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Abstract

Risk-sensitive reinforcement learning (RL) has
become a popular tool to control the risk of un-
certain outcomes and ensure reliable performance
in various sequential decision-making problems.
While policy gradient methods have been devel-
oped for risk-sensitive RL, it remains unclear if
these methods enjoy the same global convergence
guarantees as in the risk-neutral case (Bhandari
& Russo, 2019; Mei et al., 2020; Agarwal et al.,
2021; Cen et al., 2022). In this paper, we con-
sider a class of dynamic time-consistent risk mea-
sures, called Expected Conditional Risk Measures
(ECRMs), and derive policy gradient updates for
ECRM-based objective functions. Under both
constrained direct parameterization and uncon-
strained softmax parameterization, we provide
global convergence and iteration complexities of
the corresponding risk-averse policy gradient al-
gorithms. We further test risk-averse variants of
REINFORCE (Williams, 1992) and actor-critic
algorithms (Konda & Tsitsiklis, 1999) to demon-
strate the efficacy of our method and the impor-
tance of risk control.

1. Introduction

As reinforcement learning (RL) becomes a popular tech-
nique for solving Markov Decision Processes (MDPs) (Put-
erman, 2014), a stream of research has been devoted to
managing risk. In risk-neutral RL, one seeks a policy that
minimizes the expected total discounted cost. However,
minimizing the expected cost does not necessarily avoid the
rare occurrences of undesirably high cost, and in a situation
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where it is important to maintain reliable performance, we
aim to evaluate and control the risk.

In particular, coherent risk measures (Artzner et al.,
1999) have been used in many risk-sensitive RL research
as they satisfy several natural and desirable properties.
Among them, conditional value-at-risk (CVaR) (Rockafellar
et al., 2000; Rockafellar & Uryasev, 2002; Ruszczynski &
Shapiro, 2006; Shapiro et al., 2009) quantifies the amount
of tail risk. When the risk is calculated in a nested way via
dynamic risk measures, a desirable property is called time
consistency (Ruszczynski, 2010), which ensures consistent
risk preferences over time. Informally, it says that if a cer-
tain cost is considered less risky at stage k, then it should
also be considered less risky at an earlier stage [ < k. In this
paper, we consider a class of dynamic risk measures, called
expected conditional risk measures (ECRMs) (Homem-de
Mello & Pagnoncelli, 2016), that are both coherent and
time-consistent.

Broadly speaking, there are two classes of RL algorithms,
value-based and policy-gradient-based methods. Policy gra-
dient methods have captured a lot of attention as they are
applicable to any differentiable policy parameterization and
have been recently proved to have global convergence guar-
antees (Bhandari & Russo, 2019; Mei et al., 2020; Agarwal
et al., 2021; Cen et al., 2022). While Tamar et al. (2015a)
have developed policy gradient updates for both static co-
herent risk measures and time-consistent Markov coherent
risk measures (MCR), they do not provide any discussions
related to their global convergence. Recently, Huang et al.
(2021) show that the MCR objectives (unlike the risk-neutral
case) are not gradient dominated, and thus the stationary
points that policy gradient methods find are not, in general,
guaranteed to be globally optimal. To the best of our knowl-
edge, it still remains an open question to develop policy
gradient methods for RL with dynamic time-consistent risk
measures that possess the same global convergence proper-
ties as in the risk-neutral case.

This step aims at answering this open question. We apply
ECRMs on infinite-horizon MDPs and propose policy gra-
dient updates for ECRMs-based objectives. Under both con-
strained direct parameterization and unconstrained softmax
parameterization, we provide global convergence guarantees
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and iteration complexities for the corresponding risk-averse
policy gradient methods, analogous to the risk-neutral case
(Bhandari & Russo, 2019; Mei et al., 2020; Agarwal et al.,
2021; Cen et al., 2022). Using the proposed policy gradi-
ent updates, any policy gradient algorithms can be tailored
to solve risk-averse ECRM-based RL problems. Specifi-
cally, we apply a risk-averse variant of the REINFORCE
algorithm (Williams, 1992) on a stochastic Cliffwalk envi-
ronment (Sutton & Barto, 2018) and a risk-averse variant of
the actor-critic algorithm (Konda & Tsitsiklis, 1999) on a
Cartpole environment (Barto et al., 1983). Our numerical
results show that the risk-averse algorithms enhance pol-
icy safety by choosing safer actions and reducing the cost
variance, compared to the risk-neutral counterparts.

Related Work Risk-sensitive MDPs have been studied
in several different settings, where the objectives are to
maximize the worst-case outcome (Heger, 1994; Coraluppi
& Marcus, 2000), to reduce variance (Howard & Matheson,
1972; Markowitz & Todd, 2000; Borkar, 2002; Tamar et al.,
2012; La & Ghavamzadeh, 2013), to optimize a static risk
measure (Chow & Ghavamzadeh, 2014; Tamar et al., 2015b;
Yu et al., 2017) or to optimize a dynamic risk measure
(Ruszczynski, 2010; Chow & Pavone, 2013; 2014; Kose &
Ruszczyniski, 2021; Yu & Shen, 2022).

Recently, Tamar et al. (2015a) derive policy gradient algo-
rithms for both static coherent risk measures and dynamic
MCR using the dual representation of coherent risk mea-
sures. Later, Huang et al. (2021) show that the dynamic
MCR objective function is not gradient dominated and thus
the corresponding policy gradient method does not have
the same global convergence guarantees as it has for the
risk-neutral case (Bhandari & Russo, 2019; Mei et al., 2020;
Agarwal et al., 2021; Cen et al., 2022).

The major contributions of this paper are three-fold. First,
we take the first step to answer an open question by provid-
ing global optimality guarantees for risk-averse policy gradi-
ent algorithms using a class of dynamic time-consistent risk
measures — ECRMs, first introduced by Homem-de Mello
& Pagnoncelli (2016). We would like to note that, although
Yu & Shen (2022) have shown the ECRM-based risk-averse
Bellman operator is a contraction mapping, it does not nec-
essarily imply the global convergence of policy gradient
algorithms for ECRM-based RL. Second, we derive itera-
tion complexity bounds for the corresponding risk-averse
policy gradient methods under both constrained direct pa-
rameterization and unconstrained softmax parameterization,
which closely match the risk-neutral results in Agarwal et al.
(2021) (see Table 1). Third, our method can be extended
to any policy gradient algorithms, including actor-critic al-
gorithms, for solving problems with continuous state and
action space.

Table 1. Iteration complexity comparison between the risk-neutral
results in Agarwal et al. (2021) and our risk-averse setting, where
S, A are the state and action space, H is the space of an aux-
iliary variable n, v € (0,1) is the discount factor, € is the op-

timality gap, Do = ||(;lele is used in Agarwal et al. (2021),
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L H/"L—f ||oo are defined in Theorems 3.7 and 3.12 in our
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paper, respectively.
Iteration Complexity | Direct Parameter | Softmax Parameter
Agarwal et al. (202T) DZ_|S||A] FEGERE
(Risk-neutral) o( (1—v)8¢? ) O(w)
Our work DRISIAHP DS P APHE
(Risk-averse) O( e ) | o( N )

2. Preliminaries

We consider an infinite horizon discounted MDP: M =
(S, A,C, P,v,p), where S is the finite state space, A is the
finite action space, C(s,a) € [0, 1] is a bounded, determin-
istic cost given state s € S and action a € A, P(-|s,a)
is the transition probability distribution, v € (0, 1) is the
discount factor, and p is the initial state distribution over S.

A stationary Markov policy 7’ : S — A(A) parameter-
ized by 6 specifies a probability distribution over the action
space given each state s € S, where A(+) denotes the proba-
bility simplex, i.e., 0 < 7(als) < 1, 3, 4 7%(als) =
1, Vs € §, a € A. A policy induces a distribution
over trajectories { (s, at, C(st, at))}$2,, where s1 is drawn
from the initial state distribution p, and for all time steps
t, a; ~ m%(-|ss), se41 ~ P(-|s¢,as). The value function
V™ 8 — R is defined as the discounted sum of future
costs starting at state s and executing , i.e., v (s) =
E> 72, Y7 1C (¢, ar)|7?, 81 = s]. We overload the nota-
tion and define V™' (p) as the expected value under initial
state distribution p, i.e., V™' (p) = Eq,~,[V™(s1)]. The
action-value (or Q-value) function Q”e :SxA— Ris
defined as Q™ (s,a) = E[>00, 7' 1C (51, a0)|7?, 51 =
s,a1 = aj.

In a risk-neutral RL framework, the goal of the agent is to
find a policy ¥ that minimizes the expected total cost from
the initial state, i.e., the agent seeks to solve mingcg vy (p)
where {77|0 € ©} is some class of parametric stochastic
policies. The famous theorem of Bellman & Dreyfus (1959)
shows that there exists a policy 7* that simultaneously min-
imizes V’Te(sl) for all states s; € S. It is worth noting
that V™' (s) is non-convex in 6, so the standard tools from
convex optimization literature are not applicable. We refer
interested readers to Agarwal et al. (2021) for a non-convex
example in Figure 1.
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2.1. Policy Gradient Methods

Policy gradient algorithms have received lots of atten-
tion in the RL community due to their simple structure.
The basic idea is to adjust the parameter 6 of the pol-
icy in the gradient descent direction. Before introduc-
ing the policy gradient methods, we first define the dis-
counted state visitation distribution df;g of a policy 7/
as d7 (s) = (1 —7) 02 AP (s, = sls1), where
P’ (st = s|s1) is the probability that s; = s after execut-
ing 7 starting from state s;. Correspondingly, we define the

discounted setate visitation disetribution under initial distribu-
tion pas dj (s) = Es,~,[d, (s)]-

The fundamental result underlying policy gradient algo-
rithms is the policy gradient theorem (Williams, 1992; Sut-
ton et al., 1999), i.e., Vg v’ (s1) takes the following form

1

ﬁﬂz eEaNﬂ'eHs) [VQ logwe(a|S)Qﬂg (Saa)]a

srvalg1
where the policy gradient is surprisingly simple and does
not depend on the gradient of the state distribution.

Recently, Bhandari & Russo (2019); Mei et al. (2020); Agar-
wal et al. (2021); Cen et al. (2022) demonstrate the global
optimality and convergence rate of policy gradient meth-
ods in a risk-neutral setting. This paper aims to extend the
results to risk-averse objective functions with dynamic time-
consistent risk measures. Next, we first define coherent
one-step conditional risk measures.

