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Abstract

A functional commitment allows a user to commit to an input x and later, open the commitment to an arbitrary
function y = f(x). The size of the commitment and the opening should be sublinear in |x| and |f].

In this work, we give the first pairing-based functional commitment for arbitrary circuits where the size of the
commitment and the size of the opening consist of a constant number of group elements. Security relies on the
standard bilateral k-Lin assumption. This is the first scheme with this level of succinctness from falsifiable bilinear
map assumptions (previous approaches required SNARKs for NP). This is also the first functional commitment
scheme for general circuits with poly(1)-size commitments and openings from any assumption that makes fully
black-box use of cryptographic primitives and algorithms. As an immediate consequence, we also obtain a succinct
non-interactive argument for arithmetic circuits (i.e., a SNARG for P/poly) with a universal setup and where the
proofs consist of a constant number of group elements. In particular, the CRS in our SNARG only depends on the
size of the arithmetic circuit |C| rather than the circuit C itself; the same CRS can be used to verify computations
with respect to different circuits. Our construction relies on a new notion of projective chainable commitments
which may be of independent interest.

1 Introduction

A functional commitment scheme [IKO07, BC12, LRY16] allows a user to commit to an input x and later on, open the
commitment to an arbitrary function f evaluated on the committed value (i.e., open to the value f(x)). Moreover, we
require that both the size of the commitment and the size of the opening be short; they should be sublinear in the size
of the input x and the description length of f. The security requirement is evaluation binding, which states that given
a commitment o, an efficient adversary should not be able to open ¢ to two different values y # y’ with respect to the
same function f.

Functional commitments generalize notions like vector commitments [CFM08, LY10, CF13, LM19, GRWZ20]
and polynomial commitments [KZG10, PST13, LRY16, Lee21], and have found numerous applications to verifiable
outsourcing of storage [BGV11], authenticated data structures [PSTY13], and new constructions of homomorphic
signatures and verifiable databases [CFT22]. As a primitive, functional commitments can be viewed as a particular
case of succinct non-interactive arguments (SNARGs) for “commit-and-prove” languages, albeit satisfying a weaker
security notion of evaluation binding rather than soundness. In many cases, functional commitments are a building
block in many constructions of succinct arguments [MBKM19, GWC19, CHM*20, BDFG21, BFS20, COS20, Lee21,
ACL*22, CLM23] (where the stronger security requirement of soundness is obtained by relying either on the random
oracle model or making a stronger knowledge assumption on the underlying commitment scheme).

Recently, there has been significant progress on constructing functional commitments that can support arbitrary
circuits from both pairing-based [BCFL23, KLVW23] and lattice-based assumptions [dCP23, WW23b, KLVW23,
BCFL23, WW23a]. With the exception of the RAM delegation scheme of [KLVW23], the size of the commitments or
the openings (or both) in the other constructions scale with the depth of the circuit. The RAM delegation scheme of
[KLVW23] gives a functional commitment where the size of the commitments and openings scale polylogarithmically
with the length of the input and the size of the circuit, but relies on extensive non-black-use of cryptography.

“Part of this work was done while visiting NTT Research.



Scheme Functions lcrs| |o| || BB Assumption
[LRY16, Gro16]  arithmetic circuits O(s) 0(1) 0(1) X generic group
[LRY16] linear functions o(?) 0(1) O(m) v subgroup decision
[LM19] linear functions O(tm) 0(1) 0(1) v generic group
[LP20] sparse polynomials Oo(w* O(m) 0(1) v uber assumption
[CFT22] degree-d polynomials o(t?m) 0(d) 0(d) v ¢4-DHE
[BCFL23]T arithmetic circuits 0(s?) o(1) o(d) v ¢-HiKer
[KLVW23]8 arithmetic circuits poly()  O(1) poly(d) X k-Lin

This work arithmetic circuits 0(s%) 0(1) 0(1) v bilateral k-Lin

“The parameter y is a sparsity parameter for the polynomials (c.f., [LP20]).

The authors of [BCFL23] also give a scheme that supports bounded-width arithmetic circuits where the CRS contains
O(w>) group elements and the openings contain O(d?) group elements. Our techniques also yield a construction
with these parameters (and from the standard k-Lin assumption as opposed to the non-standard g-type assumption);
see Remark 5.18.

§ While [KLVW23] construct delegation for RAM programs, their construction can be adapted to obtain a functional
commitments for general Boolean and arithmetic circuits. We consider the instantiation of their scheme with pairing-
based batch arguments [WW22].

Table 1: Summary of pairing-based non-interactive functional commitments. For each scheme,
we report the class of functions they support, the number of group elements in the common
reference string crs, the commitment o, and the opening 7 as a function of the input length ¢
and the output length m. For the constructions that support arithmetic circuits, we write s to
denote the size of the circuit and d to denote the depth. We say that a scheme is “black-box”
(BB) if it only makes black-box use of the group and any cryptographic primitives.

This work. In this work, we study functional commitments for general arithmetic circuits from pairings. Our
goal in this work is to minimize the size of the commitments and the openings in a functional commitment scheme.
Towards that end, we construct the first pairing-based functional commitment scheme that supports arbitrary circuits
where the commitment and the openings consist of a constant number of group elements, irrespective of the input
length or the circuit size. The security of our construction relies on the standard bilateral k-Lin assumption' for any
constant k > 1. We summarize our main theorem below:

Theorem 1.1 (Informal). Let k > 1 be a constant. Assuming the bilateral k-Lin assumption over a pairing group of
prime order p, there exists a (non-interactive) functional commitment scheme for arithmetic circuits (over Z,) of a priori
bounded size with the following features:

« The commitment consists of 2k group elements.
« The opening consists of O(k?) group elements. (For k = 2, the number is 54).

« The scheme requires a structured common reference string (CRS) with O(k3s®) group elements, where s is the size
of the circuit.

« Ifthe circuit C in the opening is known in advance, then we can preprocess it into a short verification key. Then,
the online verification of the commitment only requires computing O(m) bilinear map operations, where m is the
output length of the circuit C. We refer to Remark 5.16 for more details.

We provide a comparison with other pairing-based constructions in Table 1. Notably, Theorem 1.1 is first functional
commitment scheme for circuits with the following efficiency features:

« The first scheme based on falsifiable bilinear map assumptions (e.g., bilateral k-Lin or g-type assumptions)
where the commitment and the opening consists of a constant number of group elements. The only previous

IThe bilateral k-Lin assumption is a variant of k-Lin where the challenge is encoded in both G; and G,.



constructions that support constant-size openings rely on the generic group model or on knowledge assumptions
(due to the use of pairing-based SNARKSs for NP).

« The first functional commitment scheme that makes fully black-box use of cryptographic primitives and
algorithms where the size of the commitment and the opening is poly(A) bits, regardless of the underlying
assumptions. The recent lattice-based and pairing-based schemes in [dCP23, WW23b, BCFL23, WW23a] are
also black-box, but the size of the opening all scale with the depth of the circuit. Even for the special case of
constant-degree polynomials, our result improves upon the state of the art in [BCFL23] in that we rely on
k-Lin instead of g-type assumptions. Constructions based on generic approaches (SNARKSs or non-interactive
batch arguments) do achieve poly(A) size, but requires non-black-box access to the underlying primitives and
algorithms. We provide more discussion on this below.

Moreover, our functional commitment scheme is additively-homomorphic, so using the results from [CFT22], we
obtain homomorphic signatures for all (bounded-size) arithmetic circuits from the bilateral k-Lin assumption. This is
the first homomorphic signature scheme for general circuits based on falsifiable pairing-based assumptions where the
signature consists of a constant number of group elements. The number of group elements in previous pairing-based
constructions either grow with the depth of the circuit [BCFL23] or require a poly(A) number of group elements due
to non-black-box use of cryptography [KLVW23].

SNARG for P/poly with universal setup. Our functional commitment scheme immediately gives a succinct
non-interactive argument (SNARG) for P/poly with a universal setup. In this setting, the prover has an input x € Zf,,
and seeks to convince the verifier that y = C(x), where C is an arithmetic circuit. Moreover, the length of the proof
should be much shorter than the size of the arithmetic circuit |C| as well as the input length |x| and output length |y|.
In a SNARG with universal setup [GKM*18], the common reference string should only depend on a bound on the size
of the circuit |C| rather than the circuit C itself. Moreover, there is then an algorithm that takes as input the CRS and
the circuit C and outputs a succinct verification key vkc for C. Given the preprocessed verification key vkc, checking
a proof that y = C(x) should require time that is sublinear in the size of |C]|.

A functional commitment scheme for arithmetic circuits directly implies a SNARG for P/poly. The proof is a
commitment o to x together with an opening of ¢ to y with respect to the circuit C. The SNARG verifier can check
that the commitment ¢ was honestly computed (since it knows the input x). Soundness now follows from evaluation
binding of the functional commitment scheme. If the functional commitment scheme supports fast verification,
then the resulting SNARG has a universal setup algorithm, where the same CRS can be used to check different
computations. Thus, Theorem 1.1 gives a SNARG for P/poly from bilateral k-Lin with a universal setup and where
the proof consists of a constant number of group elements. Previously, the work of [GZ21] showed how to construct
a SNARG for P/poly from the bilateral k-Lin assumption where the proof consists of a constant number of group
elements. The construction in [GZ21] relies on a circuit-dependent CRS where the circuit C is embedded into the CRS.
It is possible to use universal circuits and have the description of C be part of the statement itself; the question then is
whether the resulting construction supports fast verification (given a precomputed verification key vkc). Recent RAM
delegation schemes (i.e., SNARGs for P) [C]]21, KVZ21, KLVW23] also imply a SNARG for P/poly with universal
setup by treating the description of the circuit C as part of the initial contents of the memory of the RAM program.
Due to the non-black-box use of cryptography, the proofs in these constructions (when instantiated over groups with
bilinear maps) contain a super-constant number of group elements.

Comparison to generic approaches. Generic approaches based on SNARKs [LRY16] and non-interactive batch
arguments (BARGs) [KLVW23] provide an alternative route for constructing functional commitments for general
circuits. Here, we discuss some limitations of these approaches beyond their non-black-box use of cryptography:

« The SNARK-based approach [LRY16] instantiated using a pairing-based SNARKSs for NP with constant-size
proofs (e.g., [Gro10, Lip12, GGPR13, BCI*13, DFGK14, Gro16]) yields a functional commitment where the
commitment and openings contain O(1) group elements. However, the reliance on SNARKSs for NP brings in
strong, non-falsifiable assumptions or requires working in the generic bilinear map model to argue security.
Moreover, constructing SNARKSs for NP from simple falsifiable assumptions over bilinear maps is likely to be



difficult [GW11]. The functional commitments we build in this work rely solely on the falsifiable (bilateral)
k-Lin assumption.

« The authors of [CJJ21, KLVW23] shows how to use non-interactive batch arguments (BARGs) for NP to obtain
a RAM delegation scheme. In particular, the approach from [KLVW23] can be adapted to obtain a functional
commitment for general circuits; we refer to [WW23a, §1.3] for a sketch of the adaptation. Combined with the
pairing-based BARG from [WW22], this yields a functional commitments for all circuits from the standard
k-Lin assumption.” While the commitments in the resulting construction consist of a constant number of
group elements, the opening are longer. Specifically, the opening consists of a BARG proof. When the BARG is
instantiated with [WW22], the size of the BARG proof scales linearly with the size of the verification circuit for
the underlying NP relation. In [KLVW?23], this NP relation includes the verification algorithm of a somewhere
extractable hash function. This is a cryptographic primitive, so the size of this circuit scales polynomially with
the security parameter. Correspondingly, the size of the opening contains poly(1) group elements. It is unclear
how to adapt this approach to obtain a functional commitment where the opening consists of a constant number
of group elements. In this case, the non-black-box use of cryptography translates to an asymptotic loss in
succinctness.

On the flip side, these non-black-box approaches have the advantage that they require a short CRS. Notably, the
BARG-based approach of [KLVW23] only requires a CRS that grows polylogarithmically with the circuit size. Their
scheme thus supports circuits of unbounded size, but do not have constant-size openings.

Open problems. An interesting question is to construct functional commitments from k-Lin (or g-type assumptions)
with constant-size commitments and openings (measured in terms of the number of group elements) with a shorter
CRS (e.g., a quadratic-size CRS or linear-size CRS). The CRS size in our current construction scales with O(s’). Existing
approaches that have constant-size commitment and openings all rely on pairing-based SNARKSs, which requires
strong non-falsifiable assumptions. We note that in this setting, there has been a long and successful line of work
focused on constructing and optimizing pairing-based SNARGs with constant-size proofs [Gro10, Lip12, GGPR13,
BCI*13, DFGK14, Gro16]. Similarly, in the related setting of batch arguments for NP, recursive composition has
proven useful for reducing the size of the CRS [KPY19, CJJ21, WW22, KLVW?23]. It is an interesting to see if similar
techniques are applicable to obtain functional commitments with a shorter CRS (while retaining commitments and
openings that are only a constant number of group elements).

2 Technical Overview

The starting point of our construction is a new chainable functional commitment scheme for quadratic functions from
the k-Lin assumption. In a chainable functional commitment [BCFL23], the user can commit to an input x € Z;;
(with commitment oy) and then compute an opening 7 to a new commitment oy of the output vector y = f(x) where
f: Zf, - Zf, is a vector-valued function. The key difference between chainable functional commitments and standard
functional commitments is that the user opens to a succinct commitment of the output rather than the (possibly long)
output itself. The security requirement is evaluation binding, which says that an efficient adversary should not be
able to open the commitment ox to two different output commitments oy, oy. The authors of [BCFL23] show that a
chainable commitment scheme directly implies a functional commitment scheme for arithmetic circuits. Here, we
describe their approach for the simpler setting of layered arithmetic circuits:

« The commitment itself is a commitment o7 to the input.

