine versus online gap. Predictions in this context are simply side information35

about the input that an online algorithm can use for its decision making; the true input is36

still adversarially chosen and arrives online. The goal is to show that on the one hand, if37

the predictions are aligned with the input, the algorithm performs nearly as well as in the38

o�ine setting (a property known as consistency); and on the other hand, if the predictions39

are completely unrelated to the input, the algorithm nevertheless performs nearly as well as40

the best online algorithm (a.k.a. robustness). Put simply, good predictions should help, but41

bad predictions should not hurt, and ideally we should reap the benefits without any upfront42

knowledge about the quality of the predictions.43

Predictions have been shown to e�ectively bypass lower bounds for a variety of di�erent44

online decision-making problems including, for example, caching [30, 31, 25], scheduling [12,45

24, 3], online graph algorithms [4], load balancing [27, 28], online set cover [6], matching46

problems [17], k-means [19], secretary problems [1, 18], network design [20, 33, 9] and more.147

In this paper, we consider a problem whose objective function value is highly sensitive48

to changes in the input, presenting a significant challenge for the predictions setting. In49

the Traveling Salesman Problem with Time Windows (TW-TSP for short), we are given50

a sequence of service requests at di�erent locations on a weighted undirected graph. Each51

request is endowed with a reward as well as a time window within which it should be serviced.52

The goal of the algorithm is to produce a path that maximizes the total reward of the requests53

visited within their respective time windows. In the online setting, the requests arrive one at54

a time at the start of their respective time windows, and the algorithm must construct a55

path incrementally without knowing the locations or time windows of future requests.56

Vehicle routing problems such as the TW-TSP that involve hard constraints on the lengths57

of subpaths (e.g. the time at which a location is visited) are generally more challenging than58

their length-minimization counterparts. In particular, a small bad decision at the beginning59

of the algorithm, such as taking a slightly suboptimal path to the first request, can completely60

obliterate the performance of the algorithm by forcing it to miss out on all future reward.61

In the o�ine setting, this means that the approximation algorithm has to carefully counter62

any routing ine�ciency in some segments by intentionally skipping reachable value in other63

segments. In the online setting, this means that no sublinear competitive ratio is possible.64

Given the sensitivity of the TW-TSP objective to small routing ine�ciencies, is it possible
to design meaningful online algorithms for this problem using imperfect predictions?65

We consider a model where the algorithm is provided with a predicted sequence of requests66

at the beginning, each equipped with a predicted location and a predicted time window. The67

true sequence of requests is revealed over time as before. Of course if the predicted sequence68

is identical to the true request sequence, the algorithm can match the performance of the69

best o�ine algorithm. But what if the predictions are slightly o�? Could these small errors70

cause large losses for the online algorithm? Can the algorithm tolerate large deviations?71

1 A comprehensive compendium of literature on the topic can be found at [29].
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Our main result is an online algorithm for the TW-TSP based on predictions whose72

performance degrades smoothly as a function of the errors in prediction. We obtain this73

result by explicitly building slack into our solution and benchmark. In a slight departure74

from previous work on TW-TSP, we require the server to spend one unit of idle "service time"75

at each served request. We show that this is necessary to obtain a sublinear approximation76

even with predictions (Theorem 9). (However, in the absence of predictions, the setting77

with service times continues to admit a linear lower bound on the competitive ratio; See78

Theorem 8.) We then use service times judiciously in planning a route and accounting for79

delays caused by prediction errors.80

There are two primary sources of error in predictions: (1) the predicted locations of81

requests may be far from the true locations; and, (2) the predicted time windows may be82

di�erent from the true time windows. The competitive ratio of our algorithm depends linearly83

on each of these components, taking the maximum error over each predicted request and84

normalizing appropriately.2 This dependence is tight to within constant factors. Besides this85

dependence on the prediction error, the competitive ratio depends logarithmically on the86

diameter of the underlying network, matching the performance of the best known o�ine87

algorithm for TW-TSP.88

Although our competitive ratio is stated in terms of the maximum location or time89

window errors, where the maximum is taken over all requests in the instance, our algorithm90

performs well even when some of the errors are large and most errors are small. In particular,91

our algorithm’s performance is simultaneously competitive against the maximum achievable92

reward over any subset of requests, scaled down by the maximum prediction error over that93

subset. (See "Extensions" in Section 3 for a formal statement.) In this respect, our guarantees94

fall within the framework of metric error with outliers proposed by [4]. On the other hand,95

when all or most requests are predicted poorly, our algorithm also inevitably performs poorly96

as it inherits lower bounds from fully online instances.97

Importantly, our algorithm requires little to no information about how the predictions98

match up against the true requests. For the purpose of analysis, we measure the error99

in predictions with respect to some underlying matching between the predicted and true100

requests – the error parameters are then defined in terms of the maximum mismatch between101

any predicted request and its matched true request. This matching is never revealed to102

the algorithm and in fact the performance of the algorithm depends on the quality of the103

best possible matching between the predicted and true requests. The only information the104

algorithm requires about the quality of the predictions is the location error – the maximum105

distance between any prediction and its matched true request. Even for this parameter, an106

upper bound su�ces (and at a small further loss, a guess su�ces).107

Our overall approach has several components. The first of these is to construct an instance108

of the TW-TSP over predicted requests that requires the server to spend some idle time at109

each request as a "service delay". We then extend o�ine TW-TSP algorithms to this service110

delay setting, obtaining a logarithmic in diameter approximation. We then follow and adapt111

this o�ine solution in the online setting. Every time the o�ine solution services a predicted112

request, we match this request to a previously revealed true request, take a detour from the113

computed path to visit and service the true request, and then resume the precomputed path.114

Altogether this provides the desired competitive ratio.115

2 Formally, the competitive ratio depends linearly on the ratio of the maximum location error of any
predicted request to the minimum service time, as well as the ratio of the maximum time window error
to the minimum time window length.

APPROX/RANDOM 2024
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Our results further generalize to a setting where predictions are coarse in that each single116

predicted location captures multiple potential true requests that are nearby. We show that117

with prediction errors defined appropriately, we can again achieve a competitive ratio for118

this "many to one matching" setting that is logarithmic in the diameter of the graph and119

polynomial in the prediction error.120

Finally, our algorithm and analysis incorporates error in estimating rewards of requests121

in a straightforward manner achieving the optimal dependence on this third source of error.122

Further related work123

Using predictions in the context of online algorithm design was first proposed by [30] for124

the well-studied caching problem. Since that work, the literature on online algorithm design125

with predictions has grown rapidly. We point the interested reader to a compendium at [29]126

for further references.127

Metric error with outliers.128

Azar et al. [4] initiated the study of predictions in the context of online graph optimization129

problems, and proposed a framework for quantifying errors in predictions, called metric error130

with outliers, that we adapt. The idea behind this framework is to capture two sources of131

error: (1) Some true requests may not be captured by predictions and some predictions may132

not correspond to any true requests; (2) For requests that are captured by predictions, the133

predictions may not be fully faithful or accurate. The key observation is that it is possible134

to design algorithms with performance that depends on these two sources of error without135

explicit upfront knowledge of the (partial) correspondence between predicted and true requests.136

In this work, we focus mostly on the second source of error, which we further subdivided137

into three kinds of error in order to obtain a finer understanding of the relationship between138

the competitive ratio and di�erent kinds of error. As in the work of Azar et al. [4], we assume139

that the correspondence between predicted and true requests is never explicitly revealed to140

the algorithm. The performance of the algorithm nevertheless depends on the error of the141

best matching between predicted and true requests. In Section 3 we describe how the first142

source of error in Azar et al.’s framework can also be incorporated into our bounds.143