2.2. Coherent One-Step Conditional Risk Measures

Consider a probability space (Z, F, P), and let 71 C Fo C
... be sub-sigma-algebras of F such that each JF; corre-
sponds to the information available up to (and including)
stage t, with Z;, t = 1,2 ... being an adapted sequence of
random variables. In this paper, we interpret the variables
Z; as immediate costs. We assume that F; = {(), =}, and
thus Z; is in fact deterministic. Let Z; denote a space of
JFi-measurable functions from = to R.

Definition 2.1. (Artzner et al., 1999) A conditional risk
measure p : Z,+1 — 2y, is coherent if it satisfies the follow-
ing four properties: (i) [Monotonicity] If 71, 7> € 2541
and Z, > Zs, then p(Z1) > p(Z2); (i) [Convexity]
p(vZ1 + (1 = v)Z2) < vp(Z1) + (1 — 7)p(Z2) for all
Z, Zy € Zpyq and all v € [0,1]; (iii) [Translation in-
variance] If W € Z and Z € 244, then p(Z + W) =
p(Z) + W and (iv) [Positive Homogeneity] If v > 0 and
Z € 241, then p(v2) = vp(2).

For ease of presentation, we rewrite C(s;, a;) as ¢; for all
t > 1 and denote vector (a1, ...,at) as ajy 4 in the rest of
this paper. For our problem, we consider a special class of

o . S —
coherent one-step conditional risk measures p, """’ map-

ping from Z; to Z;_1, which is a convex combination of con-
ditional expectation and Conditional Value-at-Risk (CVaR):

P (er) = (1= NE[et|s(1 4—1)] + ACVaRq [ee| 51,611,
ey
where A € [0,1] is a weight parameter to balance the ex-
pected cost and tail risk, and o« € (0,1) represents the
confidence level. Notice that this risk measure is more gen-
eral than CVaR and expectation because it has CVaR or
expectation as a special case when A = 1 or A = 0.

Following the results by Rockafellar & Uryasev (2002), the
upper a-tail CVaR can be expressed as the optimization
problem below:

. 1
CVaRa[ct|s[17t_1]] = min {nt + aEHCt — nt}+|8[17t—1]]} y

ne€R

@)
where [a]+ := max{a, 0}, and 7, is an auxiliary variable.
The minimum of the right-hand side of the above definition
is attained at n; = VaR,[c¢[s[11—1)] == inf{v : P(c; <
v) > 1 — «a}, and thus CVaR is the mean of the upper «-tail
distribution of ¢, i.e., E[ci|c; > n;]. Please see Figure 1
for an illustration of the CVaR measure. Selecting a small
« value makes CVaR sensitive to rare but very high costs.
Because ¢; € [0, 1], we can restrict the n-variable to be
within [0, 1], i.e.,nm, € H = [0,1] forall ¢ > 1.

Maximum
VaR Cost

| Probability
a

Frequency

CVaR
|

CVaR DeviationJ Cost

Maximum Cost Deviation ———»

Mean

Figure 1. Illustration of CVaR.

2.3. Expected Conditional Risk Measures

We consider a class of multi-period risk function F mapping
from 21 oo 1= 21 X Z3 X -+ X Z¢ X -+ to R as follows:

F(cp1,00)81) =c1 + 705" (c2)

T— o0

T
+im 37 R [ )] @)
t=3

S — . .. .
where p,"*" is the coherent one-step conditional risk mea-

sure mapping from Z; to Z;_; defined in Eq. (1) to repre-
sent the risk given the information available up to (including)
stage ¢t — 1, and the expectation is taken with respect to the
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random history sy ;7. This class of multi-period risk mea-
sures is called expected conditional risk measures (ECRMs),
first introduced in (Homem-de Mello & Pagnoncelli, 2016).

Using the specific risk measure defined in (1) and (2) and
applying tower property of expectations on (3), we have

min F(cp,o)]51)
@[1,00]

. s (A
= min {C’(sl,al) +yAn2 +~ESL [ min {5[0(82,(12) — 2]+

ai,n2 a2,m3

s A
(1= NC(s2,02) + yAns + 7B | min { 2(C(sa,a5) = i+
ag,na

«
+ (1= \)Css,a3) +yAma + -} }] }, @)
where E;. ™' = Eq,[|s;_1] is the conditional expectation
and we apply the Markov property to recast Ezf"*” as
E:‘~'. The auxiliary variable 7, from Eq. (2) is decided
before taking conditional expectation E5!~* and thus it can
be regarded as a (¢t — 1)-stage action, similar to a;_1. Here,
7¢ denotes the tail information of state s;’s immediate cost
(i.e., nf = VaRo[C(st,a¢)|s[1,4—17]), which helps us take
risk into account when making decisions. We refer inter-
ested readers to Yu & Shen (2022) for discussions on the
time-consistency of ECRMs and contraction property of the
corresponding risk-averse Bellman equation.

Based on formulation (4), we observe that the key differ-
ences between (4) and risk-neutral RL are (i) the augmenta-
tion of the action space a; € Atobe (at,nt4+1) € AxH for
all time steps ¢ > 1 to help learn the tail information of cost
distribution, and (ii) the manipulation on immediate costs,
i.e., replacing C(s1, a1) with Cy (s1,a1,m2) = C(s1,a1) +
yAno and replacing C(ss, a;) with Ci(s¢, ¢, ar,mp41) =
%[C(St, at) — T]t}_;,_ + (1 — )\)C(Sf, at) + ’)/AT]t_;'_l for ¢ Z 2.
Note that for time steps ¢t > 2, the calculations of immediate
costs C (8¢, Mty at, Me11) involve both the action 7 from the
previous time step ¢ — 1 and 7;4; from the current time
step t. As a result, we augment the state space s; € S to
be (s¢,nt) € S x H for all t > 2, where 1 is the previ-
ous action taken in time step ¢t — 1. To discretize the space
H = [0,1], we assume that 7, has H + 1 possible values
in total and the h-th element of the H-space is % for all
h =0,1,..., H. This leads to the following proposition.

Proposition 2.2. Define the augmented action space
as A = A x H, augmented state space as
S = S X H, and the state-action transition ma-

trix under policy m as P(s, . a,m.1)—(s)miabm) 1)

P(silse, a)m(ag, miialst,mi), if mi = mesas otherwise,
P(stmt,at,m+1)—>(s;m£7am§+1) = 0. Then the risk-averse
RL with ECRM-based objective function (4) is equivalent to
a risk-neutral RL with M = (S, A,C, P,~, p).

The proof of Proposition 2.2 is straightforward and omitted
here. Note that although the risk-averse RL with ECRM can
be reformulated as a risk-neutral RL, the modified immedi-

ate cost C1(s1, ay,2) in the first time step has a different
form than Cy(s¢,n¢,as,m11) in other time steps t > 2.
Due to this, the conventional Bellman equation used in
risk-neutral RL is not applicable here, thereby preventing
us from directly employing the results of the risk-neutral

policy gradient algorithms.

3. Global Optimality and Convergence of
Risk-Averse Policy Gradient Methods

According to formulation (4), we should distinguish the
value functions and policies for ECRMs-based objectives
between the first time step and others because of the dif-
ferences in the immediate costs. Furthermore, starting
from time step 2, problem (4) reduces to a risk-neutral RL
with the same form of manipulated costs Cy (8¢, 7¢, ar, Me41)
for time steps ¢ > 2, and according to (Puterman, 2014),
there exists a deterministic stationary Markov optimal pol-
icy. As a result, we consider a class of policies I
(79, 792) € A(A x H)ISIHISIH where 78 (ay,m2]51) is
the policy for the first time step parameterized by 6; and
792 (ag, Mes1|se,mi), Wt > 2 is the stationary policy for the
following time steps parameterized by 6>. We omit the de-
pendence of 7 on 6 in the following for ease of presentation.
The goal is to solve the optimization problem below

J"(p) ®)

min
TEA(AXH)ISIHISIHI

where we denote 7* as the optimal policy and J*(p) as
the optimal objective value. The value and action-value
functions for the first time step are defined as

J7(p) =Es,~pJ ™ (51)]
:]Eslrva(al,ng)wﬂ'l(-,-|sl) [QWQ (517 ai, 772)] (6)

and

Q™ (s1,a1,m2) = C(s1,a1) + A2

S1,a )\
VB E gy fszons) | 2 1C(52,a2) = 1]

+ (1 = A)C(s2,a2) + vAns
$2,a A
+ ’Y]ES? 2E(a3,774)“’772('7'|53,773) [{5[0(337 a3) - 773]+

+ (1= N)C(s3,a3) +yAa + - - H }]

respectively. Correspondingly, we define value functions
for time steps ¢ > 2 with state (s;, ;) as

J™2 (s,m0) = Eay mesr)oms(erelseme) [QT2 (St Mty Gty Neg1)]

where

A
Q™ (8¢, Mty Aty Neg1) = E[C(St,at) — M)+



On the Global Convergence of Risk-Averse Policy Gradient

+ (L= N)C(st,at) +yAne 41

s A
+ VES S Eay gy meqn)oms Ha[o(stﬂ, A1) = Mes1]+
+ (1 =N)C(St41,at41) + VA2 + -+ H

A
= Oty ae) = el + (1= A)C(se, ae) + 7 A1
+Es (™2 (8411, Me+1))]- @)

As a result, we have the following equation:

Q™ (s1,0a1,m2) = C(s1,a1) + A2 +yEZ* (™2 (52,m2)].

®)

We also define advantage functions A™ : S x A X H — R
for the first time step and A™ : S x H x A x H — R for
time steps ¢ > 2 as

AT (s1,a1,m2) = J"(s1) — Q™ (s1,a1,m2)

A™2 (54,00, a0, 1) = T2 (80,10) — Q2 (St 70ty At Tt 1)

respectively. Note that because of the differences between
the first time step and others, we cannot directly apply the
risk-neutral policy gradient updates and their convergence
results. Instead, we need to derive risk-averse policy gradi-
ents, i.e., VoJ"(p) = (Vo, J™(p), Vo, J™(p)), and use this
joint gradient vector to provide convergence guarantees.