« To construct an opening to a (layered) arithmetic circuit C where the value of layer i is a quadratic function of
the values in layer i — 1, the user first commits to the wires at each layer. If there are d layers, then the user
constructs d commitments o, . . ., o4 (note that the original commitment o corresponds to the inputs). Finally,
the user provides a chaining proof =; ;41 that each pair (o, 0i41) is correctly computed (with respect to the
quadratic function that implements the mapping from the layer-i wires to the layer-(i + 1) wires). This step is
implemented using a chainable commitment for quadratic functions.

2This construction can also be instantiated in pairing-free groups by relying on the (subexponential) DDH assumption [CGJ*23].



The above construction provides a general blueprint for constructing functional commitments for layered arithmetic
circuits where the size of the opening grows with the depth of the circuit. The authors of [BCFL23] then describe
how to construct chainable functional commitments for quadratic functions using a non-standard g-type assumption
on bilinear maps (the ¢£-HiKER assumption, where ¢ denotes the input length). We note that a similar approach was
also used for constructing succinct arguments in [GR19].

Overview of our approach. Our goal is to implement the [BCFL23] approach, but with only a constant number
of group elements in the opening. A natural approach is to commit to all of the wires in the circuit twice: once as
an input commitment o; and once as an output commitment ;. Suppose we number the wires in topological order.
Then, to argue evaluation binding, we could try to argue that the first i + 1 wires committed in o, are consistent with
the first i wires committed in oy. The problem with this strategy is the evaluation binding property for a chainable
commitment only allows us to reason globally about the input and output commitments, whereas this “wire-by-wire”
consistency property pertains to reasoning about prefixes of the committed vectors (i.e., analyzing relationships
between the first i components of the input vector and the first i + 1 components of the output vector). In this work,
we introduce the notion of a “projective chainable commitment” that allows us to reason about properties on prefixes
of the committed vectors. Our overall construction then has the following high-level structure:

+ The commitment is a commitment o, to the input x.

« The opening for a circuit C: Zf, — Zj' contains 3 commitments: 01, 0; are commitments to all s wire values
(where s is the number of wires in C), and o, is a commitment to the m output wires.

In addition, the opening contain “proofs” that enforce the following prefix-based constraints:

+ Input consistency: The first £ committed values in o7 are equal to the committed values in the input
commitment oj,.

« Gate consistency: Forall j =£+1,...,s, the first j + 1 committed values in o, are consistent with the first j

committed values in o7 as determined by the circuit’s “next wire” function (i.e., the function corresponding to
the gate computing wire j). The “next wire” function can be described by a quadratic function.

« Internal consistency: Forall j = £+1,...,s, the first j committed values in o are equal to the first j committed
values in o5.

+ Output consistency: The last m committed values in oy are equal to the committed values in ooyt

If all of these constraints are satisfied, then a straightforward iterative argument suffices to show evaluation binding
(several recent constructions of delegation follow this type of approach [GZ21, CJJ21, KLVW23]). To formalize this
approach, we need to first define what we mean when we say the “first j committed values in a commitment ¢
We formalize this by defining a trapdoor setup algorithm that takes as input an index j and generates the public
parameters together with a trapdoor td"/). Then, given a commitment o, we can use the trapdoor to extract from o a
commitment to the first j committed values in o; we denote this latter commitment by Project(td"/), ¢). In particular,
we can now restate the gate consistency and internal consistency constraints as follows:

« Gate consistency: Forall j = £+1,...,s, the output of Project(td(j”), 07) is consistent with Project(td(j), 01)
with respect to the circuit “next-wire” function.

« Internal consistency: Forall j = £+1,...,s, the output of Project(td(j ), 01) is consistent with Project(td(j ), 07)
with respect to the identity map.

Here, the “consistency requirement” corresponds to a chain-binding security property. In the actual construction, the
commitments o7 and oy will have different “types” and a different projection trapdoor will be used to project o7 and
03. The added flexibility will allow us to carry out the full proof of evaluation binding (see Sections 2.3 and 5) We
refer to chainable commitments with this projective property as “projective chainable commitments.”



2.1 Chainable Commitments for Quadratic Functions from Bilateral k-Lin

The starting point of our construction is a new construction of chainable commitments for quadratic functions. To
simplify the description in the overview, we start by describing a “designated-verifier” variant of the construction,
where a secret key is needed to check the opening. The secret-key version is simpler to describe, and readily extends
to the setting of public verifiability using the techniques of Kiltz and Wee [KW15]. In the technical sections (Section 4),
we only describe the version with public verification.

Notation. Throughout this work, we will use the implicit notation of group elements introduced in [EHK"13].
Our construction operates over a prime-order pairing group (G4, Gz, Gr) of order p with an efficiently-computable
non-degenerate pairing e: G; X G, — Gr. We let g; denote a generator for G; and analogously for g, and gr. For
a matrix M € Z7*™, we write [M]; € GJ*™ to denote the matrix of group elements g™ (when exponentiation is
defined component-wise). Similarly, we write [M], to denote 912\4 and [M]7 to denote g%’i. For matrices A, B, C,D over
Z, with compatible dimensions, we write A[B]; + C[D]; := [AB + CD];, which can be computed using the group
operation over G;. We define linear operations over G; and Gy analogously. For two scalars a, b € Z,, the pairing
satisfies e([a]1, [b]2) := [ab]T. We extend this to matrix and tensor products® by writing [A],[B], := [AB]r and
[A]; ® [B]2 :== [A ® B]r. In more detail, the individual components of the matrix and tensor products are computed
by applying the pairing to the corresponding elements of A and B and then, in the case of matrix multiplication,
applying the group operation over Gr. Finally, in the following description, we write I to denote the d-by-d identity
matrix.

Warm-up: a scheme for fixed linear functions. We first describe a functional commitment that supports a
single fixed linear function x — Mx. In this scheme, a user can commit to an input x and open to y = Mx. The
construction is an adaptation of the Kiltz-Wee proof system [KW15] for proving membership in linear spaces:

« The public parameters contain two encoding matrices [T], [T]Z € Glz‘x", where k is a constant (the parameter
in the k-Lin assumption) and ¢ is the input length. We sample T, T & zZp.

« A commitment to x € Zf, with respect to [T]; is [Tx],. We define commitments with respect to T analogously.

« In the overview (and the rest of this paper), we refer to commitments with respect to T as “Type-I commitments”
and those with respect to T as “Type-II commitments.” Our goal is to prove relationships between Type-I
and Type-II commitments. For the setting of linear functions, the input commitment [c], might be a Type-II
commitment to x and the goal is to construct an opening to a Type-I commitment [¢&], of the vector y = Mx. We
will also consider relations where the input is a Type-I commitment and the output is a Type-II commitment.

We now describe how to support linear openings for Type-II commitments. Specifically, starting from a Type-II
commitment [Tx], of x, we want to construct an opening to the Type-I commitment [TMx], of the vector Mx. To do
so, we sample two vectors r, w < Z’; and publish [z]; in the public parameters where

2 =wT-1r"TM € Zf,.

For now, we consider the designated-verifier setting where a secret key is needed to verify the openings. In this case,
the vectors (r, w) are the secret verification key. Observe now that

z'x = w'Tx — r' TMx.

We define the opening to be v = z'x. Then, the verification relation takes the Type-II commitment [c]; = [Tx]», the
Type-I commitment [¢], = [TMx]; and checks that

[0] = W'[cl, — r'[é],.

3We recall some basic properties of the tensor product in Section 3.




Security of the basic construction. The security requirement says that it should be computationally difficult to
construct a Type-II commitment [c], and a pair of distinct Type-I commitments [¢], # [¢'], along with accepting
openings [v]z, [¢0"]2. In other words, it should be difficult for the adversary to output [c];, [¢]2, [€']2, [0]2, and [0],
such that

r'¢=wc—o and r'¢’ =wc-0.

Equivalently, the adversary must be able to come up with ¢* = ¢ — ¢’ # 0 and v* = v’ — v such that r'¢* = v*. To
argue that this is difficult, we first claim that the vector r (in the secret verification key) is computationally hidden
from the view of the adversary. This follows via the k-Lin assumption. Under k-Lin, [w'T], is pseudorandom given
[T]; and [T]Z Thus [z], computationally hides the vector r. Since r is computationally hidden and r is sampled
uniformly from Zf,, whenever ¢* # 0, the distribution of r'¢” is uniform over Z,,. In this case, for any fixed v* chosen
independently of r, the probability that r'¢* = v* is 1/p, which is negligible.

Chainable commitments for linear functions. The basic scheme above supports a fixed function M, which
was programmed into the public parameters [z],. To support arbitrary functions (as in the case of a functional
commitment) from Zf, — Zf,, we instantiate £2 copies of the basic scheme. The £2 schemes can be viewed as functional
commitment schemes for the fixed functions M; ; that is 0 everywhere and 1 in component (i, j). The opening to
an arbitrary linear mapping x — Mx then corresponds to taking a linear combination of £? openings where the
coefficients are defined by the elements of M. To describe the construction more compactly, we start with the following
identity: for all M € Zf,”,

r"TM = vec(M)" (I, ® vec(r'T)), (2.1)

where vec(M) is the vectorization operation that takes as input a matrix M and outputs the vector formed by
concatenating the columns of M from left to right (see Section 3). This means

r"TMx = vec(M)" (I, ® vec(r'T))x.
We now sample W & ngk and publish [Z]; in the public parameters where Z = WT — I, ® vec(r'T). Now,

vec(M)" - Z - x = vec(M)"W - Tx — vec(M)" (I, ® vec(r'T))x
= vec(M)"W - Tx — r'TMx.

We define the opening to be [v]; where v = vec(M)"Zx. Then, given a Type-II commitment [c], = [Tx]; and an
opening [v], to a Type-I commitment [¢], = [TMx],, the verification algorithm uses the (secret) verification keys W
and r to check that )

[0]2 = vec(M)'W - [c]; — r"[¢]..

Security of the chainable commitment. The chain binding proof for this construction follows exactly as that for
the basic construction. Namely, suppose an adversary is able to output [c],, [¢]2, [€']2, [¢]2, and [0"], such that

r'¢=vec(M)'Wec—ov and r'¢’ =vec(M)"We -0

Just as in the basic case, the adversary in this case is able to come up with ¢* = ¢ — ¢’ # 0 and v* = v’ — v such that
r'¢* = o*. Similar to the basic case, we can argue via k-Lin that [WT], is pseudorandom given [T], and [T];. As
such, the vector r is computationally hidden from the view of the adversary. Then, when ¢* # 0, the distribution of

r'¢” is uniform over Z,, and the claim follows exactly as before.

Chainable commitments for quadratic functions. Next, we extend the above construction to obtain a chainable
commitment for quadratic functions. In this setting, our goal is to support openings to (homogeneous)* quadratic
functions x — M(x ® x) where M € Zf,”z. A basic approach is to linearize the quadratic system and have the user

41t suffices to consider homogeneous quadratic functions. We can support arbitrary quadratic functions by having the user commit to the vector
x' = [)1(] A quadratic function on x then corresponds to a homogeneous quadratic function on x’.



commiit to x ® x, and then use the functional commitment for linear functions to open to M(x ® x). However, this basic
approach is not chainable: the input is a commitment to a tensored value x ® x, while the output is a commitment to
the untensored value y = M(x ® x). We do not have a way to evaluate a quadratic function on the commitment to y.

We take an alternative approach and replace the Type-II encoding matrix T with a pair of encoding matrices
T, T, & Zf,”. A Type-II commitment to x is now a pair ([T;x]1, [T2x]2). To construct an opening, the client first
computes a tensored commitment [(T; ® T;) (x ® x)], and then applies the chainable commitment for linear functions
with T; ® T, as the input encoding matrix and T as the output encoding matrix. The yields an opening to a Type-I
commitment TM(x ® x) of the output y = M(x ® x). We describe our construction below:

. . . . 3 2
« The secret verification key is r & Z’; and a matrix W & Zf, K,

« The public key consists of encoding matrices [T1]1, [T2]2, [T1 ® T2]2, [T]z, and [Z], where Ty, Tg,'i‘ & Zf,”
and
Z=W(T;®T;) — I ® vec(r'T) € Z;SX[Z.

« A Type-II commitment to a vector x € ZI’; is a pair ([c;]1, [c2]2) where ¢y = Tix € Zf, and c; = Tyx € Z’;. A
Type-I commitment to a vector y € ZI(; is [¢], where ¢ = Ty € lej.

+ An opening for the quadratic function x — M(x ® x) where M € Zf;”z consists of the tensored commitment
[ci]2 = [(T; ® T2)(x ® x)] and the opening [v]; = [vec(M)"Z(x ® x)],.

« Given a Type-II commitment ([c;]1, [c2]2), a homogeneous quadratic function M € Zf;”z, a Type-I commitment
[¢]2, and an opening ([c.]2, [v]2), the verification algorithm checks the following two conditions:

[e1]1 ® [e2]z = [1]1 - [c.], and  r'[&]; = vec(M) W(e.]z — [0],.

The first verification relation uses the pairing to check that the tensored commitment was correctly computed
from the Type-II commitment ([c;]1, [c2]2) while the second relation is checking validity of the linearized
system.