TSP with predictions.144

Recently a few papers [10, 23, 22] have considered the online TSP and related routing145

problems with predictions. The input to the online TSP is similar to ours: requests arrive146

over time in a graph, and a tour must visit each request after its arrival time. However,147

the objective is di�erent. In our setting, requests also have deadlines, and the algorithm148

cannot necessarily visit all requests. The goal therefore is to visit as many as possible. In149

the online TSP, there are no deadlines, and so the objective is to visit all requests as quickly150

as possible, or in other words to minimize the makespan. This makespan minimization151

objective is typically much easier than the deadline setting, as evidenced by constant factor152

approximations for it in the o�ine, online, and predictions settings, as opposed to logarithmic153

or worse approximations for the latter problem.154

We mention that the algorithmic idea of precomputing an o�ine path based on the155

predictions and then adapting it to the online input has also been used in [10, 23]. The main156

challenge in the setting that our works considers, is that due to the existence of deadlines,157

our algorithm needs to be careful on how it adapts its path, as taking a large detour could158

result in entirely missing the time-windows of future (unrevealed) requests. We circumvent159
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this issue by introducing appropriately large idle times on the predicted requests that our160

o�ine solution visits.161

TW-TSP without predictions.162

The (o�ine) TW-TSP problem has a rich literature and has been studied for over 20 years.163

The problem is known to be NP-hard even for special cases, e.g. on the line [32], and when164

all requests have the same release times and deadlines (a.k.a. Orienteering) [11]. Orienteering165

admits constant factor approximations [11, 7, 14], and even a PTAS when requests lie in166

a fixed dimensional Euclidean space [2, 16]. For general time windows, constant factor167

approximations are only known for certain special cases: e.g. constant number of distinct168

time windows [15]; and on line graphs [32, 26, 8, 21]. For general graphs and time-windows,169

the best approximations known are logarithmic in input parameters [7, 14].170

To the best of our knowledge, the online setting for TW-TSP has only been considered171

by Azar and Vardi [5]. Azar and Vardi assume that service times are non-zero and present172

competitive algorithms under the assumption that the smallest time window length Lmin173

is comparable to the diameter D of the graph, as no sublinear competitive ratio can be174

achieved if Lmin < D/2. We are able to beat this lower bound by relying on predictions.175

Organization of the paper176

We formally define the problem and our error model in Section 2. Section 3 describes our177

results and provides an outline for our analysis. All of our main results are covered in that178

section. Proofs of these results can be found in subsequent sections. In particular, Sections 4,179

5, and 6 fill in the details of our upper bound, and Section 7 proves the stated lower bounds.180

Proofs omitted from the main body of this paper can be found in the appendix of the full181

version [13].182

2 Definitions183

2.1 The Traveling Salesman Problem with Time-Windows184

An instance of the TW-TSP consists of a network G and a (finite) sequence of service requests185

I. Here, G = (V, E, ¸) is an undirected network with edge lengths {¸e}eœE . Extending the186

notion of distance to all vertex pairs in G, we define ¸(u, v) for u, v œ V to be the length of187

the shortest path from u to v. We assume without loss of generality that G is connected188

and that the edge lengths ¸e are integers. A service request ‡ = (v‡, r‡, d‡, fi‡) consists of a189

vertex v‡ œ V at which the request arrives, a release time r‡ œ Z+, a deadline d‡ œ Z+ with190

d‡ > r‡, and a reward fi‡ œ Z+. We use � ™ V ◊ Z+
◊ Z+

◊ Z+ to denote the set of all191

possible client requests and I µ � to denote the set of requests received by the algorithm.192

The solution to TW-TSP is a continuous walk on G that is allowed to remain idle on the193

vertices of the graph.3 Formally, the walk starts from some vertex at time t = 0; at every194

time-step that it occupies a vertex u œ V , it can either remain idle on u for some number195

of time-steps or it can move to some v œ V by spending time t = ¸(u,v); we comment that196

while the path is mid-transition, no more decisions can be made. Notice that this creates197

3 To keep our exposition simple, we do not specify a starting location for the walk. However, all of our
algorithms can be adapted without loss to the case where a starting location is fixed, as described
towards the end of Section 3.

APPROX/RANDOM 2024



2:6 Online Time-Windows TSP with Predictions

a notion of a discrete time-horizon that will be important towards formalizing the online198

variant of the problem.199

We use W(G) to denote the set of all walks on G. Given a request ‡ œ �, we say that200

a walk W covers it if W remains idle on vertex v‡ for at least one time-step,4 starting on201

some step · œ [r‡, d‡ ≠ 1]. For a sequence of requests I µ �, we use Cov(W, I) ™ I to denote202

the set of requests in I that are covered by W . Then, the reward obtained by walk W is203

denoted by Rew(W, I) :=
q

‡œCov(W,I)
fi‡. The objective of TW-TSP is to compute a walk204

W œ W(G) of maximum reward. We denote this by OPT(G, I) := maxW œW(G) [Rew(W, I)].205

2.2 The o�ine, online, and predictions settings206

We assume that the network G is known to the algorithm upfront in all of the settings we207

consider. In the o�ine version of the problem, the sequence of requests I is given to the208

algorithm in advance. In the online version, requests ‡ œ I arrive in an online fashion;209

specifically, each request ‡ œ I is revealed to the algorithm at its release time r‡.210

In the predictions setting, the true sequence of requests I arrives online, as in the online211

setting. However, the algorithm is also provided with a predicted sequence I
Õ
µ � in advance,212

where every request ‡
Õ
œ I

Õ is endowed with a location, a time window, and a reward. The213

quality of predictions is expressed in terms of their closeness to true requests. To this end,214

we define three notions of mismatch or error. For a true request ‡ and predicted request ‡
Õ,215

the location error, time windows error, and reward error are defined as:216

LocErr(‡, ‡
Õ) := ¸(v‡, v‡Õ)217

TWErr(‡, ‡
Õ) := max{|r‡ ≠ r‡Õ |, |d‡ ≠ d‡Õ |}218

RewErr(‡, ‡
Õ) := max{fi‡/fi‡Õ , fi‡Õ/fi‡}219

We extend these definitions to the entire sequences I and I
Õ through an underlying (but220

unknown to the algorithm) matching between the requests in the two lists:221

I Definition 1. Given two request sequences I, I
Õ
µ � with |I| = |I

Õ
| and a perfect matching222

M : I ‘æ I
Õ, we define the location, time window, and reward errors for the matching M as:223

�M := max
‡œI

LocErr(‡, M(‡))224

·M := max
‡œI

TWErr(‡, M(‡))225

flM := max
‡œI

RewErr(‡, M(‡))226

We use n = |V | to denote the number of vertices in G, D to denote the diameter of227

the graph, and Lmin and Lmax to denote the size of the smallest and largest time windows228

respectively (of a true or predicted request) in the given instance; that is, we denote229

Lmin = min‡œIfiIÕ |d‡ ≠ r‡| and Lmax = max‡œIfiIÕ |d‡ ≠ r‡|. The competitive ratios of the230

algorithms we develop depend on these parameters.231

Knowns and unknowns.232

We denote an instance of the TW-TSP with predictions by (G, I, I
Õ
, M). All components of233

the instance are chosen adversarially. As mentioned earlier, the network G and the predicted234

4 As we mentioned in the introduction, this requirement of a minimal one-unit service time is necessary
in order to achieve any sublinear approximation for the online TW-TSP even with predictions. See
Theorem 9 in Section 7.
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sequence I
Õ are provided to the algorithm at the start. The sequence I arrives online. We235

assume that the algorithm receives no direct information about the matching M , but is236

provided with an upper bound on the error �M . We will also assume that the algorithm237

knows the parameter Lmin, although this is without loss of generality as the parameter can238

be inferred within constant factor accuracy from the predictions.5239

2.3 The TW-TSP with service times240

At a high level our algorithm has two components: an o�ine component that computes a241

high-reward walk over the predicted locations of requests, and an online component that242

largely follows this walk but takes "detours" to cover the arriving true sequence of requests.243