Next, we first derive a performance difference lemma in
Lemma 3.1 and the policy gradients for ECRM-based objec-
tive functions in Theorem 3.2, which are applicable to any
parameterizations. The proofs are presented in Appendix A.
Lemma 3.1. Let Pr™(7|sy = s) denote the probability

of observing a trajectory T when starting in state s and
following policy . For all policies w, 7' and states s,

’

J(s1) = J" (s1) =

ETNPW‘/ (7]s1) |:A7r (817 ai, 772) + Z ’yt_lAﬂ'Q (St, Mty Gty 77t+1)] .
t=2

Let Pr"(si1 = s = nlse,m) =

> a, T2(at, nlse,m) P(s|se,a;)  denote  the  probabil-

ity that s;4; = s,m:41 = 7 when starting in state
sy, and following policy 7 and let df, , (s,n) =
(1 =) > g VP (442 = 8, Mey2 = 1|s2,72) denote the
discounted state visitation distribution starting from state
S2,m2. We present the policy gradients of ECRMs-based

objective function (5) in the next theorem.
Theorem 3.2. The policy gradients of (5) take the following
forms
Vo, J" (,0) =Es, NPE(al yM2)~m(+]s1) [
Vo, log w1 (a1, m2|51)Q™ (51, a1,7m2)]

T ’y
Vo, J™(p) ZEE(Smm)NdZW Earmesr)~maClsem) [

Vo, log ma(ae, mig1|Se, 1) Q™ (St, My ary 1))
where p”(s,m) = >, p(s1)Pr" (s2 = 5,12 = 1|s1).

The differences between risk-averse ECRM-based and risk-
neutral policy gradients are twofold. First, we break the
policy parameters into two parts, 1 and 6, and derive the
gradient for each one separately. Second, as reflected in the
state visitation distribution dJ. in Vi, J™(p), the initial state
becomes (s2,72) with initial distribution p™ (s, n), different
from the risk-neutral gradients where the initial state is s;
with distribution p and the state visitation distribution is d7.

Next, we consider two types of parameterizations: (i) con-
strained direct parameterization in Section 3.1 and (ii) un-
constrained softmax parameterization in Section 3.2. Both
parameterizations are complete in the sense that any stochas-
tic policy can be represented in the class, and for each of
them, we provide global convergence of the risk-averse
policy gradient methods with iteration complexities.

3.1. Constrained Direct Parameterization

For direct parameterization, the policies are
m1(a1,m2]s1) = 01(s1,a1,m2) and ma(ag, ney1lse, ) =
92(8t717t,at,77t+1), Vit > 2, where 91 € A(.A X H)‘Sl
and 0y € A(A x H)ISIM In this section, we may write

V=J™(p) instead of V J~ (p), and the gradients are

aJ"(p) -
am(anls) p(s)Q™(s,a,m) 9
aJ™(p) gl

= dr. ATo ’ 10
Trala o)~ 1= (5mQ7 (s ma.m) - (10)

using Theorem 3.2. Next, we show that the objective func-
tion J™(s1) is smooth. From standard optimization results
(see Appendix E), for a smooth function, a small gradient
descent update will guarantee to improve the objective value.
The omitted proofs of this section are provided in Appendix
B.

Lemma 3.3. For all starting states s1, J7(s1) is
QZl‘f‘l/l;;‘ [|¢| oo -smooth in T, i.e.,

/ 2v|AlH|, -
197 (o1) = T (s0lle < T2 el =

where |[]|oc = 2 + (1 — A) + Y\

However, smoothness alone can only guarantee the conver-
gence of the gradient descent method to a stationary point
(i.e., V;J™(s1) = 0). For non-convex objective functions,
in order to ensure convergence to global minima, we need
to establish that the gradient of the objective at any parame-
ter dominates the sub-optimality of the parameter, such as
Polyak-like gradient domination conditions (Polyak, 1963).
We give a formal definition of gradient domination below.
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Definition 3.4. (Bhandari & Russo, 2019) We say f is
(v, p)-gradient dominated over © if there exists constants
v > 0and g > 0 such that for all § € O,

. ’ . o ad 92
min f(6') > £(6) + min [(V£(6),6' —6) + £116 - 03]
The function is said to be gradient dominated with degree
one if y = 0 and with degree two if © > 0.

Any stationary point of a gradient-dominated function is
globally optimal. To see this, we note that for any stationary
point 6, we have (V f(6),0" — 0) > 0 forall ' € ©. Then
the minimizer of the right-hand side in Definition 3.4 is 6,

implying ming/ce f(6') > f(9).

In the next theorem, we show that the value function J™(p)
is gradient dominated with degree one, which will be used to
quantify the convergence rate of projected gradient descent
methods in Theorem 3.7 later. Following Agarwal et al.
(2021), even though we are interested in the value J™(p),
we will consider the gradient with respect to another state
distribution i € A(S), which allows for greater flexibility
in our analysis.

Theorem 3.5. Let 7P = ming ., 71(a,n|s). For the

direct policy parameterization, for all state distributions
p, 1€ A(S), we have

J"(p) = J"(p) < D1 (= 7) Ve (1)

max
TEA(AXH)ISIHISIIH]

¥

where D1 = max{||2]|oo, ———1%|| 25 ||oc} and
® (I=y)m{ H
uP(s,m) = Dsr.an (1) P(s]s1,01),Vs €S, n € H.

Note that the significance of Theorem 3.5 is that although
the gradient is with respect to J™(u), the final guarantee
applies to all distributions p.

Remark 3.6. Compared to Lemma 4 in Agarwal et al.
(2021):

-
V() V() € )P max(r )TV (),
- K a
in risk-neutral policy gradient methods, some conditions on
the state distribution of 7, or equivalently p, are necessary
for stationarity to imply optimality as illustrated in Section
4.3 of Agarwal et al. (2021). For example, if the starting
state distribution is not strictly positive, i.e., (s1) = 0 for
ar”
123

some state s, then the coefficient || 2| = +00.

Similarly, in risk-averse policy gradient methods, according
to our Theorem 3.5, we not only need a strictly positive
distribution w for the starting state sq, but also need a strictly
positive distribution p”™ for second-step states so,12. To
achieve this, we need to ensure that (i) each possible value
of 17 is achieved with a positive probability (i.e., 72 > 0),
and (ii) each possible value of s is reachable from the initial
distribution x (i.e., u¥ > 0).

With the policy gradient results in Theorem 3.2, we consider
a projected gradient descent method, where we directly
update the policy parameter in the gradient descent direction
and then project it back onto the simplex if the constraints
are violated after a gradient update. The projected gradient
descent algorithm updates

D) = Praxaylsi+ising () — BV I ()

where Px(gx)isi+isin 1s the projection onto A(A x
'H,)‘S|+|S I*%] in the Buclidean norm, and J3 is the step size.
Using Theorem 3.5, we now give an iteration complexity
bound for projected gradient descent methods.

Theorem 3.7. Let 718 = inf;>; ming, , 7r§t)(a,77|s),

*
T

*
Dy = max{]|£]loe, 5|45

gradient descent algorithm on J™(u) with stepsize § =

oo }- The projected

% satisfies for all distributions p € A(S),
in . J®) _J* <
min J(p) = J7(p) < €
whenever

2 1287|S||Al#]*
1

T>D
- (1 —7)3e

Cllelloe

with C = (4 + A+ 2= [el]oo); [lélloc = 5+ (1=A) +7A.

A proof is provided in Appendix B, where we invoke a
standard iteration complexity result of projected gradient
descent on smooth functions to show that the gradient mag-
nitude with respect to all feasible directions is small. Then,
we use Theorem 3.5 to complete the proof. Note that the
guarantee we provide is for the best policy found over T’
rounds, which is standard in the non-convex optimization
literature. As can be seen from Theorems 3.5 and 3.7, when
7FB 5 0, the iteration bound 7' — +oc. To circumvent
this issue, we consider a softmax parameterization with log
barrier regularizer in the next section, which ensures that
kB > (.

3.2. Unconstrained Softmax Parameterization

In this section, we aim to solve the optimization problem
(5) with the following softmax parameterization: for all
S1,a1,m2 and S, Mg, ag, v 1, T > 2, we have

€xXp (91(817611,772))
vt 5D (01 (51,05 75))
€xp (92(3t7 Nt Gt 77t+1))
€xXp (92(51‘/’ Tt 047 771,5—',-1))

¢ (ay, m2|s1) = 5

wg(at,mﬂlst, 77t) = Z

U ’
A5y

Note that the softmax parameterization is preferable to the
direct parameterization, since the parameters 6 are uncon-
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strained (i.e., 77, 7§ belong to the probability simplex au-
tomatically) and standard unconstrained optimization algo-
rithms can be employed. The omitted proofs of this section
are provided in Appendix C.

Lemma 3.8. Using the softmax parameterization, the gra-
dients take the following forms:

8™ (1) . \
90 (51 army P& ar,n2ls1)(—=A" (s1,a1,
901 (s1,a1,72) ulsi)mi(ar, mefs1)( (s1,a1,m2))
0™ () Y ,
= dﬂ"’r s , T a7 S’
009(s¢,mesae,pyr)  1—ry * (st ) w2 (ae, Nev]se, ne)

(=A™ (5,10, g, it1))-

Because the action probabilities depend exponentially on the
parameters 6, policies can quickly become near determin-
istic and lack exploration, leading to slow convergence. In
this section, we add an entropy-based regularization term to
the objective function to keep the probabilities from getting
too small. Recall that the relative-entropy for distributions
p and ¢ is defined as KL(p, q) := E,~,[—logg(x)/p(x)].
Denote the uniform distribution over set X as Unif y, and
consider the following log barrier regularized objective:

|s1)]

‘Stﬂ?t)]
=J (H)*W > logwi (a1, nals1)

5$1,01,72

LN(Q) Z:Jﬂ' ( ) + HESINUme [KL(Unlf_qu.L, 7T1(

+ K’Est ne~Unifs y 3¢ [KL(UnlfA xH > T (

K
- W Z log 75 (ar, i1 |56, 1)

StyMt, Aty Nt+1

— 2k log |A||H|,

where k > 0 is a regularization parameter and the last
(constant) term is not relevant to optimization. We first
show that L, (6) is smooth in the next lemma.

Lemma 3.9. The log barrier regularized objective function
L,(0) is 0-smooth with o,; = 6(2 + ) + ﬁ“é“m +
28 4 26

ST 7 ISIH]

Our next theorem shows that the approximate first-order
stationary points of L, () are approximately globally op-
timal with respect to J™(p), as long as the regularization
parameter x is small enough.