Both correctness and security follow analogously to that of the linear system. For correctness, we observe the
following. If ¢; = Tyx, ¢; = Tex and ¢ = Ty, where y = M(x ® x), then we have

c1®cy = (TIX) ® (TzX) = (Tl ® Tz)(X ® X),

so the first verification relation passes. For the second verification relation, we appeal to Eq. (2.1) adapted to the case
where M € fo”:

r'TM = vec(M)"(I2 ® vec(r'T)),
Then,

r'é = r'TM(x ® x) = vec(M)"(I;: ® vec(r'T)) (x ® x) = vec(M) (W (T; ® T;) — Z)(x ® x) = vec(M) We, — .

To argue evaluation binding, we use a similar strategy and argue that [W(T; ® T)]; is pseudorandom given [T];,
[T2]2, and [Ty ® T;],. This follows from the bilateral k-Lin assumption (since the matrix T; is encoded in both G;
and Gy,); we provide a formal proof of this in Lemma 3.10. If [W(T; ® T5)], is pseudorandom, then once again, the
vector r is computationally hidden from the view of the adversary. The analysis then proceeds exactly as in the case
for linear functions.



Public verification via k-KerLin. 'We now show how to lift the designated-verifier constructions described above
to the public verification setting. We exploit the fact that the above verification relation is linear. As such, we can
use the technique from [KW15] of giving out a partial encoding of r and W and then implementing the verification
relation “in the exponent” via the pairing. Specifically, our scheme for quadratic functions now works as follows:

« We first sample a matrix A < Zf,x(kﬂ) Zf(kH)XkZ
string now contains

crs = ([AlL, [(Is ® A)W]y, [AR]y, [Ti]1, [Tela [Tla [T1 ® Talo, [Z]2),

and sample W &~ andR & ZI(,kH)Xk. The common reference

where T;, T, T & Z;‘,X" and Z = W(T;®T,) -1 ®vec(RT). In particular [ (I, ® A)W]; and [AR]; are the public
encodings of the secret verification keys. The key point is that A is compressing and loses information about W
and R. The reduction then embeds the private key of the designated-verifier scheme into the components of
W, R that are hidden given (I, ® A)W and AR.

« The commitments are constructed exactly as in the designated-verifier scheme. Since r" has been replaced by a
matrix, the analogous opening relation is now [v]; = [(vec(M)" ® Ij1+1)Z(x ® x)] 5.

- Given an input commitment ([c;]1, [¢2]2), a homogeneous quadratic function M € Zf,”z, and an opening
([c:]2, [v]2), the public verification algorithm now checks the following:

[e1]1 ® [e2]z = [1]1 - [c.]; and  (vec(M)" @ Io)[(Ip ® A)W][c. ], = [AR]y[é] + [Al1[V]2.

We refer to Section 4.4 (Construction 4.38) for the full description (which describes the projective variant of this
construction). Correctness of this scheme follows by a similar calculation as in the designated-verifier case; we refer
to Theorem 4.39 for the exact details. We now provide a brief sketch of the security analysis for this construction.

Consider an adversary for the evaluation binding game. Given the public parameters, the adversary outputs an
input commitment ([c1];, [¢2]2), a homogeneous quadratic function M € Zf,”z, two output vectors [¢],, [¢']2 along
with two openings 7 = ([c.]2, [V]2) and 7’ = ([c} ]2, [V']2). If the adversary is successful, then ¢ # ¢’ and & and 7’
are valid openings. If the openings are valid, then c. = ¢, and the verification relation now implies that

AR(c-¢)+A(v-V)=0.

Equivalently, we observe that any adversary that breaks evaluation binding must be able to compute ¢* :=¢ - ¢’ # 0
and v* := v — v’ such that

A(RE" +v") = 0. (2.2)
Our security proof now proceeds as follows:

« Step 1: First we rely on the kernel assumption (k-KerLin), which is a search version of the k-Lin assump-
tion [MRV15] (and thus, implied by k-Lin). The assumption states that given [A]; where A & Zf,x(kﬂ) , it is
difficult to find [x]; such that x # 0 and Ax = 0. Under the k-KerLin assumption, if an efficient adversary can
find ¢* and v* that satisfies Eq. (2.2), then it must be the case that R¢* + v* = 0. Otherwise, the adversary found
a non-trivial vector in the kernel of A.

« Step 2: Next, we use the fact that A is compressing. Let at € Zf,“ be an arbitrary non-zero vector in the kernel
of A (i.e., A - a* = 0). Suppose we now sample W and R as
W=W;+(Is ®at)W,
R=R; +a'r,
where W; & Zf(kH)XkZ, w, & Zkaz, R, & Zl(,kH)Xk, andr & Zf,. Since W; and R; are uniform, W and R

are distributed exactly as in the real public parameters. However, the components (I, ® A)W and AR in the
public parameters information-theoretically hide the components Wy, r,. In particular, since Aa* = 0, we have

(I ® AW = (Ip @ A)W; + (Is ® Aa )W, = (Is @ A)W;
AR = AR, + Aa'1} = AR;.



Consider now the verification relation. If R¢* + v* = 0, then it must be the case that
RE*+v =0 = a'rne’ = —v' —R;¢&".

This is essentially the same type of verification relation as in the designated-verifier setting where r; is the
secret key. Like in the basic scheme, what remains is to analyze the leakage on r; from Z.

« Step 3: By a similar argument as in the designated verifier case, we can argue that under bilateral k-Lin, Z
computationally hides r,. Specifically, we can decompose

Z=W(T; ®Ty) — Iz ® vec(RT) = Z; + (Ips ® a*) (W (T; ® Ty) — I, ® vec(ryT)),

where Z; does not depend on W, and r,. By the bilateral k-Lin assumption, we can show that [W,(T; ® T2)]2
is pseudorandom even given the other components in the public parameters, and thus, computationally hides
r;. The claim now follows exactly as in the designated-verifier case.

We give the formal proof of evaluation binding for quadratic functions in Section 4.4 (Theorem 4.40). The proof of
Theorem 4.40 is more involved since it is for the projective variant (see Section 2.2). That notwithstanding, the key
steps described here correspond to Lemma 4.43 (Step 1), Lemmas 4.44 and 4.45 (Step 2), and Lemma 4.46 (Step 3).

2.2 Projective Commitments

To go from a chainable commitment for quadratic functions to a functional commitment for general circuits, we
introduce the notion of a “projective” commitment. As described at the beginning of Section 2, in a projective
commitment, the goal is to take a commitment o to a vector x = (xy,...,x;) and “project” it onto a commitment
to a subvector (e.g., the vector X" = (x1,...,x;) for some j € [¢]). In this work, we will only consider projecting a
commitment onto its first j components (i.e., a prefix of length j). Specifically, the syntax of a projective commitment
is defined as follows:

« The CRS for a projective commitment can be sampled either in a normal mode or in a projective mode. In this
work, we refer to the projective mode as a “semi-functional mode”’

« The semi-functional setup algorithm takes as input a Type-I index j; and a Type-II index j,, and outputs a CRS
along with two trapdoors td; and td,. The trapdoor td; can be used to project Type-I commitments onto a
commitment to the first j; components. Similarly, the trapdoor td; can be used to efficiently project a Type-II
commitment onto a commitments to the first j, components. We refer to the CRS output by the semi-functional
setup algorithm with indices (j, j2) as a (ji, j2)-semi-functional CRS. We write Project™ and Project® to
denote the projection algorithms for Type-I and Type-II commitments, respectively.

The chain binding security requirement now says the following:

« First, suppose M € Z;X‘]Z is the matrix associated with a (homogeneous) quadratic function with the property
that the first j, components of the output M(x ® x) only depends on the first j; components of x. We say such
functions are (ji, j2)-local. In other words, given just the first j; components of the input vector x, we can
compute the first j, outputs of M(x ® x).

+ Now, suppose we sample a (i, j»)-semi-functional CRS. Let o; and o7 be a pair of Type-I commitments whose
projections onto their first j; components are equal: Project'" (tdy, o1) = Project" (tdj, 0;). Let 03 and o, be a
pair of Type-II commitments. Suppose the adversary comes up with valid openings for o, and o, with respect
to 01 and o}, respectively, and with respect to the same (i, j2)-local function M. Projective chain binding
security then requires that Project® (td,, 03) = Project® (td,, ;). Unlike standard evaluation binding, we
allow two different input commitments o, and o7; the only stipulation is that their projections match. Note that
we can define an analogous notion where the inputs are Type-II commitments while the outputs are Type-I
commitments.

SSpecifically, our realization of the projective mode will introduce a “shadow” subspace into the commitments and we embed a copy of the
chainable commitment within this shadow subspace. This type of approach is commonly used in dual-system proofs [Wat09, LW10], where a
shadow subspace is introduced when constructing the “semi-functional” keys and ciphertexts.
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Intuitively, the projective chain binding enforces local consistency on the committed values. If a quadratic function is
(j1, j2)-local, then the adversary should not be able to open two input commitments that “agree” on their first j; values
to two output commitments that disagree on their first j, outputs (since the first j, output values are completely
determined by the first j; input values). We require a few additional properties on the projective commitment:

« For all jy, j» € [¢], a (ji1, j2)-semi-functional CRS should be computationally indistinguishable from a normal
CRS.

« For all jy, jo, j; € [£], a (ji1, jo)-semi-functional CRS should be computationally indistinguishable from a (s, j;)-
semi-functional CRS even given the trapdoor td;. Likewise, for all ji, jj, j2 € [£], a (j1, j2)-semi-functional CRS
should be computationally indistinguishable from a (j{, j»)-semi-functional CRS even given the trapdoor td,.
Essentially, the first property is saying that if we keep the Type-I index associated with a semi-functional CRS
fixed, but change the Type-II index, the projections of a Type-I commitment (i.e., the output of Project" (td, -))
do not change. This stronger notion of CRS indistinguishability is often referred to as a “no-signaling extraction”
property [PR17, KPY19, GZ21, KVZ21, CJJ21].

« Finally, we require a semi-functional collision-resistance property, which essentially says that under a (¢, £)-
semi-functional CRS (i.e., we are projecting onto all £ components of the vector), it should be difficult to find
two distinct vector y # y” whose honestly-generated commitments have identical projections.

We provide the formal abstraction as well as the security requirements in Section 4.1.

Constructing projective commitments. To construct a projective commitment scheme, we expand the commit-
ment space. In the basic chainable commitment from Section 2.1, the commitments live in a k-dimensional space.
Our projective commitments will live in a 2k-dimensional vector space where the normal commitments inhabit a
k-dimensional space while the “semi-functional” commitments inhabit a k-dimensional shadow subspace. A similar
projection approach was used in the delegation scheme from [GZ21]. Concretely, we proceed as follows:

- Let [B} |B}] € Zf,k“k be a basis for Zf,k where BY,B; € le,ka . To sample a semi-functional encoding matrix T
that supports projection onto the first j; components, we set

T = B'S; +B}S,,

where §; & Z];x", S, = [52 | OkX(f_jl)], and S, & Zf,le. In particular, S; is random in the first j; columns and
zero in the remaining ¢ — j; columns.

o LetB, € Zl;xzk be the (unique) matrix where B,B] = 0 and B;B} = I;. Consider a commitment to a vector
X € Zf,. A commitment is an encoding of Tx. Then,

B,Tx = B,(B}S; + B;S;)x = Spx.

Observe that this is essentially a commitment to x with respect to the new encoding matrix S,. Moreover, S, is
zero in all but the first j; columns. This means that S, is a commitment to the first j; components of x. Thus,
we have successfully projected a commitment Tx of x onto a commitment S;x to the first j; components of x.
In this case, the projection trapdoor is the matrix B;.

In the actual construction (Construction 4.8), we use a different and independent choice of basis [B] | B;] for the

Type-I and Type-II encoding matrices Ty, T, T. This allows us change the distribution of the Type-I encoding matrix
T while retaining the ability to project Type-II commitments (and vice versa).

Arguing projective chain binding. When the CRS is (j, j2)-semi-functional, a Type-II commitment to x can be
viewed as two commitments: a normal commitment to x in the “normal” subspace, and a semi-functional commitment
to the first j, components of x in the “semi-functional” subspace. Our goal is to argue that the scheme satisfies chain
binding. This essentially follows by a similar argument as the proof of chain binding security for quadratic functions,
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except we now implement it in the semi-functional subspace. There is, however, one important difference. Recall from
Section 2.1 that the binding analysis critically relied on the fact that [W(T; ® T;)], computationally hid the value
of [R]z in [Z], where Z=W(T; @ Tz) - I ® vec(RT). Previously, when W, Ty, T; were all uniform, we were able
to appeal to the k-Lin assumption. If we consider this relation in the semi-functional space, we run into a potential
problem. Namely, the input encoding matrices Ty and T are no longer fully random in the semi-functional space:
they are only random in the first j, components. As such, our previous proof strategy no longer applies.

Relying on locality. To complete the proof of projective chain binding, we rely on the fact that when the quadratic
relation M is (jp, j1)-local,’ correctness does not require giving out all of Z. In particular, we only need to give out a
subset of the components of Z to ensure correctness. Towards this end, we define a projection matrix Pgyaq € {0, 1}[3”3
(a square diagonal matrix) with the following two properties:

« For every (j, j1)-local function M, it holds that vec(M) Pquaq = vec(M)". This property ensures correctness
for the scheme.

+ If we now define Z to be W(T; ® T3) — (Pquad @ Ij1) (I2 ® Vec(RT)), it holds that the non-zero columns of
(Pquad ® i) (T2 @ vec(RT)) in the semi-functional space precisely coincide with the non-zero columns of
W(T; ® T,) in the semi-functional space. Now, we can rely on the k-Lin assumption to argue that W(T; ® T3)
hides R in the semi-functional space. This allows us to essentially implement the original proof strategy of
chain binding for quadratic functions described in Section 2.1.

