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Abstract

A functional commitment allows a user to commit to an input x and later, open the commitment to an arbitrary

function y = 5 (x). The size of the commitment and the opening should be sublinear in |x| and |5 |.

In this work, we give the first pairing-based functional commitment for arbitrary circuits where the size of the

commitment and the size of the opening consist of a constant number of group elements. Security relies on the

standard bilateral :-Lin assumption. This is the first scheme with this level of succinctness from falsifiable bilinear

map assumptions (previous approaches required SNARKs for NP). This is also the first functional commitment

scheme for general circuits with poly(_)-size commitments and openings from any assumption that makes fully

black-box use of cryptographic primitives and algorithms. As an immediate consequence, we also obtain a succinct

non-interactive argument for arithmetic circuits (i.e., a SNARG for P/poly) with a universal setup and where the

proofs consist of a constant number of group elements. In particular, the CRS in our SNARG only depends on the

size of the arithmetic circuit |� | rather than the circuit � itself; the same CRS can be used to verify computations

with respect to different circuits. Our construction relies on a new notion of projective chainable commitments

which may be of independent interest.

1 Introduction

A functional commitment scheme [IKO07, BC12, LRY16] allows a user to commit to an input x and later on, open the
commitment to an arbitrary function 5 evaluated on the committed value (i.e., open to the value 5 (x)). Moreover, we
require that both the size of the commitment and the size of the opening be short; they should be sublinear in the size
of the input x and the description length of 5 . The security requirement is evaluation binding, which states that given
a commitment f , an efficient adversary should not be able to open f to two different values y ≠ y′ with respect to the
same function 5 .

Functional commitments generalize notions like vector commitments [CFM08, LY10, CF13, LM19, GRWZ20]
and polynomial commitments [KZG10, PST13, LRY16, Lee21], and have found numerous applications to verifiable
outsourcing of storage [BGV11], authenticated data structures [PSTY13], and new constructions of homomorphic
signatures and verifiable databases [CFT22]. As a primitive, functional commitments can be viewed as a particular
case of succinct non-interactive arguments (SNARGs) for “commit-and-prove” languages, albeit satisfying a weaker
security notion of evaluation binding rather than soundness. In many cases, functional commitments are a building
block in many constructions of succinct arguments [MBKM19, GWC19, CHM+20, BDFG21, BFS20, COS20, Lee21,
ACL+22, CLM23] (where the stronger security requirement of soundness is obtained by relying either on the random
oracle model or making a stronger knowledge assumption on the underlying commitment scheme).

Recently, there has been significant progress on constructing functional commitments that can support arbitrary
circuits from both pairing-based [BCFL23, KLVW23] and lattice-based assumptions [dCP23, WW23b, KLVW23,
BCFL23, WW23a]. With the exception of the RAM delegation scheme of [KLVW23], the size of the commitments or
the openings (or both) in the other constructions scale with the depth of the circuit. The RAM delegation scheme of
[KLVW23] gives a functional commitment where the size of the commitments and openings scale polylogarithmically
with the length of the input and the size of the circuit, but relies on extensive non-black-use of cryptography.

∗Part of this work was done while visiting NTT Research.
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Scheme Functions |crs| |f | |c | BB Assumption

[LRY16, Gro16] arithmetic circuits $ (B) $ (1) $ (1) ✗ generic group

[LRY16] linear functions $ (ℓ) $ (1) $ (<) ✓ subgroup decision

[LM19] linear functions $ (ℓ<) $ (1) $ (1) ✓ generic group

[LP20] sparse polynomials $ (`)∗ $ (<) $ (1) ✓ uber assumption

[CFT22] degree-3 polynomials $ (ℓ3<) $ (3) $ (3) ✓ ℓ3 -DHE

[BCFL23]† arithmetic circuits $ (B5) $ (1) $ (3) ✓ ℓ-HiKer

[KLVW23]§ arithmetic circuits poly(_) $ (1) poly(_) ✗ :-Lin

This work arithmetic circuits $ (B5) $ (1) $ (1) ✓ bilateral :-Lin

∗The parameter ` is a sparsity parameter for the polynomials (c.f., [LP20]).
†The authors of [BCFL23] also give a scheme that supports bounded-width arithmetic circuits where the CRS contains
$ (F5 ) group elements and the openings contain$ (32 ) group elements. Our techniques also yield a construction
with these parameters (and from the standard :-Lin assumption as opposed to the non-standard @-type assumption);
see Remark 5.18.
§ While [KLVW23] construct delegation for RAM programs, their construction can be adapted to obtain a functional
commitments for general Boolean and arithmetic circuits. We consider the instantiation of their scheme with pairing-
based batch arguments [WW22].

Table 1: Summary of pairing-based non-interactive functional commitments. For each scheme,
we report the class of functions they support, the number of group elements in the common
reference string crs, the commitment f , and the opening c as a function of the input length ℓ

and the output length<. For the constructions that support arithmetic circuits, we write B to
denote the size of the circuit and 3 to denote the depth. We say that a scheme is “black-box”
(BB) if it only makes black-box use of the group and any cryptographic primitives.

This work. In this work, we study functional commitments for general arithmetic circuits from pairings. Our
goal in this work is to minimize the size of the commitments and the openings in a functional commitment scheme.
Towards that end, we construct the first pairing-based functional commitment scheme that supports arbitrary circuits
where the commitment and the openings consist of a constant number of group elements, irrespective of the input
length or the circuit size. The security of our construction relies on the standard bilateral :-Lin assumption1 for any
constant : > 1. We summarize our main theorem below:

Theorem 1.1 (Informal). Let : > 1 be a constant. Assuming the bilateral :-Lin assumption over a pairing group of

prime order ? , there exists a (non-interactive) functional commitment scheme for arithmetic circuits (over Z? ) of a priori

bounded size with the following features:

• The commitment consists of 2: group elements.

• The opening consists of $ (:2) group elements. (For : = 2, the number is 54).

• The scheme requires a structured common reference string (CRS) with $ (:3B5) group elements, where B is the size

of the circuit.

• If the circuit � in the opening is known in advance, then we can preprocess it into a short verification key. Then,

the online verification of the commitment only requires computing $ (<) bilinear map operations, where< is the

output length of the circuit � . We refer to Remark 5.16 for more details.

We provide a comparison with other pairing-based constructions in Table 1. Notably, Theorem 1.1 is first functional
commitment scheme for circuits with the following efficiency features:

• The first scheme based on falsifiable bilinear map assumptions (e.g., bilateral :-Lin or @-type assumptions)
where the commitment and the opening consists of a constant number of group elements. The only previous

1The bilateral :-Lin assumption is a variant of :-Lin where the challenge is encoded in both G1 and G2.
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constructions that support constant-size openings rely on the generic groupmodel or on knowledge assumptions
(due to the use of pairing-based SNARKs for NP).

• The first functional commitment scheme that makes fully black-box use of cryptographic primitives and
algorithms where the size of the commitment and the opening is poly(_) bits, regardless of the underlying
assumptions. The recent lattice-based and pairing-based schemes in [dCP23, WW23b, BCFL23, WW23a] are
also black-box, but the size of the opening all scale with the depth of the circuit. Even for the special case of
constant-degree polynomials, our result improves upon the state of the art in [BCFL23] in that we rely on
:-Lin instead of @-type assumptions. Constructions based on generic approaches (SNARKs or non-interactive
batch arguments) do achieve poly(_) size, but requires non-black-box access to the underlying primitives and
algorithms. We provide more discussion on this below.

Moreover, our functional commitment scheme is additively-homomorphic, so using the results from [CFT22], we
obtain homomorphic signatures for all (bounded-size) arithmetic circuits from the bilateral :-Lin assumption. This is
the first homomorphic signature scheme for general circuits based on falsifiable pairing-based assumptions where the
signature consists of a constant number of group elements. The number of group elements in previous pairing-based
constructions either grow with the depth of the circuit [BCFL23] or require a poly(_) number of group elements due
to non-black-box use of cryptography [KLVW23].

SNARG for P/poly with universal setup. Our functional commitment scheme immediately gives a succinct
non-interactive argument (SNARG) for P/poly with a universal setup. In this setting, the prover has an input x ∈ Zℓ? ,
and seeks to convince the verifier that y = � (x), where � is an arithmetic circuit. Moreover, the length of the proof
should be much shorter than the size of the arithmetic circuit |� | as well as the input length |x| and output length |y|.
In a SNARG with universal setup [GKM+18], the common reference string should only depend on a bound on the size
of the circuit |� | rather than the circuit � itself. Moreover, there is then an algorithm that takes as input the CRS and
the circuit � and outputs a succinct verification key vk� for � . Given the preprocessed verification key vk� , checking
a proof that y = � (x) should require time that is sublinear in the size of |� |.

A functional commitment scheme for arithmetic circuits directly implies a SNARG for P/poly. The proof is a
commitment f to x together with an opening of f to y with respect to the circuit � . The SNARG verifier can check
that the commitment f was honestly computed (since it knows the input x). Soundness now follows from evaluation
binding of the functional commitment scheme. If the functional commitment scheme supports fast verification,
then the resulting SNARG has a universal setup algorithm, where the same CRS can be used to check different
computations. Thus, Theorem 1.1 gives a SNARG for P/poly from bilateral :-Lin with a universal setup and where
the proof consists of a constant number of group elements. Previously, the work of [GZ21] showed how to construct
a SNARG for P/poly from the bilateral :-Lin assumption where the proof consists of a constant number of group
elements. The construction in [GZ21] relies on a circuit-dependent CRS where the circuit � is embedded into the CRS.
It is possible to use universal circuits and have the description of� be part of the statement itself; the question then is
whether the resulting construction supports fast verification (given a precomputed verification key vk� ). Recent RAM
delegation schemes (i.e., SNARGs for P) [CJJ21, KVZ21, KLVW23] also imply a SNARG for P/poly with universal
setup by treating the description of the circuit � as part of the initial contents of the memory of the RAM program.
Due to the non-black-box use of cryptography, the proofs in these constructions (when instantiated over groups with
bilinear maps) contain a super-constant number of group elements.

Comparison to generic approaches. Generic approaches based on SNARKs [LRY16] and non-interactive batch
arguments (BARGs) [KLVW23] provide an alternative route for constructing functional commitments for general
circuits. Here, we discuss some limitations of these approaches beyond their non-black-box use of cryptography:

• The SNARK-based approach [LRY16] instantiated using a pairing-based SNARKs for NP with constant-size
proofs (e.g., [Gro10, Lip12, GGPR13, BCI+13, DFGK14, Gro16]) yields a functional commitment where the
commitment and openings contain $ (1) group elements. However, the reliance on SNARKs for NP brings in
strong, non-falsifiable assumptions or requires working in the generic bilinear map model to argue security.
Moreover, constructing SNARKs for NP from simple falsifiable assumptions over bilinear maps is likely to be
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difficult [GW11]. The functional commitments we build in this work rely solely on the falsifiable (bilateral)
:-Lin assumption.

• The authors of [CJJ21, KLVW23] shows how to use non-interactive batch arguments (BARGs) for NP to obtain
a RAM delegation scheme. In particular, the approach from [KLVW23] can be adapted to obtain a functional
commitment for general circuits; we refer to [WW23a, §1.3] for a sketch of the adaptation. Combined with the
pairing-based BARG from [WW22], this yields a functional commitments for all circuits from the standard
:-Lin assumption.2 While the commitments in the resulting construction consist of a constant number of
group elements, the opening are longer. Specifically, the opening consists of a BARG proof. When the BARG is
instantiated with [WW22], the size of the BARG proof scales linearly with the size of the verification circuit for
the underlying NP relation. In [KLVW23], this NP relation includes the verification algorithm of a somewhere
extractable hash function. This is a cryptographic primitive, so the size of this circuit scales polynomially with
the security parameter. Correspondingly, the size of the opening contains poly(_) group elements. It is unclear
how to adapt this approach to obtain a functional commitment where the opening consists of a constant number
of group elements. In this case, the non-black-box use of cryptography translates to an asymptotic loss in
succinctness.

On the flip side, these non-black-box approaches have the advantage that they require a short CRS. Notably, the
BARG-based approach of [KLVW23] only requires a CRS that grows polylogarithmically with the circuit size. Their
scheme thus supports circuits of unbounded size, but do not have constant-size openings.

Open problems. An interesting question is to construct functional commitments from :-Lin (or@-type assumptions)
with constant-size commitments and openings (measured in terms of the number of group elements) with a shorter
CRS (e.g., a quadratic-size CRS or linear-size CRS). The CRS size in our current construction scales with$ (B5). Existing
approaches that have constant-size commitment and openings all rely on pairing-based SNARKs, which requires
strong non-falsifiable assumptions. We note that in this setting, there has been a long and successful line of work
focused on constructing and optimizing pairing-based SNARGs with constant-size proofs [Gro10, Lip12, GGPR13,
BCI+13, DFGK14, Gro16]. Similarly, in the related setting of batch arguments for NP, recursive composition has
proven useful for reducing the size of the CRS [KPY19, CJJ21, WW22, KLVW23]. It is an interesting to see if similar
techniques are applicable to obtain functional commitments with a shorter CRS (while retaining commitments and
openings that are only a constant number of group elements).

2 Technical Overview

The starting point of our construction is a new chainable functional commitment scheme for quadratic functions from
the :-Lin assumption. In a chainable functional commitment [BCFL23], the user can commit to an input x ∈ Zℓ?
(with commitment fx) and then compute an opening c to a new commitment fy of the output vector y = 5 (x) where
5 : Zℓ? → Z

ℓ
? is a vector-valued function. The key difference between chainable functional commitments and standard

functional commitments is that the user opens to a succinct commitment of the output rather than the (possibly long)
output itself. The security requirement is evaluation binding, which says that an efficient adversary should not be
able to open the commitment fx to two different output commitments fy, f

′
y. The authors of [BCFL23] show that a

chainable commitment scheme directly implies a functional commitment scheme for arithmetic circuits. Here, we
describe their approach for the simpler setting of layered arithmetic circuits:

• The commitment itself is a commitment f1 to the input.

• To construct an opening to a (layered) arithmetic circuit � where the value of layer 8 is a quadratic function of
the values in layer 8 − 1, the user first commits to the wires at each layer. If there are 3 layers, then the user
constructs 3 commitments f2, . . . , f3 (note that the original commitment f1 corresponds to the inputs). Finally,
the user provides a chaining proof c8,8+1 that each pair (f8 , f8+1) is correctly computed (with respect to the
quadratic function that implements the mapping from the layer-8 wires to the layer-(8 + 1) wires). This step is
implemented using a chainable commitment for quadratic functions.

2This construction can also be instantiated in pairing-free groups by relying on the (subexponential) DDH assumption [CGJ+23].
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The above construction provides a general blueprint for constructing functional commitments for layered arithmetic
circuits where the size of the opening grows with the depth of the circuit. The authors of [BCFL23] then describe
how to construct chainable functional commitments for quadratic functions using a non-standard @-type assumption
on bilinear maps (the ℓ-HiKER assumption, where ℓ denotes the input length). We note that a similar approach was
also used for constructing succinct arguments in [GR19].

Overview of our approach. Our goal is to implement the [BCFL23] approach, but with only a constant number
of group elements in the opening. A natural approach is to commit to all of the wires in the circuit twice: once as
an input commitment f1 and once as an output commitment f2. Suppose we number the wires in topological order.
Then, to argue evaluation binding, we could try to argue that the first 8 + 1 wires committed in f2 are consistent with
the first 8 wires committed in f1. The problem with this strategy is the evaluation binding property for a chainable
commitment only allows us to reason globally about the input and output commitments, whereas this “wire-by-wire”
consistency property pertains to reasoning about prefixes of the committed vectors (i.e., analyzing relationships
between the first 8 components of the input vector and the first 8 + 1 components of the output vector). In this work,
we introduce the notion of a “projective chainable commitment” that allows us to reason about properties on prefixes
of the committed vectors. Our overall construction then has the following high-level structure:

• The commitment is a commitment fin to the input x.

• The opening for a circuit � : Zℓ? → Z
<
? contains 3 commitments: f1, f2 are commitments to all B wire values

(where B is the number of wires in �), and fout is a commitment to the< output wires.

In addition, the opening contain “proofs” that enforce the following prefix-based constraints:

• Input consistency: The first ℓ committed values in f1 are equal to the committed values in the input
commitment fin.

• Gate consistency: For all 9 = ℓ + 1, . . . , B , the first 9 + 1 committed values in f2 are consistent with the first 9
committed values in f1 as determined by the circuit’s “next wire” function (i.e., the function corresponding to
the gate computing wire 9 ). The “next wire” function can be described by a quadratic function.

• Internal consistency: For all 9 = ℓ +1, . . . , B , the first 9 committed values in f1 are equal to the first 9 committed
values in f2.

• Output consistency: The last< committed values in f1 are equal to the committed values in fout

If all of these constraints are satisfied, then a straightforward iterative argument suffices to show evaluation binding
(several recent constructions of delegation follow this type of approach [GZ21, CJJ21, KLVW23]). To formalize this
approach, we need to first define what we mean when we say the “first 9 committed values in a commitment f .”
We formalize this by defining a trapdoor setup algorithm that takes as input an index 9 and generates the public
parameters together with a trapdoor td( 9 ) . Then, given a commitment f , we can use the trapdoor to extract from f a
commitment to the first 9 committed values in f ; we denote this latter commitment by Project(td( 9 ) , f). In particular,
we can now restate the gate consistency and internal consistency constraints as follows:

• Gate consistency: For all 9 = ℓ + 1, . . . , B , the output of Project(td( 9+1) , f2) is consistent with Project(td( 9 ) , f1)

with respect to the circuit “next-wire” function.

• Internal consistency: For all 9 = ℓ+1, . . . , B , the output of Project(td( 9 ) , f1) is consistent with Project(td
( 9 ) , f2)

with respect to the identity map.

Here, the “consistency requirement” corresponds to a chain-binding security property. In the actual construction, the
commitments f1 and f2 will have different “types” and a different projection trapdoor will be used to project f1 and
f2. The added flexibility will allow us to carry out the full proof of evaluation binding (see Sections 2.3 and 5) We
refer to chainable commitments with this projective property as “projective chainable commitments.”
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2.1 Chainable Commitments for Quadratic Functions from Bilateral :-Lin

The starting point of our construction is a new construction of chainable commitments for quadratic functions. To
simplify the description in the overview, we start by describing a “designated-verifier” variant of the construction,
where a secret key is needed to check the opening. The secret-key version is simpler to describe, and readily extends
to the setting of public verifiability using the techniques of Kiltz and Wee [KW15]. In the technical sections (Section 4),
we only describe the version with public verification.

Notation. Throughout this work, we will use the implicit notation of group elements introduced in [EHK+13].
Our construction operates over a prime-order pairing group (G1,G2,G) ) of order ? with an efficiently-computable
non-degenerate pairing 4 : G1 × G2 → G) . We let 61 denote a generator for G1 and analogously for 62 and 6) . For
a matrix M ∈ Z=×<? , we write [M]1 ∈ G

=×<
1 to denote the matrix of group elements 6M1 (when exponentiation is

defined component-wise). Similarly, we write [M]2 to denote 6M2 and [M]) to denote 6M
)
. For matrices A,B,C,D over

Z? with compatible dimensions, we write A[B]1 + C[D]1 := [AB + CD]1, which can be computed using the group
operation over G1. We define linear operations over G2 and G) analogously. For two scalars 0, 1 ∈ Z? , the pairing
satisfies 4 ( [0]1, [1]2) := [01]) . We extend this to matrix and tensor products3 by writing [A]1 [B]2 := [AB]) and
[A]1 ⊗ [B]2 := [A ⊗ B]) . In more detail, the individual components of the matrix and tensor products are computed
by applying the pairing to the corresponding elements of A and B and then, in the case of matrix multiplication,
applying the group operation over G) . Finally, in the following description, we write I3 to denote the 3-by-3 identity
matrix.

Warm-up: a scheme for fixed linear functions. We first describe a functional commitment that supports a
single fixed linear function x ↦→ Mx. In this scheme, a user can commit to an input x and open to y = Mx. The
construction is an adaptation of the Kiltz-Wee proof system [KW15] for proving membership in linear spaces:

• The public parameters contain two encoding matrices [T]2, [T̂]2 ∈ G
:×ℓ
2 , where : is a constant (the parameter

in the :-Lin assumption) and ℓ is the input length. We sample T, T̂ r
← Z:×ℓ? .

• A commitment to x ∈ Zℓ? with respect to [T]2 is [Tx]2. We define commitments with respect to T̂ analogously.

• In the overview (and the rest of this paper), we refer to commitments with respect to T̂ as “Type-I commitments”
and those with respect to T as “Type-II commitments.” Our goal is to prove relationships between Type-I
and Type-II commitments. For the setting of linear functions, the input commitment [c]2 might be a Type-II
commitment to x and the goal is to construct an opening to a Type-I commitment [ĉ]2 of the vector y = Mx. We
will also consider relations where the input is a Type-I commitment and the output is a Type-II commitment.

We now describe how to support linear openings for Type-II commitments. Specifically, starting from a Type-II
commitment [Tx]2 of x, we want to construct an opening to the Type-I commitment [T̂Mx]2 of the vector Mx. To do
so, we sample two vectors r,w r

← Z:? and publish [z]2 in the public parameters where

zT = wTT − rTT̂M ∈ Zℓ? .

For now, we consider the designated-verifier setting where a secret key is needed to verify the openings. In this case,
the vectors (r,w) are the secret verification key. Observe now that

zTx = wTTx − rTT̂Mx.

We define the opening to be E = zTx. Then, the verification relation takes the Type-II commitment [c]2 = [Tx]2, the
Type-I commitment [ĉ]2 = [T̂Mx]2 and checks that

[E]2
?
= wT [c]2 − r

T [ĉ]2.

3We recall some basic properties of the tensor product in Section 3.
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Security of the basic construction. The security requirement says that it should be computationally difficult to
construct a Type-II commitment [c]2 and a pair of distinct Type-I commitments [ĉ]2 ≠ [ĉ

′]2 along with accepting
openings [E]2, [E

′]2. In other words, it should be difficult for the adversary to output [c]2, [ĉ]2, [ĉ
′]2, [E]2, and [E

′]2
such that

rTĉ = wTc − E and rTĉ′ = wTc − E ′ .

Equivalently, the adversary must be able to come up with ĉ∗ = ĉ − ĉ′ ≠ 0 and E∗ = E ′ − E such that rTĉ∗ = E∗. To
argue that this is difficult, we first claim that the vector r (in the secret verification key) is computationally hidden
from the view of the adversary. This follows via the :-Lin assumption. Under :-Lin, [wTT]2 is pseudorandom given
[T]2 and [T̂]2. Thus [z]2 computationally hides the vector r. Since r is computationally hidden and r is sampled
uniformly from Z:? , whenever ĉ

∗
≠ 0, the distribution of rTĉ∗ is uniform over Z? . In this case, for any fixed E∗ chosen

independently of r, the probability that rTĉ∗ = E∗ is 1/? , which is negligible.

Chainable commitments for linear functions. The basic scheme above supports a fixed function M, which
was programmed into the public parameters [z]2. To support arbitrary functions (as in the case of a functional
commitment) from Zℓ? → Z

ℓ
? , we instantiate ℓ

2 copies of the basic scheme. The ℓ2 schemes can be viewed as functional
commitment schemes for the fixed functions M8, 9 that is 0 everywhere and 1 in component (8, 9). The opening to
an arbitrary linear mapping x ↦→ Mx then corresponds to taking a linear combination of ℓ2 openings where the
coefficients are defined by the elements ofM. To describe the construction more compactly, we start with the following
identity: for allM ∈ Zℓ×ℓ? ,

rTT̂M = vec(M)T (Iℓ ⊗ vec(rTT̂)), (2.1)

where vec(M) is the vectorization operation that takes as input a matrix M and outputs the vector formed by
concatenating the columns of M from left to right (see Section 3). This means

rTT̂Mx = vec(M)T (Iℓ ⊗ vec(rTT̂))x.

We now sample W r
← Zℓ

2×:
? and publish [Z]2 in the public parameters where Z = WT − Iℓ ⊗ vec(rTT̂). Now,

vec(M)T · Z · x = vec(M)TW · Tx − vec(M)T (Iℓ ⊗ vec(rTT̂))x

= vec(M)TW · Tx − rTT̂Mx.

We define the opening to be [E]2 where E = vec(M)TZx. Then, given a Type-II commitment [c]2 = [Tx]2 and an
opening [E]2 to a Type-I commitment [ĉ]2 = [T̂Mx]2, the verification algorithm uses the (secret) verification keys W
and r to check that

[E]2
?
= vec(M)TW · [c]2 − r

T [ĉ]2.

Security of the chainable commitment. The chain binding proof for this construction follows exactly as that for
the basic construction. Namely, suppose an adversary is able to output [c]2, [ĉ]2, [ĉ

′]2, [E]2, and [E
′]2 such that

rTĉ = vec(M)TWc − E and rTĉ′ = vec(M)TWc − E ′ .

Just as in the basic case, the adversary in this case is able to come up with ĉ∗ = ĉ − ĉ′ ≠ 0 and E∗ = E ′ − E such that
rTĉ∗ = E∗. Similar to the basic case, we can argue via :-Lin that [WT]2 is pseudorandom given [T]2 and [T̂]2. As
such, the vector r is computationally hidden from the view of the adversary. Then, when ĉ∗ ≠ 0, the distribution of
rTĉ∗ is uniform over Z? and the claim follows exactly as before.

Chainable commitments for quadratic functions. Next, we extend the above construction to obtain a chainable
commitment for quadratic functions. In this setting, our goal is to support openings to (homogeneous)4 quadratic

functions x ↦→ M(x ⊗ x) whereM ∈ Zℓ×ℓ
2

? . A basic approach is to linearize the quadratic system and have the user

4It suffices to consider homogeneous quadratic functions. We can support arbitrary quadratic functions by having the user commit to the vector
x′ =

[
1
x

]
. A quadratic function on x then corresponds to a homogeneous quadratic function on x′ .
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commit to x⊗ x, and then use the functional commitment for linear functions to open toM(x⊗ x). However, this basic
approach is not chainable: the input is a commitment to a tensored value x ⊗ x, while the output is a commitment to
the untensored value y = M(x ⊗ x). We do not have a way to evaluate a quadratic function on the commitment to y.

We take an alternative approach and replace the Type-II encoding matrix T with a pair of encoding matrices
T1,T2

r
← Z:×ℓ? . A Type-II commitment to x is now a pair ( [T1x]1, [T2x]2). To construct an opening, the client first

computes a tensored commitment [(T1 ⊗ T2) (x⊗ x)]2 and then applies the chainable commitment for linear functions
with T1 ⊗ T2 as the input encoding matrix and T̂ as the output encoding matrix. The yields an opening to a Type-I
commitment T̂M(x ⊗ x) of the output y = M(x ⊗ x). We describe our construction below:

• The secret verification key is r r
← Z:? and a matrixW r

← Zℓ
3×:2

? .

• The public key consists of encoding matrices [T1]1, [T2]2, [T1 ⊗ T2]2, [T̂]2, and [Z]2 where T1,T2, T̂
r
← Z:×ℓ?

and
Z = W(T1 ⊗ T2) − Iℓ2 ⊗ vec(rTT̂) ∈ Zℓ

3×ℓ2

? .

• A Type-II commitment to a vector x ∈ Zℓ? is a pair ( [c1]1, [c2]2) where c1 = T1x ∈ Z
:
? and c2 = T2x ∈ Z

:
? . A

Type-I commitment to a vector y ∈ Zℓ? is [ĉ]2 where ĉ = T̂y ∈ Z:? .

• An opening for the quadratic function x ↦→ M(x ⊗ x) whereM ∈ Zℓ×ℓ
2

? consists of the tensored commitment
[c∗]2 = [(T1 ⊗ T2) (x ⊗ x)]2 and the opening [E]2 = [vec(M)

TZ(x ⊗ x)]2.

• Given a Type-II commitment
(
[c1]1, [c2]2

)
, a homogeneous quadratic functionM ∈ Zℓ×ℓ

2

? , a Type-I commitment

[ĉ]2, and an opening
(
[c∗]2, [E]2

)
, the verification algorithm checks the following two conditions:

[c1]1 ⊗ [c2]2
?
= [1]1 · [c∗]2 and rT [ĉ]2

?
= vec(M)TW[c∗]2 − [E]2 .

The first verification relation uses the pairing to check that the tensored commitment was correctly computed
from the Type-II commitment ( [c1]1, [c2]2) while the second relation is checking validity of the linearized
system.

Both correctness and security follow analogously to that of the linear system. For correctness, we observe the
following. If c1 = T1x, c2 = T2x and ĉ = T̂y, where y = M(x ⊗ x), then we have

c1 ⊗ c2 = (T1x) ⊗ (T2x) = (T1 ⊗ T2) (x ⊗ x),

so the first verification relation passes. For the second verification relation, we appeal to Eq. (2.1) adapted to the case

where M ∈ Zℓ
2×ℓ
? :

rTT̂M = vec(M)T (Iℓ2 ⊗ vec(rTT̂)),

Then,

rTĉ = rTT̂M(x ⊗ x) = vec(M)T (Iℓ2 ⊗ vec(rTT̂)) (x ⊗ x) = vec(M)T (W(T1 ⊗ T2) − Z) (x ⊗ x) = vec(M)TWc∗ − E .

To argue evaluation binding, we use a similar strategy and argue that [W(T1 ⊗ T2)]2 is pseudorandom given [T1]1,
[T2]2, and [T1 ⊗ T2]2. This follows from the bilateral :-Lin assumption (since the matrix T1 is encoded in both G1

and G2); we provide a formal proof of this in Lemma 3.10. If [W(T1 ⊗ T2)]2 is pseudorandom, then once again, the
vector r is computationally hidden from the view of the adversary. The analysis then proceeds exactly as in the case
for linear functions.
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Public verification via :-KerLin. We now show how to lift the designated-verifier constructions described above
to the public verification setting. We exploit the fact that the above verification relation is linear. As such, we can
use the technique from [KW15] of giving out a partial encoding of r and W and then implementing the verification
relation “in the exponent” via the pairing. Specifically, our scheme for quadratic functions now works as follows:

• We first sample a matrix A r
← Z

:×(:+1)
? and sampleW r

← Z
ℓ3 (:+1)×:2

? and R r
← Z

(:+1)×:
? . The common reference

string now contains

crs =
(
[A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [T1]1, [T2]2, [T̂]2, [T1 ⊗ T2]2, [Z]2

)
,

where T1, T2, T̂
r
← Z:×ℓ? and Z = W(T1⊗T2)−Iℓ2 ⊗vec(RT̂). In particular [(Iℓ3 ⊗A)W]1 and [AR]1 are the public

encodings of the secret verification keys. The key point is that A is compressing and loses information about W
and R. The reduction then embeds the private key of the designated-verifier scheme into the components of
W,R that are hidden given (Iℓ3 ⊗ A)W and AR.

• The commitments are constructed exactly as in the designated-verifier scheme. Since rT has been replaced by a
matrix, the analogous opening relation is now [v]2 = [(vec(M)

T ⊗ I:+1)Z(x ⊗ x)]2.

• Given an input commitment
(
[c1]1, [c2]2

)
, a homogeneous quadratic function M ∈ Zℓ×ℓ

2

? , and an opening(
[c∗]2, [v]2

)
, the public verification algorithm now checks the following:

[c1]1 ⊗ [c2]2
?
= [1]1 · [c∗]2 and (vec(M)T ⊗ I: ) [(Iℓ3 ⊗ A)W]1 [c∗]2

?
= [AR]1 [ĉ]2 + [A]1 [v]2.