Theorem 3.10. Let w8 = min, ., 77 (a, n|s). Suppose

K

2|S[[AlIH]’

K

2|S[[H[AlH]

then we have that for all starting state distributions p:

|V, Li(0)]]2 < e <

Vo, L (0)]]2 < €2 <

¥

2K

p
=g 1l

0 . p
J" (p) = J*(p) < 2H\|;Hoo +

Now consider policy gradient descent updates for L, (6) as
follows:

O+ = 9 — BV, L, (6D). (11)

Lemma 3.11. Using the policy gradient

dates (11) for L.(0) with § =

fB = infy>qming 4 71'?“

kB

up-
L we have

)(a,n|s) > 0 and

(a,n'|s,m) > 0.

9(t)
= inf;>1 ming 4,59 75

Using Theorem 3.10, Lemma 3.11 and standard results on
the convergence of gradient descent, we obtain the following
iteration complexity for softmax parameterization with log
barrier regularization.

Theorem 3.12. Let o,, = 6(2 + \) + ﬁ“é”m + ‘25—"‘ +
and Dy = Hp||oo #)FLBH
), consider the updates (11)
Then for all starting state

|5||7ﬂ 22| |oo- Starting

from any initial finite-value 6(°
i - _¢ - 1

W.lth.li = b, and f = e

distributions p, we have

(t) * <
min J(p) — J7(p) < €
whenever
4(3(2 4|e 2)B|S|?| A2 H|*
7 BHBQ )+t + 2 BISPLARIH
1—pe
with B = C — log 1B — log 74P

4. Numerical Results

In this section, we propose a risk-averse REINFORCE algo-
rithm for handling discrete state and action space in Section
4.1 and a risk-averse actor-critic algorithm for handling con-
tinuous state and action space in Section 4.2, respectively.

4.1. Algorithms for Discrete State and Action Space

We first propose a risk-averse REINFORCE algorithm
(Williams, 1992) in Algorithm 1 with softmax parameteri-
zation, which works for discrete state and action space.

We implement Algorithm 1 on a stochastic version of the
4 x 4 Cliffwalk environment (Sutton & Barto, 2018) (see Fig-
ure 2), where the agent needs to travel from a start ([3, 0]) to
a goal state ([3, 3]) while incurring as little cost as possible.
Each action incurs 1 cost, but the shortest path lies next to a
cliff ([3, 1] and [3, 2]), where entering the cliff corresponds
to a cost of 5 and the agent will return to the start. Because
the classical Cliffwalk environment is deterministic, we con-
sider a stochastic variant following (Huang et al., 2021),
where the row of cells above the cliff ([2, 1] and [2, 2]) are
slippery, and entering these slippery cells induces a transi-
tion into the cliff with probability p = 0.1. The discount
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Algorithm 1 Risk-averse REINFORCE with softmax pa-
rameterization
1: Initialize 01(s1,a1,72), Vs1 € S, a1 € A, 12 € H and set

_ exp (01(s1,a1,72))
Za'yﬂé exp (01(s1,a7,m5))"

2: Initialize 62(s¢, Mt ae,Met1), Vse € S, ar €
A, e, e € H and set softmax policy

0 _ exp (02 (st,mt,at,me41))
T2 (a’tv 77t+1|5t777t) - Zaé n. exp (92(5t77lt,a£,7]£+1)) .

t+

3: while not converged do

4:  Generate one trajectory on policy =
§1,Q1,M2,C1,82, . .,8T—1,aT—1,NT,CT—1, ST

5:  Modify immediate costs as ¢1 = ¢1 + YAn2, & = %[ct —
)+ + (1= N)ee + A1, VE > 2.

6:  Update
01 := 01 — BV, lognf (a1, m|s1) 32721 77 'er.

7:  Update

softmax policy 7 (a1, m2|s1)

o = (Wfﬁrg):

02 == 02—B 3], Vo, log 7§ (ar, neslse,me) St} v e

8: end while

factor v is set to 0.98, and the confidence level for CVaR is
set to o = 0.05. Because each immediate cost can only take
values 1 or 5, we set the 7)-space as H = {1,5}. For this
stochastic environment, the shortest path is the blue path in
Figure 2, which takes a cost of 5 if not entering the cliff;
however, a safer path is the orange path, which induces a
deterministic cost of 7.

2 1 1 1 1

5 5

Start Cliff Cliff Goal

Figure 2. A 4 x 4 stochastic Cliffwalk environment.

We train the model over 10000 episodes where each episode
starts at a random state and continues until the goal state
is reached or the maximum time step (i.e., 500) is reached.
All the hyperparameters are kept the same across different
trials, except for the risk parameters A which is swept across
0, 0.25, 0.5, 0.75, 1. For each of these values, we perform
the task over 10 independent simulation runs. The average
test costs (when we start at state [3, 0] and choose the action
having the largest probability) in the first 3000 episodes over
the 10 simulation runs are recorded in Figure 3(a), where the
colored shades represent the standard deviation. To present
a detailed description of these cost profiles, we also look at
a specific run and plot the test cost in the last 1000 episodes
in Figure 3(b).

From Figure 3(a), A = 1 produces the largest variance of
test cost in the first 1500 episodes, after which the policy

3000
—— Lambda-0

Lambda-0.25

Lambda-0.5

Lambda-0.75
—— Llambda-1

2500

2000

1500

Test Cost

1000

500

—=500

o] 500 1000 1500

Episodes

2000 2500 3000

(a) Average test cost over 10 runs with varying .

—— Lambda-0
Lambda-0.25
Lambda-0.5
Lambda-0.75

Test Cost

400
Episodes

600

(b) Test cost in the last 1000 episodes in one run with
varying .

Figure 3. Test cost over 10 independent runs with varying .

gradually converges to the safer path with a steady cost
of 7. When we look at Figure 3(b), A = 0 converges to
the shortest path with the highest variance, and A = 0.25
chooses a combination of the shortest and safer paths (i.e.,
move right at state [2, 0], move up at state [2, 1], and then
follow the safer path). On the other hand, A = 0.5,0.75, 1
all converge to the same safer path with a steady cost of 7
in the last 400 episodes, so they overlap in the figure.

Next, we present the average action probabilities
(75 (-, -|s¢, m¢) in the last episode) at state s; = [2,0], 7; = 0
over the 10 independent runs with varying X\ in Figure 4,
where actions a = 0,1,2,3 represent moving up, right,
down and left respectively, and actions n = 1,5 repre-
sent the VaR of the next state’s cost distribution. A lighter
color denotes a higher probability. From Figure 4, when
A = 0,0.25, the learned optimal action at state s = [2, 0]
is to move right (¢ = 1) with = 5, as entering state [2, 1]
will induce a cost of 5 with probability 0.1. As X increases,
the optimal action shifts to move up (a = 0) with n = 1.
We present the average action probabilities at each state in
the learned optimal path in Figures 7-11 in Appendix F.

Lastly, we display the impact of modifying the regularizer
parameter « from O to 0.5 in Figure 5. A higher  helps
speed up the convergence to a steady path while k = 0 gen-
erates the highest variance of test cost after 2000 episodes.
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Figure 5. Average test cost over 10 runs with varying .

4.2. Algorithms for Continuous State and Action Space

Our method can be also extended to solve problems with
continuous state and action space. To design a risk-averse
actor-critic algorithm, we replace the tabular policy 7, and
w9 in Algorithm 1 with neural networks parameterized by
0, and 65, respectively. We also construct neural networks
for value critics vy (s1) with parameter w; and value critic
va(s¢, ) with parameter wo. The main steps for the risk-
averse actor-critic are outlined in Algorithm 2. We apply Al-
gorithm 2 on the CartPole environment (Barto et al., 1983),
where the reward is +1 for every step taken and the goal is
to keep the pole upright for as long as possible. The average
test rewards over 5 simulation runs are displayed in Figure
6, where we vary the risk parameter A from O to 1. From
Figure 6, A\ = 1 outperforms all other configurations by
producing the highest reward over time.

Algorithm 2 Risk-Averse Actor-Critic

1: Initialize policy 71 (a1, n2|s1) with parameter 61 and policy
mo(at, Ne+1|8¢, me) with parameter 5.
2: Initialize value critic v1(s1) with parameter w; and value
critic va (¢, 7¢) with parameter wo.
3: while not converged do
4:  Generate one trajectory on policy 7’ = (a' 792):
S1,01,72,C1,82, ., ST—1,AT—1,NT, CT—1, ST-
5:  Modify immediate costs as ¢1 = c¢1 + YAn2, ¢ = %[ct -
Nel+ + (1= Aee + yAnes, VE > 2.
6:  Compute discounted costs: V; = Zf;l T
t=1,....,T — 1.
Update w; to minimize [[v"* (s1) — V1||* and update wo
to minimize Zt o 1032 (se,me) — Va2
Update 01 :=60, — 5V91 logﬂfl(al,nﬂsl)vl
Update
92 = 92 —
10: end while

té, for all

~

o %

BT Vo, log m5? (at, nes|se, me) Ve

—— Lambda-0
500 — Lambda-0.25
Lambda-0.5
400 Lambda-0.75
Lambda-1

Test Reward

0 100 200 300 400 500
Episodes

Figure 6. Average test reward over 5 runs with varying A.

5. Conclusions

In this paper, we applied a class of dynamic time-consistent
coherent risk measures (i.e., ECRMSs) on infinite-horizon
MDPs and provided global convergence guarantees for risk-
averse policy gradient methods under constrained direct
parameterization and unconstrained softmax parameteriza-
tion. Our iteration complexity results closely matched the
risk-neutral counterparts in (Agarwal et al., 2021).

For future research, it is worth investigating iteration com-
plexities for policy gradient algorithms with restricted policy
classes (e.g., log-linear policy and neural policy) and natural
policy gradient. It would also be interesting to incorporate
distributional RL (Bellemare et al., 2017) into this risk-
sensitive setting and derive global convergence guarantees.
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Appendix

The appendix is organized as follows.

* Appendix A: proofs of Lemma 3.1 and Theorem 3.2.
* Appendix B: proofs in Section 3.1.

* Appendix C: proofs in Section 3.2.

* Appendix D: smoothness proofs.

» Appendix E: standard optimization results.

* Appendix F: additional computational results.