In particular, as the algorithm follows the o�ine walk, for each predicted location it visits244

where a "close by" true request is available, the algorithm takes a "detour" to this true245

request, returns back to the predicted location, and resumes the remainder of the walk. In246

order to incorporate the time spent taking these detours in our computation of the o�ine247

walk, we require the walk to spend some "service time" at each predicted location it covers.248

Accordingly, we define a generalization of the TW-TSP:249

I Definition 2. The TW-TSP with Service Times (TW-TSP-S) takes as input a network G,250

a sequence of service requests I, and a service time S œ Z+, and returns a walk W œ W(G).251

We say that W covers a request ‡ œ I, denoted ‡ œ Cov(W, I, S), if it remains idle on vertex252

v‡ for at least S time steps, starting at some step t œ [r‡, d‡ ≠ S]. We define the reward of253

W as Rew(W, I, S) :=
q

‡œCov(W,I,S)
fi‡. The optimal value of the instance is given by:254

OPT(G, I, S) := max
W œW(G)

[Rew(W, I, S)].255

Note that the original version of TW-TSP as defined previously simply corresponds256

to the special case of TW-TSP-S with service time S = 1, and in particular, we have257

Rew(W, I) = Rew(W, I, 1), and OPT(G, I) = OPT(G, I, 1).258

3 Our results and an outline of our approach259

Our main result is as follows.260

I Theorem 3. Given any instance (G, I, I
Õ
, M) of the TW-TSP with predictions whose errors261

satisfy ·M Æ Lmin/2 and �M Æ (Lmin ≠ 1)/4, there exists a polynomial-time online algorithm262

that takes the tuple (G, I
Õ
, �M ) as o�ine input and I as online input, and constructs a walk263

W œ W(G) such that264

E[Rew(W, I)] Ø
1

O(�M · fl2

M · log min(D, Lmax)) · OPT(G, I).265

As mentioned previously, our algorithm consists of two components. The o�ine component266

constructs a potential walk in the network with the help of the predicted requests. Then an267

online component adapts this walk to cover true requests that arrive one at a time. We break268

up the design and analysis of our algorithm into four steps. The first two steps relate the269

o�ine instance we solve to the hindsight optimal solution for the online instance. The third270

5 In particular, assuming ·M Æ Lmin/2, which is necessary for our results to hold, the time window of
any true request can be no shorter than half the smallest time window of any predicted request.

APPROX/RANDOM 2024



2:8 Online Time-Windows TSP with Predictions

step then applies an o�ine approximation to the predicted instance with appropriate service271

times. The final step deals with the online adaptation of the walk to the arriving requests.272

The following four lemmas capture the four steps. First, we show (Section 4) that273

introducing a service time of S hurts the optimal value by at most a factor of 2S ≠ 1. As274

we prove in Lemma 14 of Section 4, this dependency on S is tight. Observe that we require275

S Æ Lmin, as for any tour to feasibly cover a request, the service time for that request must276

fit within its time window.277

I Lemma 4. For any instance (G, I) of the TW-TSP with service times, and any integer278

S Æ Lmin, we have279

OPT(G, I, S) Ø
1

2S ≠ 1 · OPT(G, I, 1).280

Our second step (also in Section 4) relates the value of the optimal solution over the true281

requests I to the optimum over the predicted sequence I
Õ. In both cases, we impose some282

service time requirements. Note that this argument needs to account for the discrepancy in283

locations, time windows, as well as the rewards of the true and predicted requests.284

I Lemma 5. Let (G, I, I
Õ
, M) be an instance of the TW-TSP with predictions, where �M ,285

flM , and ·M denote the maximum location, reward, and time window errors of the instance286

respectively. Define S := 4�M + 1 and S
Õ := 2�M + 1. Then, if ·M Æ Lmin/2 and287

�M Æ (Lmin ≠ 1)/4, we have288

OPT(G, I
Õ
, S

Õ) Ø
1

3flM
· OPT(G, I, S).289

Our third step (Section 5) captures the o�ine component of our algorithm: computing290

an approximately optimal walk over the predicted requests with the specified service times.291

For this we leverage previous work on the TW-TSP without service times and show how to292

adapt it to capture the service time requirement.293

I Lemma 6. Given any instance (G, I
Õ
, S

Õ) of the TW-TSP with service times, there exists294

a polynomial time algorithm that returns a walk W œ W(G) with reward295

Rew(W, I
Õ
, S

Õ) = 1
O (log min(D, Lmax)) · OPT(G, I

Õ
, S

Õ).296

Finally, the fourth component (Section 6) addresses the online part of our algorithm.297

Given a walk computed over the predicted request sequence, it solves an appropriate online298

matching problem to construct detours to capture true requests. As in Lemma 5, this part299

again needs to account for the discrepancy in locations, time windows, as well as the rewards300

of the true and predicted requests.301

I Lemma 7. Given an instance (G, I, I
Õ
, M) of the TW-TSP with predictions satisfying302

·M Æ Lmin/2 and �M Æ (Lmin ≠ 1)/4; a walk W
Õ
œ W(G); and any integer S

Õ
Ø 2�M + 1,303

there exists an online algorithm (Algorithm 1) that returns a walk W œ W(G) with expected304

reward305

E [Rew(W, I, 1)] Ø
1

6flM
· Rew(W Õ

, I
Õ
, S

Õ).306

Theorem 3 follows immediately by putting Lemmas 4, 5, 6 and 7 together.307
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Lower bounds and tightness of our results.308

We show that the online TW-TSP does not admit sublinear competitive algorithms in the309

absence of predictions if Lmin < D, even with non-zero service times. Furthermore, if the310

service times are all 0, no sublinear competitive ratio is possible even using predictions that311

are accurate in all respects except the request location. Therefore, in order to achieve a312

nontrivial competitive ratio, it is necessary to use predictions as well as to impose non-zero313

service times on the optimum. The proofs are presented in Section 7.314

I Theorem 8. The competitive ratio of any randomized online algorithm for Online TW-TSP315

on instances with Lmin Æ D and all service times equal to 1 is at most 1/n.316

I Theorem 9. For any S > 0, there exists an instance (G, I, I
Õ
, M) of the TW-TSP with317

predictions and service times 0, satisfying ·M = 0, flM = 1, and �M = S, such that any318

randomized online algorithm taking the tuple (G, I
Õ
, �M ) as o�ine input and I as online319

input achieves a reward no larger than O(1/n) · OPT(G, I, 0). Here n is the number of320

vertices in G.321

As mentioned earlier, the best known approximation factor for the o�ine TW-TSP322

is O(log Lmax) (which we show can be improved slightly to O(log min(D, Lmax))). We323

inherit this logarithmic dependence on D and Lmax in the predictions setting. Furthermore,324

any improvements to the o�ine approximation would immediately carry through into our325

competitive ratio as well. In particular, given an o�ine TW-TSP algorithm that achieves a326

competitive ratio of –(D, Lmax), we obtain an online algorithm that achieves a competitive327

ratio of O(�M · fl
2

M · –(D, Lmax)).328

The dependence of our bound on flM can easily be seen to be tight – consider a star329

graph with requests on leaves, and edge lengths and time windows defined in such a manner330

that any feasible walk can cover at most one request. Then an uncertainty of a factor of331

flM in the predicted rewards can force any online algorithm to obtain an �(fl2

M ) competitive332

ratio even if the predictions are otherwise perfect. Finally, we show in Section 7.2 that the333

dependence of our competitive ratio on �M is also tight:334

I Theorem 10. For any S > 0, there exists an instance (G, I, I
Õ
, M) of the TW-TSP with335

predictions satisfying ·M = 0, flM = 1, and �M = S such that the competitive ratio of any336

randomized online algorithm taking the tuple (G, I
Õ
, �M ) as o�ine input and I as online337

input asymptotically approaches 1/(S + 1).338

Extensions and generalizations.339

We now describe some ways in which we can weaken the assumptions in Theorem 3 while340

maintaining its competitive ratio guarantee:341

Lack of knowledge of �M . Our algorithm continues to work as intended if it is provided342

with an upper bound on �M rather than the exact value of the parameter, with the343

performance of the algorithm degrading linearly with the upper bound, as in the theorem344

above. One such upper bound is simply Lmin/4. Moreover, by guessing �M within a345

factor of 2 in the range [0, Lmin/4], we can obtain the claimed approximation with a346

further loss of O(log Lmin). Thus, our algorithm can achieve non-trivial guarantees that347

scale with the location error even in settings where no information is given about any of348

the prediction errors �M , ·M , flM .349
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Assumptions on ·M and �M . It is easy to see that it is necessary to assume �M Æ Lmin350

to obtain a nontrivial competitive ratio, as predictions with a location error larger than351

the time window size are of no value to the online algorithm. On the other hand, assuming352