We refer to Section 4.4 (Construction 4.38) for the full description (which describes the projective variant of this
construction). Correctness of this scheme follows by a similar calculation as in the designated-verifier case; we refer
to Theorem 4.39 for the exact details. We now provide a brief sketch of the security analysis for this construction.

Consider an adversary for the evaluation binding game. Given the public parameters, the adversary outputs an

input commitment ( [c1]1, [c2]2), a homogeneous quadratic function M ∈ Zℓ×ℓ
2

? , two output vectors [ĉ]2, [ĉ
′]2 along

with two openings c = ( [c∗]2, [v]2) and c ′ = ( [c′∗]2, [v
′]2). If the adversary is successful, then ĉ ≠ ĉ′ and c and c ′

are valid openings. If the openings are valid, then c∗ = c′∗ and the verification relation now implies that

AR(ĉ − ĉ′) + A(v − v′) = 0.

Equivalently, we observe that any adversary that breaks evaluation binding must be able to compute ĉ∗ := ĉ − ĉ′ ≠ 0

and v∗ := v − v′ such that
A(Rĉ∗ + v∗) = 0. (2.2)

Our security proof now proceeds as follows:

• Step 1: First we rely on the kernel assumption (:-KerLin), which is a search version of the :-Lin assump-

tion [MRV15] (and thus, implied by :-Lin). The assumption states that given [A]1 where A
r
← Z

:×(:+1)
? , it is

difficult to find [x]2 such that x ≠ 0 and Ax = 0. Under the :-KerLin assumption, if an efficient adversary can
find ĉ∗ and v∗ that satisfies Eq. (2.2), then it must be the case that Rĉ∗ + v∗ = 0. Otherwise, the adversary found
a non-trivial vector in the kernel of A.

• Step 2: Next, we use the fact that A is compressing. Let a⊥ ∈ Z:+1? be an arbitrary non-zero vector in the kernel
of A (i.e., A · a⊥ = 0). Suppose we now sampleW and R as

W = W1 + (Iℓ3 ⊗ a⊥)W2

R = R1 + a
⊥rT2,

whereW1
r
← Z

ℓ3 (:+1)×:2

? ,W2
r
← Zℓ

3×:2

? , R1
r
← Z

(:+1)×:
? , and r

r
← Z:? . SinceW1 and R1 are uniform,W and R

are distributed exactly as in the real public parameters. However, the components (Iℓ3 ⊗ A)W and AR in the
public parameters information-theoretically hide the components W2, r2. In particular, since Aa⊥ = 0, we have

(Iℓ3 ⊗ A)W = (Iℓ3 ⊗ A)W1 + (Iℓ3 ⊗ Aa⊥)W2 = (Iℓ3 ⊗ A)W1

AR = AR1 + Aa
⊥rT2 = AR1 .
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Consider now the verification relation. If Rĉ∗ + v∗ = 0, then it must be the case that

Rĉ∗ + v∗ = 0 =⇒ a⊥rT2ĉ
∗
= −v∗ − R1ĉ

∗ .

This is essentially the same type of verification relation as in the designated-verifier setting where r2 is the
secret key. Like in the basic scheme, what remains is to analyze the leakage on r2 from Z.

• Step 3: By a similar argument as in the designated verifier case, we can argue that under bilateral :-Lin, Z
computationally hides r2. Specifically, we can decompose

Z = W(T1 ⊗ T2) − Iℓ2 ⊗ vec(RT̂) = Z1 + (Iℓ3 ⊗ a⊥) (W2 (T1 ⊗ T2) − Iℓ2 ⊗ vec(rT2T̂)),

where Z1 does not depend on W2 and r2. By the bilateral :-Lin assumption, we can show that [W2 (T1 ⊗ T2)]2
is pseudorandom even given the other components in the public parameters, and thus, computationally hides
r2. The claim now follows exactly as in the designated-verifier case.

We give the formal proof of evaluation binding for quadratic functions in Section 4.4 (Theorem 4.40). The proof of
Theorem 4.40 is more involved since it is for the projective variant (see Section 2.2). That notwithstanding, the key
steps described here correspond to Lemma 4.43 (Step 1), Lemmas 4.44 and 4.45 (Step 2), and Lemma 4.46 (Step 3).

2.2 Projective Commitments

To go from a chainable commitment for quadratic functions to a functional commitment for general circuits, we
introduce the notion of a “projective” commitment. As described at the beginning of Section 2, in a projective
commitment, the goal is to take a commitment f to a vector x = (G1, . . . , Gℓ ) and “project” it onto a commitment
to a subvector (e.g., the vector x′ = (G1, . . . , G 9 ) for some 9 ∈ [ℓ]). In this work, we will only consider projecting a
commitment onto its first 9 components (i.e., a prefix of length 9 ). Specifically, the syntax of a projective commitment
is defined as follows:

• The CRS for a projective commitment can be sampled either in a normal mode or in a projective mode. In this
work, we refer to the projective mode as a “semi-functional mode.”5

• The semi-functional setup algorithm takes as input a Type-I index 91 and a Type-II index 92, and outputs a CRS
along with two trapdoors td1 and td2. The trapdoor td1 can be used to project Type-I commitments onto a
commitment to the first 91 components. Similarly, the trapdoor td2 can be used to efficiently project a Type-II
commitment onto a commitments to the first 92 components. We refer to the CRS output by the semi-functional
setup algorithm with indices ( 91, 92) as a ( 91, 92)-semi-functional CRS. We write Project(1) and Project(2) to
denote the projection algorithms for Type-I and Type-II commitments, respectively.

The chain binding security requirement now says the following:

• First, supposeM ∈ Zℓ×ℓ
2

? is the matrix associated with a (homogeneous) quadratic function with the property
that the first 92 components of the output M(x ⊗ x) only depends on the first 91 components of x. We say such
functions are ( 91, 92)-local. In other words, given just the first 91 components of the input vector x, we can
compute the first 92 outputs ofM(x ⊗ x).

• Now, suppose we sample a ( 91, 92)-semi-functional CRS. Let f1 and f
′
1 be a pair of Type-I commitments whose

projections onto their first 91 components are equal: Project(1) (td1, f1) = Project(1) (td1, f
′
1). Let f2 and f

′
2 be a

pair of Type-II commitments. Suppose the adversary comes up with valid openings for f2 and f
′
2 with respect

to f1 and f ′1, respectively, and with respect to the same ( 91, 92)-local function M. Projective chain binding

security then requires that Project(2) (td2, f2) = Project(2) (td2, f
′
2). Unlike standard evaluation binding, we

allow two different input commitments f1 and f
′
1; the only stipulation is that their projections match. Note that

we can define an analogous notion where the inputs are Type-II commitments while the outputs are Type-I
commitments.

5Specifically, our realization of the projective mode will introduce a “shadow” subspace into the commitments and we embed a copy of the
chainable commitment within this shadow subspace. This type of approach is commonly used in dual-system proofs [Wat09, LW10], where a
shadow subspace is introduced when constructing the “semi-functional” keys and ciphertexts.
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Intuitively, the projective chain binding enforces local consistency on the committed values. If a quadratic function is
( 91, 92)-local, then the adversary should not be able to open two input commitments that “agree” on their first 91 values
to two output commitments that disagree on their first 92 outputs (since the first 92 output values are completely
determined by the first 91 input values). We require a few additional properties on the projective commitment:

• For all 91, 92 ∈ [ℓ], a ( 91, 92)-semi-functional CRS should be computationally indistinguishable from a normal
CRS.

• For all 91, 92, 9
′
2 ∈ [ℓ], a ( 91, 92)-semi-functional CRS should be computationally indistinguishable from a ( 91, 9

′
2)-

semi-functional CRS even given the trapdoor td1. Likewise, for all 91, 9
′
1, 92 ∈ [ℓ], a ( 91, 92)-semi-functional CRS

should be computationally indistinguishable from a ( 9 ′1, 92)-semi-functional CRS even given the trapdoor td2.
Essentially, the first property is saying that if we keep the Type-I index associated with a semi-functional CRS
fixed, but change the Type-II index, the projections of a Type-I commitment (i.e., the output of Project(1) (td1, ·))
do not change. This stronger notion of CRS indistinguishability is often referred to as a “no-signaling extraction”
property [PR17, KPY19, GZ21, KVZ21, CJJ21].

• Finally, we require a semi-functional collision-resistance property, which essentially says that under a (ℓ, ℓ)-
semi-functional CRS (i.e., we are projecting onto all ℓ components of the vector), it should be difficult to find
two distinct vector y ≠ y′ whose honestly-generated commitments have identical projections.

We provide the formal abstraction as well as the security requirements in Section 4.1.

Constructing projective commitments. To construct a projective commitment scheme, we expand the commit-
ment space. In the basic chainable commitment from Section 2.1, the commitments live in a :-dimensional space.
Our projective commitments will live in a 2:-dimensional vector space where the normal commitments inhabit a
:-dimensional space while the “semi-functional” commitments inhabit a :-dimensional shadow subspace. A similar
projection approach was used in the delegation scheme from [GZ21]. Concretely, we proceed as follows:

• Let [B∗1 | B
∗
2] ∈ Z

2:×2:
? be a basis for Z2:? where B∗1,B

∗
2 ∈ Z

2:×:
? . To sample a semi-functional encoding matrix T

that supports projection onto the first 91 components, we set

T = B∗1S1 + B
∗
2S2,

where S1
r
← Z:×ℓ? , S2 = [S̃2 | 0

:×(ℓ− 91 ) ], and S̃2
r
← Z

:× 91
? . In particular, S2 is random in the first 91 columns and

zero in the remaining ℓ − 91 columns.

• Let B2 ∈ Z
:×2:
? be the (unique) matrix where B2B

∗
1 = 0 and B2B

∗
2 = I: . Consider a commitment to a vector

x ∈ Zℓ? . A commitment is an encoding of Tx. Then,

B2Tx = B2

(
B∗1S1 + B

∗
2S2

)
x = S2x.

Observe that this is essentially a commitment to x with respect to the new encoding matrix S2. Moreover, S2 is
zero in all but the first 91 columns. This means that S2 is a commitment to the first 91 components of x. Thus,
we have successfully projected a commitment Tx of x onto a commitment S2x to the first 91 components of x.
In this case, the projection trapdoor is the matrix B2.

In the actual construction (Construction 4.8), we use a different and independent choice of basis [B∗1 | B
∗
2] for the

Type-I and Type-II encoding matrices T1,T2, T̂. This allows us change the distribution of the Type-I encoding matrix
T̂ while retaining the ability to project Type-II commitments (and vice versa).

Arguing projective chain binding. When the CRS is ( 91, 92)-semi-functional, a Type-II commitment to x can be
viewed as two commitments: a normal commitment to x in the “normal” subspace, and a semi-functional commitment
to the first 92 components of x in the “semi-functional” subspace. Our goal is to argue that the scheme satisfies chain
binding. This essentially follows by a similar argument as the proof of chain binding security for quadratic functions,
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except we now implement it in the semi-functional subspace. There is, however, one important difference. Recall from
Section 2.1 that the binding analysis critically relied on the fact that [W(T1 ⊗ T2)]2 computationally hid the value
of [R]2 in [Z]2 where Z = W(T1 ⊗ T2) − Iℓ2 ⊗ vec(RT̂). Previously, whenW,T1,T2 were all uniform, we were able
to appeal to the :-Lin assumption. If we consider this relation in the semi-functional space, we run into a potential
problem. Namely, the input encoding matrices T1 and T2 are no longer fully random in the semi-functional space:
they are only random in the first 92 components. As such, our previous proof strategy no longer applies.

Relying on locality. To complete the proof of projective chain binding, we rely on the fact that when the quadratic
relation M is ( 92, 91)-local,

6 correctness does not require giving out all of Z. In particular, we only need to give out a

subset of the components of Z to ensure correctness. Towards this end, we define a projectionmatrix Pquad ∈ {0, 1}
ℓ3×ℓ3

(a square diagonal matrix) with the following two properties:

• For every ( 92, 91)-local functionM, it holds that vec(M)TPquad = vec(M)T. This property ensures correctness
for the scheme.

• If we now define Z to be W(T1 ⊗ T2) − (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(RT̂)), it holds that the non-zero columns of

(Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(RT̂)) in the semi-functional space precisely coincide with the non-zero columns of
W(T1 ⊗ T2) in the semi-functional space. Now, we can rely on the :-Lin assumption to argue that W(T1 ⊗ T2)

hides R in the semi-functional space. This allows us to essentially implement the original proof strategy of
chain binding for quadratic functions described in Section 2.1.

We provide the specific details (including the exact definition of the necessary projection matrix Pquad) in Section 4.4.
The proof of projective chain binding for the overall scheme is described in Theorem 4.40.

Additional proof systems. In addition to arguing projective chain binding for quadratic functions, our functional
commitment scheme for general circuits relies on two additional systems for proving relations on commitments.
These constructions rely on a similar (and simpler) set of techniques as that used to argue security of the projective
quadratic commitment. We state the properties we require (since these are needed for our functional commitments
scheme in Section 2.3), but defer the details of their construction and analysis to the relevant technical section.

• Projective commitment for linear functions. We require a (slimmed-down) version of our projective
chainable commitment for quadratic functions that just supports linear functions. While technically this is
subsumed by our above construction for quadratic functions, having a scheme for linear functions reduces
the size of the openings since it avoids the extra burden of needing to encode the output of the quadratic
commitment in both G1 and G2. We describe this construction in Section 4.3.

• Prefix matching. We require a proof system to show that two commitments f and f ′ share a common
prefix (of fixed length :). This will be used to argue consistency between a commitment to the input and
a commitment to all of the wires in an arithmetic circuit (which includes the input). The security property
essentially says that when the CRS is (:, :)-semi-functional and the prefix-matching proof verifies, then
Project(1) (td1, f) = Project(1) (td1, f

′). We describe this construction in Section 4.2.

2.3 Functional Commitments for Circuits

Using the projective commitments from Section 2.2, we are now ready to construct our functional commitment for
general circuits. We start with a more detailed version of the general overview from the beginning of Section 2:

• To commit to an input x ∈ Zℓ? , the input commitment consists of a Type-I commitment fin to x.

• To open f to a value y = � (x) where� : Zℓ? → Z
<
? is a circuit of size B , the user first defines the vector z ∈ ZB? to

be the vector of all of the wire values of� (x), arranged in topological order (i.e., the value of wire 8 is a function
of only the first 8 − 1 wires). The user prepares a Type-I commitment f1 and a Type-II commitment f2 to z.

6The relation is ( 92, 91 )-local since the inputs are Type-II commitments while the output is a Type-I commitment.
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• The user now constructs the following openings:

– First, the user uses the prefix-matching proof system to construct a proof cpre that fin and f1 share a
common prefix of length ℓ (i.e., they agree on the input).

– The user gives a chainable linear opening clin that applying the identity mapping IB to the Type-I commit-
ment f1 yields the Type-II commitment f2 (recall that f1, f2 are both commitments to the wire values
� (x)).

– The user gives a chainable quadratic opening cquad that applying the “next-wire” function M� to the
Type-II commitment f2 yields the Type-I commitment f1. Here,M� is the circuit’s “next wire” function
whose 8th output corresponds to the 8th wire of� (x). By construction,M� implements the identity function
on the first ℓ wires (corresponding to the input), and a quadratic function for the remaining wires. Since
the wires are arranged topologically, for all 8 ≥ ℓ , the function M� is (8, 8 + 1)-local (i.e., the value of wire
8 + 1 is a function of the first 8 wires only).

– Finally, the user computes a Type-II commitment fout to the output y = � (x), together with a chainable
linear opening cout that fout is consistent with f1 under the linear projection operator that simply selects
for the output wires.

The opening consists of the commitments to the wires f1, f2 along with the openings cpre, clin, cquad, and cout.

• To verify the opening c = (f1, f2, cpre, clin, cquad, cout), the verifier first computes the Type-II commitment fout
to the purported output y itself and checks that each of the underlying openings are valid.

Using the projective commitment schemes described in Section 2.2 (see also Section 4), each of the commitments and
openings consists of a constant number of group elements, so we obtain a functional commitment for circuits with
constant-size commitments and openings.

Security analysis. We now describe how to leverage the security properties of our projective commitment scheme
to argue evaluation binding of the above construction. We provide the formal proof in Section 5. Suppose an
adversary comes up with an input commitment fin along with two openings c = (f1, f2, cpre, clin, cquad, cout) and
c ′ = (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out) for vectors y ≠ y′ and with respect to the same circuit � . Our proof shares

many similarities with the iterative approaches from [GZ21, CJJ21, KLVW23] for constructing delegation schemes.
Specifically, our argument proceeds as follows:

• We start by switching the CRS to be (ℓ, ℓ)-semi-functional. If cpre and c ′pre verify, then security of the prefix
matching construction now says that

Project(1) (td1, f1) = Project(1) (td1, fin) = Project(1) (td1, f
′
1).

• Since Project(1) (td1, f1) = Project(1) (td1, f
′
1), the identity function IB is (ℓ, ℓ)-local, and clin, c

′
lin

verify, linear

chain-binding (from Type-I to Type-II) then says that Project(2) (td2, f2) = Project(2) (td2, f
′
2).

• Now we switch the CRS to be (ℓ + 1, ℓ)-semi-functional. Since only the Type-I index changed, it must be the
case that Project(2) (td2, f2) = Project(2) (td2, f

′
2) still holds. This step critically relies on the fact that in the

CRS indistinguishability game, the reduction algorithm is given the projection trapdoor, and thus, can project
the Type-II commitments and check for equality. Note that because the Type-I index of the CRS has changed, it
may no longer be the case that Project(1) (td1, f1) = Project(1) (td1, f

′
1) anymore.

• Since the M� circuit is (ℓ, ℓ + 1)-local by construction, Project(2) (td2, f2) = Project(1) (td2, f
′
2), and cquad, c

′
quad

verify, quadratic chain-binding (fromType-II to Type-I) now re-establishes the property that Project(1) (td1, f1) =
Project(1) (td1, f

′
1).

• Now we switch the CRS to be (ℓ + 1, ℓ + 1)-semi-functional. Since only the Type-II index changed, this means
that Project(1) (td1, f1) = Project(1) (td1, f

′
1) still holds.
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• The above sequence of steps allowed us to move the CRS from (ℓ, ℓ)-semi-functional to (ℓ + 1, ℓ + 1)-semi-
functional while maintaining the invariant that Project(1) (td1, f1) = Project(1) (td1, f

′
1). We iterate this

same sequence of transitions to conclude that when the CRS is (B, B)-semi-functional, it is still the case that
Project(1) (td1, f1) = Project(1) (td1, f

′
1).

• When the CRS is (B, B)-semi-functional, Project(1) (td1, f1) = Project(1) (td1, f
′
1), and cout, c

′
out verify, we can

appeal to linear chain binding to show that the output commitments fout, f
′
out satisfy Project(2) (td2, fout) =

Project(2) (td2, f
′
out). However, the verifier computes the output commitments fout, fout′ from y and y′ honestly.

If y ≠ y′, but fout and f ′out are equal in the semi-functional space, then this breaks the collision resistance
property of the projective commitment scheme.

We provide the formal argument in Section 5 (Theorem 5.4). We also refer to Table 2 for a quick overview of the
formal hybrid structure. Taken together, this yields the construction in Theorem 1.1.

3 Preliminaries

We write _ to denote the security parameter. For a positive integer = ∈ N, we write [=] to denote the set {1, . . . , =}.
For a positive integer ? ∈ N, we write Z? to denote the integers modulo ? . We use bold uppercase letters to denote
matrices (e.g., A,B) and bold lowercase letters to denote vectors (e.g., u, v). We use non-boldface letters to refer to
their components: v = (E1, . . . , E=). For a vector v = (E1, . . . , E=), we write diag(v) to denote the =-by-= diagonal
matrix whose diagonal entries are (E1, . . . , E=). We write Iℓ to denote the ℓ-by-ℓ identity matrix.

We write poly(_) to denote a function that is $ (_2 ) for some constant 2 ∈ N and negl(_) to denote a function
that is > (_−2 ) for all 2 ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length
of its input. We say that two families of distributions D1 = {D1,_}_∈N and D2 = {D2,_}_∈N are computationally
indistinguishable if no efficient algorithm can distinguish them with non-negligible probability, and we denote this

by writing D1
2
≈ D2. We say that D1 and D2 are statistically indistinguishable if the statistical distance Δ(D1,D2)

between the two distributions is bounded by a negligible function negl(_).

Tensor products and vectorization. For matrices A ∈ Z=×<? and B ∈ Z:×ℓ? , we write A ⊗ B to denote the tensor
(Kronecker) product of A and B. For matrices A,B,C,D where the products AC and BD are well-defined, the tensor
product satisfies the following mixed-product property:

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD). (3.1)

We now state two useful corollaries of the mixed-product property. For a vector x and a matrix A,

(x ⊗ I)A = (x ⊗ I) (1 ⊗ A) = x ⊗ A. (3.2)

For matrices A ∈ Z=×<? and B ∈ Z:×ℓ? ,

A ⊗ B = (I= ⊗ B) (A ⊗ Iℓ ) = (A ⊗ I: ) (I< ⊗ B). (3.3)

For a matrix A ∈ Z=×<? , we write vec(A) to denote its vectorization (i.e., the vector formed by vertically stacking the
columns of A from leftmost to rightmost). We will use the following useful identity: for matrices A,B,C where the
product ABC is well-defined, then

vec(ABC) = (CT ⊗ A) · vec(B) and vec(ABC)T = vec(B)T (C ⊗ AT) (3.4)

Functional commitments. We now give the formal definition of a fully succinct functional commitment scheme
for arithmetic circuits:

Definition 3.1 (Succinct Functional Commitment). Let _ be a security parameter. A succinct functional commitment
for arithmetic circuits (over a ring) is a tuple of efficient algorithms FC = (Setup,Commit, Eval,Verify) with the
following properties:
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• Setup(1_, 1ℓ , 1B ) → crs: On input the security parameter _, the input length ℓ , and the circuit size B , the setup
algorithm outputs a common reference string crs. We assume that crs implicitly specifies the input space Rℓ ,
where R is a finite ring.

• Commit(crs, x) → (f, st): On input the common reference string crs and an input x ∈ Rℓ , the commitment
algorithm outputs a commitment f and a state st.

• Eval(st,�) → c : On input a commitment state st, an arithmetic circuit � : Rℓ → R< , the evaluation algorithm
outputs an opening c .

• Verify(crs, f,�, y, c) → {0, 1}: On input the common reference string crs, a commitment f , an arithmetic
circuit � : Rℓ → R< , a value y ∈ R< , and an opening c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

We now define several correctness and security properties on the functional commitment scheme:

• Correctness: For all _, ℓ, B ∈ N, all crs in the support of Setup(1_, 1ℓ , 1B ), all arithmetic circuits � : Rℓ → R<

(where R is the ring determined by crs), all inputs x ∈ Rℓ ,

Pr

[
Verify

(
crs, f,�,� (x), c

)
= 1 :

(f, st) ← Commit(crs, x);
c ← Eval(st,�)

]
= 1.

• Binding: For a security parameter _ and an adversary A, we define the binding security game as follows:

1. On input the security parameter _, the adversary A outputs the input length 1ℓ and the circuit size 1B .

2. The challenger samples crs← Setup(1_, 1ℓ , 1B ) and gives crs to A. Let R be the ring associated with crs.

3. The adversary outputs a commitment f , an arithmetic circuit � : Rℓ → R< of size at most B , and vectors
y, y′ ∈ R< along with openings c, c ′.

4. The challenger outputs 1 = 1 if y ≠ y′ and Verify(crs, f,�, y, c) = 1 = Verify(crs, f,�, y′, c ′). Otherwise,
the challenger outputs 1 = 0.

The functional commitment scheme is binding if for all efficient adversariesA, there exists a negligible function
negl(·) such that Pr[1 = 1] = negl(_) in the binding security game.

• Succinctness: There exists a universal polynomial poly(·) such that for all _, ℓ, B ∈ N, all crs in the support of
Setup(1_, 1ℓ , 1B ), all vectors x ∈ Rℓ (where R is the ring associated with crs), all arithmetic circuits� : Rℓ → R< ,
all (f, st) in the support of Commit(crs, x), and all c in the support of Eval(st,�),

|f | ≤ poly(_ + log ℓ + log B) and |c | ≤ poly(_ + log ℓ + log B).

3.1 Prime-Order Pairing Groups

We start by recalling the definition of a prime-order pairing group and the matrix decision Diffie-Hellman assumption
and kernel Diffie-Hellman assumptions we use in this work [EHK+13, MRV15].

Definition 3.2 (Prime-Order Bilinear Group). A prime-order asymmetric pairing group generator GroupGen is an
efficient algorithm that takes as input the security parameter 1_ and outputs a description G = (G1,G2,G) , ?, 61, 62, 4)

of two base groups G1 and G2 with generators 61, 62, respectively, a target group G) , all of prime order ? = 2Θ(_) , and
a non-degenerate bilinear map 4 : G1 × G2 → G) . We write 6) = 4 (61, 62) to denote a generator of G) . We require
that the group operation in G1,G2,G) and the pairing operations be efficiently computable.

Notation. Let G = (G1,G2,G) , ?, 61, 62, 4) be a prime-order group. As described in Section 2.1, we use the implicit
representation of group elements [EHK+13] throughout this work. Namely, for matrices A,B, we write [A]1 to denote
6A1 and [A]1 [B]2 := [AB]) as well as [A]1 ⊗ [B]2 := [A ⊗ B]) .
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Matrix Diffie-Hellman assumptions. We now recall the matrix Diffie-Hellman and kernel Diffie-Hellman
assumptions we use in this work. Our presentation is adapted from [EHK+13, MRV15].

Definition 3.3 (:-Lin Assumption). Let GroupGen be a group generator and : ∈ N be a positive integer. The :-Lin
assumption holds in G2 with respect to GroupGen if for all efficient adversaries A, there exists a negligible function
negl(·) such that

| Pr[A(G, [A]2, [s
TA]2) = 1] − Pr[A(G, [A]2, [u

T]2) = 1] | = negl(_),

where A = [1: | diag(01, . . . , 0: )] ∈ Z
:×(:+1)
? and the probability is taken over G ← GroupGen(1_), 01, . . . , 0:

r
← Z? ,

s
r
← Z:? , and u

r
← Z:+1? .

Definition 3.4 (Matrix Diffie-Hellman Assumption). Let GroupGen be a group generator, and let :, ℓ, 3 ∈ N be
positive integers. We say that the matrix Diffie-Hellman assumption with parameters :, ℓ, 3 (MDDH:,ℓ,3 ) holds in G2

with respect to GroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that

| Pr[A(G, [A]2, [SA]2) = 1] − Pr[A(G, [A]2, [U]2) = 1] | = negl(_),

where the probability is taken over G ← GroupGen(1_), A← Z:×ℓ? , S r
← Z3×:? , and U

r
← Z3×ℓ? .

Definition 3.5 (Kernel Diffie-Hellman Assumption). Let GroupGen be a group generator. We say that the kernel
Diffie-Hellman assumption (KerDH:,ℓ ) holds in G1 with respect to GroupGen if for all efficient adversaries A, there
exists a negligible function negl(·) such that

Pr

[
Ax = 0 ∧ x ≠ 0 :

G ← GroupGen(1_),A r
← Z:×ℓ? ,

[x]2 ← A(G, [A]1)

]
= negl(_).

We define the KerDH:,ℓ assumption in G2 analogously (where the challenge A is encoded in G2 and the adversary’s
output is in G1). Finally, we define the :-KerLin assumption to be an instance of the KerDH:,:+1 assumption where

the challenge matrix A is given by A = [1: | diag(01, . . . , 0: )] ∈ Z
:×(:+1)
? and 01, . . . , 0:

r
← Z? .

Bilateral MDDH assumptions. Similar to [GZ21], we rely on a bilateral Diffie-Hellman assumption in this work
where the challenge is encoded in both G1 and G2. We recall the assumptions below:

Definition 3.6 (Bilateral :-Lin Assumption). LetGroupGen be a group generator and : ∈ N be a positive integer. The
bilateral :-Lin assumption holds with respect to GroupGen if for all efficient adversaries A, there exists a negligible
function negl(·) such that

| Pr[A(G, [A]1, [A]2, [s
TA]1, [s

TA]2) = 1] − Pr[A(G, [A]1, [A]2, [u
T]1, [u

T]2) = 1] | = negl(_),

where A = [1: | diag(01, . . . , 0: )] ∈ Z
:×(:+1)
? and the probability is taken over G ← GroupGen(1_), 01, . . . , 0:

r
← Z? ,

s
r
← Z:? , and u

r
← Z:+1? .

Definition 3.7 (Bilateral Matrix Diffie-Hellman Assumption). Let GroupGen be a group generator, and let :, ℓ, 3 ∈ N
be positive integers. We say that the bilateral matrix Diffie-Hellman assumption with parameters :, ℓ, 3 (bilateral
MDDH:,ℓ,3 ) holds with respect to GroupGen if for all efficient adversariesA, there exists a negligible function negl(·)

such that

| Pr[A(G, [A]1, [A]2, [SA]1, [SA]2) = 1] − Pr[A(G, [A]1, [A]2, [U]1, [U]2) = 1] | = negl(_),

where the probability is taken over G ← GroupGen(1_), A← Z:×ℓ? , S r
← Z3×:? , and U

r
← Z3×ℓ? .

Remark 3.8 (Relationship to :-Lin). The analysis of Escala et al. [EHK+13] extends to show that for all : ≥ 1, the :-Lin
assumption implies theMDDH:,ℓ,3 assumption for all polynomially-bounded ℓ and 3 . An analogous result applies for
:-KerLin and KerDH:,ℓ . This analysis directly extends to the bilateral case when : > 1. Finally, Morillo et al. [MRV15]
showed that the (standard) MDDH:,ℓ,3 in G1 (resp., G2) assumption implies the KerDH:,ℓ assumption in G1 (resp.,
G2). Thus, for all : > 1 and assuming the bilateral :-Lin assumption holds with respect to GroupGen, both bilateral
MDDH:,ℓ,3 and KerDH:,ℓ hold with respect to GroupGen.
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Tensored MDDH. The security analysis of our functional commitment scheme will rely on a tensored version of
the bilateral MDDH assumption. We define this below and show that it is implied by the standard bilateral MDDH

assumption (Definition 3.7).

Definition 3.9 (TensoredMDDH). Let GroupGen be a group generator and let :, ℓ1, ℓ2, 3 ∈ N be positive integers.
We say the tensored matrix Diffie-Hellman assumption with parameters :, ℓ, 3 (tensoredMDDH:,ℓ1,ℓ2,3 ) holds in G2

with respect to GroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that

| Pr[A(G, -, [S(A ⊗ B)]2) = 1] − Pr[A(G, -, [U]2) = 1] | = negl(_),

where - =
(
[A]1, [A]2, [B]1, [B]2, [A ⊗ B]2

)
and the probability is taken over G ← GroupGen(1_), A ← Z:×ℓ1? ,

B← Z:×ℓ2? , S r
← Z3×:

2

? , and U
r
← Z

3×ℓ1ℓ2
? .

Lemma 3.10. Let :, ℓ1, ℓ2, 3 ∈ N be positive integers and GroupGen be a group generator. If the bilateralMDDH:,ℓ1,:

and bilateralMDDH:,ℓ2,ℓ1 assumptions hold with respect to GroupGen, then for all polynomials 3 = 3 (_), the tensored

MDDH:,ℓ1,ℓ2,3 assumption holds in G2 with respect to GroupGen.