A. Proofs of Lemma 3.1 and Theorem 3.2

Proof of Lemma 3.1. [Performance difference lemma] Using a telescoping argument, we have
T (s1) = 7 (s1) =T"(s1) = E,p, [Y_ 7'
t=1

=J"(s1) = B _pprr (D7 @+ T (s1) — T (1))

W _ L [Z Y THE AT (s041) — T (50)]

~
I
—

®)

- ETNP’I"T, [

NE

Y@+ AESS T (se1)] = T (s0)]s

&
Il
-

where (a) rearranges terms in the summation and cancels the J™ (s1) term with J™(s1) outside the summation, and (b) uses
the tower property of conditional expectations. For the term ¢ = 1 inside the summation, we have

- E(ahnz)Nﬂ{(sl) [C(Slv al) +yAn2 + VEE’M [JW (32)] - JW(SI)]

== E(a, mo)mrt (s) [QT? (51,01, m2) +YEZL [J7 (s2) — J™ (52,m2)] — 7 (51)]
=B (ayn )t (s0)[AT (51, a1, 12) + VB [T™ (52, m2) — J™ (2)]] (12)

where the first equality is because of Eq. (8). For terms ¢ > 2, we have

- A St,a U T
—E,_pyr [1 7 (S10(51,00) = w4+ (1= NC(s1,01) + W A0u41 +VELS [T (s040)] = T (51))]
= =By |17 (@ sty 1) = T (styme) + VB LT (s041) = T (sean mean)] + (™ st,m0) = 7 (50)) ) |

=E,_pyer |77 (A7 (000, @1 m040) + 9B LT (00, m10) = T (s140)] = (T (s0,m) = T (s0)) | (13)

Observing that E_ , p,~E5% [J™ (s41,Mes1) — I (Se41)] = B, eiamPre’ [T (s¢11,Me41) — J™ (s¢41)] for
all ¢ > 1, the second term in Eq. (12) cancels out the third term in Eq. (13) with ¢ = 2. Moreover, the second term in Eq.
(13) with time step ¢ cancels out the third term in Eq. (13) with time step ¢ + 1 for all £ > 2. As a result, we have

JW(Sl) - Jﬂl(sl) = E,.Nprw’(ﬂsl) AW(317(I17772) + Z’)’t_lfim(stﬂh,atﬂ?wl)}-

t=2

This completes the proof. O
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Proof of Theorem 3.2. [Risk-averse policy gradients] According to Eq. (6), we have
Vo, J™(s1) = Vel(z mi(a1,n2ls1)Q™ (51, a1,m2))

az,n2

e Z Vo, m1(ar,n2]s1)Q™(s1,a1,72)

a1,7M2
= E(a; ma)~m [V, logmi(ar, m2]51) Q™ (s1, a1, 12)]
where (a) is true because Vg, Q™ (s1, a1,72) = 0. As a result,
v91 Jﬂ(p) = v91]E81N/J[‘]7r(51)] = EslNI)[vel ‘]ﬂ(sl)]'

Based on the definition of Q™2 (s1, a1, 72), we have

Vo, J"(51) =V, ( Y mi(a1,m2]51)Q (51, a1,72))

ay,n2
= Z (m1(a1,m2]51) Vi, (1 + vAn2 + VB3 [T (s2,m2)]))
ai,n2
=7 Z 7T1(a1,772|81)ZP(S2|S1,a1)V92j772(82’772)
ai,n2 S2
=7 D P (s5,m251) Vi, S (52,72)
52,72

Now for Vg, J™2(s2,12), we have
Vo, J™ (52,72)
=V, (D ma(as,ns]s2,12)Q" (52,72, az,73))

a2,mn3

=> (V927T2(a2, Nals2,112) Q" (52,712, a2, m3) + w2 (az, ms]52,m2) Vo, Q™ (52,2, az, 773))

az2,m3
= > (Voyma(az,msls2, 12)Q (52,72, a2,m3)) +7 >, (wa(az,ms|s2,m2) Y Plsals2,a2) Ve, J™ (s3,m3)),
az2,m3 az,n3 53

where the last equation follows from the definition of Q”z (s2,m2,a2,m3)) in Eq. (7). Using a similar argument
in risk-neutral policy gradient theorems (Williams, 1992; Sutton et al., 1999) and denoting ¢(s¢, ¢, ag, ey1) =

Vo, ma(as, Mey1|56, 1) Q™ (S¢, e, ar, 11 ), we obtain
Vo, ™ (52,712)
= Z B(s2, M2, a2,m3) + v Z Pr™ (s3, 1352, 72) Z B(83, M3, a3,M4)

az,ms 83,13 as,n4
+ 72 Z Pr"2(s4,m4|s2,12) Z P(845 M, a,m5) + -
S4,M4 Q4,15
:ﬁE(smt)Nd;;,T,QE(anntﬂ)fvﬂz(-\%m) [V, log ma(az, ney1lse, Ut)@m (St5Mes ars o))
As a result,
Vo, J"(p)
=7 Y ) p(s1)Pr (s, ma]51) Vi, S (52, 12)
s2,M2 $1
= Z p”(sz,ng)Ve)zjm(Szanz)
$2,M2

g AT
:ﬁE(st,m)wgw Earmesn)wmaCclsen) [Voo 10g ma(as, nesa|se, m) Q™ (se, e, ar, s )]

This completes the proof. O
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B. Proofs in Section 3.1

Proof of Lemma 3.3. [Smoothness for direct parameterization] Consider a unit vector u and let 7® := gf0+ou ] (o) ==
J™" (s1). For direct parameterization, we have 7@ = 7%T%% = ¢ 4 qu. Differentiating 7@ with respect to a gives

>

ai,n2

dn{(ai,m2]s1)
do

<Y lusianm)l < Y lua(sianm)? | Y012 < lullaVIA[TH] = V] A|H]|

ai,n2 ai,n2 ai,n2

dns (ay, St,
Z 2 (o er” 1) < Z [uz(se, ne, ars nev1)| < Z luz(se, nes ae, Mev)| Z 12 < \A||H|
at,Mt+1 at,Mt+1 at,Mt+1 at,Mt+1
Z dzﬂ'?(alvgﬂsl) :07 Z d27r2a(at,77t+1|st,nt) —0.
(da) (da)?
a1,m2 at,Mt+1
Using Lemma D.1 with C; = /| A||#| and C5 = 0, we get
&J(a) A [1]loo 29CF
max a=0|<C + A+ +
| ey om0 <G 12 Tl
2| AllH] |,
< g llelleo
(1=7)
Thus J™(s1) is % ||1¢||so-smooth. This completes the proof. O

Proof of Theorem 3.5. [Gradient domination] According to Lemma 3.1, we have

I (p) =T (p) =E  si~p [AW(Shalﬂh)+Z’7t711‘1ﬁ2(8t»77t,at,?7t+1) :
T~PIT (7)s1) t—2

Then for the first term, we have

ESINPE(almz)Nﬂ'THSl) [ATF(SM ai, 772)]
= Z p(s1)m1 (a1, m2ls1) A" (s1,a1,72)

$1,01,7M2

< ax A"
ZP 51) m 5; (s1,a1,m2)

7Zp (51,a1,772)
a1,772

<||f‘|ooz,i (s1) max A™(s1, a1,72)

S1

&), P _
= max s1)71(a, n2|s1)A™(s1, a1,
|| H B EA(AXH)IS] Sl;mﬂ( 1) 1( 1 772| 1) ( 1,01 772)
©, P _ _ -
=1l HooﬁleAf(nij)‘S‘ 81;%#(81)@1(@1,772\81) m1(ar, n2ls1))A™(s1,a1,m2)
D2 max ST pls)(milar,melsy) - malar, nelsn)Q (s1, a1, )
TEAAXH)IST Lt

(e) P — \T T
22 — 7))V J
12l _mas  (m1 = 70) TV, ()

where (a) is true because maxg, ,, A™(s1,a1,7m2) = J™(s1) — ming, n, @™ (s1,a1,7m2) > 0; (b) is true be-
cause maxs, is attained at an action (a1,72) that maximizes A™(sy,-,-) for each state s1; (c) follows since

14
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Dar o, (a1, m2]s1)A (s1,a1,m2) = J (51) = Yoy T1lar, m2s1)Q™ (s1,a1,m2) = 0; (d) follows since
mi(a1,n2|81) — mi(a1,n2|81 = 0; and (e) follows from Theorem 3.2 and Eq. (9).
ay,mn2 I

For the second term, we have

EoinpBroprns [ 77 (A7 (51,70, @, 1))

=B sivo [ A AT (52, Mer2, rgz, Mess))]

(a1,m2)~77] (s1)

s2~P(|s1,a1) =0
T Pr
Y AT
1 —’yE (s2,m2)~p" © Eaymppymn [A (56,00, a0, meg1)]
(sf,m>~d<52 )
_1 — Z d Stﬂ)t a?:lﬂat)il Aﬂ2 (St777t7at7771+1)
StyMNt
Stant ~
Z d G (st,m)amnax A2 (s¢,me, at, Mev1)
St e tﬂ]t tsMt+1
@ AT
77” dﬂ [ > dix(se,me) Jnax A2 (st e, ar, Net1)
o tyMt41
b us
@ oo EA(A H)‘SHH‘ Z A (s6, 1) T2 (@, e [se,1me) A7 (80,00, ae, mis1)
T X s
ar e
@ 7 d::* ™ = AT
:ﬁH dr lloo GA(;}laﬁ)‘SHH‘ Z dyr (st,me) (T2 (ae, nesr]se, ne) — mw2(ar, mega|se, me) )JA™ (st,me, e, Ney)
- ™ k) X St,
. atf”ltnjrl
(d> ’7 d7r — AT
|| H007 eA(,IA}lxaﬂiz()\SHH\ Z T—o pr (s, me) (w2 (@, mega|se, me) — Taae, nera|se, me)) Q2 (st M, aey Ney)
T ;
at s
7
(e) —\T T
o max o — ) Vi, J
Nl e (o = 7))
where (a) is true because maxg, y,,, A" (S¢, M, apy 1) = J™° (st,nt) ming, .., Q™ (s¢, M, ar, Meg1) > 0; (b)

follows since maxz, is attained at an action (a¢, 77+1) that maximizes A™2 (s, 1, -, ) for each state s¢, 7;; (c) follows since
Zat,"]t{»l a(ae, e se, ) A™ (s¢,me, @, mer1) = J™(s4,70) — Zatﬁ7t+1 mo(as, Met1|Se, 1) Q™2 (Se, Nt Qs Met1)

= 0; (d) follows since 3, (T2(as, nev1lse, me) — m2(a, Meta|se, 1n¢))J™2 (s, 1) = 0; and (e) follows from Theorem
3.2 and Eq. (10).