We provide the specific details (including the exact definition of the necessary projection matrix Pgyaq) in Section 4.4.
The proof of projective chain binding for the overall scheme is described in Theorem 4.40.

Additional proof systems. In addition to arguing projective chain binding for quadratic functions, our functional
commitment scheme for general circuits relies on two additional systems for proving relations on commitments.
These constructions rely on a similar (and simpler) set of techniques as that used to argue security of the projective
quadratic commitment. We state the properties we require (since these are needed for our functional commitments
scheme in Section 2.3), but defer the details of their construction and analysis to the relevant technical section.

« Projective commitment for linear functions. We require a (slimmed-down) version of our projective
chainable commitment for quadratic functions that just supports linear functions. While technically this is
subsumed by our above construction for quadratic functions, having a scheme for linear functions reduces
the size of the openings since it avoids the extra burden of needing to encode the output of the quadratic
commitment in both G; and G,. We describe this construction in Section 4.3.

« Prefix matching. We require a proof system to show that two commitments ¢ and ¢’ share a common
prefix (of fixed length k). This will be used to argue consistency between a commitment to the input and
a commitment to all of the wires in an arithmetic circuit (which includes the input). The security property
essentially says that when the CRS is (k, k)-semi-functional and the prefix-matching proof verifies, then
Project™™) (tdy, o) = ProjectM (tdy, o). We describe this construction in Section 4.2.

2.3 Functional Commitments for Circuits

Using the projective commitments from Section 2.2, we are now ready to construct our functional commitment for
general circuits. We start with a more detailed version of the general overview from the beginning of Section 2:

+ To commit to an input x € Z{, the input commitment consists of a Type-I commitment o;, to x.

« To open o to a value y = C(x) where C: Zf, — Zj' is a circuit of size s, the user first defines the vector z € Z;, to
be the vector of all of the wire values of C(x), arranged in topological order (i.e., the value of wire i is a function
of only the first i — 1 wires). The user prepares a Type-I commitment o; and a Type-II commitment o, to z.

The relation is (j», ji)-local since the inputs are Type-II commitments while the output is a Type-I commitment.
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« The user now constructs the following openings:

— First, the user uses the prefix-matching proof system to construct a proof . that o, and o; share a
common prefix of length ¢ (i.e., they agree on the input).

— The user gives a chainable linear opening 7, that applying the identity mapping I, to the Type-I commit-
ment oy yields the Type-IIl commitment o, (recall that oy, 0, are both commitments to the wire values
C(x)).

- The user gives a chainable quadratic opening 7qua4 that applying the “next-wire” function Mc to the
Type-II commitment o, yields the Type-I commitment o;. Here, Mc is the circuit’s “next wire” function
whose i output corresponds to the i wire of C(x). By construction, M¢ implements the identity function
on the first £ wires (corresponding to the input), and a quadratic function for the remaining wires. Since
the wires are arranged topologically, for all i > ¢, the function Mc¢ is (i, i + 1)-local (i.e., the value of wire
i + 1 is a function of the first i wires only).

— Finally, the user computes a Type-II commitment o, to the output y = C(x), together with a chainable
linear opening 7oyt that o,y is consistent with o7 under the linear projection operator that simply selects
for the output wires.

The opening consists of the commitments to the wires o1, 0; along with the openings 7pre, 7iin, Tquad> and Tout.

« To verify the opening 7 = (01, 02, Tpre, Tiin,» Tquad> Tout), the verifier first computes the Type-II commitment gy
to the purported output y itself and checks that each of the underlying openings are valid.

Using the projective commitment schemes described in Section 2.2 (see also Section 4), each of the commitments and
openings consists of a constant number of group elements, so we obtain a functional commitment for circuits with
constant-size commitments and openings.

Security analysis. We now describe how to leverage the security properties of our projective commitment scheme
to argue evaluation binding of the above construction. We provide the formal proof in Section 5. Suppose an
adversary comes up with an input commitment o;, along with two openings 7 = (o1, 02, Tpre, Tlin, Tquads Tout) and
n' = (01,04 Mpre, ﬂl'in,ﬂ:]uad,ﬂéut) for vectors y # y’ and with respect to the same circuit C. Our proof shares
many similarities with the iterative approaches from [GZ21, CJJ21, KLVW23] for constructing delegation schemes.

Specifically, our argument proceeds as follows:

« We start by switching the CRS to be (¢, £)-semi-functional. If 7, and 7, verify, then security of the prefix
matching construction now says that

Project (tdy, 07) = Project™ (tdy, i) = Project™V (td;, o7).

Since Project(l) (tdy, 01) = Project(l) (tdy, 07), the identity function I is (¢, £)-local, and 7jin, JTl/in verify, linear
chain-binding (from Type-I to Type-II) then says that Project® (td,, o) = Project® (td,, 0;).

« Now we switch the CRS to be (¢ + 1, #)-semi-functional. Since only the Type-I index changed, it must be the
case that Project® (tdy, 0,) = Project® (td,, o,) still holds. This step critically relies on the fact that in the
CRS indistinguishability game, the reduction algorithm is given the projection trapdoor, and thus, can project
the Type-II commitments and check for equality. Note that because the Type-I index of the CRS has changed, it
may no longer be the case that Project™ (tdy, o7) = Project (td;, o]) anymore.

« Since the M¢ circuit is (¢, £ + 1)-local by construction, Project(z) (tdy, 02) = Project(l) (tdy, 03), and 7quads ﬂ‘;uad

verify, quadratic chain-binding (from Type-II to Type-I) now re-establishes the property that Project") (tdy, o1) =

Project" (td;, o).

« Now we switch the CRS to be (£ + 1, £ + 1)-semi-functional. Since only the Type-II index changed, this means
that Project!) (td;, o;) = Project™ (tdy, o7) still holds.
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« The above sequence of steps allowed us to move the CRS from (¢, £)-semi-functional to (£ + 1, + 1)-semi-
functional while maintaining the invariant that Project'’) (td;, 1) = Project'V (td;, 0]). We iterate this
same sequence of transitions to conclude that when the CRS is (s, s)-semi-functional, it is still the case that
Project™™ (tdy, o) = ProjectV (td;, o).

« When the CRS is (s, s)-semi-functional, Project(l) (tdy, 01) = Project(l) (tdy, 07), and 7oy, ), verify, we can
appeal to linear chain binding to show that the output commitments ooy, 0, satisfy Project(z) (tdy, oout) =
Project(z) (tdy, 0l ,,). However, the verifier computes the output commitments ooy, Gour from y and y’ honestly.
If y # y’, but ooy and o, are equal in the semi-functional space, then this breaks the collision resistance
property of the projective commitment scheme.

We provide the formal argument in Section 5 (Theorem 5.4). We also refer to Table 2 for a quick overview of the
formal hybrid structure. Taken together, this yields the construction in Theorem 1.1.

3 Preliminaries

We write A to denote the security parameter. For a positive integer n € N, we write [n] to denote the set {1,...,n}.
For a positive integer p € N, we write Z,, to denote the integers modulo p. We use bold uppercase letters to denote
matrices (e.g., A, B) and bold lowercase letters to denote vectors (e.g., u, v). We use non-boldface letters to refer to
their components: v = (vy,...,0,). For a vector v = (vy,...,0,), we write diag(v) to denote the n-by-n diagonal
matrix whose diagonal entries are (v, . ..,v,). We write I, to denote the ¢-by-¢ identity matrix.

We write poly(4) to denote a function that is O(A°) for some constant ¢ € N and negl(1) to denote a function
that is 0(A7¢) for all ¢ € N. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length
of its input. We say that two families of distributions D; = {D11}1eny and Dy = {D; 2} 1en are computationally
indistinguishable if no efficient algorithm can distinguish them with non-negligible probability, and we denote this
by writing D, ~ D,. We say that D; and D, are statistically indistinguishable if the statistical distance A(D;, D)
between the two distributions is bounded by a negligible function negl(2).

Tensor products and vectorization. For matrices A € ZZX’" and B € Z;;X[, we write A ® B to denote the tensor
(Kronecker) product of A and B. For matrices A, B, C, D where the products AC and BD are well-defined, the tensor
product satisfies the following mixed-product property:

(A®B)(C ® D) = (AC) ® (BD). (3.1)
We now state two useful corollaries of the mixed-product property. For a vector x and a matrix A,
x®DA=(x®D(1®A)=x®A. (3.2)
For matrices A € szm and B € Z];x",
A®B=(I,®B)(A®L) = (A® L) (1, ®B). (3.3)

For a matrix A € Z™™, we write vec(A) to denote its vectorization (i.e., the vector formed by vertically stacking the
columns of A from leftmost to rightmost). We will use the following useful identity: for matrices A, B, C where the
product ABC is well-defined, then

vec(ABC) = (C"® A) - vec(B) and vec(ABC)" = vec(B)'(C® A") (3.4)
Functional commitments. We now give the formal definition of a fully succinct functional commitment scheme
for arithmetic circuits:

Definition 3.1 (Succinct Functional Commitment). Let A be a security parameter. A succinct functional commitment
for arithmetic circuits (over a ring) is a tuple of efficient algorithms FC = (Setup, Commit, Eval, Verify) with the
following properties:

14



« Setup(1%,1¢,1%) — crs: On input the security parameter A, the input length ¢, and the circuit size s, the setup
algorithm outputs a common reference string crs. We assume that crs implicitly specifies the input space R?,
where R is a finite ring.

« Commit(crs,x) — (o,st): On input the common reference string crs and an input x € R?, the commitment
algorithm outputs a commitment ¢ and a state st.

« Eval(st,C) — &: On input a commitment state st, an arithmetic circuit C: RY — R™ the evaluation algorithm
outputs an opening .

« Verify(crs,0,C,y, m) — {0,1}: On input the common reference string crs, a commitment o, an arithmetic
circuit C: RY — R™, a value y € R™, and an opening , the verification algorithm outputs a bit b € {0, 1}.

We now define several correctness and security properties on the functional commitment scheme:

« Correctness: For all A, ¢, s € N, all crs in the support of Setup(l’l, 1¢,1%), all arithmetic circuits C: R — R™
(where R is the ring determined by crs), all inputs x € R,

(0,st) « Commit(crs, x);

Pr Verlfy(crs, o, C,C(X),ﬂ.’) =1: 7 — Eval(st,C)

=1

« Binding: For a security parameter A and an adversary A, we define the binding security game as follows:

1. On input the security parameter ], the adversary A outputs the input length 1¢ and the circuit size 1°.

2. The challenger samples crs « Setup(1%, 1%, 1°) and gives crs to A. Let R be the ring associated with crs.

3. The adversary outputs a commitment o, an arithmetic circuit C: R — R™ of size at most s, and vectors
v,y € R™ along with openings 7, 7’

4. The challenger outputs b = 1 if y # y’ and Verify(crs, 0,C, y, 1) = 1 = Verify(crs, 0,C,y’, ’). Otherwise,
the challenger outputs b = 0.

The functional commitment scheme is binding if for all efficient adversaries A, there exists a negligible function
negl(-) such that Pr[b = 1] = negl(1) in the binding security game.

« Succinctness: There exists a universal polynomial poly(:) such that for all A, ¢, s € N, all crs in the support of
Setup(l’l, 1¢,1%), all vectors x € R’ (where R is the ring associated with crs), all arithmetic circuits C: RE— R™,
all (o, st) in the support of Commit(crs, x), and all 7 in the support of Eval(st, C),

lo| < poly(A+1logf+logs) and |n] < poly(A+logt+logs).

3.1 Prime-Order Pairing Groups

We start by recalling the definition of a prime-order pairing group and the matrix decision Diffie-Hellman assumption
and kernel Diffie-Hellman assumptions we use in this work [EHK*13, MRV 15].

Definition 3.2 (Prime-Order Bilinear Group). A prime-order asymmetric pairing group generator GroupGen is an
efficient algorithm that takes as input the security parameter 1* and outputs a description G = (Gy, Gy, Gr, p, g1, g2, €)
of two base groups G, and G, with generators g1, g, respectively, a target group Gr, all of prime order p = 26 and
a non-degenerate bilinear map e: G; X G; — Gr. We write gr = e(gs, g2) to denote a generator of Gr. We require
that the group operation in Gy, G;, Gr and the pairing operations be efficiently computable.

Notation. Let G = (Gy, Gy, Gr, p, g1, g2, €) be a prime-order group. As described in Section 2.1, we use the implicit
representation of group elements [EHK* 13] throughout this work. Namely, for matrices A, B, we write [A]; to denote
g? and [A];[B]; := [AB]r as well as [A]; ® [B]; := [A ® B]t.
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Matrix Diffie-Hellman assumptions. We now recall the matrix Diffie-Hellman and kernel Diffie-Hellman
assumptions we use in this work. Our presentation is adapted from [EHK* 13, MRV15].

Definition 3.3 (k-Lin Assumption). Let GroupGen be a group generator and k € N be a positive integer. The k-Lin
assumption holds in G, with respect to GroupGen if for all efficient adversaries A, there exists a negligible function
negl(-) such that

|Pr[A(G, [Alz, [s'Al2) = 1] = Pr[A(G, [Alz, [u']2) = 1]] = negl(4),

where A = [1% | diag(ay,...,ar)] € Z;X(kﬂ)

s & Zf,, andu & Z’;“.

and the probability is taken over G « Groquen(l/l), ai,...,a & Zp,

Definition 3.4 (Matrix Diffie-Hellman Assumption). Let GroupGen be a group generator, and let k,£,d € N be
positive integers. We say that the matrix Diffie-Hellman assumption with parameters k, £,d (MDDHg ; 4) holds in G,
with respect to GroupGen if for all efficient adversaries A, there exists a negligible function negl(-) such that

| Pr[A(G, [Alz, [SA],) = 1] = Pr[A(G, [Als, [Ulz) = 1]] = negl(A),
where the probability is taken over G < GroupGen(1%), A « Zf,”, s& Zng, and U & Zg”.