·M Æ Lmin is not necessary. We can accommodate larger time window errors by following353

one out of roughly ·M /Lmin di�erent time shifts of the o�ine walk. This worsens our354

approximation factor by an additional factor of ·M /Lmin. In particular, this algorithm355

achieves a competitive ratio of O(�M · fl
2

M · ·M /Lmin · log min(D, Lmax)).356

Random rewards. Our results also hold in the case of random rewards. Specifically,357

consider a setting where the rewards {fi‡}‡œI are drawn from some joint (not necessarily358

product) distribution D over RI
+

. In that case, we define Rew(W, I) :=
q

‡œCov(W,I)
E[fi‡],359

and OPT(G, I) as the maximum reward obtained by any walk W œ W(G).6 Finally, we360

define RewErr(‡, ‡
Õ) as the mismatch between fi

Õ
‡ and E[fi‡]. Our analysis provides the361

same approximation as before in this setting. See the full version for a formal proof.362

I Corollary 11. Given an instance (G, I, I
Õ
, M) of the TW-TSP with predictions where363

requests have randomly drawn rewards, and predictions errors satisfy that ·M Æ Lmin/2364

and also �M Æ (Lmin ≠1)/4, there exists a polynomial-time online algorithm that takes the365

tuple (G, I
Õ
, �M ) as o�ine input and I as online input, and constructs a walk W œ W(G)366

such that367

E[Rew(W, I)] Ø
1

O(�M · fl2

M · log min(D, Lmax)) · OPT(G, I)368

Rooted instances. Next, we consider the case where a starting vertex v0 is also specified,369

and the solution space W(G) includes all walks on G that start on vertex v0 at t = 0.370

We can easily see that this setting is essentially equivalent to its unrooted counterpart,371

under the extra assumption that each request ‡ = (v‡, r‡, d‡, fi‡) satisfies the conditions372

¸(v0, v‡) Æ r‡. This is a reasonable assumption as no algorithm can visit a request ‡373

before time ¸(v0, v‡) anyway. Clearly, for any rooted instance (G, I, v0), the unrooted374

optimal OPT(G, I) is an upper bound on the rooted optimal OPT(G, I, v0). On the other375

hand, the unrooted path computed by our algorithm can be transformed to a path of376

same reward rooted at v0 by going directly from v0 to the predicted request serviced first,377

as this distance is at most equal to the request’s release time.378

Partial matching. Next we consider the case where not all true requests are captured379

by the predicted requests and, on the flip side, where some predicted requests do not380

correspond to true requests at all. Following the framework of [4], we consider partial381

matchings between I and I
Õ, and define �M

1
to be the total reward of all true requests382

that are unmatched, and �M
2

to be the total predicted reward of predicted requests that383

are unmatched. Then, it is easy to see that our analysis goes through for the subsets of I384

and I
Õ that are matched to each other, costing us an additive amount of no more than385

�M
1

+ �M
2

. See the full version for a formal proof.386

I Corollary 12. Given an instance (G, I, I
Õ) of the TW-TSP with predictions, let M be any387

(incomplete) matching between I and I
Õ, and let the error parameters �M , flM , ·M , �M

1
,388

and �M
2

be defined as above. Then, there exists an online algorithm that takes (G, I
Õ
, �M )389

6 Note that we do not allow the optimal walk to adapt to instantiations of rewards. Adaptive walks
cannot be competed against in an online setting even with predictions.
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as o�ine input and I as online input, and returns a walk W œ W(G) such that390

E [Rew(W, I)] Ø �
3

1
�M · fl2

M · log min(D, Lmax)

4
·
!
OPT(G, I) ≠ �M

1

"
≠

�M
2

flM
.391

Many to one matching. Consider a setting where predictions are coarse in that each392

single predicted location captures multiple potential true requests. We can model such a393

setting within our predictions framework and obtain almost the same guarantee as in394

Theorem 3. In particular, for this setting, let M be a many-to-one matching from I to I
Õ.395

We define the location error of a predicted request ‡
Õ
œ I

Õ as the length of the shortest396

path that starts at ‡
Õ, visits all of the locations of the true requests that are preimages of397

‡
Õ in M , spending one unit of time at each, and returns back to ‡

Õ. Observe that this398

location error is the length of the optimal solution to an orienteering problem rooted at ‡
Õ.399

Correspondingly, we want the reward associated with ‡
Õ to capture the total reward of all400

the true requests matched to ‡
Õ, and define its reward error accordingly. Finally, the time401

window error is defined as before, as a maximum over all pairs ‡ and ‡
Õ that are matched402

to each other. Our algorithm for the setting of Theorem 3 constructs a matching between403

I
Õ and I in an online fashion. For this one to many setting, we solve instances of the404

orienteering problem rooted at each predicted request we visit. The performance of the405

algorithm accordingly worsens by a small constant factor and we achieve a competitive406

ratio of O(�M fl
2

M log min(D, Lmax)) as before. Due to space limitations, the details of407

the proof are omitted from this version. See Section 8 of the full version [13] for further408

details.409

I Theorem 13. Given an instance (G, I, I
Õ
, M) of the TW-TSP with predictions where410

M is a many-to-one matching with errors as defined above, and satisfying ·M Æ Lmin/2411

and �M Æ Lmin/2, there exists a polynomial-time online algorithm that takes the tuple412

(G, I
Õ
, �M ) as o�ine input and I as online input, and constructs a walk W œ W(G) such413

that414

E[Rew(W, I)] Ø
1

O(�M · fl2

M · log min(D, Lmax)) · OPT(G, I).415

4 Relating the Optima416

In this section we provide the proofs of Lemmas 4 and 5 that relate the optima over the417

true and the predicted request sequences, using service times as a mechanism to capture the418

prediction errors. We begin by proving that a service time of S can hurt the optimal by at419

most a factor of 2S ≠ 1.420

I Lemma 4. For any instance (G, I) of the TW-TSP with service times, and any integer421

S Æ Lmin, we have422

OPT(G, I, S) Ø
1

2S ≠ 1 · OPT(G, I, 1).423

Proof. Let W œ W(G) be the walk that achieves the optimum OPT(G, I, 1), and let the424

requests in I that are covered by W be denoted as ‡i = (vi, ri, di, fii) and ordered in the425

sequence in which they are covered by W . The lemma follows directly from the simple426

observation that if we don’t service the (S ≠ 1)-requests prior and after some request ‡i,427

then we can save enough time to service ‡i for S time-steps within its time window.428
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Formally, if ti œ [ri, di ≠ 1] is the step at which W begins servicing request ‡i, then by429

skipping the idle times on the (S ≠ 1)-previous and next requests we can remain idle on vi430

from step ti ≠ (S ≠ 1) until step ti + S (since W already remained idle on vi for 1 step) while431

still being able to keep up with walk W . Since S Æ Lmin, it is easy to verify that at least S432

of these time-steps are going to fall in the time-window [ri, di].433

We now partition the requests ‡i = (vi, ri, di, fii) into 2S ≠ 1 sub-sequences, each of which434

starts at some request i œ [S], and covers the requests ‡i, ‡i+(2S≠1), ‡i+2(2S≠1), and so forth.435