Combining these two terms, we obtain

T (p) =T (p)

<Ullle  max (m—7) Ve () + || L max _(mo—72) Vi, J" (1)
% 71EA(AXH)ISI T EA(AXH)ISIIHI
<max{|\"||oo,| } max (m = 7) V" ()

dyx FEA(AXH)ISIHISIIH]

where the last inequality is because max; ca(axw)isi(m1 — A7)V, J™ () > 0, MaXz, e (Axp)lslm (T2 —
72) "V, J™ (1) > 0. Furthermore, we have

dy=(s,m)
(oo}
=(1=9) Yy (s2,m2) D AP (5042 = 8,42 = 7l52,72)
52,12 t=0
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2(1=y)u"(s,m)
(1= uls1) Y mi(ar,nls1)P(s|s1, ar)

>(1 =m0 uls1)P(sls1,a1) = (1= y)mrZp” (s,m)
s1,a1
then
T (p) = I (p)
< macf]| 2o, el Z;* oo} max(m — )TV J " (1)
po (L=y)m 4
This concludes the proof. O

Next we define the gradient mapping and first-order optimality for constrained optimization in Definitions B.1 and B.2,
respectively.

Definition B.1. Define the gradient mapping G () as
1

GP(n) = B(?T — Paaxwyisi+isin (1 = BV J™ (1))

where P is the projection onto C'.
Then the update rule for the projected gradient descent is 7+ = 7 — 3G? ().
Definition B.2. A policy 7 € A(A x H)ISITISIM i e-stationary with respect to the initial state distribution s if

min 5TV7rJTr(#) T
THIEA(AXH)ISIHISIHI ||5]|2<1

where A(A x H)ISITISIM is the set of all feasible policies.

Definition B.2 says that if € = 0, then any feasible direction of movement is positively correlated with the gradient. Since
our goal is to minimize the objective function, this means that 7 is first-order stationary.

Proposition B.3 (Proposition B.1 in (Agarwal et al., 2021)). Suppose that J™ (11) is o-smooth in . Let 7+ = m — BGP (7).
IfIIGP(m)l|2 < € then

min 5TV,TJ7T+ > _ 1.
Tt +SEA(AXH)ISIHISIHI ||5]|2<1 (N) = 5(50 )

Proof of Proposition B.3. By Lemma E.3,
+
—VJ™ (1) € Naaxnyisiisi (17) + €(Bo + 1) By

where B is the unit /5 ball, and N¢ is the normal cone of the set C'. Since —V .J wt (1) is (8o + 1) distance from the
normal cone Na( gx#yisi+isiwi (71) and 6 is in the tangent cone of A (A x H)ISIHISIH gt 1+ we have —0TV ™ (p) <
€(Bo + 1). Thus

min 6TV7TJ7T+ > + 1).
Tt +SEA(AXH)ISIHISIHI||5]|2<1 (1) = —€(Bo )

This completes the proof. O

Proof of Theorem 3.7. [Iteration complexity for projected gradient descent] From Lemma 3.3, we know that J™(s1) is

o-smooth for all state s1 and J™ (1) is also o-smooth with o = 2&'“74‘7‘;3 €| Then using Theorem E.2, we have that for

stepsize 8 = L,

V207 (1) = (1)

min_ |G ()]s <
T—1

—Usdseens

3
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From Proposition B.3, we have

V207 () = (1))

. T 2D
1)
t:O,Ilr,l.E.i.},{T—lﬂ(t+1)+5€A(A><I£)1\I}S\+\SHH|7“5“2S16 Vad ( ) 60+ \/T
Observe that
—\T 7 -
_ i = —2/[S[+ SIH|
T’rEA(AXn;lg‘}g‘*'sl‘”'(7r VT w) 51+ Isi13] A(AXH)\SH\SHH\ 2 |S|+|S||H ™)V )
< —2/|S|+ |S||H] min STV J™ (1)

THSEA(AXH)ISIFISIHI ||5]|2<1

where the last step follows as ||7 — 7|l < [|7]]2 + ||7]]2 = \/Zs Do milamls)?+32 >0, 0 m2(a,n']s,n)?
VE Sy mlans)? + 3, ey mlanfsm? <, mlanls) £, , Y, mala s )+
VE Ty mlanls) + X, Soy malanlsn) = 2/[STHISTH] and 7 +
A(A x H)ISIHISIH following the convexity of the probability simplex.

1 _
T — 7 S
2\/|3|+\$|IH|( )

Then using Theorem 3.5 and So = 1, we have

()

Jin 7 (p) =T (p)
< min_ Dy max (7 - )TV, J’Tm( )

t=1,.., T  7E€A(AxH)ISIHISIIH]

< —2D1V/|8[ +S][H]| max min 5TV (1)

=1,.0.,T 70 45 A(AXH)ISIHISIHL|[5]|3<1

V207 () — T+ ()
VT

At s el]oo)

VT

where (a) is true because J™ (1) — J* () < J™ (p) < 2 24+ A+ fHCHoo from Eq. (20) and |H| > 1. If we set T
such that

<AD1V/[S|+ |S||H]

(@ V2o
<4D1/2[S||H]

20(2 + A+ 1 [ell)

D1\/2|S|H\/ T <

or, equivalently,

64|S||H A 1
TZD?|||M+A+,HH@

€2 o 1

then min,—q,__ 7 g (p) — J*(p) <e. Usingo = 2&"_“1{';;' ||e]|oo from Lemma 3.3 and ||e]|oc < 2 + (1 — A) + A leads
to the desired result. O

C. Proofs in Section 3.2

Proof of Lemma 3.8. [Gradients for softmax parameterization] According to Theorem 3.2, we have

Vo, J" (1) =Es; ~puEiay ma)mm (1s1) [ Vo, log i (a1, n2]s1) Q™ (s1, a1, m2)]
T Y AT
Vo, J (:u) :m]}z(stﬂ/t)’\’d;n— E(at77/t+1)NTF2("St7T]t) [v92 log 7o (at7 Me+1 |5ta nt)Q 2 (5t7 Nt A, 77t+1)}-
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Because of the softmax parameterization, we have Zal o m(ar,m2ls1) = Zat e T2 (at, Mes1|se, ) = 1 satisfied auto-
matically for all s1,8;, € S, 1, € H, t > 2. As aresult, Zamz Vo, m(a1,n2]81) = Zat,nt+1 Vo, ma(at, Ney1|se,me) =0
and we have

Vo, J" (1) =Es, ~pE(ay mo)mm (1s1) [ Vo, log Ti(ar, ma2ls1) (=A™ (s1,a1,12))]
T Y A
Vo, /" (n) =1—— ,YE(S,,,m)Nd;WE(at,mﬂ)w?(-pt,m)[V92 log ma(at, Ne+1]se, ne) (=A™ (8¢, e, @t Met1))]-

Because logmi(ai,mals1) = Oi(si,a1,m2) — log) ., v exp(bi(s1,al,m5)) and logma(as, mesalse,me) =
02(5¢, M, @ty Meg1) — log ZGMQH exp (O2(s¢, M, ay, Mi41)), we have

exp(61 (s, a, 1))
Za , exp(61(s, al, )

=1(s; = S)(l(al =a,n2 =1n)— Wl(a,ms))

dlogmi(ar,n2|s1)
861(87(1777)

=1(s1 =s,a1 =a,m2 =1n) —

) 1(s1 = s)

eXp(GQ(Sa 1, a, 77/))
’+1 exp(ég(s, , aéa 77£+1

Olog ma(ag, Net1|St, M)
905(s,m,a,1')

=1(st =8, =m0t =, Ny1 =10") — 1(s; = s,m: =)
doalm )

= 1(s; = s.m = ) (Uar = a1 = ') = ma(a,'|s.m))

and thus,
8J’T
891 (s,a,7) ;M S1 azr; mi (a1, n2ls1)1(s1 = 5)(1((11 =a,m =1) — Wl(avms))(_AW(Slzaly'rI?))
=3 p(s1) Y milar,mals)1((s1,a1,7m2) = (5,a,1)) (=A™ (s1,a1,72))
S1 (l17172
— mi(a,nls) ZN(SI) Z mi(a1,na2ls1)1(s1 = s)(—A"(s1,a1,72))
S1 ai,n2
() (a, nls)(~A7 (s, a,m))
and
aJ™" ()

892(5 n,a,1')
Z dyim (56,m¢) Z Ta(ae, Nevlse, me)1(se = s,me = n) (1(at =a, M1 =1) — 7r2(a777/\3777))(*f1ﬁ2 (6,7, at,Me41))

St nt Qt,MNt+1
1 - Z dpr (se,m0) Y m2(an, e se, ) 1((s6, e,y mern) = (8,7, 0,0)) (=A™ (51,76, a1, Me1))
Sf Mt at,Mt+1
—m2(a,n]s, )k Z e (seme) Y 2@, e lse, ne) 1(se,me) = (5,m) (=A™ (56,08, @z, me41))
St Nt at,MNt+1
®) L AT
=%dm<s7n>m<a,n'|s,n)(—A *(s,m,a,1)
where  (a) is true because >, . mi(a1,n2|s)AT(s, a1, m2) = 0 and (b) is true because
Zat,mﬂ mo(as, Mt1|s,m)A™ (s, 1, ap,me+1) = 0. This completes the proof. O

Proof of Lemma 3.9. [Smoothness for softmax parameterization] For J m’ (1), let B, € RIAIM denote the parameters
associated with a given state s and ¢, ,, € RIAIMI denote the parameters associated with a given state s, 7. We have

szﬂ—f(aﬂ’/lS) = ﬂ—f(%nls)(eam - Wf(-, |5))

Vest,,,tﬂg(au77t+1|8t777t) = ﬂg(at,mﬂlst, Ut)(eat,mﬂ - Wg('a SE))
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where e, ,, is a basis vector that only equals 1 at (a,n)-location and 0 elsewhere. Differentiating them with respect to 6
again, we get