Definition 3.5 (Kernel Diffie-Hellman Assumption). Let GroupGen be a group generator. We say that the kernel
Diffie-Hellman assumption (KerDHy ;) holds in G; with respect to GroupGen if for all efficient adversaries A, there
exists a negligible function negl(-) such that

G « GroupGen(11),A & Zf,”,
[x]; « A(G, [A]h)

We define the KerDHy , assumption in G, analogously (where the challenge A is encoded in G; and the adversary’s

output is in G,). Finally, we define the k-KerLin assumption to be an instance of the KerDHj 11 assumption where

the challenge matrix A is given by A = [1¥ | diag(ay,...,a)] € Zf,x(kﬂ) and ay, ..., ax < Z.

Pr|Ax=0Ax#0: = negl(4).

Bilateral MDDH assumptions. Similar to [GZ21], we rely on a bilateral Diffie-Hellman assumption in this work
where the challenge is encoded in both G; and G;,. We recall the assumptions below:

Definition 3.6 (Bilateral k-Lin Assumption). Let GroupGen be a group generator and k € N be a positive integer. The
bilateral k-Lin assumption holds with respect to GroupGen if for all efficient adversaries A, there exists a negligible
function negl(-) such that

|Pr[A(G, [Al1, [Al2, [s"AlL, [s'Al2) = 1] = Pr[A(G, [AlL, [Al2, [u']1, [u']2) = 1]] = negl(A),

where A = [1¥ | diag(ay,...,ar)] € Zf,x(kﬂ) and the probability is taken over G < GroupGen(1%), ay, ..., ar & Zy,
s & Zf,, andu & ZI;“.

Definition 3.7 (Bilateral Matrix Diffie-Hellman Assumption). Let GroupGen be a group generator, and let k, £,d € N
be positive integers. We say that the bilateral matrix Diffie-Hellman assumption with parameters k, ¢, d (bilateral
MDDHyp ¢ 4) holds with respect to GroupGen if for all efficient adversaries A, there exists a negligible function negl(-)
such that

|Pr[A(G, [AlL, [Al2 [SA]L, [SA]2) = 1] = Pr[A(G, [A]1, [Alz, [Ulw, [Ul2) = 1]] = negl(4),
where the probability is taken over G < GroupGen(1%), A « Zf,’“, s& Zng, andU & ng’.
Remark 3.8 (Relationship to k-Lin). The analysis of Escala et al. [EHK* 13] extends to show that for all k > 1, the k-Lin
assumption implies the MDDHj ; 4 assumption for all polynomially-bounded ¢ and d. An analogous result applies for
k-KerLin and KerDHy ,. This analysis directly extends to the bilateral case when k > 1. Finally, Morillo et al. [MRV15]
showed that the (standard) MDDHy ¢4 in G; (resp., G;) assumption implies the KerDHy , assumption in G (resp.,

@y). Thus, for all k > 1 and assuming the bilateral k-Lin assumption holds with respect to GroupGen, both bilateral
MDDHy ¢4 and KerDHg , hold with respect to GroupGen.
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Tensored MDDH. The security analysis of our functional commitment scheme will rely on a tensored version of
the bilateral MDDH assumption. We define this below and show that it is implied by the standard bilateral MDDH
assumption (Definition 3.7).

Definition 3.9 (Tensored MDDH). Let GroupGen be a group generator and let k, £, £, d € N be positive integers.
We say the tensored matrix Diffie-Hellman assumption with parameters k, ¢, d (tensored MDDHjy ¢, ¢, 4) holds in G,
with respect to GroupGen if for all efficient adversaries A, there exists a negligible function negl(-) such that

|Pr[A(G. X, [S(A®B)]z) = 1] - Pr[A(G. X, [Ul2) = 1]| = negl(2),

where X = ([A]4, [A]z [B]1, [B]2, [A ® B]) and the probability is taken over G « GroupGen(1%), A « Z;le,
B Zy% 8 & 74K and U & z9X4%,

Lemma 3.10. Letk, £1,4,d € N be positive integers and GroupGen be a group generator. If the bilateral MDDHy ¢,
and bilateral MDDHy, ,, assumptions hold with respect to GroupGen, then for all polynomials d = d(A), the tensored
MDDHy ¢, ¢,.a assumption holds in G, with respect to GroupGen.

Proof. We first show the claim for d = 1. The general case then follows by a hybrid argument. When d = 1, the goal
is to show that the following two distributions are computationally indistinguishable:

(G. [AlL, [Al2 [B1, [Blz, [A ® Blz, [s"(A® B)]2) ~ (G, [Al1, [Al [Bl1, [Bls [A ® B],, [u']2), (3.5)
where A & Zl;xﬁ, B & Z;xzz, s & ZZZ andu & Zf}fz. To argue this, we first define T € Zf,Xk to be the matrix where

vec(T) = s. Then, by Eq. (3.4),
s"(A®B) = vec(T) (A ® B) = vec(B'TA).

Thus, it suffices to show that
(G, [Al4, [Al, [B1, [Blz, [A ® Bly, [B'TALL) = (G, [Als, [Als, [Bly, [Bla, [A ® Bly, [V]2),

where A & Z’;Xﬁ, B& Z];X[Z, T& Z’;Xk ,and V & foxel. This follows by applying bilateral MDDH twice (once on
the left and once on the right). Formally, we define the following sequence of hybrid experiments:

« Hyb,: Sample G « GroupGen(1%), A & Zf,xﬁ, B & Zf,xez, T& ZZXI‘. Output

(G. [Al1, [Alz [Bl1, [Bl2, [A ® B]y, [B'TA]L).
« Hyb,: Sample G < GroupGen(1%), A & Zf,xel, B& ng&’ T& Zf,Xk, U & Z;XG. Output
(G. [Al1. [Alz [Bl1, [Bl2, [A ® B]3, [B'UJ,).
« Hyb,: Sample G « GroupGen(1%), A & ZZXZI, B & ZI;X[Z, T& Z’;Xk, V& ZLZX[‘. Output
(g’ [A]b [A]Z’ [B]l’ [B]Z’ [A® B]Z’ [V]Z)

We now argue that each adjacent pair of distributions are computationally indistinguishable under the bilateral
MDDH assumption:

+ Hyb, and Hyb, are computationally indistinguishable under bilateral MDDHy, . Specifically, on input a

bilateral MDDHy, « challenge (G, [Aly, [Als, [Z]1, [Z]2), the reduction algorithm samples B & Zf,”z and
constructs the challenge

(G, [Al1, [Alz [Bly, [Bl2, [Al: ® B,BT[Z],) = (G, [Al1, [Al, [Bl4, [Bls, [A ® Bo, [B'Z],).

When Z = TA for T & Zf,Xk, this corresponds to Hyb,, and ifZ & ZI;X[l, then this corresponds to Hyb;.
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+ Hyb, and Hyb, are computationally indistinguishable under bilateral MDDHgg, ;,. Specifically, on input a
bilateral MDDHy, ,, challenge (G, [B]1, [Bl2, [Z]1, [Z]2), the reduction algorithm samples A & Zf,”l and
constructs the challenge

(G. [Al1, [Al2, [B]y, [B]2, A ® [Bl2, [Z7]2) = (G. [Al1, [Als. [Bl1, [Bla, [A ® B, [Z7]5).

When Z = UB for U & Z;;}Xk, this corresponds to Hyb, and if Z & Z;,‘ *% then this corresponds to Hyb,.

For the general case (i.e., d > 1), we proceed via a hybrid argument. For each i € {0, ...,d}, we define experiment
Hyb; as follows:

« Hyb, fori € {0,...,d}: Sample G « GroupGen(1*), A & Z’;xﬁ, B& Zlk;wz, S & Zngz. Parse S = [g;] where
S, € Z* and S, € ZW K Let V & Z¥4%. Output

(6. (AL [AL [Bl, [Bl.. [A @ Bz, [ 5, Xem |)

By construction, the distributions in the bilateral MDDHy g, 4, 4 assumption correspond to Hyb, and Hyb,. It suffices
to show that for all i € [d], Hyb,_, and Hyb; are computationally indistinguishable. This reduces to the 1-dimensional
case. The reduction algorithm receives a 1-dimensional challenge

(G.[Al1, [Al2 [B]1, [Bl2, [A ® By, [2']2),

i)xk?
. It then constructs the challenge

[V]2
[ZT]Z .
S2[A®B];

Ifz' = s"(A ® B) where s & Z’;Z, then this challenge is distributed according to Hyb;_, whereas if z <~ ngz, then it
is distributed according to Hyb,. Finally, since d = poly(4), the claim now follows by a hybrid argument. O

where A & ZZXZI, B& ZZX[Z and samples V & Zgil)xmz and §; & ZLCF

G, [Al1, [Al2 [B]1, [B]2, [A ® B]3,

4 Projective Commitments from k-Lin

In this section, we introduce and construct the main building blocks that we use for constructing a succinct functional
commitment for general circuits from the bilateral k-Lin assumption. Our main construction relies on the ability to
project a committed vector onto a subset of its components and argue properties on the projected subset. We start by
defining the basic projection matrix we use throughout this section.

Definition 4.1 (Projection Matrix). Let ¢ be a vector dimension. For an index j € [£], define the projection matrix
P; € {0,1}** as follows:
P; := diag([17 | 0™")]) € {0, 1} (4.1)

Namely, for every vector x = [xy,...,x,]", we have P;x = [x1,...,x;,0,...,0]".

Local functions. Our constructions in the subsequent sections will also consider local functions, which are
functions where some of the outputs only depend on a subset of the inputs.

Definition 4.2 (Local Function). Let f: X* — Y™ be a vector-valued function. For parameters j, € [¢] and j, € [m],
we say that f is (ji, jo)-local if the first j, outputs of f only depend the first j; inputs to f. In other words, if
fi: Xt — Y is the function that computes the i'" output of f, then for all i < j,, the function f;(x) only depends
on the values of xy,...,xj,. For aset S C [£] x [m], we say that f is S-local if for all (ji, j2) € S, the function f is
(j1, j2)-local. We refer to S as a “locality set.”
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4.1 The Base Projective Commitment Scheme

We now define the syntax of our base projective commitment scheme. The base scheme supports two types of
commitments (which we refer to as Type I and Type II). The base commitment scheme does not provide any useful
functionality. However, in the subsequent sections, we augment the base scheme with succinct proof systems for
demonstrating relations on Type I and Type II commitments. These proof systems will be used as the main building
blocks for our (fully) succinct functional commitment scheme in Section 5.

Projective commitments. In a projective commitment, the CRS for the base scheme can be sampled in a “normal”
mode which is used for the real scheme, and a “semi-functional” mode which will be used for the security analysis.
When the CRS is sampled in the semi-functional mode, it will be possible to “project” a commitment to a vector x
onto a commitment to the first j components of X" = (xy, ..., x;). There are two different projection modes: one for
projecting Type-I commitments and one for projecting Type-II commitments. Essentially, the projection operators
allow us to “embed” a chainable commitment scheme within the semi-functional space of the projective commitment.
We can then leverage a proof strategy similar to [GZ21, CJJ21, KLVW23] in the semi-functional space of the projective
commitment scheme to obtain a functional commitment for general arithmetic circuits. We refer to Section 2 for a
high-level description and Section 5 for the formal description and analysis. We now describe the syntax and primary
security properties we require on our base projective commitment scheme.

Definition 4.3 (Projective Commitment Scheme). A (base) projective commitment scheme FC = (SetupBase,
SetupSF, Commit", Commit®, Project!, Projectm) is a tuple of efficient algorithms with the following syntax:

« SetupBase(1%, 1Y) — crspase: On input the security parameter A and a vector dimension ¢, the normal setup
algorithm outputs a common reference string crsp,se. We assume that crsp,se implicitly contains a description
of the input space R’ of the commitment scheme. We require that the input space R is a ring.

. SetupSF(l’l, 1%, j1, j2) = (crspases tdy, tdz): On input the security parameter A, a vector dimension ¢, a Type-I
index j; € [£], and a Type-Il index j, € [£], the semi-functional setup algorithm outputs a common reference
string crspase and projection trapdoors td; and td,.

« Commit™® (crSpase, X) — o1: On input the common reference string crspase and a vector x € R, the Type-I
commitment algorithm outputs a Type-I commitment oy. This algorithm is deterministic.

« Commit® (crspase, y) — 03: On input the common reference string crsp,s. and a vector y € R, the Type-II
commitment algorithm outputs a Type-II commitment o,. This algorithm is deterministic.

« ProjectV (tdy, 07) — o;: On input a Type-I projection trapdoor td; and a Type-I commitment oy, the Type-I
projection algorithm outputs a projected commitment o7. This algorithm is deterministic.

« Project® (td,, 03) — o, On input a Type-II projection trapdoor td; and a commitment o, the Type-I projection

algorithm outputs a projected commitment o;. This algorithm is deterministic.

Roadmap. In the remainder of this section, we define the primary security properties we require of the base
projective commitment scheme. We summarize these below and follow with the formal definitions:

+ Mode indistinguishability: The normal CRS (output by Setup) should be computationally indistinguishable
from a semi-functional CRS (output by SetupSF).