Proof. We first show the claim for 3 = 1. The general case then follows by a hybrid argument. When 3 = 1, the goal
is to show that the following two distributions are computationally indistinguishable:

(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [s

T (A ⊗ B)]2
) 2
≈
(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [u

T]2
)
, (3.5)

where A r
← Z

:×ℓ1
? , B r

← Z
:×ℓ2
? , s r

← Z:
2

? and u
r
← Z

ℓ1ℓ2
? . To argue this, we first define T ∈ Z:×:? to be the matrix where

vec(T) = s. Then, by Eq. (3.4),
sT (A ⊗ B) = vec(T)T (A ⊗ B) = vec(BTTA) .

Thus, it suffices to show that

(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [B

TTA]2
) 2
≈
(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [V]2

)
,

where A r
← Z

:×ℓ1
? , B r

← Z
:×ℓ2
? , T r

← Z:×:? , and V
r
← Z

ℓ2×ℓ1
? . This follows by applying bilateralMDDH twice (once on

the left and once on the right). Formally, we define the following sequence of hybrid experiments:

• Hyb0: Sample G ← GroupGen(1_), A r
← Z

:×ℓ1
? , B r

← Z
:×ℓ2
? , T r

← Z:×:? . Output

(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [B

TTA]2
)
.

• Hyb1: Sample G ← GroupGen(1_), A r
← Z

:×ℓ1
? , B r

← Z
:×ℓ2
? , T r

← Z:×:? , U r
← Z

:×ℓ1
? . Output

(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [B

TU]2
)
.

• Hyb2: Sample G ← GroupGen(1_), A r
← Z

:×ℓ1
? , B r

← Z
:×ℓ2
? , T r

← Z:×:? , V r
← Z

ℓ2×ℓ1
? . Output

(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [V]2

)
.

We now argue that each adjacent pair of distributions are computationally indistinguishable under the bilateral
MDDH assumption:

• Hyb0 and Hyb1 are computationally indistinguishable under bilateral MDDH:,ℓ1,: . Specifically, on input a

bilateral MDDH:,ℓ1,: challenge (G, [Ã]1, [Ã]2, [Z̃]1, [Z̃]2), the reduction algorithm samples B r
← Z

:×ℓ2
? and

constructs the challenge(
G, [Ã]1, [Ã]2, [B]1, [B]2, [Ã]2 ⊗ B,BT [Z̃]2

)
=
(
G, [Ã]1, [Ã]2, [B]1, [B]2, [Ã ⊗ B]2, [B

TZ̃]2
)
.

When Z̃ = TÃ for T r
← Z:×:? , this corresponds to Hyb0 and if Z̃ r

← Z
:×ℓ1
? , then this corresponds to Hyb1.
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• Hyb1 and Hyb2 are computationally indistinguishable under bilateral MDDH:,ℓ2,ℓ1 . Specifically, on input a

bilateral MDDH:,ℓ2,ℓ1 challenge (G, [B̃]1, [B̃]2, [Z̃]1, [Z̃]2), the reduction algorithm samples A r
← Z

:×ℓ1
? and

constructs the challenge(
G, [A]1, [A]2, [B̃]1, [B̃]2,A ⊗ [B̃]2, [Z̃

T]2
)
=
(
G, [A]1, [A]2, [B̃]1, [B̃]2, [A ⊗ B̃]2, [Z̃

T]2
)
.

When Z̃ = UB̃ for U r
← Z

ℓ1×:
? , this corresponds to Hyb1 and if Z̃ r

← Z
ℓ1×ℓ2
? , then this corresponds to Hyb2.

For the general case (i.e., 3 > 1), we proceed via a hybrid argument. For each 8 ∈ {0, . . . , 3}, we define experiment
Hyb8 as follows:

• Hyb8 for 8 ∈ {0, . . . , 3}: Sample G ← GroupGen(1_), A r
← Z

:×ℓ1
? , B r

← Z
:×ℓ2
? , S r

← Z3×:
2

? . Parse S =
[
S1
S2

]
where

S1 ∈ Z
8×:2

? and S2 ∈ Z
(3−8 )×:2

? . Let V r
← Z

8×ℓ1ℓ2
? . Output

(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2,

[
V

S2 (A⊗B)

] )
.

By construction, the distributions in the bilateral MDDH:,ℓ1,ℓ2,3 assumption correspond to Hyb0 and Hyb3 . It suffices
to show that for all 8 ∈ [3], Hyb8−1 andHyb8 are computationally indistinguishable. This reduces to the 1-dimensional
case. The reduction algorithm receives a 1-dimensional challenge(

G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [z
T]2

)
,

where A r
← Z

:×ℓ1
? , B r

← Z
:×ℓ2
? and samples V r

← Z
(8−1)×ℓ1ℓ2
? and S2

r
← Z

(3−8 )×:2

? . It then constructs the challenge

(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2,

[
[V]2
[zT ]2

S2 [A⊗B]2

] )
.

If zT = sT (A ⊗ B) where s r
← Z:

2

? , then this challenge is distributed according to Hyb8−1 whereas if z
r
← Z

ℓ1ℓ2
? , then it

is distributed according to Hyb8 . Finally, since 3 = poly(_), the claim now follows by a hybrid argument. �

4 Projective Commitments from :-Lin

In this section, we introduce and construct the main building blocks that we use for constructing a succinct functional
commitment for general circuits from the bilateral :-Lin assumption. Our main construction relies on the ability to
project a committed vector onto a subset of its components and argue properties on the projected subset. We start by
defining the basic projection matrix we use throughout this section.

Definition 4.1 (Projection Matrix). Let ℓ be a vector dimension. For an index 9 ∈ [ℓ], define the projection matrix
P9 ∈ {0, 1}

ℓ×ℓ as follows:

P9 := diag
(
[11× 9 | 01×(ℓ− 9 ) ]

)
∈ {0, 1}ℓ×ℓ (4.1)

Namely, for every vector x = [G1, . . . , Gℓ ]
T, we have P9x = [G1, . . . , G 9 , 0, . . . , 0]

T.

Local functions. Our constructions in the subsequent sections will also consider local functions, which are
functions where some of the outputs only depend on a subset of the inputs.

Definition 4.2 (Local Function). Let 5 : Xℓ → Y< be a vector-valued function. For parameters 91 ∈ [ℓ] and 92 ∈ [<],
we say that 5 is ( 91, 92)-local if the first 92 outputs of 5 only depend the first 91 inputs to 5 . In other words, if
58 : X

ℓ → Y is the function that computes the 8th output of 5 , then for all 8 ≤ 92, the function 58 (x) only depends
on the values of G1, . . . , G 91 . For a set ( ⊆ [ℓ] × [<], we say that 5 is (-local if for all ( 91, 92) ∈ ( , the function 5 is
( 91, 92)-local. We refer to ( as a “locality set.”
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4.1 The Base Projective Commitment Scheme

We now define the syntax of our base projective commitment scheme. The base scheme supports two types of
commitments (which we refer to as Type I and Type II). The base commitment scheme does not provide any useful
functionality. However, in the subsequent sections, we augment the base scheme with succinct proof systems for
demonstrating relations on Type I and Type II commitments. These proof systems will be used as the main building
blocks for our (fully) succinct functional commitment scheme in Section 5.

Projective commitments. In a projective commitment, the CRS for the base scheme can be sampled in a “normal”
mode which is used for the real scheme, and a “semi-functional” mode which will be used for the security analysis.
When the CRS is sampled in the semi-functional mode, it will be possible to “project” a commitment to a vector x
onto a commitment to the first 9 components of x′ = (G1, . . . , G 9 ). There are two different projection modes: one for
projecting Type-I commitments and one for projecting Type-II commitments. Essentially, the projection operators
allow us to “embed” a chainable commitment scheme within the semi-functional space of the projective commitment.
We can then leverage a proof strategy similar to [GZ21, CJJ21, KLVW23] in the semi-functional space of the projective
commitment scheme to obtain a functional commitment for general arithmetic circuits. We refer to Section 2 for a
high-level description and Section 5 for the formal description and analysis. We now describe the syntax and primary
security properties we require on our base projective commitment scheme.

Definition 4.3 (Projective Commitment Scheme). A (base) projective commitment scheme FC =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
is a tuple of efficient algorithms with the following syntax:

• SetupBase(1_, 1ℓ ) → crsbase: On input the security parameter _ and a vector dimension ℓ , the normal setup
algorithm outputs a common reference string crsbase. We assume that crsbase implicitly contains a description
of the input space Rℓ of the commitment scheme. We require that the input space R is a ring.

• SetupSF(1_, 1ℓ , 91, 92) → (crsbase, td1, td2): On input the security parameter _, a vector dimension ℓ , a Type-I
index 91 ∈ [ℓ], and a Type-II index 92 ∈ [ℓ], the semi-functional setup algorithm outputs a common reference
string crsbase and projection trapdoors td1 and td2.

• Commit(1) (crsbase, x) → f1: On input the common reference string crsbase and a vector x ∈ Rℓ , the Type-I
commitment algorithm outputs a Type-I commitment f1. This algorithm is deterministic.

• Commit(2) (crsbase, y) → f2: On input the common reference string crsbase and a vector y ∈ Rℓ , the Type-II
commitment algorithm outputs a Type-II commitment f2. This algorithm is deterministic.

• Project(1) (td1, f1) → f ′1: On input a Type-I projection trapdoor td1 and a Type-I commitment f1, the Type-I
projection algorithm outputs a projected commitment f ′1. This algorithm is deterministic.

• Project(2) (td2, f2) → f ′2: On input a Type-II projection trapdoor td2 and a commitment f2, the Type-I projection
algorithm outputs a projected commitment f ′2. This algorithm is deterministic.

Roadmap. In the remainder of this section, we define the primary security properties we require of the base
projective commitment scheme. We summarize these below and follow with the formal definitions:

• Mode indistinguishability: The normal CRS (output by Setup) should be computationally indistinguishable
from a semi-functional CRS (output by SetupSF).

• Type-I indistinguishability: Semi-functional common reference strings with the same Type-II index 92, but
different Type-I indices 91, 9

′
1, should be computationally indistinguishable even given the Type-II trapdoor td2.

• Type-II indistinguishability: Semi-functional common reference strings with the same Type-I index 91, but
different Type-II indices 92, 9

′
2, should be computationally indistinguishable even given the Type-I trapdoor td1.
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• Type-II collision resistance: When the Type-II index 92 = ℓ is the vector length, then it should be computa-
tionally infeasible to find distinct vectors y ≠ y′ whose Type-II commitments are equal in their semi-functional

components.

In the subsequent sections, we design proof systems for arguing certain properties on the commitments in Construc-
tion 4.8:

• Prefix checking. If f1 and f
′
1 are Type-I commitments to vectors x, x′, respectively, we describe a proof system

to argue that x and x′ share a common prefix. We describe this in Section 4.2.

• Type-I to Type-II linear mapping. If f1 is a Type-I commitment to a vector x, we describe a proof system to
demonstrate that f2 is a Type-II commitment on a vector y = 5 (x), where 5 is a linear function. We describe
this in Section 4.3.

• Type-II to Type-I quadratic mapping. If f2 is a Type-II commitment to a vector y, we describe a proof
system to demonstrate that f1 is a Type-I commitment to a vector x = 5 (y), where 5 is a quadratic function.
We describe this in Section 4.4.

Finally, in Section 5, we show how to use the projective commitment from Construction 4.8 in conjunction with these
three proof systems to obtain a functional commitment for arbitrary circuits.

Security properties. We now give the formal definitions of the security properties outlined above.

Definition 4.4 (Mode Indistinguishability). Let FC be a projective commitment scheme where FC =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
. For a bit 1 ∈ {0, 1} and an adversary A, we define the mode

indistinguishability game ExptMIA [_,1] as follows:

1. On input the security parameter _, algorithm A outputs the input length 1ℓ , and indices 91, 92 ∈ [ℓ].

2. The challenger samples the CRS as follows:

• If 1 = 0, crsbase ← SetupBase(1_, 1ℓ ).

• If 1 = 1, (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 91, 92).

The challenger gives crsbase to A.

3. Algorithm A outputs a bit 1′ ∈ {0, 1} which is the output of the experiment.

The projective commitment scheme FC satisfies mode indistinguishability if for all efficient adversaries A, there
exists a negligible function negl(·) such that��Pr[ExptMIA [_, 0] = 1] − Pr[ExptMIA [_, 0] = 1]

�� = negl(_).

Definition 4.5 (Type-I Indistinguishability). Let FC be a projective commitment scheme where FC =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
. For a bit 1 ∈ {0, 1} and an adversaryA, we define the Type-I

indistinguishability game ExptTIA [_,1] as follows:

1. On input the security parameter _, algorithmA outputs the input length 1ℓ , two Type-I indices 91, 9
′
1 ∈ [ℓ], and

a Type-II index 92 ∈ [ℓ],

2. The challenger samples the CRS as follows:

• If 1 = 0, (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 91, 92).

• If 1 = 1, (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 9 ′1, 92).

The challenger gives crsbase and td2 to A.
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3. Algorithm A outputs a bit 1′ ∈ {0, 1} which is the output of the experiment.

The projective commitment scheme FC satisfies Type-I indistinguishability if for all efficient adversaries A, there
exists a negligible function negl(·) such that��Pr[ExptTIA [_, 0] = 1] − Pr[ExptTIA [_, 0] = 1]

�� = negl(_).

Definition 4.6 (Type-II Indistinguishability). Let FC be a projective commitment scheme where FC =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
. For a bit 1 ∈ {0, 1} and an adversaryA, we define the Type-II

indistinguishability game ExptTIIA [_,1] as follows:

1. On input the security parameter _, algorithm A outputs the input length 1ℓ , a Type-I index 91 ∈ [ℓ], and two
Type-II indices 92, 9

′
2 ∈ [ℓ].

2. The challenger samples the CRS as follows:

• If 1 = 0, (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 91, 92).

• If 1 = 1, (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 91, 9
′
2).

The challenger gives crsbase and td1 to A.

3. Algorithm A outputs a bit 1′ ∈ {0, 1} which is the output of the experiment.

The projective commitment scheme FC satisfies Type-II indistinguishability if for all efficient adversaries A, there
exists a negligible function negl(·) such that��Pr[ExptTIIA [_, 0] = 1] − Pr[ExptTIIA [_, 0] = 1]

�� = negl(_).

Definition 4.7 (Type-II Collision Resistance). Let FC be a projective commitment scheme where FC =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
. For an adversaryA, we define the Type-II collision resistance

game as follows:

1. On input the security parameter _, algorithm A outputs the input length 1ℓ and a Type-I index 91 ∈ [ℓ].

2. The challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 91, ℓ) and gives crsbase to A.

3. Algorithm A outputs two vectors y, y′ ∈ Rℓ , where Rℓ is the input space associated with crsbase.

4. The challenger then computes f2 = Commit(2) (crsbase, y) and f
′
2 = Commit(2) (crsbase, y

′). The output of the
experiment is 1 = 1 if

y ≠ y′ and Project(2) (td2, f2) = Project(2) (td2, f
′
2).

Otherwise, the experiment outputs 1 = 0.

We say FC satisfies Type-II collision resistance if for all efficient adversaries A, there exists a negligible function
negl(·) such that Pr[1 = 1] = negl(_) in the Type-II collision resistance security game.

Constructing projective commitments from pairings. We now describe our base projective commitment
scheme from pairings and then show that it satisfies the security properties listed above (under the bilateral :-Lin
assumption).

Construction 4.8 (Projective Commitment Scheme). Let : ∈ N be a constant and GroupGen be a prime-order
pairing group generator. Our base projective commitment scheme FC =

(
SetupBase, SetupSF,Commit(1) ,Commit(2) ,

Project(1) , Project(2)
)
is defined as follows:
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• SetupBase(1_, 1ℓ ): On input the security parameter _ and the input length ℓ , the setup algorithm samples
G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Then, it samples T̂,T1,T2

r
← Z2:×ℓ? and sets T∗ = T1 ⊗ T2. It

outputs the common reference string

crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

The input space associated with crsbase is the ring Z? .

• SetupSF(1_, 1ℓ , 91, 92): On input the security parameter _, the input length ℓ , the Type-I index 91 ∈ [ℓ], and the
Type-II index 92 ∈ [ℓ], the semi-functional setup algorithm samples the following components:

– Sample G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_).

– Sample full-rank matrices B̂,B1,B2
r
← Z2:×2:? and define B̂∗ = B̂−1, B∗1 = B−11 , and B∗2 = B−12 . It parses the

matrices as

B̂ =

[
B̂1

B̂2

]
and B1 =

[
B1,1

B1,2

]
and B2 =

[
B2,1

B2,2

]
, (4.2)

where B̂1, B̂2,B1,1,B1,2,B2,1,B2,2 ∈ Z
:×2:
? . Similarly, it parses

B̂∗ =
[
B̂∗1, | B̂

∗
2

]
and B∗1 =

[
B∗1,1 | B

∗
1,2

]
and B∗2 =

[
B∗2,1 | B

∗
2,2

]
, (4.3)

where B̂∗1, B̂
∗
2,B
∗
1,1,B

∗
1,2,B

∗
2,1,B

∗
2,2 ∈ Z

2:×:
? .

– Construct the encoding matrices T̂,T1,T2 as follows:

∗ Type-I encodings: Sample Ŝ1, Ŝ2
r
← Z:×ℓ? and let T̂ = B̂∗1Ŝ1 + B̂

∗
2Ŝ2P91 ∈ Z

2:×ℓ
? .

∗ Type-II encodings: For U ∈ {1, 2}, sample SU,1, SU,2
r
← Z:×ℓ? . Let TU = B∗U,1SU,1 + B

∗
U,2SU,2P92 ∈ Z

2:×ℓ
? ,

where P91 , P92 are the projection matrices from Definition 4.1. Then, let T∗ = T1 ⊗ T2.

The setup algorithm outputs the common reference string crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and the

projection trapdoors td1 = B̂2 and td2 = (B1,2,B2,2). The message space associated with crsbase is the ring Z? .

• Commit(1) (crsbase, x): On input the common reference string crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and

a vector x ∈ Zℓ? , the Type-I commitment algorithm computes [ĉ]2 ← [T̂]2x = [T̂x]2. It outputs f1 = [ĉ]2 ∈ G
2:
2 .

• Commit(2) (crsbase, y): On input the common reference string crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and a vector y ∈ Zℓ? , the Type-II commitment algorithm computes [c1]1 ← [T1]1y = [T1y]1 ∈ G

2:
1 and

[c2]2 ← [T2]2y = [T2y]2 ∈ G
2:
2 . It outputs the commitment f2 = ( [c1]1, [c2]2).

• Project(1) (td1, f1): On input a Type-I projection trapdoor td1 = B̂2, and a commitment f1 = [ĉ]2, output
B̂2 [f1]2.

• Project(2) (td2, f2): On input a Type-II projection trapdoor td2 = (B1,2,B2,2) and a commitmentf2 = ( [c1]1, [c2]2),
output (B1,2 [c1]1,B2,2 [c2]2).

Theorem 4.9 (Mode Indistinguishability). If the bilateral :-Lin assumption holds with respect to GroupGen, then

Construction 4.8 satisfies mode indistinguishability.

Proof. Take any adversary A for the mode indistinguishability game, and let ℓ, 91, 92 be the values chosen by the
adversary A. We define a sequence of hybrid experiments:

• Hyb0: This is experiment ExptMIA [_, 0]. In this experiment, the challenger samplesG = (G1,G2,G) , ?, 61, 62, 4) ←

GroupGen(1_). It also samples T̂,T1,T2
r
← Z2:×ℓ? , computes T∗ ← T1 ⊗ T2 and outputs

crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
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• Hyb1: Same as Hyb0, except the challenger samples Ŝ1, Ŝ2
r
← Z:×ℓ? and B̂∗1, B̂

∗
2

r
← Z2:×:? . It then sets

T̂ = B̂∗1Ŝ1 + B̂
∗
2Ŝ2P91 ∈ Z

2:×ℓ
? .

• Hyb2: Same as Hyb1, except the challenger samples S1,1, S1,2
r
← Z:×ℓ? and B∗1,1,B

∗
1,2

r
← Z2:×:? . It then sets

T1 = B∗1,1S1,1 + B
∗
1,2S1,2P92 ∈ Z

2:×ℓ
? .

• Hyb3: Same as Hyb2, except the challenger samples S2,1, S2,2
r
← Z:×ℓ? and B∗2,1,B

∗
2,2

r
← Z2:×:? . It then sets

T2 = B∗2,1S2,1 + B
∗
2,2S2,2P92 ∈ Z

2:×ℓ
? .

This is ExptMIA [_, 1].

We now argue that each adjacent pair of hybrid experiments is computationally indistinguishable. In the following,
we implicitly use the fact that sampling A

r
← Z2:×2:? is statistically indistinguishable from sampling a full rank

A
r
← Z2:×2:? .

• Hybrids Hyb0 and Hyb1 are computationally indistinguishable under the MDDH:,ℓ,2: assumption in G2. Given
the MDDH:,ℓ,2: challenge (G, [A]2, [V]2) where A

r
← Z:×ℓ? and V ∈ Z2:×ℓ? , the reduction algorithm samples

T1,T2
r
← Z2:×ℓ? and Ŝ2

r
← Z:×ℓ? , B̂∗2

r
← Z2:×:? . It creates the CRS

crsbase =
(
G, [V]2 + B̂

∗
2Ŝ2P91 , [T1]1, [T1]2, [T2]2, [T1 ⊗ T2]2

)
.

When V
r
← Z2:×ℓ? , this corresponds to the distribution in Hyb0 and when V = SA where S

r
← Z2:×:? and

A
r
← Z:×ℓ? , this corresponds to the distribution in Hyb1.

• Hybrids Hyb1 and Hyb2 are computationally indistinguishable under the bilateral MDDH:,ℓ,2: assumption.
Given the bilateral MDDH:,ℓ,2: challenge (G, [A]1, [A]2, [V]1, [V]2), the reduction algorithm samples T2

r
←

Z
2:×ℓ
? . It also samples Ŝ1, Ŝ2, S1,2

r
← Z:×ℓ? and B̂∗1, B̂

∗
2,B
∗
1,2

r
← Z2:×:? . It sets T̂ = B̂∗1Ŝ1 + B̂

∗
2Ŝ2P91 . It creates the CRS

crsbase =
(
G, [T̂]2, [V]1 + B

∗
1,2S1,2P92 , [V]2 + B

∗
1,2S1,2P92 , [T2]2,

(
[V]2 + B

∗
1,2S1,2P92

)
⊗ T2

)
.

When V
r
← Z2:×ℓ? , this corresponds to the distribution in Hyb1 and when V = SA where S

r
← Z2:×:? and

A
r
← Z:×ℓ? , this corresponds to the distribution in Hyb2.

• Hybrids Hyb2 and Hyb3 are computationally indistinguishable under the MDDH:,ℓ,2: assumption in G2. Given
the MDDH:,ℓ,2: challenge (G, [A]2, [V]2) where A

r
← Z:×ℓ? and V ∈ Z2:×ℓ? , the reduction algorithm samples

Ŝ1, Ŝ2, S1,1, S1,2, S2,2
r
← Z:×ℓ? and B̂∗1, B̂

∗
2,B
∗
1,1B

∗
1,2,B

∗
2,2

r
← Z2:×:? . It sets T̂ = B̂∗1Ŝ1 + B̂

∗
2Ŝ2P91 and T1 = B∗1,1S1,1 +

B∗1,2S1,2P92 . It creates the CRS

crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [V]2 + B

∗
2,2S2,2P92 ,T1 ⊗

(
[V]2 + B

∗
2,2S2,2P92

) )
.

When V
r
← Z2:×ℓ? , this corresponds to the distribution in Hyb2 and when V = SA where S

r
← Z2:×:? and

A
r
← Z:×ℓ? , this corresponds to the distribution in Hyb3.

Since ℓ = poly(_), the bilateral :-Lin assumption implies each of the underlyingMDDH assumption we use in the
above analysis (Remark 3.8), the theorem now follows by a hybrid argument. �

Theorem 4.10 (Type-I Indistinguishability). If the :-Lin assumption holds in G2 with respect to GroupGen, then

Construction 4.8 satisfies Type-I indistinguishability.

Proof. Let A be an adversary and let ℓ, 91, 9
′
1, 92 be the values it chooses. We proceed via a hybrid argument:
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• Hyb0: This is ExptTIA [_, 0]. In this experiment, the challenger samples G = (G1,G2,G) , ?, 61, 62, 4) ←

GroupGen(1_). It samples B̂∗1, B̂
∗
2

r
← Z2:×:? , B1,B2

r
← Z2:×2:? , and defines B∗1 = B−11 and B∗2 = B−12 . It parses

B1,B2 into matrices B1,1,B1,2,B2,1,B2,2 ∈ Z
:×2:
? according to Eq. (4.2) and B∗1,B

∗
2 into B∗1,1,B

∗
1,2,B

∗
2,1,B

∗
2,2 ∈ Z

2:×:
?

according to Eq. (4.3). Next, it samples Ŝ1, Ŝ2, S1,1, S1,2, S2,1, S2,2
r
← Z:×ℓ? . It sets

T̂ = B̂∗1Ŝ1 + B̂
∗
2Ŝ2P91 and T1 = B∗1,1S1,1 + B

∗
1,2S1,2P92 and T2 = B∗2,1S2,1 + B

∗
2,2S2,2P92 .

Finally, it computes T∗ = T1 ⊗ T2 and outputs

crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
along with td2 = (B1,2,B2,2).

• Hyb1: Same as Hyb0 except the challenger samples T̂ r
← Z2:×ℓ? .

• Hyb2: Same as Hyb0 except the challenger samples T̂ = B̂∗1Ŝ1 + B̂
∗
2Ŝ2P9 ′1

. This is ExptTIA [_, 1].

We now show that each adjacent pair of hybrid experiments is computationally indistinguishable. As before, we
implicitly use the fact that sampling A

r
← Z2:×2:? is statistically indistinguishable from sampling a full rank A r

←

Z
2:×2:
? .

• Hybrids Hyb0 and Hyb1 are computationally indistinguishable under the MDDH:,ℓ,2: assumption in G2. Given
the MDDH:,ℓ,2: challenge (G, [A]2, [V]2) where A

r
← Z:×ℓ? and V ∈ Z2:×ℓ? , the reduction algorithm samples

B1,B2
r
← Z2:×2:? and defines B∗1 = B−11 , B∗2 = B−12 . Then it samples S1,1, S1,2, S2,1, S2,2

r
← Z:×ℓ? and constructs

T1 = B∗1,1S1,1 + B
∗
1,2S1,2P92 , and T2 = B∗2,1S2,1 + B

∗
2,2S2,2P92 , where the components B∗1,1,B

∗
1,2,B

∗
2,1,B

∗
2,2 are obtained

from B∗1,B
∗
2 according to Eq. (4.3). Finally, it samples Ŝ2

r
← Z:×ℓ? , B̂∗2

r
← Z2:×:? and creates the CRS

crsbase =
(
G, [V]2 + B̂

∗
2Ŝ2P91 , [T1]1, [T1]2, [T2]2, [T1 ⊗ T2]2

)
and the trapdoor td2 = (B1,2,B2,2) where B1,2 and B2,2 are derived from B1,B2 as in Eq. (4.2). When V

r
← Z2:×ℓ? ,

this corresponds to the distribution inHyb1 andwhenV = SAwhere S r
← Z2:×:? andA r

← Z:×ℓ? , this corresponds
to the distribution in Hyb0.

• Hybrids Hyb1 and Hyb2 are computationally indistinguishable under MDDH:,ℓ,2: by an analogous argument.

Since ℓ = poly(_), the :-Lin assumption in G2 implies the MDDH:,ℓ,2: assumption in G2. The theorem now follows
by a hybrid argument. �

Theorem 4.11 (Type-II Indistinguishability). If the bilateral :-Lin assumption holds with respect to GroupGen, then

Construction 4.8 satisfies Type-II indistinguishability.

Proof. Let A be an adversary and let ℓ, 91, 92, 9
′
2 be the values it chooses. We proceed via a hybrid argument:

• Hyb0: This is ExptTIIA [_, 0]. In this experiment, the challenger samples G = (G1,G2,G) , ?, 61, 62, 4) ←

GroupGen(1_). It samples B̂
r
← Z

2:×2:
? and defines B̂∗ = B̂−1. Then it parses B̂ into matrices B̂1, B̂2 ∈

Z
:×2:
? according to Eq. (4.2) and B̂∗ into matrices B̂∗1, B̂

∗
2 ∈ Z

2:×:
? according to Eq. (4.3). It also samples

B∗1,1,B
∗
1,2,B

∗
2,1,B

∗
2,2

r
← Z:×2:? and Ŝ1, Ŝ2, S1,1, S1,2, S2,1, S2,2

r
← Z:×ℓ? . Finally, it sets

T̂ = B̂∗1Ŝ1 + B̂
∗
2Ŝ2P91 and T1 = B∗1,1S1,1 + B

∗
1,2S1,2P92 and T2 = B∗2,1S2,1 + B

∗
2,2S2,2P92 .

Finally, it computes T∗ = T1 ⊗ T2 and outputs

crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
along with td1 = B̂2.
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• Hyb1: Same as Hyb0 except the challenger samples T1
r
← Z2:×ℓ? .

• Hyb2: Same as Hyb1 except the challenger samples T2
r
← Z2:×ℓ? .

• Hyb3: Same as Hyb2 except the challenger sets T2 = B∗2,1S2,1 + B
∗
2,2S2,2P9 ′2

• Hyb4: Same as Hyb3 except the challenger sets T1 = B∗1,1S1,1 + B
∗
1,2S1,2P9 ′2

. This is ExptTIIA [_, 1]

We now show that each adjacent pair of hybrid experiments is computationally indistinguishable. As before, we
implicitly use the fact that sampling A

r
← Z2:×2:? is statistically indistinguishable from sampling a full rank A r

←

Z
2:×2:
? .

• Hybrids Hyb0 and Hyb1 are computationally indistinguishable under the bilateral MDDH:,ℓ,2: assumption.
Specifically, given the bilateral MDDH:,ℓ,2: challenge (G, [A]1, [A]2, [V]1, [V]2), the reduction algorithm
samples B̂ r

← Z2:×2:? and defines B̂∗ = B̂−1. Then it parses B̂ into matrices B̂1, B̂2 ∈ Z
:×2:
? according to

Eq. (4.2) and B̂∗ into matrices B̂∗1, B̂
∗
2 ∈ Z

2:×:
? according to Eq. (4.3). It also samples B∗1,2,B

∗
2,1,B

∗
2,2

r
← Z:×2:? and

Ŝ1, Ŝ2, S1,2, S2,1, S2,2
r
← Z:×ℓ? . Next, it sets

T̂ = B̂∗1Ŝ1 + B̂
∗
2Ŝ2P91 and T2 = B∗2,1S2,1 + B

∗
2,2S2,2P92 .

It gives A the CRS

crsbase =
(
G, [T̂]2, [V]1 + B

∗
1,2S1,2P92 , [V]2 + B

∗
1,2S1,2P92 , [T2]2,

(
[V]2 + B

∗
1,2S1,2P92

)
⊗ T2

)
and the projection trapdoor td1 = B̂2. When V

r
← Z2:×ℓ? , this corresponds to the distribution in Hyb1 and when

V = SA where S r
← Z2:×:? and A

r
← Z:×ℓ? , this corresponds to the distribution in Hyb0.