V.11 (a,nls) = 71 (a,1ls) (eameny — eanmi (-[8)T =71 (-, -|s)eqy + 277 (-, [s)m) (-, |s)T — diag(n{ (-, -|s)))

ve Wg(atvnt+l|5t777t) = Wg(at,nt+1|5taWt)(eat,mﬂelt,ntH - eat77lt+1ﬂ-2(" '|St’77t> - 772( |5t777t) 1t;"7t+1

St
28 <[, )T <[, i) — diag(nS (-, [, 1)) )
O0+au

Define 7§ := 7/ t*" where u € RISIIAI1MI is a unit vector and denote u, € RI4II*| as the parameters associated with a
given state s. Differentiating 7{* with respect to c, we obtain

d «
> drf (a1, 12|31 <D |u Voraun (a1, m2]51)|a=o)

dov oo
ay,m2 ai,7M2
feY T T «
< Z U (a1’n2|51)|uslea1m2 — Ug, Ty ('7 '|51)|
ai,nz2

< max ([ul, €, | + [ul, 78 Js1)]) <2
1,72

Now differentiating once again with respect to o, we get

d*7¢ (a1, n2|s1
> | | < 5 0TV (o, el oot
(dev)
ai,m2 ai,mM2
T
<g11%’}2( <|U €a1,12€a, n2u5\+|u €a; 7]2771( ‘51) |+|U ( |51) €ay,naUs

+2luimy (-, |s)ms (»‘IS)TusI+IUIdiag(W?(-,-|81)us|)§6

The same arguments apply to 7§, where we get > thﬁ‘ < 2 and
2rg at,MNt StyMt
Zata”]tJrl =it (dl)gl‘ ! )|°‘:0’ < 6.
Let J() := J™ (s1). Using this with Lemma D.1 for C; = 2, Cy = 6, we get
4*J(a) A |le]]oo 27CF
max a=0|<Ca(— + A+ + o
s | a2 =0 <G -2 Tl
A |lel]o 8
S6(=+ A+ ) + el oo
o (I=v)2" (1=7)?
A 8
6(—+ N+ ———=||c
G 3+ sl

where the last inequality uses the fact that v < 1. Therefore J™ (1) is6(2 4+ A) + ﬁ”éﬂm-smooth.

Next let us bound the smoothness of the regularizer — 5 = R1(0), where

1 9
R1(0) := A Z log 7 (a1, m2]s1).
$1,01,72
We have
OR1(0) 1 0
= — (a1, m2(s1)
808171117712 |A||H| !
Equivalently,

1

Vo, Ri(6) = Wl —al(, Is1)

s1
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As a result,
V., Ri(0) = —diag(n] (-, [s1)) + 77 (-, -[s)7] (- [ 51)"
and for any vector us, ,
lug, Vi, Ra(0)us, | = |uf,diag(n] (-, [s1))us, — (us, 7] (-, -[51))?] < 2fJus, ||3
Because Vi, Vg, R;(0) = 0 for s # s’, we have
[T V3R (0) |Zuslve Ri(O)us,| <2 llus, |13 < 2llull3
s1
Therefore R;(¢) is 2-smooth and —151it (0) is %—smooth. The same arguments apply to Ry() =
T semeanmess 10875 (ar, 1] 8¢, 77¢), Where we get — gtz Ra(6) s 15 -smooth.
As aresult, L,;(0) is o,-smooth with o, = 6(2 + \) + ﬁ”é”m + \5\ + \SHHI This completes the proof. O

Proof of Theorem 3.10. [Suboptimality for softmax parameterization] We only need to show that

2 A 2
maxXg, n, A7(s1,a1,12) < W, Vs1 € S and maxq, ., A™ (s, M, a,Meg1) < ’Y71'1LB|S||7f|MP(3mm)7 Vsy €

S, n+ € H. To see why this is sufficient, observe that by the performance difference lemma (Lemma 3.1),
T™(p) = J™ (p)

oo
=Eoy pBor e (rjsry | AT (51, 01,m2) + > 7 T A™ (4,4, 0, 77t+1)}
t=2

= Z P(Sl)ﬁ(al7772|51)1477(51,a1,772)+ﬁZd;r:*(st,ﬂt) Z W;(atunt+1|5t»nt)fim(stantaatvntJrl)

§1,01,72 St at,MNt+1

< AT dr, A™ ,ay,
ZP (s1) o (s1,01,72) + Z «(s¢,m) max ($t: Mt aes Meg1)

At Nt+1
5t:77t

2K 'y 2K
< d
Z” (1) s 1=y 2 G (o) VLB S HIP (1, 10)

6t Ui
2K i
<2 2
Foll 2 oo + (1_7)7T1LBII " [loo

Now to prove maxq, n, A™(s1,a1,72) < u(s )\SI’ it suffices to bound A™(sy, a1, n2) for any state-action pair s, a1, 72

where A7 (s1,a1,1n2) > 0 otherwise the claim holds trivially. Consider an (s1, a1,72) pair such that A™(s1, a1,n2) > 0.
Using Lemma 3.8,

Mf 0 _qn® kK #7 0
831(81&1)772)*N(51)7r1(a17772|51)( AT (s1,a1,m2)) |S|(|A||’H| 71 (a1, m2|s1)) (14)

The gradient norm assumption ||Vg, L. (8)]]2 < €1 < SsTAT implies that

. @ aL.(0) , . ko1,
- e < =T = — AT - (— — 15
SISTIAIH] = € < 90 (51, a1, 73) p(s)my (a1, m2|s1)( (s1,a1,m2)) |S|(\A||’H\ 7y (a1, m2ls1)) (15)

® kK 1 0
<
>~ |S|(|AHH| 771(a1’772|51))

where (a) is due to |W

7]2)| < |IVeo,Lx(0)||2 < €1 and (b) uses the fact that —A™(s1,a1,72) < 0. Rearranging the
terms, we get

11
Al 21AlH] 2| AlH]

W?(alanﬂsl) >
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From (14), we have

0 1 1 —0L.(0) K 1
AT ) = s e malsn) 0 (s, avm) 181" T P ar s AT
_ 1 1 ‘aLK(e) ‘ I3
~u(s1) wl (a1, m2ls1) [001(s,a,m) | |S]
1 K
< (Al + )
2K
p(s1)|S|

2k . 7
To prove maxq, .., A™(S¢, M, ae, Mip1) < waISH;IuP(St,mV Vs, me, it suffices to bound A7 (sy, 0, at, Met1) for

any state-action pair s, 7, a¢, 7i+1 Where A”(st,nt,at,ntﬂ) > 0. Consider an (s, 7, at,ne+1) pair such that

AT (s¢,m¢, a,Me11) > 0. Using Lemma 3.8, we have

OL.(0) Y o o K 1
= dyr ’ ) ) —A™ s 1ty Uty - - ) )
392(8t,nt,at,m+1) 1—~ W (St 77t)7T2(at 77t+1|5t Ut)( (St N, At 77t+1)) |5HH|(|AHH| 7T2(at 77t+1|8t 77t))
(16)
The gradient norm assumption ||Vg, L (8)|]2 < €2 < ST ITATA implies that
K OL(0) K 1
—sranon s S e < < - ( — ma(ae, Net1lse, me))
2|S[IHI|AfIH] 903 (st,me arsner) — |S[IH|AH] !
where the last inequality uses the fact that —fl”(st, Ne, ar, Mi+1) < 0. Rearranging the terms, we get
( | ) > 1 1 1
mo(a 5 - =
AR = TAH] 2 ATH]  2IATH]
From (16), we have
o 1—~y 1 1 —OL,(0) K 1
A" ) ) ) = 1-
(e 002 = G ) raan, e e me) 00y aeymen) 18I0 alan, mea e ne) AT
11—~ 1 K
< —— (2| A||H|e2 + o757
7 GGy O i)
1—7 2K
v dix(se,m:)|S]H]
2Kk

<
T m{ PISI|HIpP (s¢,m:)

where the last inequality uses the fact that d7;« (s¢, 1) > (1 — )™ (s, m¢) > (1 —y)m{ B p® (s, m¢) because w1 (a, ne|s) >
7FB . This completes the proof. O

Proof of Lemma 3.11. [Positive action probabilities] Given any finite values of initialized parameters §(?) = (050), 050)),
the action probabilities 70 and 7§ will be bounded away from 0, ie., 70" 78" > 0. As a result, the

initial regularized objective function can be upper bounded, i.e., L.(#(®)) < +oo. Indeed, L.(60) < C —
TSTATAT Lossvanons 1087 (@1,m2051) = S Sonumvananess 10878 (as, mes1lse, mi) — 2rlog | A|[H] < +o0. Be-
cause L, () is o,-smooth based on Lemma 3.9, according to Theorem E.2, L, (6*)) is non-increasing following gradient
updates (11). Thus, LK(G(‘E)) < LH(H(O)) < +o00, Vt > 1. Now assume, for the sake of contradiction, that there exists
t € Zy U{+o0}, s,a,n such that wfm(a,ms) = 0. Then we have —logwf(t) (a,m|s) = 400 and L, (0Y) = +o0,
which contradicts with L, (#()) < 4oco. Similar arguments can be also applied to 75 “ (a,n’|s,n) where we conclude that

i P = inf>1 ming 4. Wg(t) (a,n'|s,n) > 0. This completes the proof. O
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Proof of Theorem 3.12. [Iteration complexity for softmax parameterization with log barrier regularizer] Using Theorem
3.10, the desired optimality gap e will follow if we set

€

K= : 7)

™

2”%”00 + ﬁ”% oo

and if ||V L. (6)|]2 < ssrA AT (then we have Vo, L (0)]]2 < ||[VoLk(0)]]2 < SISTHITATH] < saTaa] and
Vo, Li(0)]]2 < ||[VoLik(0)]]2 < SSTAITATAT)- T proceed, we need to bound the iteration number to make the gradient

sufficiently small. Using Theorem E.2, after T iterations of gradient descent with stepsize 1/c,;, we have

. 20, (L, (00)) — L. (6*
i [V (00 s < 1/ 22E0) = o (6")

(2) \/QUN(G — klogmlB — klognkP)

T
(i) \/ZUH(C_’ —log P8 — log mkB)
- T
. 7‘_9(0) ) 51
where (a) is true because L.(0*) — L.(0*) = JO(u) — J*(n) — TSTTATIA s anms log% -

0(0) _
K 7y (@, mealse,ne) _ LB __ LB. _
STAIATA] > T log P P < C — klogmy klogmy®; (b) uses the fact that K < 1. Denot

ing B=C —lognf? —log i B, we seek to ensure

20,.B K
\/ < (18)
T = 2S|[H[|AlH]

Choosing T' > W satisfies the above inequality. By Lemma 3.9, we can plug in 0, = 6(% +A)+
sy llelloe + 25 + 1575y, Which gives us

80, BISI*|H|*|A]? _ 48(3 + N BIS*[H[*| A | 4llello BISP[HIMIAP | 16xBISIIHIMAP | 16xBIS|[H]*|A”

K2 K2 (1 _ 7)3,{2 K2 K2
@ (48(3 + ) + 64][ello + 32) BIS|*[H|*|A
- (1 —7)*k?
®) (48(%—&-A)+64||E||oo+32)B\S|2\H|4\A|2(2”BH N 2 - y?
(1 —7)3€ N L G L

where (a) is true because 0 < v < 1, k < 1, |S|,|H| > 1 and (b) uses Eq. (17).