« Type-I indistinguishability: Semi-functional common reference strings with the same Type-II index j,, but
different Type-I indices jj, j{, should be computationally indistinguishable even given the Type-II trapdoor td,.

+ Type-II indistinguishability: Semi-functional common reference strings with the same Type-I index j;, but
different Type-II indices j,, j;, should be computationally indistinguishable even given the Type-I trapdoor td;.
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« Type-II collision resistance: When the Type-II index j, = £ is the vector length, then it should be computa-
tionally infeasible to find distinct vectors y # y’ whose Type-II commitments are equal in their semi-functional
components.

In the subsequent sections, we design proof systems for arguing certain properties on the commitments in Construc-
tion 4.8:

+ Prefix checking. If oy and o] are Type-I commitments to vectors x, x’, respectively, we describe a proof system
to argue that x and x’ share a common prefix. We describe this in Section 4.2.

« Type-I to Type-II linear mapping. If o; is a Type-I commitment to a vector x, we describe a proof system to
demonstrate that o, is a Type-II commitment on a vector y = f(x), where f is a linear function. We describe
this in Section 4.3.

« Type-II to Type-I quadratic mapping. If 0, is a Type-II commitment to a vector y, we describe a proof
system to demonstrate that o7 is a Type-I commitment to a vector x = f(y), where f is a quadratic function.
We describe this in Section 4.4.

Finally, in Section 5, we show how to use the projective commitment from Construction 4.8 in conjunction with these
three proof systems to obtain a functional commitment for arbitrary circuits.
Security properties. We now give the formal definitions of the security properties outlined above.

Definition 4.4 (Mode Indistinguishability). Let FC be a projective commitment scheme where FC = (SetupBase,
SetupSF, Commit"), Commit®, Project™), Project(z>). For a bit b € {0, 1} and an adversary A, we define the mode

indistinguishability game ExptMI 4[4, b] as follows:
1. On input the security parameter A, algorithm A outputs the input length 1¢, and indices j;, j» € [£].
2. The challenger samples the CRS as follows:

« If b =0, crspase < SetupBase(1%,1°).
o If b =1, (crspase, tdy, tdy) «— SetupSF(lA, 14, 1, j2).

The challenger gives crspse to A.
3. Algorithm A outputs a bit b’ € {0, 1} which is the output of the experiment.

The projective commitment scheme FC satisfies mode indistinguishability if for all efficient adversaries A, there
exists a negligible function negl(-) such that

|Pr[ExptMI 4 [, 0] = 1] — Pr[ExptMI 4[4, 0] = 1]| = negl(2).

Definition 4.5 (Type-I Indistinguishability). Let FC be a projective commitment scheme where FC = (SetupBase,
SetupSF, Commit™, Commit®, Project(l), Project(z)). For abit b € {0, 1} and an adversary A, we define the Type-I
indistinguishability game ExptTl 4[4, b] as follows:

1. On input the security parameter A, algorithm A outputs the input length 1/, two Type-I indices ji, j| € [¢], and
a Type-Il index j, € [£],

2. The challenger samples the CRS as follows:

o If b =0, (crspase, tdy, tdy) «— SetupSF(l’l, 14, 1, j2).
« Ifb =1, (crspase, tdy, tdz) « SetupSF(1%, 1%, j/, jz).

The challenger gives crspase and td; to A.
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3. Algorithm A outputs a bit " € {0, 1} which is the output of the experiment.

The projective commitment scheme FC satisfies Type-I indistinguishability if for all efficient adversaries A, there
exists a negligible function negl(-) such that

[Pr[ExptTl4[A, 0] = 1] — Pr[ExptTl4[A, 0] = 1]| = negl(2).

Definition 4.6 (Type-II Indistinguishability). Let FC be a projective commitment scheme where FC = (SetupBase,
SetupSF, Commit®, Commit®, Project(l), Project(z)). Forabitb € {0,1} and an adversary A, we define the Type-II
indistinguishability game ExptTll 4[4, b] as follows:

1. On input the security parameter A, algorithm A outputs the input length 1¢, a Type-I index j; € [¢], and two
Type-Il indices j,, j, € [£].

2. The challenger samples the CRS as follows:

o If b =0, (crspase, tdy, tds) «— SetupSF(lA, 14, j1, j).
o If b =1, (crspase, tdy, tdy) «— SetupSF(l’l, 1¢, J1, )

The challenger gives crspase and td; to A.
3. Algorithm A outputs a bit b’ € {0, 1} which is the output of the experiment.

The projective commitment scheme FC satisfies Type-II indistinguishability if for all efficient adversaries A, there
exists a negligible function negl(-) such that

|Pr[ExptTll 4[4, 0] = 1] — Pr[ExptTll 4[4, 0] = 1]| = negl(2).

Definition 4.7 (Type-II Collision Resistance). Let FC be a projective commitment scheme where FC = (SetupBase,
SetupSF, Commit™, Commit®, Project(l), Project(2> ) For an adversary A, we define the Type-II collision resistance
game as follows:

1. On input the security parameter A, algorithm A outputs the input length 1¢ and a Type-I index j; € [£].
2. The challenger samples (crspase, tdy, tdy) «— SetupSF(lA, 1%, j1, £) and gives crspase to A.
3. Algorithm A outputs two vectors y,y’ € R, where R’ is the input space associated with crspse.

4. The challenger then computes oy = Commit® (crspase, y) and o; = Commit® (crspase, y’). The output of the
experiment is b = 1 if
y#y and Project? (tdy, 03) = Project® (tdy, o}).

Otherwise, the experiment outputs b = 0.

We say FC satisfies Type-II collision resistance if for all efficient adversaries A, there exists a negligible function
negl(-) such that Pr[b = 1] = negl(4) in the Type-II collision resistance security game.

Constructing projective commitments from pairings. We now describe our base projective commitment
scheme from pairings and then show that it satisfies the security properties listed above (under the bilateral k-Lin
assumption).

Construction 4.8 (Projective Commitment Scheme). Let k € N be a constant and GroupGen be a prime-order
pairing group generator. Our base projective commitment scheme FC = (SetupBase, SetupSF, Commit™, Commit(®),
Project)), Project®)) is defined as follows:
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« SetupBase(1%,1%): On input the security parameter A and the input length ¢, the setup algorithm samples
G = (G1,Gy, Gr, P, g1, g2, ) < GroupGen(1*). Then, it samples T, Ty, T, & le,kx" and sets T, = T; ® Ty. It
outputs the common reference string

crsbase = (G [Tl [Til1, [Tilz [Tela [Tal2).

The input space associated with crspase is the ring Z,,.

« SetupSF(1%, 1%, j1, j»): On input the security parameter A, the input length ¢, the Type-I index j; € [£], and the
Type-1I index j, € [£], the semi-functional setup algorithm samples the following components:
— Sample G = (Gy, Gz, Gr, p, g1, g2, €) < GroupGen(14).

— Sample full-rank matrices B, B, B, & Zf,kXZk and define B* = B!, Bl = Bl_l, and B} = Bz_l. It parses the
matrices as

A B, Bi: By
B=|x and B; = ’ and B, = -, 4.2
F L o I @2
where By, B,, Bi1,B12,B21,B;2 € Z];XZI‘. Similarly, it parses
B =[B}, |B;] and Bj=[Bj,|B},] and B;=[Bj, |B;,] (4.3)
Nk Dk Tk * * * 2k xk
where B], B}, B1,1’ Bl,z, Bz,p Bz,z € Zp .

— Construct the encoding matrices T T, T as follows:
+ Type-I encodings: Sample $;, S, & Zf,” and let T = B:S, + B1S,P; € ZIZJ’CX[.
« Type-II encodings: For @ € {1,2}, sample Sy 1, Se 2 & lej”. Let T, = BZ,lsaJ + B:(’ZSO,,ZPF,»Z € ijjkw,

where P; ,P;, are the projection matrices from Definition 4.1. Then, let T, = T; ® T,.

The setup algorithm outputs the common reference string crspase = (G, ["i"]g, [T1]1, [T1]2, [T2]2, [T4]2) and the
projection trapdoors td; = B, and td, = (B1,2, B22). The message space associated with crsp,e is the ring Z,.

T.];) and

« Commit™ (crspase, X): On input the common reference string crspase = (g [T]z, [Ti]1, [T1las [T2]2 [
= [C]z S G;k

avectorx € Zf,, the Type-I commitment algorithm computes [¢]; «— [T]zx = [Tx]z. It outputs oy

« Commit® (crspases y): On input the common reference string crspase = (G, [T]z, [T1]1, [Til2 [T2la, [Te]2)
and a vector y € Zf,, the Type-II commitment algorithm computes [c;]; « [T1]1y = [Tiy]1 € Gfk and

[ca]s « [T2]2y = [T2yl]: € ng. It outputs the commitment o, = ([¢1]1, [c2]2).

« ProjectY)(tdy, 07): On input a Type-I projection trapdoor td; = B,, and a commitment ; = [¢&],, output
B;[a1].

« Project® (tdy, 03): On input a Type-II projection trapdoor td; = (By.5, By2) and a commitment o, = ([¢1]1, [c2]2),
output (Byz[c1]1,Baz[c2]2).

Theorem 4.9 (Mode Indistinguishability). If the bilateral k-Lin assumption holds with respect to GroupGen, then
Construction 4.8 satisfies mode indistinguishability.

Proof. Take any adversary A for the mode indistinguishability game, and let ¢, ji, j» be the values chosen by the
adversary A. We define a sequence of hybrid experiments:

+ Hyb,: This is experiment ExptMI 4[4, 0]. In this experiment, the challenger samples G = (G, Gz, Gr, p, g1, g2, €)
GroupGen(1%). It also samples T, T, T, & Z?,kx'?, computes T, < Ty ® T, and outputs

crSpase = (G, [T]2 [Til, [Tz [Telz [Te]2)
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« Hyb,: Same as Hyb,, except the challenger samples $;,S; & Zf,” and B, B} & Z;ka. It then sets

T = B}S; +BjS,P), € 2.

« Hyb,: Same as Hyb,, except the challenger samples Sy, S; 2 < Zk” and B} |, B}, & Z?,ka. It then sets
T; = B},S11 +B,S1,P;, € Z.

*

* Hyby: Same as Hyb,, except the challenger samples S;.,S,.2 € Z‘,];X[ and B; |, B}, & ijjkxk, It then sets
T, = B;,152,1 + BZ$ZSZ’2P].Z c Z;er-
This is ExptMI 4[, 1].

We now argue that each adjacent pair of hybrid experiments is computationally indistinguishable. In the following,
we implicitly use the fact that sampling A & Zf,k”k is statistically indistinguishable from sampling a full rank

A & ZZkXZk
D .

+ Hybrids Hyb, and Hyb, are computationally indistinguishable under the MDDHy ; 2x assumption in G,. Given
the MDDHy ¢2¢ challenge (G, [A]2, [V]2) where A & Zf,” andV € Zf,kX[, the reduction algorithm samples

T;, T, & Z&* and S, & ZK*!, By & Z2K It creates the CRS

CrShase = (G [V]2 + B3S:P;,, [Til1, [Tilz, [Tola [T1 @ Tol).

When V ZZkX‘] this corresponds to the distribution in Hyb, and when V = SA where S < ZZka nd
A& Z];Xf, thlS corresponds to the distribution in Hyb,.

Hybrids Hyb, and Hyb, are computationally indistinguishable under the bilateral MDDHj ¢ 2k assumption.
Given the bilateral MDDHjy ¢ 2 challenge (g [A]4, [A]z, [V]1, [V]2), the reduction algonthm samples T, &
ZZkX[ It also samples S, S5, Sy & Zk” and B, B, B, ZZka It sets T = B:S; +B}S,P,. It creates the CRS

CI'Spase = (Q, [T]z, [V]: + Bizsl,szz, [V]2 + Bizsl,zpjz, [Tz]2, ([V]z + Bizsl,szz) ® T2)~

When V & ZZk” this corresponds to the distribution in Hyb, and when V = SA where § & ZZka nd
A& Z’;X[, thlS corresponds to the distribution in Hyb,.

Hybrids Hyb, and Hyb, are computationally indistinguishable under the MDDHjy ;o assumption in G,. Given
the MDDH ¢ 2¢ challenge (G, [A]2, [V]2) where A & Zf,” andV € Zf,kX[, the reduction algorithm samples

gl, éz, Sl,la Sl’z, Sz,z & szt’ and Bjk B* BT IBT 2 B)k & ij)ka. It sets T = BTSl + BZézPh and T] = B; 151,1 +
B’{’ZSLZP]-Z. It creates the CRS

Crspase = (G, [T]2, [Ti]s, [Tila, [V]2 + B3 ,S22P;,, T ® ([V]2 + B;,zsz,zpjz)).

When V & ZZk” this corresponds to the distribution in Hyb, and when V = SA where S & ZZka and
A& Z];X[, thlS corresponds to the distribution in Hyb,.

Since ¢ = poly(A), the bilateral k-Lin assumption implies each of the underlying MDDH assumption we use in the
above analysis (Remark 3.8), the theorem now follows by a hybrid argument. O

Theorem 4.10 (Type-I Indistinguishability). If the k-Lin assumption holds in G, with respect to GroupGen, then
Construction 4.8 satisfies Type-I indistinguishability.