• Hybrids Hyb1 and Hyb2 are computationally indistinguishable under theMDDH:,ℓ,2: assumption in G2. Specif-
ically, given the MDDH:,ℓ,2: challenge (G, [A]2, [V]2), the reduction algorithm samples B̂ r

← Z2:×2:? and

defines B̂∗ = B̂−1. Then it parses B̂ into matrices B̂1, B̂2 ∈ Z
:×2:
? according to Eq. (4.2) and B̂∗ into matrices

B̂∗1, B̂
∗
2 ∈ Z

2:×:
? according to Eq. (4.3). It also samples B∗2,2

r
← Z:×2:? and Ŝ1, Ŝ2, S2,2

r
← Z:×ℓ? . Next, it sets

T̂ = B̂∗1Ŝ1 + B̂
∗
2Ŝ2P91 and T1

r
← Z2:×ℓ? .

It gives A the CRS

crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [V]2 + B

∗
2,2S2,2P92 ,

(
T1 ⊗

(
[V]2 + B

∗
2,2S2,2P92

) )
and the projection trapdoor td1 = B̂2. When V

r
← Z2:×ℓ? , this corresponds to the distribution in Hyb2 and when

V = SA where S r
← Z2:×:? and A

r
← Z:×ℓ? , this corresponds to the distribution in Hyb1.

• Hybrids Hyb2 and Hyb3 are computationally indistinguishable under the MDDH:,ℓ,2: assumption in G2. This
follows by an analogous argument as that used to argue indistinguishability of Hyb1 and Hyb2.

• Hybrids Hyb3 and Hyb4 are computationally indistinguishable under the bilateral MDDH:,ℓ,2: assumption.
This follows by an analogous argument as that used to argue indistinguishability of Hyb0 and Hyb1.

Since ℓ = poly(_), the bilateral :-Lin assumption implies the bilateral MDDH:,ℓ,2: assumption (Remark 3.8). The
theorem now follows by a hybrid argument. �

Theorem 4.12 (Type-II Collision Resistance). Suppose the :-KerLin assumption holds in G2 with respect to GroupGen.

Then, Construction 4.8 satisfies Type-II collision resistance.

Proof. Take any adversary A that breaks the Type-II collision resistance of Construction 4.8 with non-negligible
probability Y. Let ℓ and 91 be the input length and Type-I index chosen by A. We use A to construct an adversary B
that breaks the KerDH:,ℓ assumption in G2 with respect to GroupGen:
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1. On input the KerDH:,ℓ challenge (G, [A]2), algorithm B samples full-rank matrices B̂,B1,B2
r
← Z2:×2:? and

defines B̂∗ = B̂−1, B∗1 = B−11 , and B∗2 = B−12 . Then it samples Ŝ1, Ŝ2, S1,1, S1,2, S2,1,
r
← Z:×ℓ? and constructs

T̂ = B̂∗1Ŝ1 + B̂
∗
2Ŝ2P91 and T1 = B∗1,1S1,1 + B

∗
1,2S1,2 and [T2]2 = B∗2,1S2,1 + B

∗
2,2 [A]2,

where the components B̂∗1, B̂
∗
2,B
∗
1,1,B

∗
1,2,B

∗
2,1,B

∗
2,2 are obtained from B̂∗,B∗1,B

∗
2 according to Eq. (4.3). Algorithm

B gives crsbase to A where

crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2,T1 ⊗ [T2]2

)
.

2. At the end of the game, algorithm A outputs two vectors y, y′ ∈ Zℓ? . Algorithm B outputs [y − y′]1.

Since the KerDH challenger samples A r
← Z:×ℓ? and Pℓ = Iℓ , algorithm B perfectly simulates an execution of the

Type-II collision resistance game for A. Thus, with probability at least Y, algorithm A outputs y ≠ y′ such that
B2,2T2y = B2,2T2y

′ (and B1,2T1y = B1,2T1y
′). This means that

B2,2T2y = B2,2 (B
∗
2,1S2,1 + B

∗
2,2A)y = Ay

B2,2T2y
′
= B2,2 (B

∗
2,1S2,1 + B

∗
2,2A)y

′
= Ay′

We conclude that Ay = Ay′, so A(y − y′) = 0, but y ≠ y′. Correspondingly, algorithm B breaks KerDH:,ℓ with
advantage Y. Finally, since ℓ = poly(_), the KerDH:,ℓ assumption follows from :-KerLin, as required. �

4.2 Prefix Checking on Committed Values

The first proof system we design for the base projective commitment scheme in Section 4.1 is to argue that two Type-I
commitments share a common prefix (i.e., that f1, f

′
1 are commitments to x and x′ where G8 = G ′8 for all 8 ≤ 9 ). In

the broader context of constructing functional commitments (Section 5), the prefix-checking proof system is used to
check consistency between a commitment to an input x and a commitment to all of the wires in an arithmetic circuit
evaluation� (x). The security requirement is enforced in the semi-functional space. We start by defining the syntax of
the prefix-checking proof system as well as its correctness and security requirements:

Definition 4.13 (Prefix Checking for Projective Commitments). Let FCbase =
(
SetupBase, SetupSF,Commit(1) ,

Commit(2) , Project(1) , Project(2)
)
be a projective commitment scheme. A prefix-checking proof system for FCbase is

a triple of efficient algorithms FCpre =
(
SetupPre,OpenPre,VerifyPre

)
with the following properties:

• SetupPre(crsbase, 9) → crs: On input the common reference string crsbase (defining the associated input space
Rℓ ) and a prefix length 9 ∈ [ℓ], the setup algorithm outputs a common reference string crs.

• OpenPre(crs, x, x′) → c : On input a common reference string crs and two vectors x, x′ ∈ Rℓ , the opening
algorithm outputs a proof c .

• VerifyPre(crs, f1, f
′
1, c) → 1: On input the common reference string crs, two Type-I commitments f1, f

′
1, and

an opening c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

The prefix-checking proof system FCpre should satisfy the following two properties:

• Correctness: For all security parameters _ ∈ N, all vector lengths ℓ ∈ N, all prefix lengths 9 ∈ [ℓ], all crsbase in
the support of SetupBase(1_, 1ℓ ), all vectors x, x′ ∈ Rℓ (where Rℓ is the message space associated with crsbase)
where G8 = G ′8 for all 8 ≤ 9 ,

Pr


VerifyPre(crs, f1, f

′
1, c) = 1 :

crs← SetupPre(crsbase, 9)

f1 ← Commit(1) (crsbase, x)

f ′1 ← Commit(1) (crsbase, x
′)

c ← OpenPre(crs, x, x′)


= 1.
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• Prefix-matching security: For a security parameter _ and an adversary A, we define the prefix-matching
security game as follows:

1. On input the security parameter _, the adversary outputs the dimension 1ℓ and the prefix length 9 ∈ [ℓ].

2. The challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 9, 9) and crs← SetupPre(crsbase, 9). It gives
(crsbase, crs) to A.

3. The adversary outputs two Type-I commitments (f1, f
′
1) and an opening c .

4. The output of the experiment is 1 = 1 if the following properties hold:

– Mismatching prefix: Project(1) (td1, f1) ≠ Project(1) (td1, f
′
1).

– Validity of opening: VerifyPre(crs, f1, f
′
1, c) = 1.

Otherwise, the challenger outputs 1 = 0.

We say that that FCpre satisfies prefix-matching security if for all efficient adversariesA, there exists a negligible
function negl(·) such that Pr[1 = 1] = negl(_) in the prefix-matching security game.

Constructing a prefix-checking proof system. We now show how to construct a prefix-checking proof system
for the base projective commitment scheme from Section 4 (Construction 4.8).

Construction 4.14 (Prefix Checking for Projective Commitments). Let FCbase =
(
SetupBase, SetupSF,Commit(1) ,

Commit(2) , Project(1) , Project(2)
)
be the projective commitment scheme from Construction 4.8. We construct a

prefix-checking proof system FCpre =
(
SetupPre,OpenPre,VerifyPre

)
for FCbase as follows:

• SetupPre(crsbase, 9): On input the common reference string crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
for the

base projective commitment scheme, and a prefix length 9 ∈ [ℓ], the setup algorithm samples A r
← Z

:×(:+1)
?

andW
r
← Z

(:+1)×2:
? . Then, it computes

[Z]2 = W[T̂]2

[
09×(ℓ− 9 )

Iℓ− 9

]
∈ G

(:+1)×(ℓ− 9 )
2 , (4.4)

Output the common reference string

crs = (crsbase, [A]1, [AW]1, [Z]2) . (4.5)

• OpenPre(crs, x, x′): On input the common reference string crs = (crsbase, [A]1, [AW]1, [Z]2) and two vectors
x, x′ ∈ Zℓ? , the opening algorithm computes and outputs

c = [v]2 = [Z]2 · [0
(ℓ− 9 )× 9 | Iℓ− 9 ] (x − x

′) ∈ G:+12 .

• VerifyPre(crs, f1, f
′
1, c): On input the common reference string crs = (crsbase, [A]1, [AW]1, [Z]2), two Type-I

commitments f1 = [ĉ]2, f
′
1 = [ĉ

′]2, and an opening c = [v]2, the verification algorithm outputs 1 if

[AW]1 ( [ĉ]2 − [ĉ
′]2) = [A]1 [v]2 .

Theorem 4.15 (Correctness). Construction 4.14 is correct.

Proof. Take any _, ℓ ∈ N and 9 ∈ [ℓ]. Let crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
← SetupBase(1_, 1ℓ ). Let

crs = (crsbase, [A]1, [AW]1, [Z]2) ← SetupPre(crsbase, 9). Take any two vectors x, x′ ∈ Zℓ? with a common prefix of
length 9 . This means that [

09×(ℓ− 9 )

Iℓ− 9

]
[0(ℓ− 9 )× 9 | Iℓ− 9 ] (x − x

′) = x − x′ .

Suppose f1 ← Commit(1) (crsbase, x) and f
′
1 ← Commit(1) (crsbase, x

′), and c ← OpenPre(crs, x, x′). By construction,

f1 = [ĉ]2 = [T̂x]2, f
′
1 = [ĉ

′]2 = [T̂x
′]2, and c = [v]2 where

Av = AZ[0(ℓ− 9 )× 9 | Iℓ− 9 ] (x − x
′) = AWT̂

[
09×(ℓ− 9 )

Iℓ− 9

]
[0(ℓ− 9 )× 9 | Iℓ− 9 ] (x − x

′) = AWT̂(x − x′) = AW(ĉ − ĉ′). �
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Theorem 4.16 (Prefix-Matching Security). Suppose the KerLin:,:+1 assumption holds in G1 with respect to GroupGen.

Then, Construction 4.14 satisfies prefix-matching security.

Proof. Take any efficient adversary A for the prefix-matching security game. We start by defining a sequence of
hybrid experiments.

• Hyb0: This is the prefix-checking security experiment. We provide the full specification here:

– At the beginning of the game, the adversary A outputs 1ℓ and 9 ∈ [ℓ].

– The challenger samples G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). It samples full-rank matrices
B̂,B1,B2

r
← Z2:×2:? and defines B̂∗ = B̂−1, B∗1 = B−11 , and B∗2 = B−12 . It parses B̂,B1,B2 as in Eq. (4.2) and

B̂∗,B∗1,B
∗
2 as in Eq. (4.3).

– The challenger constructs the encoding matrices T̂,T1,T2 as follows:

∗ Type-I encodings: Sample Ŝ1, Ŝ2
r
← Z:×ℓ? and let T̂ = B̂∗1Ŝ1 + B̂

∗
2Ŝ2P9 ∈ Z

2:×ℓ
? .

∗ Type-II encodings: For U ∈ {1, 2}, sample SU,1, SU,2
r
← Z:×ℓ? . Let TU = B∗U,1SU,1 + B

∗
U,2SU,2P9 ∈ Z

2:×ℓ
? .

Finally, the challenger sets T∗ = T1 ⊗ T2 and sets crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

– The challenger samples A r
← Z

:×(:+1)
? and W

r
← Z

(:+1)×2:
? . It computes

Z = WT̂

[
09×(ℓ− 9 )

Iℓ− 9

]
.

The challenger gives the common reference string crs to A where

crs = (crsbase, [A]1, [AW]1, [Z]2) .

– The adversary outputs two commitments f1 = [ĉ]2, f
′
1 = [ĉ

′]2 and an opening c = [v]2.

The output of the experiment is 1 if B̂2ĉ ≠ B̂2ĉ
′ (i.e., B̂2 (ĉ − ĉ

′) ≠ 0) and AW(ĉ − ĉ′) = Av.

• Hyb1: Same as Hyb0, except the challenger outputs 1 ifW(ĉ − ĉ
′) = v and B̂2 (ĉ − ĉ

′) ≠ 0.

• Hyb2: Same as Hyb1, except when constructing the CRS, the challenger samples a random nonzero vector

a⊥ ∈ Z:+1? in the kernel of A. Then, it samplesWnorm
r
← Z

(:+1)×:
? ,Wsf,1

r
← Z

(:+1)×:
? , wsf,2

r
← Z:? . It sets

Wsf = Wsf,1 + a
⊥wT

sf,2 and W = WnormB̂1 +WsfB̂2 .

The challenger then sets Z as

Z = WnormŜ1

[
09×(ℓ− 9 )

Iℓ− 9

]
.

Finally, the challenger sets the CRS to be

crs =
(
crsbase, [A]1,

[
A
(
WnormB̂1 +Wsf,1B̂2

) ]
1
, [Z]2

)
.

We write Hyb8 (A) to denote the output distribution of an execution of hybrid Hyb8 with adversaryA. We now show
that the output distribution of each pair of hybrids is indistinguishable.

Lemma 4.17. Suppose the KerDH:,:+1 assumption holds in G1 with respect to GroupGen. Then, it follows that��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(_).
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Proof. Suppose | Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1] | ≥ Y for some non-negligible Y. The only difference between
Hyb0 and Hyb1 is the verification relation. Let [ĉ]2, [ĉ

′]2, [v]2 be the output ofA in an execution of Hyb0 or Hyb1. If
the outputs of Hyb0 and Hyb1 differ, then it must be the case that

AW(ĉ − ĉ′) = Av and W(ĉ − ĉ′) ≠ v. (4.6)

In all other cases, the output in Hyb0 and Hyb1 is identical. We use A to construct an efficient adversary B for
KerDH:,:+1:

1. On input the KerDH challenge (G, [A]1), algorithm B starts by running algorithm A. Algorithm A outputs
the input dimension 1ℓ and 9 ∈ [ℓ].

2. Next, algorithm B samples full-rank matrices B̂,B1,B2
r
← Z2:×2:? and defines B̂∗ = B̂−1, B∗1 = B−11 , and B∗2 = B−12 .

It parses the components of B̂,B1,B2 as in Eq. (4.2) and B∗1,B
∗
2, B̂
∗ as in Eq. (4.3).

3. Algorithm B then constructs the encoding matrices T̂,T1,T2 as in Hyb0 and Hyb1:

• Type-I encodings: Sample Ŝ1, Ŝ2
r
← Z:×ℓ? and let T̂ = B̂∗1Ŝ1 + B̂

∗
2Ŝ2P9 ∈ Z

2:×ℓ
? .

• Type-II encodings: For U ∈ {1, 2}, sample SU,1, SU,2
r
← Z:×ℓ? and let TU = B∗U,1SU,1 + B

∗
U,2SU,2P9 .

Algorithm B computes T∗ = T1 ⊗ T2 and sets crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

4. Algorithm B samplesW r
← Z

(:+1)×2:
? and computes

Z = WT̂

[
09×(ℓ− 9 )

Iℓ− 9

]
.

The challenger gives the common reference string crs to A where

crs = (crsbase, [A]1, [A]1W, [Z]2) = (crsbase, [A]1, [AW]1, [Z]2) .

5. Algorithm A outputs commitments f1 = [ĉ]2, f
′
1 = [ĉ′]2 and an opening c = [v]2. Algorithm B outputs

W( [ĉ]2 − [ĉ
′]2) − [v]2.

Since the KerDH challenger samples A r
← Z

(:+1)×:
? , the common reference string crs constructed by B is distributed

exactly as required in Hyb0 and Hyb1. By the above analysis, this means that with probability at least Y, algorithm
A outputs [ĉ]2, [ĉ

′]2, and [v]2 such that Eq. (4.6) holds. This means A
(
W(ĉ − ĉ′) − v

)
= 0 but W(ĉ − ĉ′) − v ≠ 0.

Correspondingly, algorithm B breaks the KerDH assumption with the same advantage Y. �

Lemma 4.18. Pr[Hyb1 (A) = 1] = Pr[Hyb2 (A) = 1].

Proof. Consider the distribution of W in Hyb2. In Hyb2, both Wnorm and Wsf are sampled uniformly at random from

Z
(:+1)×:
? . Since B̂ = [B̂1 | B̂2] is a basis for Z

2:
? , the distribution ofW is uniform over Z

(:+1)×2:
? , which matches the

distribution in Hyb1. Next,

WT̂ =
(
WnormB̂1 +Wsf,1B̂2 + a

⊥wT

sf,2B̂2

) (
B̂∗1Ŝ1 + B̂

∗
2Ŝ2P9

)
= WnormŜ1 +Wsf,1Ŝ2P9 + a

⊥wT

sf,2Ŝ2P9 .

From Eq. (4.1), P9 = diag
(
[11× 9 | 01×(ℓ− 9 ) ]

)
, so

P9

[
09×(ℓ− 9 )

Iℓ− 9

]
= 0.
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Correspondingly, by Eq. (4.4),

Z = WT̂

[
09×(ℓ− 9 )

Iℓ− 9

]
= WnormŜ1

[
09×(ℓ− 9 )

Iℓ− 9

]
.

We conclude that the distribution of Z is identical in Hyb1 and Hyb2. Finally, we consider the remaining components
in the CRS. Again, using the fact that Aa⊥ = 0, we have that

AW = A
(
WnormB̂1 +Wsf,1B̂2 + a

⊥wT

sf,2B̂2)
)
= A

(
WnormB̂1 +Wsf,1B̂2

)
.

We conclude that the components of the CRS are distributed identically in Hyb1 and Hyb2. �

Lemma 4.19. Pr[Hyb2 (A) = 1] = negl(_).

Proof. By construction in Hyb2, the components of crs are independent of the vector wsf,2. This means that the
challenger in Hyb2 can defer the sampling of wsf,2 until after the adversary outputs [ĉ]2, [ĉ

′]2, and [v]2. For the
challenger to output 1 in Hyb2, it must be the case that B̂2 (ĉ − ĉ

′) ≠ 0 and W(ĉ − ĉ′) = v. We argue that over the
choice of wsf,2, the probability that W(ĉ − ĉ′) = v is negligible. Since W =

(
WnormB̂1 +Wsf,1B̂2 + a

⊥wT

sf,2
B̂2

)
, this

means that
a⊥ ·wT

sf,2B̂2 (ĉ − ĉ
′) = v −

(
WnormB̂1 +Wsf,1B̂2

)
(ĉ − ĉ′) ∈ Z:+1? .

Since B̂2 (ĉ − ĉ
′) ≠ 0 and wsf,2

r
← Z:? , the distribution of wT

sf,2
B̂2 (ĉ − ĉ

′) is uniform over Z? . Finally, since a
⊥
≠ 0 and

the challenger samples wsf,2
r
← Z:? after all other quantities have been fixed, we conclude that

Pr
[
a⊥ ·wT

sf,2B̂2 (ĉ − ĉ
′) = v −

(
WnormB̂1 +Wsf,1B̂2

)
(ĉ − ĉ′) : wsf,2

r
← Z:?

]
≤

1

?
= negl(_). �

By Lemmas 4.17 to 4.19, we conclude that Pr[Hyb0 (A) = 1] = negl(_). Thus, Construction 4.14 satisfies prefix-
matching security. �

4.3 Proving Linear Relations on Committed Values

The second proof system we design is to argue that a Type-II commitment is consistent with a linear function applied
to a Type-I commitment. Specifically, we describe a succinct proof system for statements of the following flavor: for a
linear function 5 : Zℓ? → Z

ℓ
? :,

if f1 is a Type-I commitment to a vector x ∈ Zℓ? , then f2 is a Type-II commitment to the vector y = 5 (x).

Specifically, the “binding” requirement is that the adversary cannot open an input commitment f1 to two different
output commitments f2, f

′
2 with respect to the same linear function 5 . Following [BCFL23], we refer to this property

as a linear chain binding property (also called arguments of knowledge transfer in [GR19, GZ21]). Similar to our
prefix-checking proof system from Section 4.2, the chaining property is enforced in the semi-functional space (i.e., if
f1 and f

′
1 agree in their semi-functional space, then f2, f

′
2 must also agree in their semi-functional space).

Projective chain binding for local functions. The security analysis of our functional commitment scheme in
Section 5 relies on a stronger notion of chain binding tailored to (-local linear functions (Definition 4.2). At a high
level, our security requirement captures the following idea:

• Let x91 denote the first 91 components of a vector x and let y92 denote the first 92 components of a vector y. If
( 91, 92) ∈ ( and the function 5 is (-local, then the value of y92 is entirely determined by the value of x91 .

• Our notion of (-local chain binding then says that given two Type-I commitments f1, f
′
1 whose Type-I

projections are identical on the first 91 components, then the adversary should not be able to open f1, f
′
1 to

Type-II commitments f2, f
′
2 whose Type-II projections disagree in the first 92 components with respect to the

function 5 . Observe that unlike standard chain binding, the adversary chooses two input commitments and two
output commitments (in standard chain binding, the adversary only chooses a single input commitment and
must open it two different ways).
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We now give the formal definition.

Definition 4.20 (Projective Chainable Commitments for Linear Functions). Let FCbase =
(
SetupBase, SetupSF,

Commit(1) ,Commit(2) , Project(1) , Project(2)
)
be a projective commitment scheme. In the following description, we

represent linear functions 5 (x) := Mx by a matrix M. A chainable proof system for linear functions is a triple of
efficient algorithms FClin =

(
SetupLin,OpenLin,VerifyLin

)
with the following properties:

• SetupLin(crsbase, () → crs: On input the common reference string crsbase (which defines the input space Rℓ )
and a locality set ( ⊆ [ℓ] × [ℓ], the setup algorithm outputs a common reference string crs.

• OpenLin(crs, x,M) → c : On input a common reference string crs, an input vector x ∈ Rℓ , and a linear function
M ∈ Rℓ×ℓ , the opening algorithm outputs a proof c .

• VerifyLin(crs, f1,M, f2, c) → 1: On input the common reference string crs, a Type-I commitment f1, a linear
function M ∈ Rℓ×ℓ , a Type-II commitment f2, and a proof c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

The proof system should satisfy the following two properties:

• Correctness: For all security parameters _ ∈ N, all vector lengths ℓ ∈ N, all locality sets ( ⊆ [ℓ] × [ℓ], all
crsbase in the support of SetupBase(1_, 1ℓ ), all vectors x ∈ Rℓ (where Rℓ is the message space associated with
crsbase), and all (-local linear functions M ∈ Rℓ×ℓ ,

Pr


VerifyLin(crs, f1,M, f2, c) = 1 :

crs← SetupLin(crsbase, ()

f1 ← Commit(1) (crsbase, x)

f2 ← Commit(2) (crsbase,Mx)

c ← OpenLin(crs, x,M)


= 1.

• Chain binding for linear functions: For a security parameter _ and an adversary A, we define the chain
binding for linear functions security game as follows:

1. On input the security parameter _, the adversary outputs the dimension 1ℓ , a locality set ( ⊆ [ℓ] × [ℓ],
and a pair ( 91, 92) ∈ ( .

2. The challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 91, 92) and crs← SetupLin(crsbase, (). It gives
(crsbase, crs) to A.

3. The adversary outputs an (-local function M ∈ Rℓ×ℓ , two Type-I commitments (f1, f
′
1), two Type-II

commitments (f2, f
′
2), and two openings c, c ′.

4. The challenger outputs 1 = 1 if all the following properties hold:

– Matching inputs: Project(1) (td1, f1) = Project(1) (td1, f
′
1).

– Mismatching outputs: Project(2) (td2, f2) ≠ Project(2) (td2, f
′
2).

– Validity of openings: VerifyLin(crs, f1,M, f2, c) = 1 = VerifyLin(crs, f ′1,M, f ′2, c
′).

Otherwise, the challenger outputs 1 = 0.

We say that FClin satisfies chain binding for linear functions if for all efficient adversaries A, there exists a
negligible function negl(·) such that Pr[1 = 1] = negl(_) in the chain binding for linear functions security
game.

Constructing projective chainable commitments. We now show how to construct a projective chainable com-
mitment for local linear functions on top of the base projective commitment scheme from Section 4.1 (Construction 4.8).
Before describing our construction, we define the projection matrix for a local linear function.
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Definition 4.21 (Projection Matrix for a Local Linear Function). Let ℓ ∈ N be an input length. For indices 91, 92 ∈ [ℓ],

we define the projection matrix P
( 91, 92 )

lin
to be

P
( 91, 92 )

lin
:= Iℓ2 −

(
Iℓ − P91

)
⊗ P92 ∈ {0, 1}

ℓ2×ℓ2 , (4.7)

where P91 , P92 ∈ {0, 1}
ℓ×ℓ are the projection matrices from Definition 4.1. For a locality set ( ⊆ [ℓ] × [ℓ], we define

the projection matrix for ( to be

P
(( )

lin
:=

∏
( 91, 92 ) ∈(

P
( 91, 92 )

lin
∈ {0, 1}ℓ

2×ℓ2 . (4.8)

Lemma 4.22 (Projection Matrix for a Local Linear Function). Let ℓ ∈ N be an input length and ( ⊆ [ℓ] × [ℓ] be a

locality set. Suppose 5 : Zℓ? → Z
ℓ
? is an (-local linear function 5 (x) := Mx where M ∈ Zℓ×ℓ? . Let Plin := P

(( )

lin
be the

projection matrix associated with ( from Definition 4.21. Then the following properties hold:

• vec(M)TPlin = vec(M)T.

• For all ( 91, 92) ∈ ( and all vectors r ∈ Zℓ? , Plin
(
Iℓ ⊗ vec(rTP92 )

)
(Iℓ − P91 ) = 0, where P91 , P92 ∈ {0, 1}

ℓ×ℓ are the

projection matrices from Definition 4.1.

Proof. We show each claim individually:

• For the first claim, we start by observing that if 5 is ( 91, 92)-local, then the first 92 components of Me8 are zero
for all 8 > 91 and where e8 ∈ {0, 1}

ℓ is the 8th basis vector. In other words,

P92 ·M · (Iℓ − P91 ) = 0. (4.9)

Then, for all ( 91, 92) ∈ ( ,

vec(M)TP
( 91, 92 )

lin
= vec(M)T

[
Iℓ2 − (Iℓ − P91 ) ⊗ P92

]
= vec(M)T − vec(M)T

(
(Iℓ − P91 ) ⊗ P92

)
= vec(M)T − vec

(
PT

92
M(Iℓ − P91 )

)
by Eq. (3.4)

= vec(M)T by Eq. (4.9) and since P92 = PT

92
.

Since 5 is ( 91, 92)-local for all ( 91, 92) ∈ ( , we have that

vec(M)TPlin = vec(M)T
∏
( 91, 92 ) ∈(

P
( 91, 92 )

lin
= vec(M)T.

• For the second claim, take any ( 91, 92) ∈ ( , and let Q91 = Iℓ − P91 ∈ {0, 1}
ℓ×ℓ . Then,

(Iℓ ⊗ vec(rTP92 ))Q91 = (Iℓ ⊗ vec(rTP92 )) (Q91 ⊗ 1) = Q91 ⊗ vec(rTP92 ).

Since Q91 is a diagonal matrix and its entries are in {0, 1}, it follows that Q2
91
= Q91 . Similarly, since P92 is a

diagonal matrix with entries in {0, 1}, we have P92P
T

92
= P292 = P92 . Then,

(Q91 ⊗ P92 ) (Q91 ⊗ vec(rTP92 )) = Q2
91
⊗
(
(P92 ⊗ 1) · vec(rTP92 )

)
by Eq. (3.1)

= Q91 ⊗ vec(rTP92P
T

92
) by Eq. (3.4)

= Q91 ⊗ vec(rTP92 ) since P92P
T

92
= P92 .

(4.10)

Combining the above two relations and using the fact that P
( 91, 92 )

lin
= Iℓ2 − (Iℓ − P91 ) ⊗ P92 = Iℓ2 − Q91 ⊗ P92 ,

P
( 91, 92 )

lin

(
Iℓ ⊗ vec(rTP92 )

)
(Iℓ − P91 ) = P

( 91, 92 )

lin

(
Iℓ ⊗ vec(rTP92 )

)
Q91

= P
( 91, 92 )

lin

(
Q91 ⊗ vec(rTP92 )

)
by Eq. (3.1)

= (Iℓ2 − (Q91 ⊗ P92 ))
(
Q91 ⊗ vec(rTP92 )

)
by definition of P

( 91, 92 )

lin

=
(
Q91 ⊗ vec(rTP92 )

)
−
(
Q91 ⊗ vec(rTP92 )

)
by Eq. (4.10)

= 0.
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Finally, since the matrices P
( 91, 92 )

lin
are diagonal for all 91, 92 ∈ [ℓ], they commute so we can write

Plin =

∏
(B,C ) ∈(

P
(B,C )

lin
=
©­«

∏
(B,C ) ∈(\{ ( 91, 92 ) }

P
(B,C )

lin

ª®
¬
· P
( 91, 92 )

lin
.

Correspondingly,

Plin
(
Iℓ ⊗ vec(rTP92 )

)
(Iℓ − P91 ) =

©­«
∏

(B,C ) ∈(\{ ( 91, 92 ) }

P
(B,C )

lin

ª®¬
· P
( 91, 92 )

lin

(
Iℓ ⊗ vec(rTP92 )

)
(Iℓ − P91 ) = 0. �

Construction 4.23 (Projective Chainable Commitments for Local Linear Functions). Let FCbase =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
be the projective commitment scheme from Construction 4.8.

We build a projective chainable commitment for local linear functions FClin =
(
SetupLin,OpenLin,VerifyLin

)
over

FCbase as follows:

• SetupLin(crsbase, (): On input the common reference string crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
for the

base projective commitment scheme (which defines the input space Zℓ? ) and a locality set ( ⊆ [ℓ] × [ℓ], the

setup algorithm samples A r
← Z

:×(:+1)
? . Then, for U ∈ {1, 2}, it samples RU

r
← Z

(:+1)×2:
? andWU

r
← Z

ℓ2 (:+1)×2:
? .

It computes

[ZU ]2 = WU [T̂]2 − (Plin ⊗ I:+1) (Iℓ ⊗ vec(RU [TU ]2))

= [WU T̂ − (Plin ⊗ I:+1) (Iℓ ⊗ vec(RUTU ))]2 ∈ G
ℓ2 (:+1)×ℓ
2 ,

(4.11)

where Plin := P
(( )

lin
is the projection matrix from Eq. (4.8). Output the common reference string

crs =
(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)WU ]1, [ARU ]1, [ZU ]2

}
U∈{1,2}

)
. (4.12)

• OpenLin(crs, x,M): On input the common reference string crs (parsed as in Eq. (4.12)), the vector x ∈ Zℓ? , and

the matrix M ∈ Zℓ×ℓ? , the opening algorithm computes for each U ∈ {1, 2},

[vU ]2 = (vec(M)
T ⊗ I:+1) [ZU ]2x ∈ G

:+1
2

along with [c′1]2 = [T1]2Mx = [T1Mx]2 ∈ G
2:
2 . It outputs the opening c = ( [c′1]2, [v1]2, [v2]2).