Each such sequence can be covered with a walk, with idle times built in as above, so as to be436

feasible for the instance (G, I, S). Clearly, one of these walks obtains a reward of at least437

OPT(G, I, 1)/(2S ≠ 1), completing the proof. J438

In the appendix of the full version, we show that the above lemma obtains a tight gap439

between the optima at di�erent service times.440

I Lemma 14. For any pair of integers (L, S) such that L Ø 2S ≠ 2 Ø 1, there exists a rooted441

instance (G, I) of the TW-TSP with service costs such that Lmin = L and442

OPT(G, I, S) = 1
2S ≠ 1 · OPT(G, I, 1).443

Next, we provide the proof of Lemma 5 that relates the optima between the predicted444

and true request sequences, by appropriately addressing all three possible types of prediction445

errors.446

I Lemma 5. Let (G, I, I
Õ
, M) be an instance of the TW-TSP with predictions, where �M ,447

flM , and ·M denote the maximum location, reward, and time window errors of the instance448

respectively. Define S := 4�M + 1 and S
Õ := 2�M + 1. Then, if ·M Æ Lmin/2 and449

�M Æ (Lmin ≠ 1)/4, we have450

OPT(G, I
Õ
, S

Õ) Ø
1

3flM
· OPT(G, I, S).451

Proof. Let W be the walk that achieves the optimum OPT(G, I, S), and let the requests452

in I covered by W be denoted as ‡i = (vi, ri, di, fii) and ordered in the sequence in which453

they are visited by W . Let ‡
Õ
i = (vÕ

i, r
Õ
i, d

Õ
i, fi

Õ
i) denote the predicted request matched to ‡i,454

that is, ‡
Õ
i = M(‡i). Observe that the total reward of all requests {‡

Õ
i} corresponding to455

‡i œ Cov(W, I, S) is at least Rew(W, I, S)/flM .456

We will consider a walk W
Õ in G defined as follows. The walk W

Õ follows W , visiting457

the requests ‡i in sequence. As soon as W starts servicing ‡i, W
Õ takes a detour to458

visit ‡
Õ
i; remains idle at ‡

Õ
i for S

Õ time steps; returns back to ‡i; remains idle at ‡i for459

S ≠2¸(vi, v
Õ
i)≠S

Õ
Ø 0 time steps; and then resumes the walk W . Observe that W

Õ is identical460

to W outside of the detours it takes to visit the ‡
Õ
i’s.461

Our goal is to feasibly capture all of the reward contained in the ‡
Õ
is. The problem is462

that the walk W
Õ may miss some of this reward due to the mismatch in the time windows of463

the true and predicted requests. To this end, we will consider two variations of the walk W
Õ.464

Let K := Lmin/2 Ø ·M . The walk W
Õ
1

is identical to W
Õ except that it starts K steps after465

W
Õ starts, and accordingly visits every location exactly K steps after W

Õ visits it. The walk466

W
Õ
2

is identical to W
Õ except that it starts K steps before W

Õ starts,7 and accordingly visits467

every location exactly K steps before W
Õ visits it.468

7 To be precise, this walk starts at the location where W Õ is at at step K.
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Now consider some ‡
Õ
i corresponding to a request ‡i covered by W in the instance (G, I, S).469

We claim that at least one of the walks W
Õ, W

Õ
1
, and W

Õ
2

covers ‡
Õ
i in (G, I

Õ
, S

Õ). Let t be470

the time at which W
Õ arrives at v

Õ
i; recall that W

Õ remains at the node until at least t + S
Õ.471

Note that t Ø ri and t + S
Õ
Æ di due to ‡i œ Cov(W, I, S).472

First, suppose that r
Õ
i Æ t and d

Õ
i Ø t + S

Õ, then ‡
Õ is covered by W

Õ in (G, I
Õ
, S

Õ). Next473

suppose that r
Õ
i > t. Then, W

Õ
1

arrives at v
Õ
i at time t + K Ø ri + K Ø ri + ·M Ø r

Õ
i. On474

the other hand, it remains at v
Õ
i until time t + K + S

Õ
< r

Õ
i + K + S

Õ
Æ r

Õ
i + Lmin Æ d

Õ
i.475

Therefore, ‡
Õ
i is covered by W

Õ
1
. Finally, suppose that d

Õ
i < t + S

Õ. Then, W
Õ
2

arrives at v
Õ
i at476

time t ≠ K > d
Õ
i ≠ S

Õ
≠ K Ø d

Õ
i ≠ Lmin Ø r

Õ
i. On the other hand, it remains at v

Õ
i until time477

t ≠ K + S
Õ
Æ di ≠ K Æ di ≠ ·M Æ d

Õ
i. Therefore, ‡

Õ
i is covered by W

Õ
2
.478

We get that at least one of W
Õ, W

Õ
1
, or W

Õ
2

obtains at least a 1/3flM fraction of479

OPT(G, I, S), where the factor of flM is lost due to the mismatch in the predicted rewards.480

The lemma follows directly from this. J481

5 The o�ine approximation482

In this section, we design an O(log min(D, Lmax)) deterministic and polynomial-time ap-483

proximation algorithm for the TW-TSP with service times, providing the proof of Lemma 6.484

Our proof relies on a series of reductions between di�erent o�ine problems, applications of485

existing algorithms as well as the design of novel algorithmic components. We break up our486

argument into a series of lemmas. Due to space limitations, all the proofs are moved to the487

appendix of the full version [13].488

1. First, we designing an O(log min(D, Lmax)) approximation algorithm for TW-TSP489

(without service times). Since the work of [14] already provides a O(log Lmax) ap-490

proximation for the setting with integer time-windows (see Lemma 5.3 of [14]), it su�ces491

to prove the following:492

I Lemma 15. Given an instance of the TW-TSP (without service times) with Lmin Ø 4D,493

there exists a polynomial time algorithm that achieves an O(1) approximation.494

Our proof relies on the observation that when time-windows are su�ciently large compared495

to the diameter of the graph, the problem essentially reduces to an instance of the496

well-studied Orienteering problem, for which constant approximation algorithms are497

known. We comment that similar ideas have been used in [5]. Then, it is straight-498

forward to combine this algorithm together with the algorithm of [14] to acquire an499

O(log min(Lmax, D)) approximation of TW-TSP.500

I Lemma 16. There exists an O(log min(D, Lmax)) approximation algorithm for the501

TW-TSP problem.502

2. Next, we design a simple approximation-preserving reduction from TW-TSP with service503

times to TW-TSP (without service times). The main idea behind this reduction is to504

treat service times as edge lengths in an augmented graph whose diameter is roughly505

D + S. For instances with S Æ D, this increase becomes negligible and thus by combining506

our reduction with Lemma 16, we immediately get the following:507

I Lemma 17. Given an instance (G, I, S) of the TW-TSP with service times such that508

S Æ D, there exists a polynomial time algorithm that achieves an O(log min(D, Lmax))509

approximation.510

3. Finally, we handle the case of large service times, specifically S Ø D. In that case, it511

turns out that we can reduce the instance to one over a uniform complete graph. Then,512
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the TW-TSP-S essentially becomes equivalent to the well-studied Job Scheduling problem,513

for which constant approximations are known.514

I Lemma 18. Given an instance (G, I, S) of the TW-TSP with service costs such that515

S Æ D, there exists a polynomial time algorithm that achieves an O(1) approximation.516