Proof. Let A be an adversary and let ¢, jy, ji, j» be the values it chooses. We proceed via a hybrid argument:
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« Hyb,: This is ExptTl 4[A,0]. In this experiment, the challenger samples G = (Gy, Gy, Gr,p, 91,92, €)
GroupGen(1%). It samples ﬁiﬁ; & Zf,ka, B.,B, & Zf,k“k, and defines B} = B! and B, = B, . It parses
By, B, into matrices By, B12, B21, B2 € Zf,”k according to Eq. (4.2) and B}, B; into B} |, B} ,,B; |, B; , € Zf,ka
according to Eq. (4.3). Next, it samples Sy, S, S11,S1.2, 2.1, S22 & Z;‘,X[. It sets

and T, = B’ilSl,l + BT,ZSLZPJ'Z and T, = B;,ISZJ + B;,ZSZ,ZPJ'Z'

7
Finally, it computes T, = T; ® T, and outputs

crshase = (G, [Tz [Ti]1, [Talz, [Telo, [T:]2)
along with tdy = (B2, B23).

« Hyb,: Same as Hyb, except the challenger samples T ¢ Zf)"'”.

+ Hyb,: Same as Hyb, except the challenger samples T= B S+ B;SZPL’. This is ExptTl 4[4, 1].

We now show that each adjacent pair of hybrid experiments is computationally indistinguishable. As before, we

implicitly use the fact that sampling A &~ Z2¥** is statistically indistinguishable from sampling a full rank A &
ZZkXZk.
P

+ Hybrids Hyb, and Hyb, are computationally indistinguishable under the MDDH, , 2x assumption in G,. Given
the MDDHy 5« challenge (G, [A],, [V]2) where A & Zf,” andV € Z}Z,k” , the reduction algorithm samples

B.,B, & Zf,kXZk and defines B} = B{', B} = B, . Then it samples S 1,512,521, S22 & ka{ and constructs

T, = B’I"ISM + Byf,zsl,zpjz» and Ty = B;’lsz,l + B;,ZSZ,Zsza where the components B1 o B;‘ ” B; v B’z‘,2 are obtained

from B}, B} according to Eq. (4.3). Finally, it samples S, ¢~ Zf,”, B; & Z;ka and creates the CRS

CrSbase = (G, [V]2 +B3S:P;,, [Til1, [Tilz, [Tola [T1 ® T2ls)

and the trapdoor td, = (B; 2, By,) where By, and B, , are derived from By, B, as in Eq. (4.2). When V &~ Zf,k”,

this corresponds to the distribution in Hyb, and when V = SA where S < ZIZ,’CX" and A & Z’;X[, this corresponds
to the distribution in Hyb,,.

« Hybrids Hyb, and Hyb, are computationally indistinguishable under MDDHj ; 2x by an analogous argument.

Since ¢ = poly(4), the k-Lin assumption in G, implies the MDDHjy ;21 assumption in G,. The theorem now follows
by a hybrid argument. O

Theorem 4.11 (Type-II Indistinguishability). If the bilateral k-Lin assumption holds with respect to GroupGen, then
Construction 4.8 satisfies Type-II indistinguishability.

Proof. Let A be an adversary and let ¢, ji, j», j;, be the values it chooses. We proceed via a hybrid argument:

» Hyb,: This is ExptTll 4[4, 0] In this experiment, the challenger samples G = (GI,GZ, Gr, p, g1,g2,e)
GroupGen(1%). It samples B & ZZkXZk and defines B* = B~!. Then it parses B into matrices B;,B, €
ZkXZk according to Eq. (4.2) and B* into matrices Bl,B; € szXk according to Eq. (4.3). It also samples

BT It BT 2 B; T Bz 9 & ZZXZk and Sl, Sz, Sl,l’ 51!2, SZ,I, 82’2 & ZZXf. Finally, it sets

T = B)Iél + B;Sgph and T1 = B“Sll + BT,ZSLZPJQ and T2 = B21321 + BZZSZZPM
Finally, it computes T, = T; ® T, and outputs

crsbase = (G5 [Tl [Til1, [Tilz [Tzla, [Til2)

along with td; = B,
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Hyb,: Same as Hyb, except the challenger samples T; <~ Zf,k”.
Hyb,: Same as Hyb, except the challenger samples T, <- Z?,kx’.
Hyb,: Same as Hyb, except the challenger sets T, = B} S, + Biz‘:zSz,szé

Hyb,: Same as Hyb; except the challenger sets T; = B{ 5, ; + B{,S P ;. This is ExptTll 4[4, 1]

We now show that each adjacent pair of hybrid experiments is computationally indistinguishable. As before, we

implicitly use the fact that sampling A <

73k s statistically indistinguishable from sampling a full rank A &

2kx2k
Zp .

Hybrids Hyb, and Hyb, are computationally indistinguishable under the bilateral MDDHj ; ox assumption.
Spec1ﬁcally, glven the bilateral MDDHk“k challenge (G, [A ]1, [A]s, [V]1, [V]z) the reduction algorithm
samples B & ZZkXZk and defines B* = B~!. Then it parses B into matrices By, B, € ZkXZk according to

Eq. (4.2) and B* into matrices B’{, B; € szXk according to Eq. (4.3). It also samples B} ,, B} |, B* & Z§X2k and
$1, 52, 12,521,522 ¢ Z’;x{- Next, it sets

and T, = B;,lsZ,l + B;,ZSZ,Zsz'
It gives A the CRS
Cl'Shase = (g, [T]z, [V]1 + Bizsl,zpjz, [V], + BT,ZSI,Zsz, [T:]o, ([V]z + Bizsl,zpjz) ® Tz)

and the projection trapdoor td; = B;. When V & ij)kxf, this corresponds to the distribution in Hyb, and when
V = SA where S & Zf,ka and A & Zf,”, this corresponds to the distribution in Hyb,,.

Hybrids Hyb, and Hyb, are computationally indistinguishable under the MDDHy ¢ o5 assumption in G,. Specif-
ically, given the MDDHy 42 challenge (G, [A]z, [V]2), the reduction algorithm samples B - Zf,kXZk and

defines B* = B~!. Then it parses B into matrices By, B, € Z];XZk according to Eq. (4.2) and B* into matrices
B*, B* € 72k%k according to Eq. (4.3). It also samples BY , & ZkX2k and §,.S,. S, , & ZK*C Next, it sets
10 P2 ) g q p 2.2 D , D

T=B}S;+B;$;P;, and T, & Z)

1

It gives A the CRS
Crspase = (G, [T]2, [Ta]s [Tals [V]2 + B3 ,S22P),, (T1® ([V]2 + B;,ZSZ,Zsz))

and the projection trapdoor td; = B;. When V & ZIZJkX’, this corresponds to the distribution in Hyb, and when
V = SA where S & szXk and A & Zf,x{, this corresponds to the distribution in Hyb;.

Hybrids Hyb, and Hyb, are computationally indistinguishable under the MDDHj ; % assumption in G,. This
follows by an analogous argument as that used to argue indistinguishability of Hyb, and Hyb,.

Hybrids Hyb, and Hyb, are computationally indistinguishable under the bilateral MDDHj ; ox assumption.
This follows by an analogous argument as that used to argue indistinguishability of Hyb, and Hyb,.

Since ¢ = poly(A), the bilateral k-Lin assumption implies the bilateral MDDHp 4 2x assumption (Remark 3.8). The
theorem now follows by a hybrid argument. O

Theorem 4.12 (Type-1I Collision Resistance). Suppose the k-KerLin assumption holds in G, with respect to GroupGen.
Then, Construction 4.8 satisfies Type-II collision resistance.

Proof. Take any adversary A that breaks the Type-II collision resistance of Construction 4.8 with non-negligible
probability e. Let £ and j; be the input length and Type-I index chosen by A. We use A to construct an adversary 8
that breaks the KerDHy , assumption in G, with respect to GroupGen:

25



1. On input the KerDHy, challenge (G, [A]2), algorithm B samples full-rank matrices B, B.,B, & ij,k”k and
defines B* = B, B: =B, and B, = B, . Then it samples $1,55,811,512, 821, & Zf,” and constructs

T = ETSl + E;ézp_h and T, = BiISM + B’;,ZSLZ and [T2]2 = B;,ISZ,l + B;,Z [A] 2,

where the components ]:’»*1*, 13;, B’l‘,l, Biz, B;,v B;,z are obtained from B*, B*, B} according to Eq. (4.3). Algorithm
B gives Crspyse to A where

crsbase = (G [Tl [Til1, [Tilz [T2la Ty ® [T2la).

2. At the end of the game, algorithm A outputs two vectors y,y’ € ZI{;' Algorithm 8 outputs [y — y'];.

Since the KerDH challenger samples A ¢~ Zf,” and P, = I, algorithm B perfectly simulates an execution of the
Type-II collision resistance game for A. Thus, with probability at least ¢, algorithm A outputs y # y’ such that
Bz’szy = B2’2T2y, (and Bl,Zle = B1’2T1y,). This means that

By 2Ty =By (B;slsz,l + B;’ZA)y = Ay
By T2y’ = Byy (B5;S21 + BZ,zA)y’ = Ay’

We conclude that Ay = Ay’, so A(y —y’) = 0, buty # y’. Correspondingly, algorithm B breaks KerDHy , with
advantage ¢. Finally, since £ = poly(A), the KerDHy , assumption follows from k-KerLin, as required. O

4.2 Prefix Checking on Committed Values

The first proof system we design for the base projective commitment scheme in Section 4.1 is to argue that two Type-I
commitments share a common prefix (i.e., that oy, o] are commitments to x and x” where x; = x] for alli < j). In
the broader context of constructing functional commitments (Section 5), the prefix-checking proof system is used to
check consistency between a commitment to an input x and a commitment to all of the wires in an arithmetic circuit
evaluation C(x). The security requirement is enforced in the semi-functional space. We start by defining the syntax of
the prefix-checking proof system as well as its correctness and security requirements:

Definition 4.13 (Prefix Checking for Projective Commitments). Let FCpase = (SetupBase, SetupSF, Commit(V),
Commit®, Project™), Project(z)) be a projective commitment scheme. A prefix-checking proof system for FCp,ge is
a triple of efficient algorithms FCp = (SetupPre, OpenPre, VerifyPre) with the following properties:

« SetupPre(crspase, j) — crs: On input the common reference string crsp,se (defining the associated input space
R") and a prefix length j € [¢], the setup algorithm outputs a common reference string crs.

« OpenPre(crs,x,x’) — m: On input a common reference string crs and two vectors x,x’ € R, the opening
algorithm outputs a proof x.

« VerifyPre(crs, o1, o}, ) — b: On input the common reference string crs, two Type-I commitments o1, o7, and
an opening 7, the verification algorithm outputs a bit b € {0, 1}.

The prefix-checking proof system FCp,. should satisfy the following two properties:

« Correctness: For all security parameters A € N, all vector lengths £ € N, all prefix lengths j € [£], all crspase in
the support of SetupBase (174, 1¢), all vectors x,x’ € R’ (where R’ is the message space associated with crspase)
where x; = x] forall i < j,

crs « SetupPre(crspase, j)
o1 < Commit™ (crspase, X)
o] — Commit™ (crspase, X')

7« OpenPre(crs, x,x’)

Pr | VerifyPre(crs, 01,07, 7) = 1:
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« Prefix-matching security: For a security parameter A and an adversary A, we define the prefix-matching
security game as follows:
1. On input the security parameter A, the adversary outputs the dimension 1¢ and the prefix length j € [£].

2. The challenger samples (crspase, tds, tdy) «— SetupSF(l’l, 1%, j, j) and crs < SetupPre(crspase, j). It gives
(crspase, crs) to A.

3. The adversary outputs two Type-I commitments (o1, 07) and an opening 7.
4. The output of the experiment is b = 1 if the following properties hold:
— Mismatching prefix: Project(l)(tdl, o1) # Project(l)(tdl, o).
- Validity of opening: VerifyPre(crs, 01,07, 1) = 1.
Otherwise, the challenger outputs b = 0.

We say that that FC,y. satisfies prefix-matching security if for all efficient adversaries A, there exists a negligible
function negl(-) such that Pr[b = 1] = negl(A) in the prefix-matching security game.

Constructing a prefix-checking proof system. We now show how to construct a prefix-checking proof system
for the base projective commitment scheme from Section 4 (Construction 4.8).

Construction 4.14 (Prefix Checking for Projective Commitments). Let FCpase = (SetupBase, SetupSF, Commit®),
Commit(z), Project(l), Project(z)) be the projective commitment scheme from Construction 4.8. We construct a
prefix-checking proof system FCpe = (SetupPre, OpenPre, VerifyPre) for FCpase as follows:

« SetupPre(crspase, j): On input the common reference string crspase = (Q ['f]z, [T1]1, [T1]2, [T2]2, [T*]z) for the

base projective commitment scheme, and a prefix length j € [£], the setup algorithm samples A <~ Z];X(kﬂ)
and W & Z;,kH)XZk. Then, it computes
N J X (6= j) .
(2], = W[, [0 I ] c ngﬂ)x(t’—j)’ (4.4)
-j
Output the common reference string
crs = (CrSbase, [A]1, [AW]y, [Z]2) . (4.5)

« OpenPre(crs,x,x’): On input the common reference string crs = (crspase, [A]1, [AW]1, [Z]2) and two vectors
x,x € Zf,, the opening algorithm computes and outputs

m=[vlp = [Z] - [0 |1, ;] (x - x') € G5,

+ VerifyPre(crs, 01, 0, ): On input the common reference string crs = (crspage, [A]1, [AW]1, [Z]2), two Type-I
commitments oy = [¢], o] = [¢]2, and an opening 7 = [v],, the verification algorithm outputs 1 if

[AW]1([€]z = [€']2) = [Al1[V]2.

Theorem 4.15 (Correctness). Construction 4.14 is correct.