• VerifyLin(crs, f1,M, f2, c): On input the common reference string crs (parsed as in Eq. (4.12)), a Type-I
commitment f1 = [ĉ]2, a matrix M ∈ Zℓ×ℓ? , a Type-II commitment f2 = ( [c1]1, [c2]2), and a proof c =

( [c′1]2, [v1]2, [v2]2), the verification algorithm outputs 1 if the following conditions hold:

– [c1]1 [1]2 = [1]1 [c
′
1]2.

– (vec(M)T ⊗ I: ) [(Iℓ2 ⊗ A)W1]1 [ĉ]2 = [AR1]1 [c
′
1]2 + [A]1 [v1]2.

– (vec(M)T ⊗ I: ) [(Iℓ2 ⊗ A)W2]1 [ĉ]2 = [AR2]1 [c2]2 + [A]1 [v2]2.

Theorem 4.24 (Correctness). Construction 4.23 is correct.

Proof. Take any _, ℓ ∈ N and let ( ⊆ [ℓ] × [ℓ] be an arbitrary locality set. Let crsbase ← SetupBase(1_, 1ℓ ) and parse
crsbase =

(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
Let crs← SetupLin(crsbase, (), and parse

crs =
(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)WU ]1, [ARU ]1, [ZU ]2

}
U∈{1,2}

)
.

Take any vector x ∈ Zℓ? and any (-local linear function 5 (x) := Mx where M ∈ Zℓ×ℓ? . Let y = Mx. Let

f1 ← Commit(1) (crsbase, x), f2 ← Commit(2) (crsbase, y), and c ← OpenLin(crs, x,M). We parse f1 = [ĉ]2,
f2 = ( [c1]1, [c2]2) and c = ( [c′1]1, [v1]2, [v2]2). Consider now VerifyLin(crs, f1,M, f2, c). By construction of the
underlying algorithms, we now have the following:
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• First, the commitments satisfy ĉ = T̂x, c1 = T1y, and c2 = T2y. In addition, c′1 = T1Mx = T1y = c1, and the first
verification relation holds.

• For the second verification relation, for U ∈ {1, 2}, we have

(vec(M)T ⊗ I: ) (Iℓ2 ⊗ A)WU ĉ = (vec(M)
T ⊗ I: ) (Iℓ2 ⊗ A)WU T̂x

= (vec(M)T ⊗ A)WU T̂x by Eq. (3.1)

= A(vec(M)T ⊗ I:+1)WU T̂x by Eq. (3.3).

(4.13)

Since 5 is (-local, by Lemma 4.22, we have that vec(M)TPlin = vec(M)T. Then, we can write

(vec(M)T ⊗ I:+1)ZU = (vec(M)T ⊗ I:+1)WU T̂ − (vec(M)
T ⊗ I:+1) (Plin ⊗ I:+1) (Iℓ ⊗ vec(RUTU ))

= (vec(M)T ⊗ I:+1)WU T̂ − (vec(M)
T ⊗ I:+1) (Iℓ ⊗ vec(RUTU )).

Thus, we have

(vec(M)T ⊗ I:+1)WU T̂ = (vec(M)T ⊗ I:+1)ZU + (vec(M)
T ⊗ I:+1) (Iℓ ⊗ vec(RUTU )).

Substituting back into Eq. (4.13), and using the fact that vU = (vec(M)T ⊗ I:+1)ZUx, we have

(vec(M)T ⊗ I: ) (Iℓ2 ⊗ A)WU ĉ = A(vec(M)T ⊗ I:+1)WU T̂x

= A(vec(M)T ⊗ I:+1)
(
ZUx + (Iℓ ⊗ vec(RUTU ))x

)
= AvU + A(vec(M)

T ⊗ I:+1) (Iℓ ⊗ vec(RUTU ))x

= AvU + A(vec(M)
T ⊗ I:+1) (x ⊗ vec(RUTU )).

(4.14)

To complete the proof, we now have

(vec(M)T ⊗ I:+1) (x ⊗ vec(RUTU )) = (vec(M)
T ⊗ I:+1) (x ⊗ Iℓ ⊗ I:+1)vec(RUTU ) by Eq. (3.2)

=
(
(vec(M)T (x ⊗ Iℓ )) ⊗ I:+1

)
vec(RUTU ) by Eq. (3.1)

=
(
(Mx)T ⊗ I:+1

)
vec(RUTU ) by Eq. (3.4)

= RUTUMx = RUTUy = RUcU by Eq. (3.4).

Substituting back into Eq. (4.14), we have Since vU = (vec(M)T ⊗ I:+1)ZUx, we can now write

(vec(M)T ⊗ I: ) (Iℓ2 ⊗ A)WU ĉ = AvU + A(vec(M)
T ⊗ I:+1) (x ⊗ vec(RUTU ))

= AvU + ARUcU .

Since c′1 = c1, this means the second and third verification relations hold. �

Theorem 4.25 (Chain Binding for Linear Functions). Suppose the :-KerLin assumption holds in G1 with respect to

GroupGen and the :-Lin assumption holds in G2 with respect to GroupGen. Then, Construction 4.23 satisfies chain

binding for linear functions.

Proof. To simplify the proof, we start by defining a “homogeneous” version of the chain binding for linear functions
security game for Construction 4.23. We define the game below:

1. On input the security parameter _, the adversary outputs the dimension 1ℓ , a locality set ( ⊆ [ℓ] × [ℓ], and a
pair ( 91, 92) ∈ ( .

2. The challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 91, 92) and crs ← SetupLin(crsbase, (). Then,
crsbase =

(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
, td1 = B̂2, td2 = (B1,2,B2,2), and

crs =
(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)WU ]1, [ARU ]1, [ZU ]2

}
U∈{1,2}

)
.

The challenger gives crs to A.
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3. The adversary outputs an (-local function M ∈ Zℓ×ℓ? and a tuple
(
[ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
.

4. The challenger outputs 1 if the following properties hold:

• Matching inputs: B̂2ĉ = 0.

• Mismatching outputs: either B1,2c1 ≠ 0 or B2,2c2 ≠ 0.

• Validity of openings: for each U ∈ {1, 2}, (vec(M)T ⊗ I: ) (Iℓ2 ⊗ A)WU ĉ = ARUcU + AvU .

We now show that any adversary that can win the homogeneous chain binding security game (i.e., cause the above
experiment to output 1) implies an adversary that can win the standard chain binding security game (Definition 4.20).
The claim essentially follows by linearity of the verification relation. We give the formal statement below:

Lemma 4.26. Suppose for all efficient adversaries B, there exists a negligible function negl(·) such that Pr[1 = 1] =
negl(_) in the homogeneous chain binding experiment for linear functions. Then, Construction 4.23 satisfies chain binding

security for linear functions.

Proof. Suppose there exists an adversary A that breaks chain binding security for linear functions (Definition 4.20)
with advantage Y. We use A to construct an adversary B that wins the homogeneous chain binding game:

1. Algorithm B starts running algorithm A to obtain the input length 1ℓ , the locality set ( ⊆ [ℓ] × [ℓ], and a pair
( 91, 92) ∈ ( . It gives 1

ℓ , ( , and ( 91, 92) to the challenger to obtain the common reference string crs.

2. AlgorithmB forwards crs toA and receives a functionM ∈ Zℓ×ℓ? , two Type-I commitments f1 = [ĉ]2, f
′
1 = [ĉ

′]2,
two Type-II commitments f2 = ( [c1]1, [c2]2), f

′
2 = ( [c

′
1]1, [c

′
2]2), and two openings c = ( [c̃1]2, [v1]2, [v2]2),

c ′ = ( [c̃′1]2, [v
′
1]2, [v

′
2]2).

3. Algorithm B outputs the same functionM together with the tuple(
[ĉ]2 − [ĉ

′]2, [c̃1]2 − [c̃
′
1]2, [c2]2 − [c

′
2]2, [v1]2 − [v

′
1]2, [v2]2 − [v

′
2]2

)
.

In the homogeneous chain binding game, the challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 91, 92) and
crs← SetupLin(crsbase, (). Thus algorithm B perfectly simulates an execution of the chain binding security game
for A. Thus, with probability Y, the outputs of algorithm A satisfies the following properties:

• Matching inputs: Project(1) (td1, f1) = Project(1) (td1, f
′
1).

• Mismatching outputs: Project(2) (td2, f2) ≠ Project(2) (td2, f
′
2).

• Validity of openings: VerifyLin(crs, f1,M, f2, c) = 1 = VerifyLin(crs, f ′1,M, f ′2, c
′).

We claim that in this case, the output in the homogeneous chain binding game is also 1:

• Parse crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and

crs =
(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)WU ]1, [ARU ]1, [ZU ]2

}
U∈{1,2}

)
.

In addition, parse td1 = B̂2, td2 = (B1,2,B2,2).

• Since VerifyLin(crs, f1,M, f2, c) = 1 = VerifyLin(crs, f ′1,M, f ′2, c
′), the following conditions hold:

– c1 = c̃1 and c′1 = c̃′1.
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– For U ∈ {1, 2}, we have that

(vec(M)T ⊗ I: ) (Iℓ2 ⊗ A)WU ĉ = ARUcU + AvU

(vec(M)T ⊗ I: ) (Iℓ2 ⊗ A)WU ĉ
′
= ARUc

′
U + Av

′
U ,

where we have used the fact that c1 = c̃1 and c′1 = c̃′1. Taking the difference of these two relations, we
have for each U ∈ {1, 2},

(vec(M)T ⊗ I: ) (Iℓ2 ⊗ A)WU (ĉ − ĉ
′) = ARU (cU − c

′
U ) + A(vU − v

′
U ).

This is precisely the third requirement in the homogeneous game.

• First, Project(1) (td1, f1) = Project(1) (td1, f
′
1) means that B̂2ĉ = B̂2ĉ

′. Thus, B̂2 (ĉ − ĉ′) = 0, so the first
requirement in the homogeneous game is satisfied.

• Next Project(2) (td2, f2) ≠ Project(2) (td2, f
′
2) means that either B1,2c̃1 ≠ B1,2c̃

′
1 or B2,2c2 ≠ B2,2c

′
2. Since c1 = c̃1

and c′1 = c̃′1, this means that either B1,2 (c1 − c
′
1) ≠ 0 or B2,2 (c2 − c

′
2) ≠ 0, so the second requirement in the

homogeneous game holds.

Correspondingly, the output is 1 in the homogeneous evaluation binding game, and the claim follows. �

Proof of Theorem 4.25. We now return to the proof of Theorem 4.25. Let A be an efficient adversary for the
homogeneous chain binding experiment. Let ℓ ∈ N be the vector dimension that A chooses (which will determine
the size of theMDDH assumption in Lemma 4.31). We now define a sequence of hybrid experiments:

• Hyb0: This is the homogeneous chain binding experiment. We recall the full specification here:

– At the beginning of the game, the adversaryA outputs the dimension ℓ , a locality set ( ⊆ [ℓ] × [ℓ], and a
pair ( 91, 92) ∈ ( .

– The challenger samples G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_).

– The challenger samples full-rank matrices B̂,B1,B2
r
← Z2:×2:? and defines B̂∗ = B̂−1, B∗1 = B−11 , B∗2 = B−12 .

It parses B̂,B1,B2 as in Eq. (4.2) and B̂∗,B∗1,B
∗
2 as in Eq. (4.3).

– The challenger constructs the encoding matrices T̂,T1,T2 as follows:

∗ Type-I encodings: Sample Ŝ1, Ŝ2
r
← Z:×ℓ? and let T̂ = B̂∗1Ŝ1 + B̂

∗
2Ŝ2P91 ∈ Z

2:×ℓ
? .

∗ Type-II encodings: For U ∈ {1, 2}, sample SU,1, SU,2
r
← Z:×ℓ? . Let TU = B∗U,1SU,1 + B

∗
U,2SU,2P92 ∈ Z

2:×ℓ
? .

Let T∗ = T1 ⊗ T2 and set crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

– The challenger samplesA r
← Z

:×(:+1)
? . Then, forU ∈ {1, 2}, it samplesRU

r
← Z

(:+1)×2:
? ,WU

r
← Z

ℓ2 (:+1)×2:
? ,

and computes for each U ∈ {1, 2},

ZU = WU T̂ − (Plin ⊗ I:+1) (Iℓ ⊗ vec(RUTU )), (4.15)

where Plin = P
(( )

lin
is projection matrix from Eq. (4.8). The challenger gives the common reference string

crs to A where

crs =
(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)WU ]1, [ARU ]1, [ZU ]2

}
U∈{1,2}

)
.

– The adversary outputs an (-local function M ∈ Zℓ×ℓ? and a tuple
(
[ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
.

The output of the experiment is 1 if the following conditions hold:

B̂2ĉ = 0 and ∀U ∈ {1, 2} : (vec(M)T ⊗ I: ) (Iℓ2 ⊗ A)WU ĉ = ARUcU + AvU and B1,2c1 ≠ 0 or B2,2c2 ≠ 0.
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• Hyb1: Same as Hyb0, except the challenger samples W
(U )
norm,W

(U )

sf
r
← Z

ℓ2 (:+1)×:
? for each U ∈ {1, 2}. It then sets

WU = W
(U )
normB̂1+W

(U )

sf
B̂2 when setting up the CRS. After the adversary outputs

(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
,

the challenger computes

v′U = vU − (vec(M)
T ⊗ I:+1)W

(U )
normB̂1ĉ. (4.16)

The output of the experiment is 1 if the following conditions hold:

B̂2ĉ = 0 and ∀U ∈ {1, 2} : ARUcU + Av
′
U = 0 and B1,2c1 ≠ 0 or B2,2c2 ≠ 0.

• Hyb2: Same as Hyb1 except the output of the experiment is 1 if the following conditions hold:

B̂2ĉ = 0 and ∀U ∈ {1, 2} : RUcU + v
′
U = 0 and B1,2c1 ≠ 0 or B2,2c2 ≠ 0.

• Hyb3: Same as Hyb2 except when constructing the CRS, the challenger samples a random nonzero vector

a⊥ ∈ Z:+1? in the kernel of A (i.e., Aa⊥ = 0). Then, for each U ∈ {1, 2}, it samples W
(U )

sf,1
r
← Z

ℓ2 (:+1)×:
? ,

W
(U )

sf,2
r
← Zℓ

2×:
? . It also samples RU,1

r
← Z

(:+1)×2:
? and rU,2

r
← Z2:? , and sets

W
(U )

sf
= W

(U )

sf,1
+
(
W
(U )

sf,2
⊗ a⊥

)
and RU = RU,1 +

(
rTU,2 ⊗ a⊥

)
= RU,1 + a

⊥rTU,2.

The challenger then computes

ZU,1 =
(
W
(U )
normB̂1 +W

(U )

sf,1
B̂2

)
T̂ − (Plin ⊗ I:+1)

(
Iℓ ⊗ vec

(
RU,1TU

) )
ZU,2 = W

(U )

sf,2
Ŝ2P91 − Plin

(
Iℓ ⊗ vec

(
rTU,2TU )

)
and sets ZU = ZU,1 + (Iℓ2 ⊗ a⊥)ZU,2.

• Hyb4: Same as Hyb3 except when constructing the CRS, the challenger sets

crs =
(
crsbase, [A]1,

{[
(Iℓ2 ⊗ A)

(
W
(U )
normB̂1 +W

(U )

sf,1
B̂2

) ]
1
, [ARU,1]1, [ZU ]2

})
.

• Hyb5: Same as Hyb4, except for each U ∈ {1, 2}, the challenger samples UU
r
← Zℓ

2×ℓ
? and sets

ZU,2 = UUP91 − Plin
(
Iℓ ⊗ vec

(
rTU,2TU

) )
.

• Hyb6: Same as Hyb5, except for each U ∈ {1, 2} the challenger samples rU,2,norm, rU,2,sf
r
← Z:? and sets

rTU,2 = rTU,2,normBU,1 + r
T

U,2,sfBU,2.

Then, it sets
ZU,2 = UUP91 − Plin

(
Iℓ ⊗ vec

(
rTU,2,normSU,1

) )
− Plin

(
Iℓ ⊗ vec

(
rTU,2,sfSU,2P92

) )
.

• Hyb7: Same as Hyb6, except the challenger sets

ZU,2 = UUP91 − Plin
(
Iℓ ⊗ vec

(
rTU,2,normSU,1

) )
.

Recall that in this experiment, the challenger still samples UU
r
← Zℓ

2×ℓ
? .

We write Hyb8 (A) to denote the output distribution of an execution of hybrid Hyb8 with adversaryA. We now show
that the output distribution of each adjacent pair of hybrids is indistinguishable.

Lemma 4.27. Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1].
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Proof. Since B̂ is a basis for Z2:? and the matricesW
(U )
norm andW

(U )

sf
are uniform, the distribution ofW(U ) is also uniform

in Hyb1, and thus, is identical to the distribution in Hyb0. It suffices to consider the outputs of the two experiments.
Suppose A outputs

(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
. First, if B̂2ĉ ≠ 0, then the output in both experiments is

identical. Suppose then that B̂2ĉ = 0. This means that

WU ĉ = W
(U )
normB̂1ĉ +WsfB̂2ĉ = W

(U )
normB̂1ĉ. (4.17)

Consider the value of ARUcU + Av
′
U in Hyb1:

ARUcU + Av
′
U = ARUcU + AvU − A(vec(M)

T ⊗ I:+1)W
(U )
normB̂1ĉ by Eq. (4.16)

= ARUcU + AvU − (vec(M)
T ⊗ I: ) (Iℓ2 ⊗ A)W

(U )
normB̂1ĉ by Eq. (3.3)

= ARUcU + AvU − (vec(M)
T ⊗ I: ) (Iℓ2 ⊗ A)WU ĉ by Eq. (4.17).

Thus, in Hyb1, if B̂2ĉ = 0, then ARUcU + Av
′
U = 0 if and only if (vec(M)T ⊗ I: ) (Iℓ2 ⊗ A)WU ĉ = ARUcU + AvU .

Correspondingly, the output distribution of Hyb1 (A) is identical to the output distribution of Hyb0 (A). �

Lemma 4.28. Suppose the KerDH:,:+1 assumption holds in G1 with respect to GroupGen. Then, there exists a negligible

function negl(·) such that | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | ≤ negl(_).

Proof. Suppose | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | ≥ Y for some non-negligible Y. Suppose the output of A is(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
in an execution of Hyb1 or Hyb2. If the outputs of Hyb1 and Hyb2 differ, then it

must be the case that that for some U ∈ {1, 2},

A(RUcU + v
′
U ) = 0 and RUcU + v

′
U ≠ 0. (4.18)

In all other cases, the output in Hyb1 and Hyb2 is identical. We use A to construct an efficient adversary B for
KerDH:,:+1:

1. On input the KerDH challenge (G, [A]1), algorithm B starts by running algorithm A. Algorithm A outputs
the input dimension ℓ , the locality set ( ⊆ [ℓ] × [ℓ], and a pair ( 91, 92) ∈ ( .

2. Next, algorithm B samples full-rank matrices B̂,B1,B2
r
← Z2:×2:? and defines B̂∗ = B̂−1, B∗1 = B−11 , B∗2 = B−12 . It

parses the components of B̂,B1,B2 as in Eq. (4.2) and B̂∗,B∗1,B
∗
2 as in Eq. (4.3).

3. Algorithm B then constructs the encoding matrices T̂,T1,T2 as in Hyb1 and Hyb2:

• Type-I encodings: Sample Ŝ1, Ŝ2
r
← Z:×ℓ? and let T̂ = B̂∗1Ŝ1 + B̂

∗
2Ŝ2P91 ∈ Z

2:×ℓ
? .

• Type-II encodings: For U ∈ {1, 2}, sample SU,1, SU,2
r
← Z:×ℓ? and let TU = B∗U,1SU,1 + B

∗
U,2SU,2P92 .

Let T∗ = T1 ⊗ T2 and set crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

4. For each U ∈ {1, 2}, algorithm B samplesW
(U )
norm,W

(U )

sf
r
← Z

ℓ2 (:+1)×:
? and setsWU = W

(U )
normB̂1 +W

(U )

sf
B̂2. It also

samples RU
r
← Z

(:+1)×2:
? . Then, for U ∈ {1, 2}, it computes

ZU = WU T̂ − (Plin ⊗ I:+1) (Iℓ ⊗ vec(RUTU )),

where Plin = P
(( )

lin
. The challenger gives the common reference string crs to A where

crs =
(
crsbase, [A]1,

{
(Iℓ2 ⊗ [A]1)WU , [A]1RU , [ZU ]2

}
U∈{1,2}

)
=

(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)WU ]1, [ARU ]1, [ZU ]2

}
U∈{1,2}

)
.
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5. After algorithm A outputs
(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
algorithm B computes for each U ∈ {1, 2},

[v′U ]2 = [vU ]2 − (vec(M)
T ⊗ I:+1)W

(U )
normB̂1 [ĉ]2.

It then checks if there exist U ∈ {1, 2} where

[ARU ]1 [cU ]2 + [A]1 [v
′
U ]2 = [0]) and RU [cU ]2 + [v

′
U ]2 ≠ [0]2 .

If so, it outputs RU [cU ]2 + [v
′
U ]2 = [RUcU + v

′
U ]2.

Since the KerDH challenger samples A r
← Z

(:+1)×:
? , the common reference string crs constructed by B is distributed

exactly as required in Hyb1 and Hyb2. By the above analysis, this means that with probability Y, algorithmA outputs(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
which satisfies Eq. (4.18). Correspondingly, algorithm B breaks KerDH with the

same advantage Y. �

Lemma 4.29. Pr[Hyb2 (A) = 1] = Pr[Hyb3 (A) = 1].

Proof. We argue that Hyb2 and Hyb3 are identically distributed. SinceW
(U )

sf,1
and RU,1 are uniform over their respective

domains, it follows thatW
(U )

sf
and RU are identically distributed as in Hyb2 and Hyb3. To complete the proof, we show

that the distribution of ZU in Hyb3 is identical to that in Hyb2. Suppose we construct ZU according to Eq. (4.15). Then,

ZU = WU T̂ − (Plin ⊗ I:+1) (Iℓ ⊗ vec(RUTU ))

=
(
W
(U )
normB̂1 +W

(U )

sf,1
B̂2 +

(
W
(U )

sf,2
⊗ a⊥

)
B̂2

)
T̂ − (Plin ⊗ I:+1)

(
Iℓ ⊗ vec

( (
RU,1 + a

⊥rTU,2
)
TU

) )
= ZU,1 +

(
W
(U )

sf,2
⊗ a⊥

)
B̂2T̂ − (Plin ⊗ I:+1)

(
Iℓ ⊗ vec

(
a⊥rTU,2TU

) )
. (4.19)

We analyze the components of ZU in the subspace spanned by a⊥. First, using Eq. (3.3), we can write

(
W
(U )

sf,2
⊗ a⊥

)
B̂2T̂ = (Iℓ2 ⊗ a⊥)W

(U )

sf,2
B̂2T̂ = (Iℓ2 ⊗ a⊥)W

(U )

sf,2
B̂2 (B̂

∗
1Ŝ1 + B̂

∗
2Ŝ2P91 ) = (Iℓ2 ⊗ a⊥)W

(U )

sf,2
Ŝ2P91 . (4.20)

For the remaining component in Eq. (4.19),

Iℓ ⊗ vec
(
a⊥rTU,2TU

)
= Iℓ ⊗

[ (
Iℓ ⊗ a⊥rTU,2

)
vec(TU )

]
by Eq. (3.4)

= Iℓ ⊗
[
(Iℓ ⊗ a⊥)

(
Iℓ ⊗ rTU,2

)
vec(TU )

]
by Eq. (3.1)

= Iℓ ⊗
[
(Iℓ ⊗ a⊥)vec

(
rTU,2TU

) ]
by Eq. (3.4)

=
(
Iℓ ⊗ (Iℓ ⊗ a⊥)

) (
Iℓ ⊗ vec

(
rTU,2TU

) )
by Eq. (3.1)

=
(
Iℓ2 ⊗ a⊥

) (
Iℓ ⊗ vec

(
rTU,2TU

) )
.

Finally, by Eq. (3.3),

(Plin ⊗ I:+1)
(
Iℓ ⊗ vec

(
a⊥rTU,2TU

) )
= (Plin ⊗ I:+1)

(
Iℓ2 ⊗ a⊥

) (
Iℓ ⊗ vec

(
rTU,2TU

) )
= (Iℓ2 ⊗ a⊥)Plin

(
Iℓ ⊗ vec

(
rTU,2TU

) )
. (4.21)

Combining Eq. (4.21), (4.20), and (4.19), we have

ZU = ZU,1 +
(
Iℓ2 ⊗ a⊥

) (
W
(U )

sf,2
Ŝ2P91 − Plin

(
Iℓ ⊗ vec

(
rTU,2TU

) ) )
= ZU,1 + (Iℓ2 ⊗ a⊥)ZU,2,

which is precisely how the challenger constructs ZU in Hyb3. �

Lemma 4.30. Pr[Hyb3 (A) = 1] = Pr[Hyb4 (A) = 1].
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Proof. The distribution of crs in the two experiments are identical. In particular, in Hyb3, for U ∈ {1, 2},

(Iℓ2 ⊗ A)WU = (Iℓ2 ⊗ A)
(
W
(U )
normB̂1 +W

(U )

sf
B̂2

)
= (Iℓ2 ⊗ A)

(
W
(U )
normB̂1 +W

(U )

sf,1
B̂2 +

(
W
(U )

sf,2
⊗ a⊥

)
B̂2

)
= (Iℓ2 ⊗ A)

(
W
(U )
normB̂1 +W

(U )

sf,1
B̂2

)
since Aa⊥ = 0. Similarly,

ARU = A
(
RU,1 + a

⊥rTU,2
)
= ARU,1.

This coincides with the distribution of crs in Hyb4. �

Lemma 4.31. Suppose theMDDH:,ℓ,2ℓ2 assumption holds inG2 with respect toGroupGen. Then, there exists a negligible

function negl(·) such that | Pr[Hyb4 (A) = 1] − Pr[Hyb5 (A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb4 (A) = 1] − Pr[Hyb5 (A) = 1] | ≥ Y for some non-negligible Y. We use A to construct an
efficient adversary B forMDDH:,ℓ,ℓ2 :

1. On input theMDDH challenge (G, [Ŝ2]2, [V]2), algorithm A starts by parsing [V2] =
[
V1
V2

]
2
, where V1,V2 ∈

Z
ℓ2×ℓ
? . Then, it samples full-rank matrices B̂,B1,B2

r
← Z2:×2:? and defines B̂∗ = B̂−1, B∗1 = B−11 , B∗2 = B−12 . It

parses B̂,B1,B2 as in Eq. (4.2) and B̂∗,B∗1,B
∗
2 as in Eq. (4.3).

2. Algorithm A constructs the Type-I and Type-II encoding matrices T̂,T1,T2 as follows:

• Type-I encodings: Sample Ŝ1
r
← Z:×ℓ? and let [T̂]2 = B̂∗1Ŝ1 + B̂

∗
2 [Ŝ2]2P91 ∈ Z

2:×ℓ
? .

• Type-II encodings: For U ∈ {1, 2}, sample SU,1, SU,2
r
← Z:×ℓ? . Let TU = B∗U,1SU,1 + B

∗
U,2SU,2P92 ∈ Z

2:×ℓ
? .

Let T∗ = T1 ⊗ T2 and set crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

3. Sample A r
← Z

:×(:+1)
? and a random nonzero vector a⊥ ∈ Z:+1? in the kernel of A.

4. For U ∈ {1, 2}, sample W
(U )
norm

r
← Z

ℓ2 (:+1)×:
? , W

(U )

sf,1
r
← Z

ℓ2 (:+1)×:
? , RU,1

r
← Z

(:+1)×2:
? , and rU,2

r
← Z2:? . Set

RU = RU,1 + a
⊥rTU,2. It then computes

[ZU,1]2 =
(
W
(U )
normB̂1 +W

(U )

sf,1
B̂2

)
[T̂]2 − (Plin ⊗ I:+1) (Iℓ ⊗ vec(RU,1TU ))

[ZU,2]2 = [VU ]2P91 − Plin
(
Iℓ ⊗ vec(rT2,UTU )

)
,

and [ZU ]2 = [ZU,1]2 + (Iℓ2 ⊗ a⊥) [ZU,2]2.

5. Finally, algorithm B gives crs to A where

crs =
(
crsbase, [A]1,

{[
(Iℓ2 ⊗ A)

(
W
(U )
normB̂1 +W

(U )

sf,1
B̂2

) ]
1
, [ARU,1]1, [ZU ]2

})
.

6. After algorithm A outputs
(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
, algorithm B computes for each U ∈ {1, 2},

[v′U ]2 = [vU ]2 − (vec(M)
T ⊗ I:+1)W

(U )
normB̂1 [ĉ]2

Then, it outputs 1 if the following hold:

B̂2 [ĉ]2 = [0]2 and ∀U ∈ {1, 2} : RU [cU ]2 + [v
′
U ]2 = [0]2 and B1,2 [c1]2 ≠ [0]2 or B2,2 [c2]2 ≠ [0]2.

By definition, theMDDH challenger samples Ŝ2
r
← Z:×ℓ? . Thus, algorithm B perfectly simulates the distribution of

every component other than [ZU ]2 in the common reference string according to the specification of Hyb4 and Hyb5.
Thus it suffices to consider the distribution of ZU in the two cases:
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• Suppose VU = W
(U )

sf,2
Ŝ2 where the challenger samples W

(U )

sf,2
r
← Zℓ

2×:
? . Then algorithm B perfectly simulates the

distribution of crs in Hyb4. In this case, algorithm B outputs 1 with probability Pr[Hyb4 (A) = 1].

• Suppose V r
← Z2ℓ

2×ℓ
? , in which case V1,V2

r
← Zℓ

2×ℓ
? . This corresponds to the distribution of ZU in Hyb5, so in

this case, algorithm B outputs 1 with probability Pr[Hyb5 (A) = 1].

We conclude that the distinguishing advantage of B is exactly Y and the claim follows. �

Lemma 4.32. Pr[Hyb5 (A) = 1] = Pr[Hyb6 (A) = 1].

Proof. For each U ∈ {1, 2}, BU =

[
BU,1

BU,2

]
is a basis for Z2:? , the distribution of rU,2 in Hyb6 is uniform over Z2:? , which is

identical to the distribution of rU,2 in Hyb5. It suffices to argue that ZU,2 is correctly distributed. This follows by the
fact that BUB

∗
U = I2: and the fact that TU = B∗U,1SU,1 + B

∗
U,2SU,2P92 . In particular, we can write

Plin
(
Iℓ ⊗ vec(rTU,2TU )

)
= Plin

(
Iℓ ⊗ vec

( (
rTU,2,normBU,1 + r

T

U,2,sfBU,2

) (
B∗U,1SU,1 + B

∗
U,2SU,2P92

) ) )
= Plin

(
Iℓ ⊗ vec

(
rTU,2,normSU,1 + r

T

U,2,sfSU,2P92

) )
= Plin

(
Iℓ ⊗ vec

(
rTU,2,normSU,1

) )
+ Plin

(
Iℓ ⊗ vec

(
rTU,2,sfSU,2P92

) )
,

which matches the distribution in Hyb6. �

Lemma 4.33. Pr[Hyb6 (A) = 1] = Pr[Hyb7 (A) = 1].