The proof of Lemma 6 follows immediately from Lemma 17 and Lemma 18. We comment that517

any improvement in the best known approximation algorithm for TW-TSP will immediately518

imply an improvement for all the results that this work presents. Lemma 18 essentially519

enables us to assume that in all instances of interest, S Æ D. Under this assumption,520

our reduction used in the proof of Lemma 17 essentially states that TW-TSP-S becomes521

equivalent to TW-TSP in graphs of diameter O(D) and maximum window size O(Lmax).522

As an immediate corollary, given an o�ine TW-TSP algorithm that achieves a competitive523

ratio of –(D, Lmax), we immediately obtain an o�ine O(–(D, Lmax)) approximation for524

TW-TSP-S, that can be used in order to substitute Lemma 6 in our analysis and improve525

the competitive ratio of Theorem 3.526

6 The online algorithm527

In this section we present an online algorithm that takes as input a pre-computed walk over528

the predicted request sequence and solves an appropriate online matching problem in order529

to construct detours that capture true requests, while taking into account the possible errors530

in the predictions. The formal guarantee of our algorithm is given in Lemma 7, which we531

restate for the reader’s convenience:532

I Lemma 7. Given an instance (G, I, I
Õ
, M) of the TW-TSP with predictions satisfying533

·M Æ Lmin/2 and �M Æ (Lmin ≠ 1)/4; a walk W
Õ
œ W(G); and any integer S

Õ
Ø 2�M + 1,534

there exists an online algorithm (Algorithm 1) that returns a walk W œ W(G) with expected535

reward536

E [Rew(W, I, 1)] Ø
1

6flM
· Rew(W Õ

, I
Õ
, S

Õ).537

We begin by establishing some notation. Let W
Õ
œ W(G) be any walk that services some538

predicted requests in I
Õ with a service time of S

Õ. We use ‡
Õ
i = (vÕ

i, r
Õ
i, d

Õ
i, fi

Õ
i) to denote the539

predicted requests in I
Õ that are covered by W

Õ, ordered in the sequence in which they are540

visited by W
Õ. Likewise, we use ‡i = (vi, ri, di, fii) œ I to denote the true request matched541

to the prediction ‡
Õ
i, that is, ‡

Õ
i = M(‡i).542

At a high level, our algorithm follows the walk W
Õ, but when it reaches a predicted543

request ‡
Õ
i, it considers taking a detour to service a true request that is available at that544

point of time. To this end, we define the set of "reachable" true requests as follows.545

I Definition 19. Given a partial walk W that is at request ‡
Õ
i œ I

Õ at time t, we define the546

set of reachable requests Ri(W, t) to be the set of all ‡ œ I such that:547

1. r‡ Æ t Æ d‡ ≠ ¸(vÕ
i, v‡) ≠ 1, and548

2. 2¸(vÕ
i, v‡) + 1 Æ S

Õ.549

Our algorithm considers all of the reachable requests that have not been covered by the550

walk as yet, chooses the one with the highest reward, and takes a detour to visit and cover551

the request, before returning to ‡
Õ
i and resuming the walk. In order to deal with time window552

errors, our algorithm starts the walk a little early, or on time, or a little late, as in the proof553

of Lemma 5. The algorithm is described below formally.554
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Algorithm 1 Online algorithm for TSP-TW with predictions.
O�ine input: Graph G, predicted requests I

Õ, walk W
Õ
œ W(G), service times S

Õ.
Online input: True requests I.
Output: Walk W œ W(G).

1: Let K = Lmin/2. Select ‘ uniformly at random from {≠1, 0, 1}.
2: Define the set of covered requests C = ÿ.
3: for i Ω 1 to |Cov(W Õ

, I
Õ
, S

Õ)| do

4: Let t
Õ
i denote the time at which W

Õ visits ‡
Õ
i.

5: Set ti Ω t
Õ
i + ‘K.

6: Visit v
Õ
i at time ti.

7: Construct the set Ri(W, ti) of requests in I reachable at time ti.
8: if Ri(W, ti) \ C = ÿ then

9: Do nothing.
10: else

11: Let ‡̂ be the highest reward request in Ri(W, ti) \ C.
12: Visit v‡̂; spend one unit of idle time at v‡̂; return to v

Õ
i.

13: Set C Ω C fi {‡̂}.

We begin our analysis by noting that the walk W constructed by the algorithm is always555

able to visit the vertices v
Õ
i corresponding to requests ‡

Õ
i œ Cov(W Õ

, I
Õ
, S

Õ) feasibly at the556

desired times ti. This is because, by construction, the length of the detours that the walk557

W takes in Step 12 is always at most S
Õ – the amount of idle time W

Õ spends at v
Õ
i – by558

virtue of the fact that ‡̂ œ Ri(W, ti) and therefore, 2¸(vÕ
i, v‡̂) + 1 Æ S

Õ. Therefore, all of the559

requests ‡̂ visited in Step 12 are indeed visited by the walk W .560

We now relate the total reward covered by W to the reward contained in the true561

requests ‡i corresponding to ‡
Õ
i œ Cov(W Õ

, I
Õ
, S

Õ). To do so, we first note that with constant562

probability each such request is reachable by W .563

B Claim 20. For each i, ‡i œ Ri(W, ti) with probability at least 1/3.564

Proof. Recall that by definition we have ‡
Õ
i = M(‡i) and so, 2¸(vÕ

i, vi) + 1 Æ 2�M + 1 Æ S
Õ.565

So the request ‡ always satisfies the second requirement in the definition of the reachable566

set Ri(W, ti). Let us now consider the first requirement and recall that ti = t
Õ
i + ‘K where567

‘ œ {≠1, 0, 1}. We will now argue that ti œ [ri, di ≠ 1 ≠ ¸(vÕ
i, vi)] for at least one of the three568

choices of ‘. The claim then follows from the uniformly random choice of ‘.569

1. If t
Õ
i œ [ri, di ≠ 1 ≠ ¸(vÕ

i, vi)], then the claim holds for ‘ = 0 and ti = t
Õ
i.570

2. Suppose that t
Õ
i < ri. Then, for ‘ = 1 we have that ti = t

Õ
i + K Ø r

Õ
i + ·M Ø ri, and also571

ti = t
Õ
i + K < ri + K < di ≠ Lmin + Lmin/2 and thus ti = t

Õ
i + K Æ di ≠ 1 ≠ ¸(vÕ

i, vi) since572

¸(vÕ
i, vi) Æ �M Æ Lmin/2. Thus, in this case we have ti = t

Õ
i + K œ [ri, di ≠ 1 ≠ ¸(vÕ

i, vi)]573

with the choice of ‘ = 1.574

3. Finally, suppose that t
Õ
i > di ≠ 1 ≠ ¸(vÕ

i, vi). Then, for ‘ = ≠1 we have that ti = t
Õ
i ≠ K Æ575

d
Õ
i ≠S

Õ
≠·M Æ di ≠S

Õ and thus t
Õ
i ≠K Æ di ≠1≠¸(vÕ

i, vi) since S
Õ
Ø 2�M +1 Ø ¸(vÕ

i, vi)+1.576

Also, ti = t
Õ
i ≠ K > di ≠ 1 ≠ ¸(vi, v

Õ
i) ≠ Lmin/2 > ri + Lmin/2 ≠ ¸(vi, v

Õ
i) ≠ 1 and thus577

t
Õ
i ≠ K Ø ri, since ¸(vi, v

Õ
i) Æ �M Æ Lmin/2. Thus, in this case we have obtained that578

ti = t
Õ
i ≠ K œ [ri, di ≠ 1 ≠ ¸(vÕ

i, vi)] with the choice of ‘ = ≠1.579

J580
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We are now ready to prove Lemma 7 via a matching-type argument. To account for the581

reward covered by the walk W constructed by the algorithm, we will employ a standard582

charging scheme. Every time the algorithm takes a detour to cover some true request ‡̂ from583

a predicted request ‡
Õ
i in Step 12, we will credit half of the earned reward fi‡̂ to ‡̂ itself, and584

half of the reward to the request ‡i. Formally, let Cr(‡) denote the total credit received by585