¥

Therefore, choosing T" >

64(3(2+X)+4||¢||co+2) B|S|?|H|*]A|? . w* .
B+ H4llellc+2) BISIPIH|"| lD%WlthD%=(H§||OO+(17 1)W1LB|| ZP Hoo)2 satisfies (18).

(1—7)3e v
This completes the proof. ]

D. Smoothness Results

In this section, we present a helpful lemma, which is applicable to both direct and softmax parameterizations. This lemma
helps us prove the smoothness properties of the objective functions under direct and softmax parameterizations.

Lemma D.1. Consider a unit vector u and let 7® := 7+% J(a) := J™" (s1). Assume that

dzﬁ?(ala n2]51)

dr$(aq,
Z WQ_O‘SCh Z (d )2 |a:0 SCQ, Vs €8
ay,mn2 & ay,n2 «
dm§ (ag, Mev1lst,me) d27f2a(ata Net1]8t,Mt)
Z o la=0| < C1, Z (do)? la=0| < Co, Vsp €S, m €H

atMNe+1 at,Mt+1
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Then
d?J(a)

| 2vC?
(da)? '*=°

(1-7)

llefl o

(1-7)

A _
§02(5+>\+ 5) + [1€]] 00 -

[lull2=1

Proof of Lemma D.1. Let ]5(a) be the state-action transition matrix under policy 7, i.e.,

/ « / / ! / : /I
sy = [P BTGsbo). 65 =
et oot T 0, otherwise.

We can differentiate P(cv) with respect to ov:

- drg (ay,my 1 |se,mp) , e
dp(a) | 0 = d—a|a:0P(5t|Sta at); if N = Mt+1
o= - .
da VIS 0, otherwise.
(8¢,M¢,at,me+1)—>(84,mp,a5,M7 1)

For any arbitrary vector x, we have

P af,l ’

dP(OZ)‘ _ drmy (atvnt+1|3ta77t+l)‘ P(s)] )
p a=0T = da a=014"(5;[S¢t, Gt xs;,m+1»a§7ﬂ£+1

(8¢,Mt,a8,Me+1) EIA A
and thus
~ ol o /
dP(Oé)| o1 — max d71'2 (atvnt+l|5tant+l)| OP(SI|S . ).13 , ,
- = E = ts Ot
Xy | e fulla=1| , &~ da R
(st5Mt,at,Mt41) St1@¢y 41

Z drs(ay, 771/s+1|32a Net1)

< max do |a:0 P(5;|3t’at)

[lull2=1 ‘msi’mﬂ’“;’"b—l

’ ’ ’
St1@¢ M1

T lullz=1 do

drS(ay, mp. 1185, M1
< max ZP(SHSt,at)H‘THQ@ Z ‘ 2( tr t+1| ty 1It+ )|a:()
st

’ ’
AN g1

<D Plsilse,ar)lle]loCr

./
St

<Cilz[|oo
By the definition of /., norm, we have

dP(a)

— = <C
Hgll‘?ﬁl\l dor la=02||s0 < C1[]|o

Similarly, differentiating P () twice with respect to «, we obtain

~ 2 o o] AN
@2 P(a) [ )| P(si 4, a0), 0 = i
2 |a:0 - )
(da) 0, otherwise.

(St,ﬂt,at’erl)H(S;,:77{"12”7;,4-1)
An identical argument leads to the following result: for arbitrary x,
d?P(a)

— e <cC
e 11 oot < Collel

Let Q*(s1, a1, 72) be the corresponding Q-function for policy 7 at state s; and action a1, 7> and denote ¢ as a vector
where &(s;, 1, ag, i 1) = 2[C(5¢, ar) — i)y + (1 — N)C(s¢, ar) +vAns41. Observe that Q*(s1, a1, 7o) can be written as

(03

« (a) - n o ny=
Q% (s1,a1,m2) = C(Slval)+7)‘772+62-sm1,a1,n2)(27 P(a)™)e

n=1
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= C(s1,a1) +7An2 + 6&17,717@1,”2)(2 Y'P(a)™)e — &(s1,m, a1,72)
n=0

= C(Slaal) +yAn2 + 6 (s1.,m1,01,m2) M (@))€ — E(s1,m1, a1, 72) (19)

where in (a), 71 is a dummy variable that can take any value in H and €(s, , a,,5,) i @ Vector that takes value of 1 at
(s1,m,a1,m2) and O for all other entries; in (b), M(a) := (I— yP(a))™t = 377 /7" P(a)™ because of power series
expansion of matrix inverse. Now differentiating twice with respect to « gives

dQ*(s1,a1,12) d]s(a .
d?Q*(s1,a1,m2) dp(a) d]B(a) d2]5(a) _
W =2 6(81 o m)M( @) da M(a) do M (o )C"_'Ye(m n1,01 nz)M(O‘) (da)? M(a)e.

Because M (a) > 0 (componentwise) and M ()1 = 21, i.e., each row of M () is positive and sums to 1=, we have

1
M Llloo S T|oo
ax x |1M(a)alloc < 7=l
According to Eq. (19), we have
« _|-A C C M(a)e
Q% (51, a1, M) = |=—[C(s1,a1) =]+ + A (51,01) + €y 1 .ar.mmy M (@)
(a) \ 1
<= +)\+ l1¢l| 0o (20)
L=y

where (a) is true because C(s1,a1) € [0, 1], m1 € [0, 1]. Furthermore, we obtain

dQ°(s1,a1,m2) dP(a) _
X T la=o] S (M (@)= M (@)l
7Ch _
= WHCHOO
d*Q"(s1, a1, dP AP 2p )
ullo=1 WFO < 29°||M() d((j)M(a) déa) (@)2l[oo + 1M (a) (da(;)M(a)cloo

2v2C? vCo > _
< + |00
(555 e

Consider the equation

j(a) = Z 1 (a1, m2[s1)Q% (s1, a1, m2)

ai,n2

By differentiating .J (a) twice with respect to a,, we get

d2j d2 i ) d ) d ) ) (e d2 a ) )
(@) _ s 4 (@1,72051) o5 a1 ) + 2 > s a1 772\81) Q%(s1,a1,7m2) S 8 (ar,mals1) Q% (s1,a1,72)

(da)? = (da)? = do = (do)?
Thus,
d*J ( ) A 1 27CF 27201 vCs
max a=0|<C: +)\+ Cl|oo TS lCllo ¥ 73 ICllcc T 735 11C]0
R e la=o|<Ca(7 || lloc) + = 7)QH ll - 7)3|| | (177)2” |
A HCHOO 2702
<Co(—+ 2+ oo
R e A e
This completes the proof. O
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E. Standard optimization results

In this section, we present standard optimization results from Ghadimi & Lan (2016); Beck (2017). We consider solving the
following optimization problem

min f(x)

zeC

where C is a nonempty closed and convex set, f is proper and closed, dom(f) is convex, and f is o-smooth over
int(dom(f)).

Definition E.1. We define the gradient mapping G () as

1

E(SC — Po(z — fV. f(x)))

where P is the projection onto C. Note that when C' = R, the gradient mapping G#(z) = V f(x).
Theorem E.2 (Theorem 10.15 in (Beck, 2017)). Let 2" = 2(=1) — 3GB (=1 with the stepsize 3 = 1/o. Then

GP(z) =

1. The sequence { f(x®™))};>¢ is non-increasing.

2. GP(2) = 0ast — oo

20(f(x(9))—f(x*
I 1||G6(m(t))\|2§ ((\/T) (z%))

Lemma E.3 (Lemma 3 in (Ghadimi & Lan, 2016)). Let 2+ = x — BG?(2). If ||G®(2)||2 < €, then
~Vf(zt) € Ne(z™) + e(Bo +1)Ba

where Bs is the unit {5 ball, and N¢ is the normal cone of the set C.

F. Additional computational results

In this section, we present the average action probabilities at each state over the 10 independent simulation runs with varying

A-value in Figures 7-11.
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Figure 7. For A = 0, the learned optimal path is [3,0] — [2,0] — [2,1] — [2,2] — [2,3] — [3, 3].
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Figure 8. For A = 0.25, the learned optimal path is [3,0] — [2,0] — [2,1] — [2,2] — [2,3] — [3, 3].
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Figure 9. For X\ = 0.5, the learned optimal path is [3,0] — [2,0] — [1,0] — [2,0] — [2,1] — [2,2] — [2,3] — [3,3].

26



On the Global Convergence of Risk-Averse Policy Gradient

Action a

3

Action a

1

2

Action eta

-05
.- - 0.4
02
-02
m m
1 s 1 s

Action eta

-025
o
-020
-0.15
m
1 s

Action eta

(C) St = (170)7 e = 1

Action a
2

0

Action a
2

0

—

. ) 04
.- -0.2
" ..

1 5

Action eta

(d) St = (1,1)7 e = 1

Action a
2

(f) St:(173)7 7775:1 (g) St:(273)7 Utzl

-06
- .
-0.4
-0.2
" ..
1 5

Action eta

(e) St = (172)7 e = 1

Action a

Figure 10. For A = 0.75, the learned optimal path is [3,0] — [2,0] — [1,0] — [1,1] — [1,2] — [1,3] — [2,3] — [3, 3].
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Figure 11. For A = 1, the learned optimal path is [3,0] — [2,0] — [1,0] — [1,1] — [1,2] — [1,3] — [2,3] — [3, 3].
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