Proof. The claim follows by properties of the projection matrix (Lemma 4.22). Specifically, we will show that for
U ∈ {1, 2}, the following two distributions are identically distributed over the choice of U:{

UUP91 − Plin
(
Iℓ ⊗ vec

(
rTU,2,sfSU,2P92

) )
: U r
← Zℓ

2×ℓ
?

}
≡
{
UUP91 : UU

r
← Zℓ

2×ℓ
?

}
. (4.22)

Since ( 91, 92) ∈ ( and moreover, Plin = P
(( )

lin
, we can appeal to Lemma 4.22 (applied to the vector rT

U,2,sf
SU,2) to conclude

that
Plin

(
Iℓ ⊗ vec

(
rTU,2,sfSU,2P92

) ) (
Iℓ − P91

)
= 0.

Now, we can write

Plin
(
Iℓ ⊗ vec

(
rTU,2,sfSU,2P92

) )
= Plin

(
Iℓ ⊗ vec

(
rTU,2,sfSU,2P9,2

) ) (
P91 + Iℓ − P91

)
= Plin

(
Iℓ ⊗ vec

(
rTU,2,sfSU,2P92

) )
P91 .

This means that

UUP91 − Plin
(
Iℓ ⊗ vec

(
rTU,2,sfSU,2P92

) )
=

(
UU − Plin

(
Iℓ ⊗ vec

(
rTU,2,sfSU,2P92

) ) )
P91 . (4.23)

Since UU is uniform over Zℓ
2×ℓ
? and independent of Plin, rU,2,sf , SU,2, and P92 , it follows that{

UU − Plin
(
Iℓ ⊗ vec

(
rTU,2,sfSU,2P92

) )
: UU

r
← Zℓ

2×ℓ
?

}
≡
{
UU : UU

r
← Zℓ

2×ℓ
?

}
. (4.24)

Eq. (4.22) now follows by combining Eqs. (4.23) and (4.24). �

Lemma 4.34. There exists a negligible function negl(·) such that Pr[Hyb7 (A) = 1] = negl(_).

Proof. In Hyb7, the components of crs are independent of the vector rU,2,sf for each U ∈ {1, 2}. This means the
challenger in Hyb7 can defer the sampling of rU,2,sf until after the adversary outputs

(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
.

For the challenger to output 1 in Hyb7, it must be the case that there exists U ∈ {1, 2} where

RUcU + v
′
U = 0 and BU,2cU ≠ 0,
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where v′U = vU − (vec(M)
T ⊗ I:+1)W

(U )
normB̂1ĉ. We argue that when BU,2cU ≠ 0, the probability that RUcU + v

′
U = 0 is

negligible when taken over the choice of rU,2,sf . Since

RU = RU,1 + a
⊥rTU,2 = RU,1 + a

⊥rU,2,normBU,1 + a
⊥rTU,2,sfBU,2,

the equation RUcU + v
′
U = 0 holds only if

a⊥ · rTU,2,sfBU,2cU = −v′U − RU,1cU − a
⊥ · rTU,2,normBU,1cU ∈ Z

:+1
? .

Since BU,2cU ≠ 0 and rU,2,sf
r
← Z:? , the distribution of rT

U,2,sf
BU,2cU is uniform over Z? . Finally, since a

⊥
≠ 0 and the

challenger samples rU,2,sf
r
← Z:? after all other quantities have been fixed, we conclude that

Pr
[
a⊥ · rTU,2,sfBU,2cU = −v′U − RU,1cU − a

⊥ · rTU,2,normBU,1cU : rU,2,sf
r
← Z:?

]
≤

1

?
= negl(_). �

By Lemmas 4.27 to 4.34, we conclude that Pr[Hyb0 (A) = 1] ≤ negl(_). This means that Construction 4.23 satisfies
homogeneous chain binding for linear functions. Finally, since the vector dimension ℓ = poly(_), the :-Lin assumption
in G2 implies theMDDH:,ℓ,ℓ2 assumption in G2 (Remark 3.8); similarly, the :-KerLin assumption in G1 implies the
KerDH:,:+1 assumption in G1. Theorem 4.25 now follows from Lemma 4.26. �

4.4 Proving Quadratic Relations on Committed Values

The final proof system we require is a way to argue that a Type-I commitment is consistent with a quadratic function
applied to a Type-II commitment. Specifically, we describe a succinct proof system for statements of the following
form: for a quadratic function 5 : Zℓ? → Z

ℓ
? ,

if f2 is a Type-II commitment to a vector x ∈ Zℓ? , then f1 is a Type-I commitment to a vector y = 5 (x).

In contrast to the proof system for linear functions from Section 4.3, the inputs to this proof system are Type-II
commitments while the outputs are Type-I commitments. Similar to Section 4.3, we require chain binding for local
quadratic functions. We give the formal syntax and security requirement below:

Definition 4.35 (Projective Chainable Commitments for Quadratic Functions). Let FCbase =
(
SetupBase, SetupSF,

Commit(1) ,Commit(2) , Project(1) , Project(2)
)
be a projective commitment scheme. In the following description,

we represent (homogeneous) quadratic functions 5 (x) := M(x ⊗ x) by a matrix M. A chainable proof system
for quadratic functions is a triple of efficient algorithms FCquad =

(
Setup�ad,Open�ad,Verify�ad

)
with the

following properties:

• Setup�ad(crsbase, () → crs: On input the common reference string crsbase (which defines the input space Rℓ )
and a locality set ( ⊆ [ℓ] × [ℓ], the setup algorithm outputs a common reference string crs.

• Open�ad(crs, x,M) → c : On input a common reference string crs, an input vector x ∈ Rℓ , and a homogeneous

quadratic function M ∈ Rℓ×ℓ2 , the opening algorithm outputs a proof c .

• Verify�ad(crs, f2,M, f1, c) → 1: On input the common reference string crs, a Type-II commitment f2, a linear
function M ∈ Rℓ×ℓ , a Type-I commitment f1, and a proof c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

The proof system should satisfy the following two properties:

• Correctness: For all security parameters _ ∈ N, all vector lengths ℓ ∈ N, all locality sets ( ⊆ [ℓ] × [ℓ], all
crsbase in the support of SetupBase(1_, 1ℓ ), all vectors x ∈ Rℓ (where Rℓ is the message space associated with

crsbase), and all (-local homogeneous quadratic functions M ∈ Rℓ×ℓ2 ,

Pr


Verify�ad(crs, f2,M, f1, c) = 1 :

crs← Setup�ad(crsbase, ()

f2 ← Commit(2) (crsbase, x)

f1 ← Commit(1) (crsbase,M(x ⊗ x))

c ← Open�ad(crs, x,M)


= 1.
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• Chain binding for quadratic functions: For a security parameter _ and an adversaryA, we define the chain
binding for quadratic functions security experiment as follows:

1. On input the security parameter _, the adversary outputs the dimension 1ℓ , a locality set ( ⊆ [ℓ] × [ℓ]
and a pair ( 91, 92) ∈ ( . Note here that 91 denotes the length of the prefix for the input (i.e., a Type-II index)
and 92 denotes the length of the prefix for the output (i.e., a Type-I index).

2. The challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 92, 91) and crs ← Setup�ad(crsbase, (). It
gives (crsbase, crs) to A.

3. The adversary outputs an (-local quadratic functionM ∈ Zℓ×ℓ
2

? , two Type-II commitments (f2, f
′
2), two

Type-I commitments (f1, f
′
1), and two openings c, c ′.

4. The challenger outputs 1 = 1 if all the following properties hold:

– Matching inputs: Project(2) (td2, f2) = Project(2) (td2, f
′
2).

– Mismatching outputs: Project(1) (td1, f1) ≠ Project(1) (td1, f
′
1).

– Validity of openings: Verify�ad(crs, f2,M, f1, c) = 1 = Verify�ad(crs, f ′2,M, f ′1, c
′).

Otherwise, the challenger outputs 1 = 0.

We say that FCquad satisfies chain binding for quadratic functions if for all efficient adversaries A, there exists
a negligible function negl(·) such that Pr[1 = 1] = negl(_) in the chain binding for quadratic functions security
game.

Constructing projective chainable commitments. Similar to the construction of chainable commitments for
linear functions from Section 4.3, we start by defining the projection matrix for a local quadratic function; this is the
analog of Definition 4.21. We then prove the analog of Lemma 4.22 for the case of (homogeneous) quadratic functions.

Definition 4.36 (Projection Matrix for a Local Quadratic Function). Let ℓ ∈ N be an input length. For indices

91, 92 ∈ [ℓ], we define the projection matrix P
( 91, 92 )

quad
to be

P
( 91, 92 )

quad
:= Iℓ3 −

(
Iℓ2 −

(
P91 ⊗ P91

) )
⊗ P92 ∈ {0, 1}

ℓ3×ℓ3 ,

where P91 , P9,2 ∈ {0, 1}
ℓ×ℓ are the projection matrices from Definition 4.1. For a locality set ( ⊆ [ℓ] × [ℓ], we define

the projection matrix for ( to be

P
(( )

quad
:=

∏
( 91, 92 ) ∈(

P
( 91, 92 )

quad
∈ {0, 1}ℓ

3×ℓ3 . (4.25)

Lemma 4.37 (Projection Matrix for a Local Quadratic Function). Let ℓ ∈ N be an input length and ( ⊆ [ℓ] × [ℓ] be a

locality set. Suppose 5 : Zℓ? → Z
ℓ
? is an (-local homogeneous quadratic function 5 (x) ≔ M(x ⊗ x) where M ∈ Zℓ×ℓ

2

? . Let

Pquad := P
( (( ) )

quad
be the projection matrix associated with ( from Definition 4.36. Then the following properties hold:

• vec(M)TPquad = vec(M)T.

• For all ( 91, 92) ∈ ( and all vectors r ∈ Zℓ? , Pquad
(
Iℓ2 ⊗ vec(rTP92 )

) (
Iℓ2 − (P91 ⊗ P91 )

)
= 0, where P91 , P92 ∈ {0, 1}

ℓ×ℓ

are the projection matrices from Definition 4.1.

Proof. The proof follows a similar strategy as the proof of Lemma 4.22. We show each claim separately:

• For the first claim, we start by observing that if 5 is ( 91, 92)-local, then the first 92 components ofM(e8 ⊗ e8′ )
are zero whenever 8 > 91 or 8

′
> 91, where e8 ∈ {0, 1}

ℓ is the 8th basis vector. This means that

P92 ·M ·
(
Iℓ2 −

(
P91 ⊗ P91

) )
= 0, (4.26)
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Then, for all ( 91, 92) ∈ ( ,

vec(M)TP
( 91, 92 )

quad
= vec(M)T

[
Iℓ3 −

(
Iℓ2 − (P91 ⊗ P91 )

)
⊗ P92

]
= vec(M)T − vec(M)T

( (
Iℓ2 − (P91 ⊗ P91 )

)
⊗ P92

)
= vec(M)T − vec

(
PT

92
M
(
Iℓ2 − (P91 ⊗ P91 )

) )
by Eq. (3.4)

= vec(M)T by Eq. (4.26) and since P92 = PT

92
.

• For the second claim, take any ( 91, 92) ∈ ( . Let Q91 = Iℓ2 − (P91 ⊗ P91 ) ∈ {0, 1}
ℓ2×ℓ2 . Then,

(Iℓ2 ⊗ vec(rTP92 ))Q91 = (Iℓ2 ⊗ vec(rTP92 )) (Q91 ⊗ 1) = Q91 ⊗ vec(rTP92 ).

Since Q91 is a diagonal matrix and its entries are in {0, 1}, it follows that Q2
91
= Q91 . Similarly, since P92 is a

diagonal matrix with entries in {0, 1}, it follows that P92P
T

92
= P292 = P92 . Then,

(Q91 ⊗ P92 ) (Q91 ⊗ vec(rTP92 )) = Q2
91
⊗
(
(P92 ⊗ 1) · vec(rTP92 )

)
by Eq. (3.1)

= Q91 ⊗ vec(rTP92P
T

92
) by Eq. (3.4)

= Q91 ⊗ vec(rTP92 ) since P92P
T

92
= P92 .

(4.27)

Combining the above two relations and using the fact that P
( 91, 92 )

quad
= Iℓ3 − Q91 ⊗ P92 , we now have

P
( 91, 92 )

quad

(
Iℓ2 ⊗ vec(rTP92 )

) (
Iℓ2 − (P91 ⊗ P91 )

)
= P
( 91, 92 )

quad

(
Iℓ2 ⊗ vec(rTP92 )

)
Q91

= P
( 91, 92 )

quad

(
Q91 ⊗ vec(rTP92 )

)
by Eq. (3.1)

=
(
Iℓ3 − (Q91 ⊗ P92 )

) (
Q91 ⊗ vec(rTP92 )

)
by definition of P

( 91, 92 )

quad

=
(
Q91 ⊗ vec(rTP92 )

)
−
(
Q91 ⊗ vec(rTP92 )

)
by Eq. (4.27)

= 0.

Next, the matrices P
( 91, 92 )

quad
are diagonal for all 91, 92 ∈ [ℓ], so they commute. Thus,

Pquad =
∏
( 91, 92 ) ∈(

P
( 91, 92 )

quad
=
©­«

∏
(B,C ) ∈(\{ ( 91, 92 ) }

P
(B,C )

quad

ª®¬
· P
( 91, 92 )

quad
.

This means

Pquad
(
Iℓ2⊗vec(r

TP92 )
) (
Iℓ2−(P91⊗P91 )

)
=
©­«

∏
(B,C ) ∈(\{ ( 91, 92 ) }

P
(B,C )

quad

ª®¬
·P
( 91, 92 )

quad

(
Iℓ2⊗vec(r

TP92 )
) (
Iℓ2−(P91⊗P91 )

)
= 0. �

Construction 4.38 (Projective Chainable Commitments for Local Quadratic Functions). Let FCbase =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
be the projective commitment scheme from Construction 4.8.

We build a projective chainable commitment for local linear functions FCquad =
(
Setup�ad,Open�ad,Verify�ad

)
over FCbase as follows:

• Setup�ad(crsbase, (): On input the common reference string crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
for

the base projective commitment scheme (which defines the input space Zℓ? ) and a locality set ( ⊆ [ℓ] × [ℓ], the

setup algorithm samples A r
← Z

:×(:+1)
? , R r

← Z
(:+1)×2:
? andW

r
← Z

ℓ3 (:+1)×4:2

? . It then computes

[Z]2 = W[T∗]2 − (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(R[T̂]2))

= [WT∗ − (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(RT̂))]2 ∈ G
ℓ3 (:+1)×ℓ2

2 , (4.28)
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where Pquad = P
(( )

quad
∈ Zℓ

3×ℓ3

? is the projection matrix from Eq. (4.25). Output the common reference string

crs = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2) . (4.29)

• Open�ad(crs, x,M): On input the common reference string (parsed as in Eq. (4.29)), the vector x ∈ Zℓ? , and a

matrix M ∈ Zℓ×ℓ
2

? , the evaluation algorithm computes [c∗]2 ← [T∗]2 (x ⊗ x) ∈ G4:2

2 and

[v]2 = (vec(M)
T ⊗ I:+1) [Z]2 (x ⊗ x) ∈ G:+12 .

It outputs the opening c = ( [c∗]2, [v]2).

• Verify�ad(crs, f2,M, f1, c): On input the common reference string crs (parsed as in Eq. (4.29)), a Type-II

commitment f2 = ( [c1]1, [c2]2), a matrix M ∈ Zℓ×ℓ
2

? , a Type-I commitment f1 = [ĉ]2 and a proof c =

( [c∗]2, [v]2), the verification algorithm outputs 1 if

[c1]1 ⊗ [c2]2 = [1]1 [c∗]2 and (vec(M)T ⊗ I: ) [(Iℓ3 ⊗ A)W]1 [c∗]2 = [AR]1 [ĉ]2 + [A]1 [v]2 .

Theorem 4.39 (Correctness). Construction 4.38 is correct.

Proof. Take any _, ℓ ∈ N and let ( ⊆ [ℓ] × [ℓ] be an arbitrary locality set. Let crsbase ← SetupBase(1_, 1ℓ ) and
crs← Setup�ad(crsbase, (). Then crsbase =

(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and

crs = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2).

Take any input x ∈ Zℓ? and any (-local homogeneous quadratic function 5 (x) := M(x ⊗ x) where M ∈ Zℓ×ℓ
2

? . Let

y = M(x ⊗ x). Suppose f2 ← Commit(2) (crsbase, x), f1 ← Commit(1) (crsbase, y), and c ← Open�ad(crs, x,M). We
parse f2 = ( [c1]1, [c2]2), f1 = [ĉ2]2, and c = ( [c∗]2, [v]2). Consider Verify�ad(crs, f2,M, f1, c). By construction of
the underlying algorithms, c∗ = T∗ (x ⊗ x), c1 = T1x, c2 = T2x, ĉ = T̂y, and v = (vec(M)T ⊗ I:+1)Z(x ⊗ x). Consider
now the verification relation Verify�ad(crs, f2,M, f1, c):

• The first verification relation follows from Eq. (3.1):

c1 ⊗ c2 = (T1x) ⊗ (T2x) = (T1 ⊗ T2) (x ⊗ x) = T∗ (x ⊗ x) = c∗ .

• For the second verification relation, we first compute

(vec(M)T ⊗ I: ) (Iℓ3 ⊗ A)Wc∗ = (vec(M)
T ⊗ I: ) (Iℓ3 ⊗ A)WT∗ (x ⊗ x)

= (vec(M)T ⊗ A)WT∗ (x ⊗ x) by Eq. (3.1)

= A(vec(M)T ⊗ I:+1)WT∗ (x ⊗ x) by Eq. (3.3).

(4.30)

Next, since 5 is (-local, by Lemma 4.37, we have that vec(M)TPquad = vec(M)T. This means

(vec(M)T ⊗ I:+1)Z = (vec(M)T ⊗ I:+1)WT∗ − (vec(M)
T ⊗ I:+1) (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(RT̂))

= (vec(M)T ⊗ I:+1)WT∗ − (vec(M)
T ⊗ I:+1) (Iℓ2 ⊗ vec(RT̂)) .

Thus, we have

(vec(M)T ⊗ I:+1)WT∗ = (vec(M)
T ⊗ I:+1)Z + (vec(M)

T ⊗ I:+1) (Iℓ2 ⊗ vec(RT̂)) .

Substituting into Eq. (4.30), and using the fact that v = (vec(M)T ⊗ I:+1)Z(x ⊗ x), we have

(vec(M)T ⊗ I: ) (Iℓ3 ⊗ A)Wc∗ = A(vec(M)T ⊗ I:+1)WT∗(x ⊗ x)

= A(vec(M)T ⊗ I:+1)
(
Z(x ⊗ x) + (Iℓ2 ⊗ vec(RT̂)) (x ⊗ x)

)
= Av + A(vec(M)T ⊗ I:+1) (Iℓ2 ⊗ vec(RT̂)) (x ⊗ x)

= Av + A(vec(M)T ⊗ I:+1) (x ⊗ x ⊗ vec(RT̂)).

(4.31)
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To complete the proof, we now have

(vec(M)T ⊗ I:+1) (x ⊗ x ⊗ vec(RT̂)) = (vec(M)T ⊗ I:+1) (x ⊗ x ⊗ Iℓ ⊗ I:+1)vec(RT̂) by Eq. (3.2)

=
(
(vec(M)T (x ⊗ x ⊗ Iℓ )) ⊗ I:+1

)
vec(RT̂) by Eq. (3.1)

=
(
(M(x ⊗ x))T ⊗ I:+1

)
vec(RT̂) by Eq. (3.4)

= (yT ⊗ I:+1)vec(RT̂) since y = M(x ⊗ x)

= RT̂y = Rĉ by Eq. (3.4).

Substituting back into Eq. (4.31), we have

(vec(M)T ⊗ I: ) (Iℓ3 ⊗ A)Wc∗ = Av + A(vec(M)T ⊗ I:+1) (x ⊗ x ⊗ vec(RT̂))

= Av + ARĉ.

and the verification relation holds.

Since both verification relations pass, the output of Verify is 1 and the claim follows. �

Theorem 4.40 (Chain Binding for Quadratic Functions). Suppose the bilateral :-Lin assumption holds with respect to

GroupGen. Then, Construction 4.38 satisfies chain binding for quadratic functions.

Proof. Similar to the proof of Theorem 4.25, we start by defining a “homogeneous” version of the chain binding for
quadratic functions security game for Construction 4.38. We define the game below:

1. On input the security parameter _, the adversary outputs the dimension ℓ , a locality set ( ⊆ [ℓ] × [ℓ], and a
pair ( 91, 92) ∈ ( .

2. The challenger samples (crsbase, td1, td2) ← SetupBase(1_, 1ℓ , 92, 91) and crs← Setup(crsbase). Then crsbase =(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
, td1 = B̂2, td2 = (B1,2,B2,2), and

crs = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2) .

The challenger gives crs to A.

3. The adversary outputs an (-local homogeneous quadratic functionM ∈ Zℓ×ℓ
2

? and a triple ( [c∗]2, [ĉ]2, [v]2).

4. The challenger outputs 1 if the following properties hold:

• Matching inputs: (B1,2 ⊗ B2,2)c∗ = 0.

• Mismatching outputs: B̂2ĉ ≠ 0.

• Validity of opening: (vec(M)T ⊗ I: ) (Iℓ3 ⊗ A)Wc∗ = ARĉ + Av.

We now show that any adversary that can win the homogeneous chain binding security game (i.e., cause the above
experiment to output 1) implies an adversary that can win the standard chain binding security game (Definition 4.35).
Like the proof of Lemma 4.26, the claim essentially follows by linearity of the verification relation. We give the formal
statement below:

Lemma 4.41. Suppose for all efficient adversaries B, there exists a negligible function negl(·) such that Pr[1 = 1] =
negl(_) in the homogeneous chain binding experiment for quadratic functions. Then, Construction 4.38 satisfies chain

binding security for quadratic functions.

Proof. Suppose there exists an adversaryA that breaks chain binding security for quadratic functions (Definition 4.35)
with advantage Y. We use A to construct an adversary B for the homogeneous chain binding game:

1. Algorithm B starts running algorithm A to obtain the input length 1ℓ , the locality set ( ⊆ [ℓ] × [ℓ], and a pair
( 91, 92) ∈ ( . It gives 1

ℓ , ( , and ( 91, 92) to the challenger to obtain the common reference string crs.
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2. Algorithm B forwards crs to A and receives a matrix M ∈ Zℓ×ℓ
2

? , two Type-II commitments f2 = ( [c1]1, [c2]2),
f ′2 = ( [c′1]1, [c

′
2]2), two Type-I commitments f1 = [ĉ]2, f

′
1 = [ĉ′]2, and two openings c = ( [c∗]2, [v]2),

c ′ = ( [c′∗]2, [v
′]2).

3. Algorithm B outputs the same functionM together with the triple(
[c∗]2 − [c

′
∗]2, [ĉ]2 − [ĉ

′]2, [v]2 − [v
′]2

)
.

In the homogeneous chain binding game, the challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1ℓ , 92, 91) and
crs← Setup�ad(crsbase, (). Thus algorithm B perfectly simulates an execution of the chain binding security game
for A. Thus, with probability Y, the outputs of algorithm A satisfies the following properties:

• Matching inputs: Project(2) (td2, f2) = Project(2) (td2, f
′
2).

• Mismatching outputs: Project(1) (td1, f1) ≠ Project(1) (td1, f
′
1).

• Validity of openings: Verify�ad(crs, f2,M, f1, c) = 1 = Verify�ad(crs, f ′2,M, f ′1, c
′).

We claim that in this case, the output in the homogeneous chain binding game is also 1:

• Parse crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and crs = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2) . In

addition, parse td1 = B̂2, td2 = (B1,2,B2,2).

• Since Verify�ad(crs, f2,M, f1, c) = 1 = Verify�ad(crs, f ′2,M, f ′1, c
′), the following two conditions hold:

– c1 ⊗ c2 = c∗ and c′1 ⊗ c′2 = c′∗.

– (vec(M)T ⊗ I: ) (Iℓ3 ⊗ A)W)c∗ = ARĉ + Av and (vec(M)T ⊗ I: ) (Iℓ3 ⊗ A)W)c′∗ = ARĉ′ + Av′.

This means that
(vec(M)T ⊗ I: ) (Iℓ3 ⊗ A)W(c∗ − c

′
∗) = AR(ĉ − ĉ′) + A(v − v′),

and the third requirement in the homogeneous chain binding experiment is satisfied.

• Since Project(2) (td2, f2) = Project(2) (td2, f
′
2), this means B1,2c1 = B1,2c

′
1 and B2,2c2 = B2,2c

′
2. This means that

(B1,2 ⊗ B2,2)c∗ = (B1,2 ⊗ B2,2) (c1 ⊗ c2) = (B1,2c1) ⊗ (B2,2c2)

= (B1,2c
′
1) ⊗ (B2,2c

′
2) = (B1,2 ⊗ B2,2) (c

′
1 ⊗ c′2) = (B1,2 ⊗ B2,2)c

′
∗.

Correspondingly, this means that (B1,2 ⊗ B2,2) (c∗ − c
′
∗) = 0, and the first requirement of the homogeneous

chain binding experiment is satisfied.

• Finally, if Project(1) (td1, f1) ≠ Project(1) (td1, f
′
1), then B̂2ĉ ≠ B̂2ĉ

′. Thus, B̂2 (ĉ − ĉ′) ≠ 0, and the second
requirement in the homogeneous game is satisfied.

Correspondingly, the output is 1 in the homogeneous evaluation binding game, and the claim follows. �

Proof of Theorem 4.40. We now return to the proof of Theorem 4.40. Let A be an efficient adversary for the
homogeneous chain binding experiment for quadratic functions. Let ℓ ∈ N be the vector dimension thatA chooses at
the beginning of the security experiment. This will determine the size of the tensorMDDH assumption in Lemma 4.46.
We now define a sequence of hybrid experiments. The sequence of experiments closely parallels those in the proof of
Theorem 4.25.

• Hyb0: This is the homogeneous chain binding experiment for quadratic functions. We give the full specification
here:

– At the beginning of the game, the adversary A outputs the input dimension ℓ , a locality set ( ⊆ [ℓ] × [ℓ],
and a pair ( 91, 92) ∈ ( .
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– The challenger samples G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_).

– The challenger samples full-rank matrices B̂,B1,B2
r
← Z2:×2:? and defines B̂∗ = B̂−1, B∗1 = B−11 , B∗2 = B−12 .

It parses B̂,B1,B2 as in Eq. (4.2) and B̂∗,B∗1,B
∗
2, as in Eq. (4.3).

– The challenger constructs the encoding matrices T̂,T1,T2 as follows:

∗ Type-I encodings: Sample Ŝ1, Ŝ2
r
← Z:×ℓ? and let T̂ = B̂∗1Ŝ1 + B̂

∗
2Ŝ2P92 ∈ Z

2:×ℓ
? .

∗ Type-II encodings: For U ∈ {1, 2}, sample SU,1, SU,2
r
← Z:×ℓ? . Let TU = B∗U,1SU,1 + B

∗
U,2SU,2P91 ∈ Z

2:×ℓ
? .

Let T∗ = T1 ⊗ T2 and set crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

– The challenger samples A r
← Z

:×(:+1)
? , R r

← Z
(:+1)×2:
? and W

r
← Z

ℓ3 (:+1)×4:2

? . Let

Z = WT∗ − (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(RT̂)) ∈ Z
ℓ3 (:+1)×ℓ2

? , (4.32)

where Pquad = P
(( )

quad
is the projection matrix from Eq. (4.25). The challenger gives the common reference

string crs = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2) to A.

– Algorithm A outputs an (-local function M ∈ Zℓ×ℓ
2

? , and a triple ( [c∗]2, [ĉ]2, [v]2).

The output of the experiment is 1 if

(B1,2 ⊗ B2,2)c∗ = 0 and B̂2ĉ ≠ 0 and (vec(M)T ⊗ I: ) (Iℓ3 ⊗ A)Wc∗ = ARĉ + Av.

• Hyb1: Same as Hyb0, except the challenger samples W as follows:

– Define matrices Dnorm and Dsf as follows:

Dnorm =


B1,1 ⊗ B2,1

B1,1 ⊗ B2,2

B1,2 ⊗ B2,1


∈ Z3:

2×4:2

? and Dsf = B1,2 ⊗ B2,2 ∈ Z
:2×4:2

? . (4.33)

– SampleWnorm
r
← Z

ℓ3 (:+1)×3:2

? and Wsf
r
← Z

ℓ3 (:+1)×:2

? and let W = WnormDnorm +WsfDsf .

Then, after the adversary outputs (M, [c∗]2, [ĉ]2, [v]2), the challenger first computes

v′ = v − (vec(M)T ⊗ I:+1)WnormDnormc∗. (4.34)

The output of the experiment is 1 if

Dsfc∗ = 0 and B̂2ĉ ≠ 0 and ARĉ + Av′ = 0.

• Hyb2: Same as Hyb1 except the challenger outputs 1 if

Dsfc∗ = 0 and B̂2ĉ ≠ 0 and Rĉ + v′ = 0.

• Hyb3: Same as Hyb2 except when constructing the CRS, the challenger samples a random nonzero vector a⊥ ∈

Z
:+1
? in the kernel of A (i.e., Aa⊥ = 0). Then, it samplesWsf,1

r
← Z

ℓ3 (:+1)×:2

? ,Wsf,2
r
← Zℓ

3×:2

? , R1
r
← Z

(:+1)×2:
? ,

and r2
r
← Z2:? . It sets

Wsf = Wsf,1 + (Wsf,2 ⊗ a⊥) and R = R1 + (r
T

2 ⊗ a⊥) = R1 + a
⊥rT2 .

The challenger then computes

Z1 = (WnormDnorm +Wsf,1Dsf)T∗ − (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(R1T̂))

Z2 = Wsf,2 (S1,2 ⊗ S2,2) (P91 ⊗ P91 ) − Pquad
(
Iℓ2 ⊗ vec(rT2T̂)

) (4.35)

and sets Z = Z1 + (Iℓ3 ⊗ a⊥)Z2.
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• Hyb4: Same as Hyb3 except when constructing the CRS, the challenger sets

crs = (crsbase, [A]1, [(Iℓ3 ⊗ A) (WnormDnorm +Wsf,1Dsf)]1, [AR1]1, [Z]2)

• Hyb5: Same as Hyb4, except the challenger samples U r
← Zℓ

3×ℓ2

? and sets

Z2 = U(P91 ⊗ P91 ) − Pquad
(
Iℓ2 ⊗ vec(rT2T̂)

)
.

• Hyb6: Same as Hyb5, except the challenger samples r2,norm, r2,sf
r
← Z:? and sets

rT2 = rT2,normB̂1 + r
T

2,sfB̂2.

Then, it sets

Z2 = U(P91 ⊗ P91 ) − Pquad
(
Iℓ2 ⊗ vec

(
rT2,normŜ1

) )
− Pquad

(
Iℓ2 ⊗ vec

(
rT2,sf Ŝ2P91

) )
.

• Hyb7: Same as Hyb6, except the challenger sets

Z2 = U(P91 ⊗ P91 ) − Pquad
(
Iℓ2 ⊗ vec

(
rT2,normŜ1

) )
.

Recall that in this experiment, the challenger still samples U r
← Zℓ

3×ℓ2

? .

We write Hyb8 (A) to denote the output distribution of an execution of hybrid Hyb8 with adversaryA. We now show
that the output distribution of each adjacent pair of hybrids is indistinguishable.

Lemma 4.42. Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1].