‡ œ I. Then during Step 12 we will increment both Cr(‡̂) and Cr(‡i) by fi‡̂/2.586

Now consider some ‡i œ I corresponding to ‡
Õ
i œ Cov(W Õ

, I
Õ
, S

Õ). By Claim 20, this587

request is in Ri(W, ti) with probability at least 1/3. If at time ti, the request has already588

been covered by W , then we get Cr(‡i) Ø fii/2. Otherwise, we pick a ‡̂ œ Ri(W, ti) with589

fi‡̂ Ø fii, and therefore, once again we get Cr(‡i) Ø fii/2.590

Putting everything together, we get591

E[Rew(W, I, S)] = E
C

ÿ

‡œI

Cr(‡)
D

Ø

ÿ

i:‡Õ
iœCov(W Õ,IÕ,SÕ)

E
Ë

fii

2 [‡i œ Ri(W, ti)]
È

592

Ø
1
3 ·

ÿ

i:‡Õ
iœCov(W Õ,IÕ,SÕ)

fii

2593

Ø
1
6 ·

1
flM

·

ÿ

i:‡Õ
iœCov(W Õ,IÕ,SÕ)

fi
Õ
i594

= 1
6flM

· Rew(W Õ
, I

Õ
, S

Õ)595

This completes the proof of the lemma.596

7 Lower bounds597

In this section, we present lower bounds that complement our results. First, we will motivate598

the need for predictions in Section 7.1. Then, in Section 7.2 we will show that the competitive599

ratio of TW-TSP with predictions must scale linearly with the error in locations. Finally, in600

Section 7.3 we argue the need for non-zero service times in the definition of TW-TSP with601

predictions.602

7.1 Lower bounds for online TW-TSP without predictions603

We argue that Online TW-TSP does not admit any reasonable competitive ratio in the604

absence of predictions. In the case of deterministic algorithms where their entire behavior605

is predictable, simple instances with only 2 vertices and appropriately small time-windows606

su�ce to argue that no bounded guarantee for the approximation ratio is achievable.607

I Lemma 21. The competitive ratio of any deterministic online algorithm for Online608

TW-TSP on instances with Lmin Æ D is unbounded.609

Proof. Let Det be any deterministic algorithm and let G be the line graph with just two610

vertices v1, v2 connected via an edge of length D. Since Det is deterministic, we can assume611

knowledge of its position at any step t as soon as we have specified all requests with release612

time Æ t. We will now construct a request sequence I that uses the information.613

For the first D time-steps, we don’t release any request. Then, at t = D, let vD œ {v1, v2}614

be the position that Det’s walk is currently at and likewise let v
Õ
D be the other vertex of615

G. We construct the first request to be ‡ = (vÕ
D, D, D + L, 1) for any L Æ D. Clearly, Det616

cannot service this request as even for L = D it arrives on v
Õ
D at deadline and cannot service617
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it for one step. Then, we don’t release any new request for the next 2D steps, and at t = 3D618

we repeat the same process, by requesting the vertex that Det doesn’t currently occupy.619

Likewise, we repeat the same process at t = 5D, t = 7D etc. Independently of the size of our620

request sequence, the total reward collected by Det is 0.621

On the other hand, it is not hard to see that if our request sequence I has N requests in622

total, then OPT(G, I, 1) = N . This is due to the fact that requests are spaced 2D-steps from623

each other, and thus an optimal o�ine algorithm that had knowledge of the entire sequence624

in advance would always be able to arrive at each request on time, servicing it within its625

respective time-window. J626

For randomized algorithms, a slight improvement can be achieved. In particular, the627

randomized algorithm that picks a vertex uniformly at random and then remains idle on it628

for the entire sequence achieves a competitive ratio of 1/n. It turns out that this is actually629

the best possible ratio that a randomized algorithm can achieve on Online TW-TSP:630

I Theorem 8. The competitive ratio of any randomized online algorithm for Online TW-TSP631

on instances with Lmin Æ D is at most 1/n.632

Proof. Let G(V, E, ¸) be the uniform complete graph of n = |V | vertices, where all edges have633

a length of D. Fix any integer N and let vertices v1, v2, . . . , vN œ V be drawn independently634

and uniformly at random. Next, we fix any window length L Æ D and consider the (random)635

request sequence on these vertices I = {‡i}
N
i=1

for ‡i = (vi, (2i≠1)D, (2i≠1)D +L, 1). From636

Yao’s mininmax principle, a lower bound on the (expected) competitive ratio of deterministic637

algorithms on this randomized instance will imply the same lower bound for randomized638

algorithms.639

Since the time-windows are spaced 2D-away from each other, it is not hard to see that640

for any realization of I, OPT(G, I, 1) = N . On the other hand, since D Ø L, we get that the641

only way to service a request is to be on its corresponding vertex on release time. Since the642

vertices are random, for any deterministic algorithm this happens with probability precisely643

1/n, and thus the expected reward of any deterministic algorithm on this instance is N/n,644

proving the claim. J645

7.2 Tight dependence on location error646

In this section we show that a linear dependency on the location error is unavoidable for any647

randomized online algorithm for the TW-TSP with predictions, even assuming exponential648

computational power. In other words, we formally prove Theorem 10, which we re-state for649

the reader’s convenience:650

I Theorem 10. For any S > 0, there exists an instance (G, I, I
Õ
, M) of the TW-TSP with651

predictions satisfying ·M = 0, flM = 1, and �M = S such that the competitive ratio of any652

randomized online algorithm taking the tuple (G, I
Õ
, �M ) as o�ine input and I as online653

input asymptotically approaches 1/(S + 1).654

Proof. Fix any S > 0 and let K, C and N be integer parameters that will be specified later.655

We construct a graph G = fi
N≠1

i=0
Gi that consists of N copies G0, . . . , GN≠1 of the complete656

graph on C vertices with all edge lengths equal to S, arranged in a way so that each vertex657

in Gi connects to each vertex in Gi+1 with an edge of length KS. A pictorial example for658

small values of C and N is shown in Figure 1.659

Next, we select independently and uniformly at random one vertex vi from each sub-660

graph Gi and construct the (randomized) request sequence I = {‡i}
N≠1

i=0
where we denote661
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Figure 1 An example of G for C = 3 and N = 4. Black edges have a length of S and red edges
have a length of KS.

‡i = (vi, ri, ri + KS, 1) for ri = i · (KS + 1). As for the predictions, we simply construct a662

second instance I
Õ in the same manner and o�er it as an o�ine prediction for I. Observe that663

for all possible constructions of I and I
Õ it holds that there exists a matching M between664

them with ·M = 0, flM = 1 and �M = S, namely the matching that pairs together vertices665

from the same sub-graphs. This prediction provides no information to the algorithm other666

than the fact that the (true) instance I was constructed via the above randomized approach.667

Also, notice that the location error �M can be arbitrarily small compared to the window668

length L = KS by choosing appropriately large K.669

It is easy to see that for all possible realizations of I it holds that OPT(G, I, 1) = N .670

Indeed, consider the walk that starts from the (random) vertex v0, remains idle for 1 step and671

then visits vertex v1, remains idle for one step, visits v2, etc. Such a walk would visit each672

vertex vi at step t = i · KS + i = ri and thus would service all the requests in I, achieving673

a total reward of N . Next, we will show that the expected reward of any deterministic674

algorithm on the random sequence I approaches N/S. Using Yao’s minimax principle, this675

will immediately translate to a lower bound that approaches 1/S for randomized algorithms,676

completing the proof of the theorem.677

Fix any deterministic algorithm for TW-TSP with predictions on instance (G, I, I
Õ
, M).678

Note that since the predictions I
Õ supply zero information, it su�ces to analyze the algorithm679

as a deterministic online algorithm for Online TW-TSP on instance I. The key observation680

is that due to the fact that both the time windows of the requests and the edges that connect681

di�erent sub-graphs have a length of KS, it is impossible for the algorithm to know on what682

vertex vi of subgraph Gi the request is going to arrive before visiting some possibly di�erent683

vertex of the same subgraph. In particular, if the algorithm is in subgraph Gj for j < i at684

time ri, then it cannot reach vertex vi before the time window of request i ends. Thus, in685

order for any deterministic algorithm to serve the request on sub-graph Gi, it first has to686

visit some vertex v
Õ
i of Gi. If it so happens that v

Õ
i = vi then it can immediately service the687

request, otherwise it has to travel a distance of S in order to reach vi.688

We partition the set of requests into two sets N+ and N≠ based on whether the determ-689

inistic algorithm happens to arrive on the correct vertex of the sub-graph or not. All the690

requests in N+ can be serviced without any extra delay, exactly as done by the optimal walk.691

On the other hand, servicing a request in N≠ requires the algorithm to spend an extra time692

of S in order to transition to the right vertex. Since the time-windows have a length of KS,693

this can be done at most K times before the algorithm runs out of slack to spare. When this694

happens, the algorithm would have to skip the next S requests in order to recover enough695
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slack to fix its next mistake.696

Formally, consider the last request in N≠ that the algorithm feasibly serves, call it l.697

Let A be the number of requests in N≠ the algorithm serves through extra delay prior to l,698

and let B be the number of requests the algorithm skips in N+ or N≠ prior to l. Then in699

order for the algorithm to have reached l before its time window ends, it must be the case700

that the total extra delay incurred by the algorithm, namely AS ≠ B, is no more than KS.701

Rearranging we get:702

A(S + 1) ≠ (A + B) Æ KS, or, A Æ
A + B

S + 1 + KS

S + 1 <
N

S + 1 + K703

Thus, we get that the total expected reward gathered by the algorithm is at most704

E[|N+|] + A + 1 Æ E[|N+|] + N

S + 1 + K + 1705

Finally, using the fact that E[|N+|] = N/C, we get that the competitive ratio of any706

deterministic algorithm on the random instance I is at most707

1
C

+ K + 1
N

+ 1
S + 1708

Choosing N >> K and C su�ciently large, we can make this competitive ratio asymptotically709

approach 1/(S + 1) as desired. J710

7.3 Comparing the optimal with and without service times711

As we saw in Lemma 4, the gap between OPT(G, I, 1) and OPT(G, I, S) depends linearly on712

the service time S. In this section, we study the gap between OPT(G, I, 1) and OPT(G, I, 0),713

showing that there exists a much sharper separation between them.714

I Theorem 22. For any integers L and D, L Æ D, there exists an o�ine instance (G, I) of715

the TW-TSP where D is the diameter of the network and every request has a time window716

length equal to L, such that OPT(G, I, 1) Æ
L

D+1
· OPT(G, I, 0).717

Proof. Consider the line graph G with vertices v0 through vD connected sequentially via718

edges of length 1. Clearly, the diameter of G is D. Next, consider the sequence of (D + 1)-719

requests I = {‡i}
D
i=0

where ‡i = (vi, i, L + i, 1). Observe that OPT(G, I, 0) = D + 1 as720

simply following the walk from v0 to vD will cover all the requests if the service costs are 0.721

On the other hand, it is not very hard to see that OPT(G, I, 1) = L. First, observe that722

without loss we can assume that the optimal walk starts on v0. If not, let ‡i be the first723

request served by the optimal. Since ‡i cannot be served prior to step ri = i, we could724

instead start at v0 and take i steps in order to reach vi and then follow the original walk,725

achieving precisely the same reward.726

Our argument is completed by the simple observation that any walk that starts from v0727

and has served x requests with service cost 1 cannot visit vertex vj prior to step j + x. Thus,728

as soon as x becomes L all the future time-windows will be missed. J729

Theorem 22 states that OPT(G, I, 0) is a much stronger benchmark than OPT(G, I, 1).730

However, it doesn’t exclude the possibility of designing an algorithm that is competitive731

against this stronger benchmark OPT(G, I, 0). We will next show that no randomized online732

algorithm with predictions can obtain a better than linear competitive ratio against this733

benchmark. Intuitively, requiring the algorithm to spend non-zero time at each request734
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also allows the algorithm to recover from possible mistakes due to the prediction errors by735

skipping requests that the optimum services with a delay of 1. A similar approach is not736

possible in the 0 service time setting.737

I Theorem 9. For any S > 0, there exists an instance (G, I, I
Õ
, M) of the TW-TSP with738

predictions and service times 0, satisfying ·M = 0, flM = 1, and �M = S, such that any739

randomized online algorithm taking the tuple (G, I
Õ
, �M ) as o�ine input and I as online740

input achieves a reward no larger than O(1/n) · OPT(G, I, 0). Here n is the number of741

vertices in G.742

Proof. We construct the same graph G = fi
N≠1

i=0
Gi as in Theorem 10, that consists of N743

copies of the complete graph with edge lengths S, connected sequentially with edges of length744

KS (see Figure 1). As for the request sequence, we once again select independently and745

uniformly at random one vertex vi from each sub-graph Gi and construct the (randomized)746

request sequence I = {‡i}
N≠1

i=0
where ‡i = (vi, iKS, (i + 1)KS ≠ 1, 1); notice that release747

times are slightly di�erent from Theorem 10 to account for the absence of service costs.748

For the predictions, we simply construct a second instance I
Õ in the same manner and749

o�er it as an o�ine prediction for I. By matching the requests on the same sub-graph750

together, we get ·M = 0, flM = 1 and �M = S. As it clearly holds that OPT(G, I, 0) = N751

for any realization of I, to prove our theorem it su�ces to argue that any deterministic752

algorithm for TW-TSP with predictions on instance (G, I, I
Õ
, M) gets an expected reward of753

O(N/n) and apply Yao’s minimax principle. Furthermore, since the prediction I
Õ does not754

provide any information on I, it su�ces to bound the reward of deterministic algorithms for755

Online TW-TSP on (online) instance I.756

Fix any deterministic algorithm for Online TW-TSP on instance I. Observe that since757

edges between di�erent sub-graphs have a length of KS and time-windows have a length of758

KS ≠ 1, it is impossible for the algorithm to service some request ‡i unless at t = ri it is759

already in some vertex of sub-graph Gi. For the same reason, it is not possible to service any760

request ‡j after servicing some other request ‡i with i > j. Finally, since all requests can761

be reached by their release time if the algorithm starts from a vertex in G0, we can assume762

without loss that this is indeed the case.763

We partition our set of N requests into two sets N+ and N≠ based on whether the764

deterministic algorithm happens to arrive on the correct vertex of the sub-graph before the765

request’s release time or not. From the random construction of our instance, we have that766

E[|N+|] Æ N/C. For requests in N≠, if the algorithm wishes to service them it has to take767

a detour of length S in order to reach the correct vertex. Our proof relies on the fact that768

after servicing K requests in N≠, the algorithm can no longer service any other request. To769

see this, let vj be the K-th request in N≠ that was serviced by the deterministic algorithm.770

As we can already established, any request vi with i < j can no longer be serviced. On771

the other hand, since without loss the algorithm starts at a vertex of G0, just reaching a772

vertex in Gi while taking K detours of length S requires at least iKS + K > di time-steps.773

Putting everything together, we get that the expected reward of the algorithm is at most774

N/C + K = O(N/n) by setting K = O(1) and N = 2K, since n = NC. J775
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