Proof. Since B1 and B2 are each a basis for Z2:? , it follows that B1 ⊗ B2 is a basis for Z
4:2

? . Moreover,

B1 ⊗ B2 =



B1,1 ⊗ B2,1

B1,1 ⊗ B2,2

B1,2 ⊗ B2,1

B1,2 ⊗ B2,2


=

[
Dnorm

Dsf

]
.

This means that the distribution of W is identically distributed in Hyb0 and Hyb1. It suffices to consider the outputs
of the two experiments. Suppose A outputs (M, [c∗]2, [ĉ]2, [v]2). Suppose Dsfc

∗
≠ 0. Then, the output in both

experiments is 0. Consider the case where Dsfc
∗
= 0. In this case,

Wc∗ = WnormDnormc∗ +WsfDsfc∗ = WnormDnormc∗. (4.36)

Now, in Hyb1, we have

ARĉ + Av′ = ARĉ + Av − A(vec(M)T ⊗ I:+1)WnormDnormc∗ by Eq. (4.34)

= ARĉ + Av − (vec(M)T ⊗ I: ) (Iℓ3 ⊗ A)WnormDnormc∗ by Eq. (3.3)

= ARĉ + Av − (vec(M)T ⊗ I: ) (Iℓ3 ⊗ A)Wc∗ by Eq. (4.36).

Thus, inHyb1, ifDsfc∗ = 0, thenARĉ+Av′ = 0 if and only ifARĉ+Av = (vec(M)T⊗ I: ) (Iℓ3 ⊗A)Wc∗. Correspondingly,
the output distribution of Hyb1 (A) is identical to the output distribution of Hyb0 (A). �

Lemma 4.43. Suppose the KerDH:,:+1 assumption holds in G1 with respect to GroupGen. Then, there exists a negligible

function negl(·) such that | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | ≤ negl(_).
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Proof. Suppose | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | ≥ Y for some non-negligible Y. The only difference between
Hyb1 and Hyb2 is the verification relation. Let (M, [c∗]2, [ĉ]2, [v]2) be the output of A in an execution of Hyb1 or
Hyb2. If the outputs of Hyb1 and Hyb2 differ, then it must be the case that

A(Rĉ + v′) = 0 and Rĉ + v′ ≠ 0. (4.37)

In all other cases, the output in Hyb1 and Hyb2 is identical. We use A to construct an efficient adversary B for
KerDH:,:+1:

1. On input the KerDH challenge (G, [A]1), algorithm B starts by running algorithm A. Algorithm A outputs
the input dimension ℓ , the locality set ( ⊆ [ℓ] × [ℓ], and a pair ( 91, 92) ∈ ( .

2. Next, algorithm B samples full-rank matrices B̂,B1,B2
r
← Z2:×2:? and defines B̂∗ = B̂−1, B∗1 = B−11 , and B∗2 = B−12 .

It parses the components of B̂,B1,B2 as in Eq. (4.2) and B̂∗,B∗1,B
∗
2 as in Eq. (4.3).

3. Algorithm B then constructs the encoding matrices T̂,T1,T2 as in Hyb1 and Hyb2:

• Type-I encodings: Sample Ŝ1, Ŝ2
r
← Z:×ℓ? and let T̂ = B̂∗1Ŝ1 + B̂

∗
2Ŝ2P92 ∈ Z

2:×ℓ
? .

• Type-II encodings: For U ∈ {1, 2}, sample SU,1, SU,2
r
← Z:×ℓ? and let TU = B∗U,1SU,1 + B

∗
U,2SU,2P91 .

Let T∗ = T1 ⊗ T2 and set crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

4. Algorithm B defines Dnorm and Dsf according to Eq. (4.33). It samples Wnorm
r
← Z

ℓ3 (:+1)×3:2

? and Wsf
r
←

Z
ℓ3 (:+1)×:2

? and sets W = WnormDnorm +WsfDsf . It also samples R r
← Z

(:+1)×2:
? and constructs

Z = WT∗ − (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(RT̂)) ∈ Z
ℓ3 (:+1)×ℓ2

? ,

where Pquad = P
(( )

quad
. The challenger gives the common reference string crs to A where

crs = (crsbase, [A]1, (Iℓ3 ⊗ [A]1)W, [A]1R, [Z]2) = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2)

5. After algorithm A outputs (M, [c∗]2, [ĉ]2, [v]2) algorithm B computes

[v′]2 = [v]2 − (vec(M)
T ⊗ I:+1)WnormDnorm [c∗]2

and outputs R[ĉ]2 + [v
′]2 = [Rc + v

′]2.

Since the KerDH challenger samples A r
← Z

(:+1)×:
? , the common reference string crs constructed by B is distributed

exactly as required in Hyb1 and Hyb2. By the above analysis, this means that with probability Y, algorithm A
outputs (M, [c∗]2, [ĉ]2, [v]2) that satisfies Eq. (4.37). This means Rĉ + v′ ≠ 0 but A(Rĉ + v′) = 0, where v′ =

v − (vec(M)T ⊗ I:+1)WnormDnormc∗. Correspondingly, algorithm B breaks KerDH with the same advantage Y. �

Lemma 4.44. Pr[Hyb2 (A) = 1] = Pr[Hyb3 (A) = 1].

Proof. We argue that Hyb2 and Hyb3 are identically distributed. Since Wsf,1 and R1 are uniform over their respective
domains, it follows that Wsf and R are identically distributed as in Hyb2 and Hyb3. To complete the proof, we show
that the distribution of Z in Hyb3 is identical to that in Hyb2. Suppose we construct Z according to Eq. (4.32). Then,
we have

Z = WT∗ − (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(RT̂))

= (WnormDnorm +Wsf,1Dsf + (Wsf,2 ⊗ a⊥)Dsf)T∗ − (Pquad ⊗ I:+1)
(
Iℓ2 ⊗ vec

(
(R1 + a

⊥rT2)T̂
) )

= Z1 + (Wsf,2 ⊗ a⊥)DsfT∗ − (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(a⊥rT2T̂))

(4.38)
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We analyze the components of Z in the subspace spanned by a⊥. First, using Eq. (3.3), we can write

(Wsf,2 ⊗ a⊥)DsfT∗ = (Iℓ3 ⊗ a⊥)Wsf,2DsfT∗. (4.39)

By definition, Dsf = B1,2 ⊗ B2,2 and T∗ = T1 ⊗ T2. By orthogonality, we can write

DsfT∗ = (B1,2 ⊗ B2,2) (T1 ⊗ T2)

= B1,2

(
B∗1,1S1,1 + B

∗
1,2S1,2P91

)
⊗ B2,2

(
B∗2,1S2,1 + B

∗
2,2S2,2P91

)
= (S1,2 ⊗ S2,2) (P91 ⊗ P91 ).

Substituting back into Eq. (4.39), we have

(Wsf,2 ⊗ a⊥)DsfT∗ = (Iℓ3 ⊗ a⊥)Wsf,2DsfT∗ = (Iℓ3 ⊗ a⊥)Wsf,2 (S1,2 ⊗ S2,2) (P91 ⊗ P91 ). (4.40)

For the remaining component in Eq. (4.38),

Iℓ2 ⊗ vec
(
a⊥rT2T̂

)
= Iℓ2 ⊗

[
(Iℓ ⊗ a⊥rT2)vec(T̂)

]
by Eq. (3.4)

= Iℓ2 ⊗
[
(Iℓ ⊗ a⊥) (Iℓ ⊗ rT2)vec(T̂)

]
by Eq. (3.1)

= Iℓ2 ⊗
[
(Iℓ ⊗ a⊥)vec(rT2T̂)

]
by Eq. (3.4)

=
(
Iℓ2 ⊗ (Iℓ ⊗ a⊥)

) (
Iℓ2 ⊗ vec(rT2T̂)

)
by Eq. (3.1)

=
(
Iℓ3 ⊗ a⊥

) (
Iℓ2 ⊗ vec(rT2T̂)

)
.

Combined with Eq. (3.3),

(Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(a⊥rT2T̂)) = (Pquad ⊗ I:+1)
(
Iℓ3 ⊗ a⊥

) (
Iℓ2 ⊗ vec(rT2T̂)

)
= (Iℓ3 ⊗ a⊥)Pquad

(
Iℓ2 ⊗ vec(rT2T̂)

)
.

(4.41)

Combining Eqs. (4.38), (4.40), and (4.41), we have the desired result:

Z = Z1 + (Wsf,2 ⊗ a⊥)DsfT∗ − (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(a⊥rT2T̂)) by Eq. (4.38)

= Z1 +
(
Iℓ3 ⊗ a⊥

) (
Wsf,2 (S1,2 ⊗ S2,2) (P91 ⊗ P91 ) − Pquad

(
Iℓ2 ⊗ vec(rT2T̂)

) )
by Eqs. (4.40) and (4.41)

= Z1 + (Iℓ3 ⊗ a⊥)Z2 by definition of Z2 from Eq. (4.35),

which is precisely how the challenger constructs Z in Hyb3. We conclude that the common reference string in Hyb2
and Hyb3 are identically distributed. �

Lemma 4.45. Pr[Hyb3 (A) = 1] = Pr[Hyb4 (A) = 1].

Proof. The distribution of crs in the two experiments are identical. In particular, in Hyb3,

(Iℓ3 ⊗ A)W = (Iℓ3 ⊗ A) (WnormDnorm +WsfDsf)

= (Iℓ3 ⊗ A) (WnormDnorm +Wsf,1Dsf + (Wsf,2 ⊗ a⊥)Dsf)

= (Iℓ3 ⊗ A) (WnormDnorm +Wsf,1Dsf)

since (Iℓ3 ⊗ A) (Wsf,2 ⊗ a⊥) = Wsf,2 ⊗ Aa⊥ = 0. Similarly,

AR = A(R1 + a
⊥rT2) = AR1 + Aa

⊥rT2 = AR1.

This coincides with the distribution of crs in Hyb4. �

Lemma 4.46. Suppose the tensor MDDH:,ℓ,ℓ,ℓ3 assumption holds with respect to GroupGen. Then, there exists a

negligible function negl(·) such that | Pr[Hyb4 (A) = 1] − Pr[Hyb5 (A) = 1] | = negl(_).
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Proof. Suppose | Pr[Hyb4 (A) = 1] − Pr[Hyb5 (A) = 1] | ≥ Y for some non-negligible Y. We use A to construct an
efficient adversary B forMDDH:,ℓ,ℓ,ℓ3 :

1. On input the tensorMDDH challenge (G, [S1,2]1, [S1,2]2, [S2,2]1, [S2,2]2, [S1,2⊗S2,2]2, [V]2), algorithmA samples
full-rank matrices B̂,B1,B2

r
← Z2:×2:? and defines B̂∗ = B̂−1, B∗1 = B−11 , and B∗2 = B−12 . It parses B̂,B1,B2 as in

Eq. (4.2) and B̂∗,B∗1,B
∗
2 as in Eq. (4.3). Define the matrices Dnorm and Dsf as in Eq. (4.33).

2. Algorithm A constructs the encoding matrices T̂,T1,T2 as follows:

• Type-I encodings: Sample Ŝ1, Ŝ2
r
← Z:×ℓ? and let T̂ = B̂∗1Ŝ1 + B̂

∗
2Ŝ2P92 ∈ Z

2:×ℓ
? .

• Type-II encodings: Sample S1,1, S2,1
r
← Z:×ℓ? . It constructs the encodings

[T1]1 = B∗1,1S1,1 + B
∗
1,2 [S1,2]1P91 =

[
B∗1,1S1,1 + B

∗
1,2S1,2P91

]
1

[T1]2 = B∗1,1S1,1 + B
∗
1,2 [S1,2]2P91 =

[
B∗1,1S1,1 + B

∗
1,2S1,2P91

]
2

[T2]2 = B∗2,1S2,1 + B
∗
2,2 [S2,2]2P91 =

[
B∗2,1S2,1 + B

∗
2,2S2,2P91

]
2
.

• Tensor encoding: Compute

[T∗]2 = (B
∗
1,1 ⊗ B∗2,1) (S1,1 ⊗ S2,1) + (B

∗
1,1 ⊗ B∗2,2) (S1,1 ⊗ [S2,2]2) (Iℓ ⊗ P91 )

+ (B∗1,2 ⊗ B∗2,1) ( [S1,2]2 ⊗ S2,1) (P91 ⊗ Iℓ ) + (B
∗
1,2 ⊗ B∗2,2) [S1,2 ⊗ S2,2]2 (P91 ⊗ P91 ).

Let crsbase =
(
G, [T̂]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

3. Sample A r
← Z

:×(:+1)
? and a random nonzero vector a⊥ ∈ Z:+1? in the kernel of A.

4. Sample Wnorm
r
← Z

ℓ3 (:+1)×3:2

? , Wsf,1
r
← Z

ℓ3 (:+1)×:2

? , R1
r
← Z

(:+1)×2:
? , and r2

r
← Z2:? . It sets R = R1 + a

⊥rT2. It
then computes

[Z1]2 = (WnormDnorm +Wsf,1Dsf) [T∗]2 − (Pquad ⊗ I:+1) (Iℓ2 ⊗ vec(R1T̂))

[Z2]2 = [V]2 (P91 ⊗ P91 ) − Pquad
(
Iℓ2 ⊗ vec(rT2T̂)

)
,

and [Z]2 = [Z1]2 + (Iℓ3 ⊗ a⊥) [Z2]2.

5. Finally, algorithm B gives crs = (crsbase, [A]1, [(Iℓ3 ⊗ A) (WnormDnorm +Wsf,1Dsf)]1, [AR1]1, [Z]2) to A.

6. After algorithm A outputs (M, [c∗]2, [ĉ]2, [v]2), algorithm B outputs 1 if the following hold

Dsf [c∗]2 = [0]2 and B̂2 [ĉ]2 ≠ 0 and R[ĉ]2 + [v]2 − (vec(M)
T ⊗ I:+1)WnormDnorm [c∗]2 = [0]2.

By definition, the tensor MDDH challenger samples S1,2, S2,2
r
← Z:×ℓ? . Thus, algorithm B perfectly simulates the

distribution of every component other than [Z]2 in the common reference string according to the specification of
Hyb4 and Hyb5. Thus it suffices to consider the distribution of Z in the two cases:

• Suppose V = Wsf,2 (S1,2 ⊗ S2,2) where the challenger samples Wsf,2
r
← Zℓ

3×:2

? . Then algorithm B perfectly
simulates the distribution of crs in Hyb4. In this case, algorithm B outputs 1 with probability Pr[Hyb4 (A) = 1].

• Suppose V r
← Zℓ

3×ℓ2

? . This corresponds to the distribution of Z in Hyb5, so in this case, algorithm B outputs 1
with probability Pr[Hyb5 (A) = 1].

We conclude that the distinguishing advantage of B is exactly Y and the claim follows. �

Lemma 4.47. Pr[Hyb5 (A) = 1] = Pr[Hyb6 (A) = 1].
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Proof. Since B̂ is a basis for Z2:? , the distribution of r2 inHyb6 is uniform over Z2:? , which is identical to the distribution

of r2 in Hyb5. It suffices to argue that Z2 is computed identically. This follows by the fact that B̂B̂∗ = I2: and the fact

that T̂ = B̂∗1Ŝ1 + B̂
∗
2Ŝ2P92 . In particular, we can write

Pquad
(
Iℓ2 ⊗ vec(rT2T̂)

)
= Pquad

(
Iℓ2 ⊗ vec

( (
rT2,normB̂1 + r

T

2,sfB̂2

) (
B̂∗1Ŝ1 + B̂

∗
2Ŝ2P92

) ) )
= Pquad

(
Iℓ2 ⊗ vec

(
rT2,normŜ1 + r

T

2,sf Ŝ2P92

) )
= Pquad

(
Iℓ2 ⊗ vec

(
rT2,normŜ1

) )
+ Pquad

(
Iℓ2 ⊗ vec

(
rT2,sf Ŝ2P92

) )
,

which matches the distribution in Hyb6. �

Lemma 4.48. Pr[Hyb6 (A) = 1] = Pr[Hyb7 (A) = 1].

Proof. The claim follows by properties of the projection matrix (Lemma 4.37). Specifically, we will show that the
following two distributions are identically distributed over the choice of U:{

U(P91 ⊗ P91 ) − Pquad
(
Iℓ2 ⊗ vec

(
rT2,sf Ŝ2P91

) )
: U r
← Zℓ

3×ℓ2

?

}
≡
{
U(P91 ⊗ P91 ) : U

r
← Zℓ

3×ℓ2

?

}
. (4.42)

Since ( 91, 92) ∈ ( and moreover, Pquad = P
(( )

quad
, we can appeal to Lemma 4.37 (applied to the vector rT

2,sf
Ŝ2) to conclude

that
Pquad

(
Iℓ2 ⊗ vec

(
rT2,sf Ŝ2P92

) ) (
Iℓ2 − (P91 ⊗ P91 )

)
= 0.

Now, we can write

Pquad
(
Iℓ2 ⊗ vec

(
rT2,sf Ŝ2P92

) )
= Pquad

(
Iℓ2 ⊗ vec

(
rT2,sf Ŝ2P92

) ) (
(P91 ⊗ P91 ) + Iℓ2 − (P91 ⊗ P91 )

)
= Pquad

(
Iℓ2 ⊗ vec

(
rT2,sf Ŝ2P92

) ) (
P91 ⊗ P91

)
.

This means that

U(P91 ⊗ P91 ) − Pquad
(
Iℓ2 ⊗ vec

(
rT2,sf Ŝ2P92

) )
=

(
U − Pquad

(
Iℓ2 ⊗ vec

(
rT2,sf Ŝ2P92

) ) )
(P91 ⊗ P91 ). (4.43)

Since U is uniform over Zℓ
3×ℓ2

? and independent of Pquad, r2,sf , Ŝ2, and P92 , it follows that{
U − Pquad

(
Iℓ2 ⊗ vec

(
rT2,sf Ŝ2P92

) )
: U r
← Zℓ

3×ℓ2

?

}
≡
{
U : U r

← Zℓ
3×ℓ2

?

}
. (4.44)

Eq. (4.42) now follows by combining Eqs. (4.43) and (4.44). �

Lemma 4.49. There exists a negligible function negl(·) such that Pr[Hyb7 (A) = 1] = negl(_).

Proof. By construction inHyb7, the components of crs are independent of the vector r2,sf . Thismeans that the challenger
in Hyb7 can defer the sampling of r2,sf until after the adversary outputs (M, [c∗]2, [ĉ]2, [v]2). For the challenger to
output 1 in Hyb7, it must be the case that B̂2ĉ ≠ 0 and Rĉ + v′ = 0, where v′ = v − (vec(M)T ⊗ I:+1)WnormDnormc∗.
We argue that when B̂2ĉ ≠ 0, the probability that Rĉ + v′ = 0 is negligible when taken over the choice of r2,sf . Since
R = R1 + a

⊥rT2 = R1 + a
⊥r2,normB̂1 + a

⊥rT
2,sf

B̂2, the equation Rĉ + v′ = 0 holds only if

a⊥ · rT2,sfB̂2ĉ = −v
′ − R1ĉ − a

⊥ · rT2,normB̂1ĉ ∈ Z
:+1
? .

Since B̂2ĉ ≠ 0 and r2,sf
r
← Z:? , the distribution of rT

2,sf
B̂2ĉ is uniform over Z? . Finally, since a

⊥
≠ 0 and the challenger

samples r2,sf
r
← Z:? after all other quantities have been fixed, we conclude that

Pr
[
a⊥ · rT2,sfB̂2ĉ = −v

′ − R1ĉ − a
⊥ · rT2,normB̂1ĉ : r2,sf

r
← Z:?

]
≤

1

?
= negl(_). �

By Lemmas 4.42 to 4.49, we conclude that for all efficient adversariesA, Pr[Hyb0 (A) = 1] ≤ negl(_). This means that
Construction 4.38 satisfies homogeneous chain binding for quadratic functions. Finally, since the vector dimension
ℓ = poly(_), the bilateral :-Lin assumption implies the MDDH:,ℓ,ℓ,ℓ3 assumption in G2 (Lemma 3.10 and Remark 3.8)
as well as the :-KerLin assumption in G1. Theorem 4.40 now follows from Lemma 4.41. �
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5 Functional Commitments for all Circuits

In this section, we describe how to use our projective chainable commitments for to obtain a functional commitment
for arithmetic circuits. In our construction, we will use the following representation for arithmetic circuits:

Definition 5.1 (Arithmetic Circuit Representation). Let R be a ring, and let � : Rℓ → R< be an arithmetic circuit
(consisting of binary addition and multiplication gates) with B wires. We define the “next-wire” matrix M� ∈

R (B+1)×(B+1)
2
associated with � as follows:

• Index each wire in � in topological order. Specifically, the input wires are associated with the indices 1, . . . , ℓ ,
and the output wires are associated with indices B −< + 1, . . . , B . The value of each intermediate wire 8 is
a (quadratic) function of the values of the wires indexed {1, . . . , 8 − 1}. We assume that there is a canonical
topological ordering for the wires of � .

• For an input x ∈ Rℓ , let z ∈ RB be the vector of wire values associated with � (x) under the canonical wire
ordering. Let ẑ =

[
1
z

]
. In the following description, we write Î0 = 1 to refer to the first entry of ẑ and Î1, . . . , ÎB

to refer to the remaining entries.

• Let ( = {( 9, 9 + 1) : 9 ∈ {ℓ + 1, . . . , B}}. We defineM� ∈ R
(B+1)×(B+1) to be an (-local homogeneous quadratic

mapping that satisfies M� (ẑ ⊗ ẑ) = ẑ:

– For 8 ∈ {0, . . . , ℓ}, the 8th row ofM� implements the identity mapping Î8 ↦→ Î0Î8 .

– For 8 ∈ {ℓ + 1, . . . , B}, the 8th row of M� implements the quadratic function associated with the gate
computing the 8th wire of � . Since we index the wires of � in topological order, the value of the 8th wire is
a quadratic function of the values of wires 1, . . . , 8 − 1, or equivalently, the variables Î1, . . . , Î8−1. Finally,
since we defined Î0 = 1, we can express Î8 as a homogeneous quadratic function of Î0, . . . , Î8−1.

By construction, for all 9 ≥ ℓ + 1, the first 9 + 1 outputs of M� only depend on the first 9 values of ẑ, so the
function M� is (-local, as desired.

Construction 5.2 (Functional Commitment for Arbitrary Functions). Our functional commitment scheme will rely
on the projective commitments and the associated proof systems from Section 4:

• Let FCbase =
(
SetupBase, SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)

)
be the base projective com-

mitment scheme (Definition 4.3).

• Let FCpre =
(
SetupPre,OpenPre,VerifyPre

)
be a prefix-checking proof system for FCbase (Definition 4.13).

• Let FClin =
(
SetupLin,OpenLin,VerifyLin

)
be a chainable proof system for local linear functions over FCbase

(Definition 4.20).

• Let FCquad =
(
Setup�ad,Open�ad,Verify�ad

)
be a chainable proof system for local quadratic functions

over FCbase (Definition 4.35).

We construct our functional commitment scheme FC = (Setup,Commit, Eval,Verify) for arithmetic circuits as follows:

• Setup(1_, 1ℓ , 1B ): On input the security parameter _, the input length ℓ , and the circuit size B , the setup algorithm
starts by sampling a CRS for the base projective commitment scheme crsbase ← SetupBase(1_, 1B+1). It samples
parameters for each of the underlying proof systems:

– crspre ← SetupPre(crsbase, ℓ + 1).

– crslin ← SetupLin(crsbase, (lin) where (lin = {( 9, 9) : 9 ∈ [B + 1]}.

– crsquad ← Setup�ad(crsbase, (quad) where (quad = {( 9, 9 + 1) : 9 ∈ {ℓ + 1, . . . , B}}.

The setup algorithm outputs
crs =

(
1B , crsbase, crspre, crslin, crsquad

)
.

The input ring associated with crs is the same as that associated with crsbase.
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• Commit(crs, x): On input the common reference string crs =
(
1B , crsbase, crspre, crslin, crsquad

)
, an input x ∈ Rℓ

(where ℓ ≤ B), the commit algorithm outputs the commitment

fin ← Commit
(1)

base
(crsbase, x̂) where x̂ =

[
1
x

0B−ℓ

]
∈ RB+1 (5.1)

and the state st = x̂.

• Eval(crs, st,�): On input the common reference string crs =
(
1B , crsbase, crspre, crslin, crsquad

)
, the state st = x̂

(parsed into x ∈ Rℓ according to Eq. (5.1)), and an arithmetic circuit � : Rℓ → R< of size B , the evaluation
algorithm starts by computing the following quantities:

– Let z ∈ RB be the vector of wire values associated with� (x) (as defined in Definition 5.1), and let ẑ =
[
1
z

]
.

– Compute commitments f1 ← Commit(1) (crsbase, ẑ) and f2 ← Commit(2) (crsbase, ẑ) to the wire values ẑ.

Then, it prepares the following openings:

– Input consistency: Compute cpre ← OpenPre(crspre, x̂, ẑ).

– Internal consistency: Compute clin ← OpenLin(crslin, ẑ, IB+1).

– Gate consistency: Compute cquad ← Open�ad(crsquad, ẑ,M� ), where M� is the “next-wire” matrix
associated with � (Definition 5.1).

– Output consistency: Let Pout = diag
(
[01×(B+1−<) | 11×<]

)
∈ {0, 1} (B+1)×(B+1) be the matrix that projects

onto the last< components. Compute the opening cout ← OpenLin(crslin, ẑ, Pout).

Finally, it outputs the proof c = (f1, f2, cpre, clin, cquad, cout).

• Verify(crs, fin,�, y, c): On input the common reference string crs =
(
1B , crsbase, crspre, crslin, crsquad

)
, the input

commitment fin, a function 5 : Rℓ → R< , an output y ∈ R< , and a proof c = (f1, f2, cpre, clin, cquad, cout), the

verification algorithm computes fout ← Commit(2) (crsbase,
[
0
y

]
) and checks each of the following properties:

– Input consistency: VerifyPre(crspre, fin, f1, cpre) = 1.

– Internal consistency: VerifyLin(crslin, f1, IB+1, f2, clin) = 1.

– Gate consistency: Verify�ad(crsquad, f2,M� , f1, cquad) = 1, whereM� is the next-wire matrix associ-
ated with � (Definition 5.1).

– Output consistency: VerifyLin(crslin, f1, Pout, fout, cout) = 1, where Pout = diag
(
[01×(B+1−<) | 11×<]

)
.

The verification algorithm outputs 1 if all of the above checks pass and outputs 0 otherwise.

Theorem 5.3 (Correctness). If FCpre, FClin, and FCquad are correct, then Construction 5.2 is correct.

Proof. Let _, ℓ, B ∈ N. Let crs ← Setup(1_, 1ℓ , 1B ). Let R be the input ring associated with crs and let � : Rℓ → R<

be an arbitrary arithmetic circuit of size B . Take any x ∈ Rℓ . Suppose (fin, st) ← Commit(crs, x) and c ←

Eval(crs, st,�). By construction, crs =
(
1B , crsbase, crspre, crslin, crsquad

)
, fin ← Commit(1) (crsbase, x̂) where x̂ =

[
1
x

]
,

and c = (f1, f2, cpre, clin, cquad, cout). In addition, f1 ← Commit(1) (crsbase, ẑ) and f2 ← Commit(2) (crsbase, ẑ).
Consider the output of Verify(crs, fin,�,� (x), c).

• Input consistency: By definition, ẑ =

[
1
z

]
, where z is the vector of wire values associated with � (x). By

definition, the first ℓ components of z is exactly x. This means x̂ and ẑ share a common prefix of length ℓ + 1.
Since cpre ← OpenPre(crspre, x̂, ẑ), correctness of FCpre now says that VerifyPre(crspre, fin, f1, cpre) = 1.

• Internal consistency: Since f1 and f2 are both commitments to ẑ, the identity mapping ẑ ↦→ IB+1ẑ is (lin-local,
and clin ← OpenLin(crslin, ẑ, IB+1), correctness of FClin implies VerifyLin(crslin, f1, IB+1, f2, clin) = 1.

• Gate consistency: From Definition 5.1, the mapping M� is (quad-local and moreover, M� ẑ = ẑ. Since
cquad ← Open�ad(crsquad, ẑ,M� ), correctness of FCquad implies Verify�ad(crsquad, f2,M� , f1, cquad) = 1.
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Hybrid ( 91, 92) Project(1) Project(2) Justification

Hybreal — ✗ ✗

Hybsf (ℓ + 1, ℓ + 1) ✗ ✗ Mode Indistinguishability (Definition 4.4)

Hybℓ+1,0 (ℓ + 1, ℓ + 1) ✓ ✗ Prefix Matching (Definition 4.13)

Hyb8,0 (8, 8) ✓ ✗

Hyb8,1 (8, 8) ✓ ✓ Linear Chain Binding (Definition 4.20)
Hyb8,2 (8, 8) ✗ ✓ Dropping Verification Condition
Hyb8,3 (8 + 1, 8) ✗ ✓ Type-I Indistinguishability (Definition 4.5)
Hyb8,4 (8 + 1, 8) ✓ ✓ Quadratic Chain Binding (Definition 4.35)
Hyb8,5 (8 + 1, 8) ✓ ✗ Dropping Verification Condition
Hyb8+1,0 (8 + 1, 8 + 1) ✓ ✗ Type-II Indistinguishability (Definition 4.6)

Table 2: Overview of main hybrid experiments in the proof of Theorem 5.4. For each hybrid, we provide the Type-I
projection index 91 and the Type-II projection index 92 associated with the (semi-functional) common reference string.
We also indicate whether each experiment is checking the consistency of the Type-I commitments using Project(1)

(which requires knowledge of td1) and the consistency of the Type-II commitments using Project(2) (which requires
knowledge of td2). The justification column lists the reason why the adversary’s advantage from one experiment to
the next cannot decrease by a non-negligible amount.

• Output consistency: By the convention in Definition 5.1, the last < components of ẑ correspond to the
outputs of � (x). This means that Poutẑ =

[
0
y

]
, where y = � (x). Next, the verification algorithm com-

putes fout ← Commit(2) (crsbase,
[
0
y

]
). In addition, Pout is diagonal so it is also (lin-local. Since cout ←

OpenLin(crslin, f1, Pout, fout, cout), correctness of FClin implies that VerifyLin(crslin, f1, Pout, fout, cout) = 1.

Since each of the checks pass, the verification algorithm outputs 1 and correctness holds. �

Theorem 5.4 (Binding). Suppose FCbase satisfies mode indistinguishability, Type-I indistinguishability, Type-II indistin-

guishability, and Type-II collision resistance. Suppose also that FCpre, FClin, and FCquad are secure. Then, Construction 5.2

is binding.

Proof. We start by defining a sequence of hybrid experiments:

• Hybreal: This is the real binding experiment.

1. Algorithm A starts by outputting the input length 1ℓ and the circuit size 1B .

2. The challenger samples the base common reference string crsbase ← SetupBase(1_, 1B+1) and

crspre ← SetupPre(crsbase, ℓ + 1)

crslin ← SetupLin(crsbase, (lin)

crsquad ← Setup�ad(crsbase, (quad),

where the locality sets (lin and (quad are defined as in Construction 5.2. The challenger replies to the
adversary with crs =

(
1B , crsbase, crspre, crslin, crsquad

)
. Let R be the input ring associated with crsbase.

3. The adversaryA outputs an input commitment fin, an arithmetic circuit� : Rℓ → R< , vectors y, y′ ∈ R< ,
and openings c = (f1, f2, cpre, clin, cquad, cout) and c

′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out).

4. The output of the experiment is 1 if y ≠ y′, Verify(crs, fin,�, y, c) = 1 and Verify(crs, fin,�, y
′, c ′) = 1.

• Hybsf : Same as Hybreal, except the challenger samples crsbase in semi-functional mode:

(crsbase, td1, td2) ← SetupSF(1_, 1B+1, ℓ + 1, ℓ + 1).
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• Hyb8,0 for 8 ∈ {ℓ + 1, . . . , B + 1}: Same as Hybsf except when setting up the CRS, the challenger samples

(crsbase, td1, td2) ← SetupSF(1_, 1B+1, 8, 8) .

Moreover, the output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, fin,�, y, c) = 1 and Verify(crs, fin,�, y
′, c ′) = 1.

– Project(1) (td1, f1) = Project(1) (td1, f
′
1).

• Hyb8,1 for 8 ∈ {ℓ + 1, . . . , B}: Same as Hyb8,0 except the output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, fin,�, y, c) = 1 and Verify(crs, fin,�, y
′, c ′) = 1.

– Project(1) (td1, f1) = Project(1) (td1, f
′
1).

– Project(2) (td2, f2) = Project(2) (td2, f
′
2).

• Hyb8,2 for 8 ∈ {ℓ + 1, . . . , B}: Same as Hyb8,1 except the output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, fin,�, y, c) = 1 and Verify(crs, fin,�, y
′, c ′) = 1.

– Project(2) (td2, f2) = Project(2) (td2, f
′
2).

In particular, the challenger no longer checks the projection on f1, f
′
1.

• Hyb8,3 for 8 ∈ {ℓ + 1, . . . , B}: Same as Hyb8,2 except when setting up the CRS, the challenger samples

(crsbase, td1, td2) ← SetupSF(1_, 1B+1, 8 + 1, 8).

• Hyb8,4 for 8 ∈ {ℓ + 1, . . . , B}: Same as Hyb8,3 except the output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, fin,�, y, c) = 1 and Verify(crs, fin,�, y
′, c ′) = 1.

– Project(1) (td1, f1) = Project(1) (td1, f
′
1).

– Project(2) (td2, f2) = Project(2) (td2, f
′
2).

• Hyb8,5 for 8 ∈ {ℓ + 1, . . . , B}: Same as Hyb8,4 except the output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, fin,�, y, c) = 1 and Verify(crs, fin,�, y
′, c ′) = 1.

– Project(1) (td1, f1) = Project(1) (td1, f
′
1).

In particular, the challenger no longer checks the projection on f2, f
′
2.

• Hybfinal: Same as HybB+1,0, where the challenger samples

(crsbase, td1, td2) ← SetupSF(1_, 1B+1, B + 1, B + 1).

At the end of the experiment, after the adversary outputs f2, � , y, y
′ and c, c ′, the challenger computes

fout ← Commit(2)
(
crsbase,

[
0
y

] )
and f ′out ← Commit(2)

(
crsbase,

[
0
y′
] )
.

The output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, fin,�, y, c) = 1 and Verify(crs, fin,�, y
′, c ′) = 1.

– Project(1) (td1, f1) = Project(1) (td1, f
′
1).

– Project(2) (td2, fout) = Project(2) (td2, f
′
out).
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Take any efficient adversary A for the binding game. Let ℓ be the input length and B be the circuit size chosen by A.
We write Hyb8 (A) to denote the output distribution of an execution of Hyb8 with adversary A. We now show that
the probability of a hybrid outputting 1 cannot decrease by a non-negligible amount as we move from one hybrid to
the next. Then, we show that in the final hybrid Hybfinal, the probability that the challenger outputs 1 is negligible
by Type-II collision-resistance of the underlying projective commitment (Definition 4.7). We summarize the key
sequence of hybrid transitions in Table 2.

Lemma 5.5. Suppose FCbase satisfies mode indistinguishability (Definition 4.4). Then there exists a negligible function

negl(·) such that | Pr[Hybreal (A) = 1] − Pr[Hybsf (A) = 1] | = negl(_).

Proof. Suppose | Pr[Hybreal (A) = 1] − Pr[Hybsf (A) = 1] | ≥ Y for some non-negligible Y. We use A to construct an
adversary B for the mode indistinguishability game:

1. Algorithm B starts running algorithm A which starts by outputting the input length 1ℓ and the circuit size 1B .
Algorithm B sends (1B+1, ℓ + 1, ℓ + 1) to the mode indistinguishability challenger and receives crsbase.

2. Algorithm B samples

crspre ← SetupPre(crsbase, ℓ + 1)

crslin ← SetupLin(crsbase, (lin)

crsquad ← Setup�ad(crsbase, (quad),

It give crs =
(
1B , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment fin, an arithmetic circuit � : Rℓ → R< , vectors y, y′ ∈ R< , and
openings c = (f1, f2, cpre, clin, cquad, cout) and c

′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out).

4. Algorithm B outputs 1 if y ≠ y′, Verify(crs, fin,�, y, c) = 1 and Verify(crs, fin,�, y
′, c ′) = 1. Otherwise, it

outputs 0.

By construction, if the challenger sampled crsbase ← SetupBase(1_, 1B+1), the algorithm B perfectly simulates
an execution of Hybreal for A and outputs 1 with probability Pr[Hybreal (A) = 1]. If the challenger sampled
crsbase ← SetupSF(1_, 1B+1, ℓ + 1, ℓ + 1), then algorithm B perfectly simulates an execution of Hybsf forA and outputs
1 with probability Pr[Hybsf (A) = 1]. Thus, algorithm B breaks mode indistinguishability with advantage Y. �

Lemma 5.6. Suppose FCpre satisfies prefix-matching security (Definition 4.13). Then there exists a negligible function

negl(·) such that | Pr[Hybsf (A) = 1] − Pr[Hybℓ+1,0 (A) = 1] | = negl(_).

Proof. Suppose | Pr[Hybsf (A) = 1] − Pr[Hybℓ+1,0 (A) = 1] | ≥ Y for some non-negligible Y. By construction, the com-
mon reference string crs in the two experiments is identically distributed. Thus, it must be the case that with probability
at least Y, algorithm A will output fin, � , y, y

′, c = (f1, f2, cpre, clin, cquad, cout) and c
′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out)

such that

Verify(crs, fin,�, y, c) = 1 = Verify(crs, fin,�, y
′, c ′) and Project(1) (td1, f1) ≠ Project(1) (td1, f

′
1). (5.2)

In all other cases, the outputs of Hybsf and Hybℓ+1,0 are identical. We useA to construct an adversary B for the prefix
matching security game:

1. Algorithm B runs algorithmA, which starts by outputting the input length 1ℓ and the circuit size 1B . Algorithm
B forwards (1B+1, ℓ + 1) to the prefix matching challenger and receives (crsbase, crspre).

2. Algorithm B samples crslin ← SetupLin(crsbase, (lin) and crsquad ← Setup�ad(crsbase, (quad). It gives the
common reference string crs =

(
1B , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment fin, an arithmetic circuit � : Rℓ → R< , vectors y, y′ ∈ R< , and
openings c = (f1, f2, cpre, clin, cquad, cout) and c

′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out).
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4. Algorithm B samples a bit 1 r
← {0, 1}. If 1 = 0, it outputs (fin, f1) and the opening cpre. If 1 = 1, it outputs

(fin, f
′
1) and the opening c ′pre.

The prefix-matching security challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1B+1, ℓ + 1, ℓ + 1), so algorithm B
perfectly simulates an execution of Hybsf and Hybℓ,0 for A. Thus, with probability at least Y, the quantities output by
A satisfy Eq. (5.2). Then, the following hold:

• If Verify(crs, fin,�, y, c) = 1 = Verify(crs, fin,�, y
′, c ′), then we have that VerifyPre(crspre, fin, f1, cpre) = 1 and

VerifyPre(crspre, fin, f
′
1, c
′
pre) = 1.

• If Project(1) (td1, f1) ≠ Project(1) (td1, f
′
1), then it must be the case that

either Project(1) (td1, fin) ≠ Project(1) (td1, f1) or Project(1) (td1, fin) ≠ Project(1) (td1, f
′
1).

Since algorithm B samples the bit 1 uniformly at random, it breaks prefix matching with probability at least Y/2. �

Lemma 5.7. Suppose FClin satisfies linear chain binding (Definition 4.20). Then there exists a negligible function negl(·)

such that for all 8 ∈ {ℓ + 1, . . . , B}, | Pr[Hyb8,0 (A) = 1] − Pr[Hyb8,1 (A) = 1] | = negl(_).

Proof. Suppose there exists an index 8 ∈ {ℓ + 1, . . . , B} where | Pr[Hyb8,0 (A) = 1] − Pr[Hyb8,1 (A) = 1] | ≥ Y for some
non-negligible Y. By construction, the common reference string in the two experiments is identically distributed. Thus,
it must be the case that with probability at least Y, algorithmA will output fin,� , y, y

′, c = (f1, f2, cpre, clin, cquad, cout)

and c ′ = (f ′1, f
′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out) such that

• Verify(crs, fin,�, y, c) = 1 = Verify(crs, fin,�, y
′, c ′).

• Project(1) (td1, f1) = Project(1) (td1, f
′
1).

• Project(2) (td2, f2) ≠ Project(2) (td2, f
′
2).

In all other cases, the outputs of Hyb8,0 and Hyb8,1 are identical. We use A to construct an adversary B for the linear
chain binding game:

1. Algorithm B runs algorithm A, which starts by outputting the input length 1ℓ and the circuit size 1B . Algo-
rithm B provides 1B+1, the locality set (lin and indices (8, 8) to the linear chain binding adversary. It receives
(crsbase, crslin).

2. Algorithm B samples crsquad ← Setup�ad(crsbase) and crspre ← SetupPre(crsbase, ℓ +1). It gives the common
reference string crs =

(
1B , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment fin, an arithmetic circuit � : Rℓ → R< , vectors y, y′ ∈ R< , and
openings c = (f1, f2, cpre, clin, cquad, cout) and c

′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out).

4. Algorithm B outputs the matrix IB+1, the Type-I commitments f1, f
′
1, the Type-II commitments f2, f

′
2, and the

openings clin, c
′
lin
.

First, we note that B is a valid adversary for the chain binding security game. Namely, (8, 8) ∈ (lin, and moreover,
IB+1 is (lin-local. Then, the challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1B+1, 8, 8), so algorithm B perfectly
simulates an execution of Hyb8,0 and Hyb8,1 forA. Thus, with probability at least Y, the quantities output byA satisfy
the properties enumerated above. Then, the following hold:

• If Verify(crs, fin,�, y, c) = 1 = Verify(crs, fin,�, y
′, c ′), then we have that VerifyLin(crslin, f1, IB+1, f2, clin) = 1

and VerifyLin(crslin, f
′
1, IB+1, f

′
2, c
′
lin
) = 1.

• Project(1) (td1, f1) = Project(1) (td1, f
′
1).

• Project(2) (td2, f2) ≠ Project(2) (td2, f
′
2).
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These conditions precisely coincide with the requirements of the linear chain binding game, so we conclude that
algorithm B succeeds with advantage Y. �

Lemma 5.8. For all 8 ∈ {ℓ + 1, . . . , B}, Pr[Hyb8,1 (A) = 1] ≤ Pr[Hyb8,2 (A) = 1].

Proof. The verification conditions in Hyb8,1 is a strict superset of those in Hyb8,2. Correspondingly, if Hyb8,1 (A)
outputs 1, then the same is true for Hyb8,2 (A) and the claim holds. �

Lemma 5.9. Suppose FCbase satisfies Type-I indistinguishability (Definition 4.5). Then there exists a negligible function

negl(·) such that for all 8 ∈ {ℓ + 1, . . . , B}, | Pr[Hyb8,2 (A) = 1] − Pr[Hyb8,3 (A) = 1] | = negl(_).

Proof. Suppose there exists an index 8 ∈ {ℓ + 1, . . . , B} where | Pr[Hyb8,2 (A) = 1] − Pr[Hyb8,3 (A) = 1] | ≥ Y for
some non-negligible Y. We use A to construct an efficient adversary B that breaks Type-I indistinguishability of
Construction 4.8:

1. Algorithm B runs algorithmA, which starts by outputting the input length 1ℓ and the circuit size 1B . Algorithm
B forwards 1B+1, the Type-I indices (8, 8 + 1), and the Type-II index 8 to its challenger. It receives the base
common reference string crsbase and the Type-II projection trapdoor td2.

2. Algorithm B samples

crspre ← SetupPre(crsbase, ℓ + 1)

crslin ← SetupLin(crsbase, (lin)

crsquad ← Setup�ad(crsbase, (quad),

It give crs =
(
1B , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment fin, an arithmetic circuit � : Rℓ → R< , vectors y, y′ ∈ R< , and
openings c = (f1, f2, cpre, clin, cquad, cout) and c

′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out).

4. AlgorithmB outputs 1 if y ≠ y′,Verify(crs, fin,�, y, c) = 1,Verify(crs, fin,�, y
′, c ′) = 1, andProject(2) (td2, f2) =

Project(2) (td2, f
′
2). Otherwise, it outputs 0.

If the challenger sampled crsbase ← SetupSF(1_, 1B+1, 8, 8), the algorithm B perfectly simulates an execution of Hyb8,2
forA and outputs 1 with probability Pr[Hyb8,2 (A) = 1]. If the challenger sampled crsbase ← SetupSF(1_, 1B+1, 8 +1, 8),
then algorithm B perfectly simulates an execution of Hyb8,3 for A and outputs 1 with probability Pr[Hyb8,3 (A) = 1].
Correspondingly, algorithm B breaks Type-I indistinguishability with advantage Y. �

Lemma 5.10. Suppose FCquad satisfies quadratic chain binding (Definition 4.35). Then there exists a negligible function

negl(·) such that for all 8 ∈ {ℓ + 1, . . . , B}, | Pr[Hyb8,3 (A) = 1] − Pr[Hyb8,4 (A) = 1] | = negl(_).

Proof. Suppose there exists an index 8 ∈ {ℓ + 1, . . . , B} where | Pr[Hyb8,3 (A) = 1] − Pr[Hyb8,4 (A) = 1] | ≥ Y for some
non-negligible Y. By construction, the common reference string in the two experiments is identically distributed. Thus,
it must be the case that with probability at least Y, algorithmA will output fin,� , y, y

′, c = (f1, f2, cpre, clin, cquad, cout)

and c ′ = (f ′1, f
′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out) such that

• Verify(crs, fin,�, y, c) = 1 = Verify(crs, fin,�, y
′, c ′).

• Project(1) (td1, f1) ≠ Project(1) (td1, f
′
1).

• Project(2) (td2, f2) = Project(2) (td2, f
′
2).

In all other cases, the outputs of Hyb8,3 and Hyb8,4 are identical. We use A to construct an adversary B for the
quadratic chain binding game:
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1. Algorithm B runs algorithmA, which starts by outputting the input length 1ℓ and the circuit size 1B . Algorithm
B sends 1B+1, the locality set (quad, and indices (8, 8 + 1) to the quadratic chain binding adversary. It receives
(crsbase, crsquad).

2. Algorithm B samples crslin ← SetupLin(crsbase) and crspre ← SetupPre(crsbase, ℓ + 1). It gives the common
reference string crs =

(
1B , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment fin, an arithmetic circuit � : Rℓ → R< , vectors y, y′ ∈ R< , and
openings c = (f1, f2, cpre, clin, cquad, cout) and c

′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out).

4. Algorithm B outputs the matrixM� , the Type-II commitments f2, f
′
2, the Type-I commitments f1, f

′
1, and the

openings cquad, c
′
quad

.

First, we note that B is a valid adversary for the chain binding security game. From Definition 5.1, the “next-wire”
matrix M� is ( 9, 9 + 1)-local for all 9 ≥ ℓ + 1. In particular, this means that M� is (quad-local and moreover, that
(8, 8 + 1) ∈ (quad. Then, the chain-binding challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1B+1, 8 + 1, 8) Thus,
algorithm B perfectly simulates an execution of Hyb8,3 and Hyb8,4 for A, so with probability at least Y, the quantities
output by A satisfy the properties enumerated above. Then, the following hold:

• If Verify(crs, fin,�, y, c) = 1 = Verify(crs, fin,�, y
′, c ′), then Verify�ad(crsquad, f2,M� , f1, cquad) = 1 and

Verify�ad(crsquad, f
′
2,M� , f

′
1, c
′
quad
) = 1.

• Project(1) (td1, f1) ≠ Project(1) (td1, f
′
1).

• Project(2) (td2, f2) = Project(2) (td2, f
′
2).

These conditions precisely coincide with the requirements of the quadratic chain binding game, so we conclude that
algorithm B succeeds with advantage Y. �

Lemma 5.11. For all 8 ∈ {ℓ + 1, . . . , B}, Pr[Hyb8,4 (A) = 1] ≤ Pr[Hyb8,5 (A) = 1].

Proof. The verification conditions in Hyb8,4 is a strict superset of those in Hyb8,5. Correspondingly, if Hyb8,4 (A)
outputs 1, then the same is true for Hyb8,5 (A) and the claim holds. �

Lemma 5.12. Suppose FCbase satisfies Type-II indistinguishability (Definition 4.6). Then there exists a negligible function

negl(·) such that for all 8 ∈ {ℓ + 1, . . . , B}, | Pr[Hyb8,5 (A) = 1] − Pr[Hyb8+1,0 (A) = 1] | = negl(_).

Proof. Suppose there exists an index 8 ∈ {ℓ + 1, . . . , B} where | Pr[Hyb8,5 (A) = 1] − Pr[Hyb8+1,0 (A) = 1] | ≥ Y for
some non-negligible Y. We use A to construct an efficient adversary B that breaks Type-II indistinguishability of
Construction 4.8:

1. Algorithm B runs algorithmA, which starts by outputting the input length 1ℓ and the circuit size 1B . Algorithm
B forwards 1B+1, the Type-I index 8 + 1, and two Type-II indices (8, 8 + 1) to its challenger. It receives the base
common reference string crsbase and the Type-I projection trapdoor td1.

2. Algorithm B samples

crspre ← SetupPre(crsbase, ℓ + 1)

crslin ← SetupLin(crsbase, (lin)

crsquad ← Setup�ad(crsbase, (quad),

It give crs =
(
1B , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment fin, an arithmetic circuit � : Rℓ → R< , vectors y, y′ ∈ R< , and
openings c = (f1, f2, cpre, clin, cquad, cout) and c

′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out).
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4. AlgorithmB outputs 1 if y ≠ y′,Verify(crs, fin,�, y, c) = 1,Verify(crs, fin,�, y
′, c ′) = 1, andProject(1) (td1, f1) =

Project(1) (td1, f
′
1). Otherwise, it outputs 0.

If the challenger sampled crsbase ← SetupSF(1_, 1B+1, 8+1, 8), the algorithmB perfectly simulates an execution ofHyb8,5
for A and outputs 1 with probability Pr[Hyb8,5 (A) = 1]. If the challenger sampled crsbase ← SetupSF(1_, 1B+1, 8 +
1, 8 + 1), then algorithm B perfectly simulates an execution of Hyb8+1,0 for A and outputs 1 with probability
Pr[Hyb8+1,0 (A) = 1]. Correspondingly, algorithm B breaks Type-II indistinguishability with advantage Y. �

Lemma 5.13. Suppose FClin satisfies satisfies linear chain binding (Definition 4.20). Then there exists a negligible

function negl(·) such that | Pr[HybB+1,0 (A) = 1] − Pr[Hybfinal (A) = 1] | = negl(_).

Proof. This proof is similar to the proof of Lemma 5.7. Suppose | Pr[HybB+1,0 (A) = 1] − Pr[Hybfinal (A) = 1] | ≥ Y

for some non-negligible Y. By construction, the common reference string in the two experiments is identically
distributed. Thus, it must be the case that with probability at least Y, algorithm A will output fin, � , y, y

′, c =

(f1, f2, cpre, clin, cquad, cout) and c
′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out) such that

• Verify(crs, fin,�, y, c) = 1 = Verify(crs, fin,�, y
′, c ′).

• Project(1) (td1, f1) = Project(1) (td1, f1).

• Project(2) (td2, fout) ≠ Project(2) (td2, f
′
out), where

fout ← Commit(2)
(
crsbase,

[
0
y

] )
and f ′out ← Commit(2)

(
crsbase,

[
0
y′
] )
.

In all other cases, the outputs of HybB+1,0 and Hybfinal are identical. We use A to construct an adversary B for the
linear chain binding game:

1. Algorithm B runs algorithmA, which starts by outputting the input length 1ℓ and the circuit size 1B . Algorithm
B forwards 1B+1, the locality set (lin, and indices (B + 1, B + 1) to the linear chain binding challenger. It receives
(crsbase, crslin).

2. Algorithm B samples crsquad ← Setup�ad(crsbase) and crspre ← SetupPre(crsbase, ℓ +1). It gives the common
reference string crs =

(
1B , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment fin, an arithmetic circuit � : Rℓ → R< , vectors y, y′ ∈ R< , and
openings c = (f1, f2, cpre, clin, cquad, cout) and c

′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out).

4. Algorithm B outputs the matrix Pout, the Type-I commitments f1, f
′
1, the Type-II commitments fout, f

′
out

(computed as in Section 5), and the openings cout, c
′
out.

First, we note that B is a valid adversary for the chain binding security game. Since Pout is a diagonal matrix, it is (lin-
local, and moreover, (B + 1, B + 1) ∈ (lin. Thus, the challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1B+1, B + 1, B + 1),
and algorithm B perfectly simulates an execution of HybB+1,0 and Hybfinal forA. Thus, with probability at least Y, the
quantities output by A satisfy the properties enumerated above. Then, the following hold:

• If Verify(crs, fin,�, y, c) = 1 = Verify(crs, fin,�, y
′, c ′), then we have that VerifyLin(crslin, f1, Pout, fout, cout) =

1 and VerifyLin(crslin, f
′
1, IB , f

′
out, c

′
out) = 1.

• Project(1) (td1, f1) = Project(1) (td1, f
′
1).

• Project(2) (td2, fout) ≠ Project(2) (td2, f
′
out).

These conditions precisely coincide with the requirements of the linear chain binding game, so we conclude that
algorithm B succeeds with advantage Y. �

Lemma 5.14. Suppose FCbase satisfies Type-II collision resistance (Definition 4.7). Then there exists a negligible function

negl(·) such that Pr[Hybfinal (A) = 1] = negl(_).
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Proof. Suppose Pr[Hybfinal (A) = 1] ≥ Y for some non-negligible Y. We use A to construct an adversary B that
breaks Type-II collision resistance:

1. Algorithm B runs algorithmA, which starts by outputting the input length 1ℓ and the circuit size 1B . Algorithm
B forwards 1B+1 and the Type-I index B + 1 to the challenger. It receives crsbase.

2. Algorithm B samples

crspre ← SetupPre(crsbase, ℓ + 1)

crslin ← SetupLin(crsbase, (lin)

crsquad ← Setup�ad(crsbase, (quad),

It give crs =
(
1B , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment fin, an arithmetic circuit � : Rℓ → R< , vectors y, y′ ∈ R< , and
openings c = (f1, f2, cpre, clin, cquad, cout) and c

′
= (f ′1, f

′
2, c
′
pre, c

′
lin
, c ′

quad
, c ′out).

4. Algorithm B outputs the vectors y, y′.

The challenger samples (crsbase, td1, td2) ← SetupSF(1_, 1B+1, B + 1, B + 1), so algorithm B perfectly simulates an
execution of Hybfinal for A. Thus, with probability at least Y, it holds that y ≠ y′ and Project(2) (td2, fout) =

Project(2) (td2, f
′
out), where fout = Commit(2)

(
crsbase,

[
0
y

] )
and f ′out = Commit(2)

(
crsbase,

[
0
y′
] )
. These conditions

precisely coincide with the requirements of the Type-II collision resistance game, so algorithm B succeeds with
advantage Y. �

Since B = poly(_), we conclude via Lemmas 5.5 to 5.13 that

Pr[Hybfinal (A) = 1] ≥ Pr[Hybreal (A) = 1] − negl(_).

By Lemma 5.14, we have that Pr[Hybfinal (A) = 1] = negl(_), so we conclude that Pr[Hyb0 (A) = 1] = negl(_), and
binding holds. �

Succinct functional commitments from bilateral :-Lin. Combining the construction from Construction 5.2
with our projective commitments (and associated proof systems) from Section 4, we obtain a functional commitment
for all arithmetic circuits from the bilateral :-Lin assumption. Notably, both the commitments and the openings in
our construction consist of a constant number of group elements. We summarize our instantiation in the following
corollary.

Corollary 5.15 (Functional Commitments from :-Lin). Let : > 1 be a constant and GroupGen be a prime-order

pairing group generator. If the bilateral :-Lin assumption holds with respect to GroupGen, then there exists a succinct

functional commitment that supports openings to arbitrary arithmetic circuits of size B (over the ring Z? associated with

GroupGen) with the following properties:

• Commitment size: A commitment to an input x ∈ Zℓ? consists of 2: elements in the group G2.

• Opening size: An opening to an arithmetic circuit � : Zℓ? → Z
<
? consists of 2: elements in G1 and 4:

2 + 14: + 6
elements in G2.

• CRS size: The CRS is a structured reference string containing $ (:3B5) group elements.

For the particular case of : = 2, a commitment consists of 4 group elements and an opening consists of 54 group elements

(specifically, 4 G1 and 50 G2 elements).

Proof. We instantiate the base scheme FCbase with Construction 4.8 and the proof systems FCpre, FClin, FCquad with
Constructions 4.8, 4.14, and 4.23. Then, we have the following:

63



• Commitment size: A commitment to an input x ∈ Zℓ? is a Type-I commitment (output by Commit(1) ), which

is a vector in G2:
2 .

• Opening size: An opening consists of a tuple (f1, f2, cpre, clin, cquad, cout). We consider each component:

– f1 is a Type-I commitment so f1 ∈ G
2:
2 .

– f2 is a Type-II commitment so f2 ∈ G
2:
1 × G

2:
2 .

– cpre is an opening for FCpre so cpre ∈ G
:+1
2 .

– clin is an opening for FClin, so clin ∈ G
4:+2
2 .

– cquad is an opening for FCquad, so cquad ∈ G
4:2+:+1
2 .

– cout is an opening for FClin so cout ∈ G
4:+2
2 .

Taken altogether, the opening consists of 2: elements in G1 and 4:2 + 14: + 6 elements in G2.

• CRS size: The CRS in Construction 5.2 is a tuple crs =
(
1B , crsbase, crspre, crslin, crsquad

)
. The base CRS consists of

$ (B2:2) group elements. Next, crspre contains an additional$ (:2B) group elements, crslin contains an additional
$ (:2B3) and crsquad contains an additional $ (:3B5) group elements. Taken together, the CRS size contains
$ (:3B5) group elements. �

Extensions and applications. We now describe several simple extensions and corollaries of our new functional
commitment scheme.

Remark 5.16 (Fast Verification). The running time of the verification algorithm for the functional commitment
scheme in Corollary 5.15 scales with $ (B3), where B is the size of the arithmetic circuit. This is the time needed
to implement the verification algorithm for the chainable proof system for quadratic functions (Construction 4.38).
However, when the circuit � is known in advance, we can preprocess the circuit � so that verification requires only
$ (<) bilinear map operations, where< is the output size. Specifically, we can precompute the following quantities
to reduce the online cost of checking cpre, clin, cquad, cout in Construction 5.2:

• Checking cpre: The VerifyPre algorithm is already fast (only requires $ (:) number of bilinear map operations),
so no preprocessing is needed for checking cpre.

• Checking clin: We precompute (vec(IB )
T⊗ I: ) [(Iℓ2 ⊗A)W1]2 ∈ G

:×2:
1 and (vec(IB )

T⊗ I: ) [(Iℓ2 ⊗A)W2]2 ∈ G
:×2:
1 .

Then, evaluating VerifyLin in Construction 4.23 only requires $ (:2) group operations. The precomputed key
in this case only depends on the size of the circuit � and not on the actual description of � .

• Checking cquad: We precompute the circuit-dependent verification key (vec(M� )
T ⊗ I: ) [(Iℓ3 ⊗A)W]1 ∈ G

:×4:2

1 .
Then, evaluating Verify�ad in Construction 4.38 only requires $ (:3) group operations.

• Checking cout: Similar to the case for clin, we precompute (vec(Pout)
T ⊗ I: ) [(Iℓ2 ⊗ A]W1]2 ∈ G

:×2:
1 and

(vec(Pout)
T ⊗ I: ) [(Iℓ2 ⊗ A]W2]2 ∈ G

:×2:
1 . With the precomputed key, evaluating VerifyLin only takes $ (:2)

group operations.

Since : = $ (1), these operations only require a constant number of bilinear group operations. The online cost of
the verification is then just the cost of computing the commitment fout to the output y, which requires $ (<) group
operations. Note that if the target value y is also known in advance, then we can also precompute fout. In this case,
the online verification would only require a constant number of bilinear map operations.

Remark 5.17 (Application to Homomorphic Signatures). Previously, the authors of [CFT22] described a generic
approach for constructing a homomorphic signature from any additively-homomorphic functional commitment
scheme. The class of functions supported by the homomorphic signature scheme coincides with the class of functions
associated with the functional commitment scheme. Our functional commitment scheme (Corollary 5.15) satisfies
the required additive homomorphism property. Namely, the commitments in our scheme consist of a single Type-I
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commitment for the base projective commitment scheme (Construction 4.8). In Construction 4.8, a commitment to
x ∈ Zℓ? is [T̂x]2. The base commitment scheme is clearly additively homomorphic. Thus, we can apply the [CFT22]
approach to obtain a homomorphic signature for all bounded-size arithmetic circuits. The resulting homomorphic
signature scheme inherits the efficiency properties of the underlying functional commitment in this case. In our
setting, this gives a homomorphic signature for general circuits where the size of the signature is always a constant
number of group elements. Previous pairing-based approaches for homomorphic signatures either required knowledge
assumptions (through the use of general-purpose SNARKs), had signatures whose size grew with the depth of the
computation [BCFL23], or had signatures who size consisted of a super-constant number of group elements [KLVW23]
(specifically, the number of group elements is proportional to the size of a circuit implementing a cryptographic hash
function, which has size poly(_)).

Remark 5.18 (Chainable Commitment for Arbitrary Circuits). In Construction 5.2, the input commitments are
Type-I commitments while the output commitments are Type-II. It is easy to construct a chainable commitment
where the input and outputs have the same type; namely, where the output commitment is also a Type-I commitment

fout := Commit
(1)

base

(
crsbase,

[
1

� (x)
0

] )
.

To support this, we simply include an additional opening for the projection function that maps


1

z

� (x)


↦→


1

� (x)

0


,

where z denotes the input and intermediate wires of � (x).7 Clearly, this is a linear mapping, and thus can be handled
using our techniques; technically, we will use the quadratic system here since we are converting from a Type-II
commitment to a Type-I commitment. In this way, we obtain a chainable commitment for arbitrary circuits. In
particular this allows a user to take a commitment f1 to an input x, apply a circuit �1 to x to obtain a commitment f2
to the value �1 (x). The user can then apply a new circuit �1 to obtain a commitment f3 to the value �2 (�1 (x)), and
so on. As shown by the authors of [BCFL23], a chainable commitment can be used to obtain a functional commitment
for circuits of a priori unbounded depth, so long as we allow the size of the opening to scale with the depth of the
circuit. Our approach directly supports this setting.
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