Proof. Take any A,¢ € N and j € [£]. Let crspase = (G [Tz [Tals, [Tilz, [Talz [Te]2) « SetupBase(1%,1¢). Let
crs = (Crspases [Al1, [AW]4, [Z];) < SetupPre(crspase, j). Take any two vectors x,x’ € Zf, with a common prefix of
length j. This means that
0XEN]
[0, ;] (x-x) =x - X
I[_J

Suppose oy Commit™ (crspase, x) and o] Commit™ (crspase, x’), and 77 OpenPre(crs, x,x"). By construction,
o1 =[]y = [Tx]y, o] = [¢']; = [TX']2, and 7 = [v], where
s TG N ) o
Av = AZ[0XI | 1,_;](x = X') = AWT I [0U=DX | 1,_;](x—%X) = AWT(x - x) =AW (¢ - &). O
{—j
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Theorem 4.16 (Prefix-Matching Security). Suppose the KerLing k.1 assumption holds in Gy with respect to GroupGen.
Then, Construction 4.14 satisfies prefix-matching security.

Proof. Take any efficient adversary A for the prefix-matching security game. We start by defining a sequence of
hybrid experiments.

+ Hyby,: This is the prefix-checking security experiment. We provide the full specification here:

- At the beginning of the game, the adversary A outputs 1¢ and j € [¢].

— The challenger samples G = (Gy, Gy, GT,p 91, 92, e) — GroupGen(1%). It samples full-rank matrices
B,B;,B, & ZZkXZk and defines B* = B~!, B! = B;!, and B, = B, . It parses B,B,,B; as in Eq. (4.2) and

B*,B’;, BJ as in Eq. (4.3).
— The challenger constructs the encoding matrices T, T, T, as follows:
« Type-I encodings: Sample §;,5, & Zf,x" and let T = B*S, + B:S,P; € Zf,k”.
« Type-II encodings: For « € {1,2}, sample S, 1, Sy < Z}’;X[. Let Ty = B}, ;Sq.1 + B, ,Sa2P) € Zf,k”.
Finally, the challenger sets T. = T; ® T, and sets crspase = ( , [’i‘]z, [Ti]1, [T1]2, [T2]2, [T*]z).

kx (k+1) and W Z(I<+1)><2k

— The challenger samples A <~ Z, It computes

. [gixE=))
Z=WT .
The challenger gives the common reference string crs to A where

crs = (crspase, [Al1, [AW]4, [Z]2) .

- The adversary outputs two commitments oy = [¢], o] = [¢'], and an opening 7 = [v]>.
The output of the experiment is 1 if B,é # B,&’ (ie., By(&é — &) # 0) and AW (& — &) = Aw.
+ Hyb,: Same as Hyb,, except the challenger outputs 1 if W (¢ — ¢’) = v and By(¢—¢) #0.
+ Hyb,: Same as Hyb,, except when constructing the CRS, the challenger samples a random nonzero vector
alt e Zf,“ in the kernel of A. Then, it samples W o, <~ Z;,kﬂ)x}c, Wiy & Z};kﬂ)x}c, Wero ¢ Z;; It sets
Wi =W +atwl, and W =WumBi+WB,.

The challenger then sets Z as

~ [oix(=J)
Z = WormS1 .
I(,j

Finally, the challenger sets the CRS to be
crs = (Crsbases [A]1, [A(Wnormﬁl + Ws(,11§2)] T [Z]Z) .

We write Hyb, (A) to denote the output distribution of an execution of hybrid Hyb, with adversary A. We now show
that the output distribution of each pair of hybrids is indistinguishable.

Lemma 4.17. Suppose the KerDHg y41 assumption holds in G; with respect to GroupGen. Then, it follows that
[Pr[Hyb,(A) = 1] — Pr[Hyb, (A) = 1]| = negl(1).
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Proof. Suppose | Pr[Hyb,(A) = 1] — Pr[Hyb, (A) = 1]| > ¢ for some non-negligible ¢. The only difference between
Hyb, and Hyb; is the verification relation. Let [¢],, [¢']2, [V]. be the output of A in an execution of Hyb, or Hyb,. If
the outputs of Hyb, and Hyb, differ, then it must be the case that

AW(E—-¢)=Av and W(E-¢)#v. (4.6)

In all other cases, the output in Hyb, and Hyb, is identical. We use A to construct an efficient adversary 8 for
KerDHp f41:

1. On input the KerDH challenge (G, [A];), algorithm B starts by running algorithm A. Algorithm A outputs
the input dimension 1¢ and j € [£].

2. Next, algorithm B samples full-rank matrices B, By, B, & Zf,k“k and defines B* = B, B: =B !, and B; = B;".
It parses the components of B, By, B; as in Eq. (4.2) and B}, B, B* as in Eq. (4.3).

3. Algorithm B then constructs the encoding matrices T,T;, T, as in Hyb, and Hyb;:
. Type-I encodings: Sample S;,S; & Z’;” and let T = B*S, + BiS,P; € ZIZJ"X[.
« Type-1I encodings: For a € {1,2}, sample S, 1,Sp2 < Zf,” andlet T, = B;lsa,l + B(’;’ZSO,,ZP]-.

Algorithm B computes T, = Ty ® Ty and sets crspase = (G» [T, [T1]1, [T1]2, [Tola, [Tu]2).

(k+1)x2k
ZP

4. Algorithm B samples W <~ and computes

. [o/x(t=D)
Z=WT .
I[_j
The challenger gives the common reference string crs to A where

Crs = (Crsbasea [A]li [A] 1W> [Z]Z) = (Crsbase’ [A]la [AW]], [Z]Z) .
5. Algorithm A outputs commitments o; = [€]2, 0] = [¢']; and an opening 7 = [v];. Algorithm B outputs
W([e]z = [€]2) = [V

Since the KerDH challenger samples A < ZI()kH)Xk, the common reference string crs constructed by 8 is distributed
exactly as required in Hyb, and Hyb,. By the above analysis, this means that with probability at least ¢, algorithm
A outputs [&]z, [¢']2, and [v]; such that Eq. (4.6) holds. This means A(W(¢—¢&) —v) =0but W(¢-¢&) —v # 0.
Correspondingly, algorithm B breaks the KerDH assumption with the same advantage e. O

Lemma 4.18. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) =1].

Proof. Consider the distribution of W in Hyb,. In Hyb,, both W,;:m and Wy are sampled uniformly at random from

Zl(,kﬂ))(k. Since B = [B, | B,] is a basis for Zf,k , the distribution of W is uniform over Z;,kﬂ)xzk, which matches the
distribution in Hyb,. Next,

WT = (WnormBI + st,IBZ + aLWZf’Zﬁz) (BTSI + BZSZP])

= Wnormgl + st,1S2Pj + alwlﬂzgzpj.

From Eq. (4.1), P; = diag([1"/ | 0™*(*=)]), s0

jx(t-)
0-j
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Correspondingly, by Eq. (4.4),
. [oix(e-1) . [oix(t=0)
Z=WT = WiormS1 .
I I
We conclude that the distribution of Z is identical in Hyb, and Hyb,. Finally, we consider the remaining components
in the CRS. Again, using the fact that Aa* = 0, we have that

AW = A(Wnormﬁl + st,IBZ + alwlf’ZBZ)) = A(Wnormﬁl + st,lﬁ2)~
We conclude that the components of the CRS are distributed identically in Hyb; and Hyb,. O
Lemma 4.19. Pr[Hyb,(A) = 1] = negl(1).

Proof. By construction in Hyb,, the components of crs are independent of the vector ws,. This means that the
challenger in Hyb, can defer the sampling of wy, until after the adversary outputs [¢]2, [¢']2, and [v],. For the
challenger to output 1 in Hyb,, it must be the case that By(¢ — &) # 0and W(¢ — &) = v. We argue that over the
choice of wys 5, the probability that W(¢ — ¢’) = v is negligible. Since W = (anmﬁl + st,lﬁz + alwlf,zﬁz), this
means that

at - wi,By(e— &) = v — (WnomB1 + Wyg1By) (6 - &) € Z3.

Since ﬁg(é - &) #0and w, & Zk. the distribution of wlf 2132(6 — ¢’) is uniform over Z,. Finally, since a* # 0 and

the challenger samples wyf, < Z’; after all other quantities have been fixed, we conclude that
AL A Ay 1
Pr [aL Wi,Ba(6-¢) =v - (WhormB1 + Wi 1Ba) (€ = &) : werp & Zf,] < > = negl(1). O

By Lemmas 4.17 to 4.19, we conclude that Pr[Hyb,(A) = 1] = negl(4). Thus, Construction 4.14 satisfies prefix-
matching security. O

4.3 Proving Linear Relations on Committed Values

The second proof system we design is to argue that a Type-II commitment is consistent with a linear function applied
to a Type-I commitment. Specifically, we describe a succinct proof system for statements of the following flavor: for a
linear function f*: Zf, — Zf,:,

if o1 is a Type-I commitment to a vector x € Zf,, then o, is a Type-Il commitment to the vectory = f(x).

Specifically, the “binding” requirement is that the adversary cannot open an input commitment o; to two different
output commitments oy, o, with respect to the same linear function f. Following [BCFL23], we refer to this property
as a linear chain binding property (also called arguments of knowledge transfer in [GR19, GZ21]). Similar to our
prefix-checking proof system from Section 4.2, the chaining property is enforced in the semi-functional space (i.e., if
o1 and o] agree in their semi-functional space, then o, o; must also agree in their semi-functional space).

Projective chain binding for local functions. The security analysis of our functional commitment scheme in
Section 5 relies on a stronger notion of chain binding tailored to S-local linear functions (Definition 4.2). At a high
level, our security requirement captures the following idea:

+ Let x;, denote the first j; components of a vector x and let y;, denote the first j, components of a vector y. If
(J1, J2) € S and the function f is S-local, then the value of y;, is entirely determined by the value of x;,.

+ Our notion of S-local chain binding then says that given two Type-I commitments o1, o; whose Type-I
projections are identical on the first j; components, then the adversary should not be able to open o1, o] to
Type-II commitments o3, o; whose Type-II projections disagree in the first j, components with respect to the
function f. Observe that unlike standard chain binding, the adversary chooses two input commitments and two
output commitments (in standard chain binding, the adversary only chooses a single input commitment and
must open it two different ways).
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We now give the formal definition.

Definition 4.20 (Projective Chainable Commitments for Linear Functions). Let FCpyse = (SetupBase, SetupSF,
Commit™, Commit®, Project(l), Project(z)) be a projective commitment scheme. In the following description, we
represent linear functions f(x) := Mx by a matrix M. A chainable proof system for linear functions is a triple of
efficient algorithms FCy;, = (SetupLin, OpenLin, VerifyLin) with the following properties:

« SetupLin(crspase, ) — crs: On input the common reference string crsp,se (which defines the input space R")
and a locality set S C [£] X [£], the setup algorithm outputs a common reference string crs.

« OpenlLin(crs,x, M) — 7: On input a common reference string crs, an input vector x € R¢, and a linear function
M € R, the opening algorithm outputs a proof 7.

« VerifyLin(crs, 01, M, 02, 1) — b: On input the common reference string crs, a Type-I commitment oy, a linear
function M € R*¢, a Type-II commitment o3, and a proof 7, the verification algorithm outputs a bit b € {0,1}.

The proof system should satisfy the following two properties:

« Correctness: For all security parameters A € N, all vector lengths ¢ € N, all locality sets S C [£] X [¢], all
Crspase in the support of SetupBase(1%, 1¢), all vectors x € R’ (where R? is the message space associated with
CrSpase), and all S-local linear functions M € R*¢,

crs «— SetupLin(crspase, S)
o1 «— Commit™ (crspase, X)
oy «— Commit® (crspase, Mx)
7 < OpenLin(crs, x, M)

Pr |VerifyLin(crs, o1, M, 09, 1) = 1:

« Chain binding for linear functions: For a security parameter A and an adversary A, we define the chain
binding for linear functions security game as follows:

1. On input the security parameter J, the adversary outputs the dimension 1/, a locality set S C [£] X [£],
and a pair (ji, j2) € S.

2. The challenger samples (crspase, td1, tdz) SetupSF(lA, 1%, j1, j») and crs < SetupLin(crspase, S). It gives
(crspase; Crs) to A.

3. The adversary outputs an S-local function M € R™‘, two Type-I commitments (o1, 5}), two Type-II
commitments (o3, 0;), and two openings 7, 7’

4. The challenger outputs b = 1 if all the following properties hold:
- Matching inputs: Project'?) (td;, 1) = Project") (tdy, o}).
- Mismatching outputs: Project® (tdy, 03) # Project® (td,, 0;).
- Validity of openings: VerifyLin(crs, o1, M, 03, ) = 1 = VerifyLin(crs, o1, M, 05, 7").
Otherwise, the challenger outputs b = 0.
We say that FCj;,, satisfies chain binding for linear functions if for all efficient adversaries A, there exists a

negligible function negl(-) such that Pr[b = 1] = negl(1) in the chain binding for linear functions security
game.

Constructing projective chainable commitments. We now show how to construct a projective chainable com-
mitment for local linear functions on top of the base projective commitment scheme from Section 4.1 (Construction 4.8).
Before describing our construction, we define the projection matrix for a local linear function.
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Definition 4.21 (Projection Matrix for a Local Linear Function). Let £ € N be an input length. For indices ji, j» € [£],
we define the projection matrix Pl(lﬁ 172) 0 be

pUnz) . I — (I[ - le) ®P;, € {0, 1}€2x52’ (4.7)

lin
where P;,,P;, € {0, 1}/ are the projection matrices from Definition 4.1. For a locality set S C [¢] X [£], we define
the projection matrix for S to be

P = [ P e 0,13 (4.8)
(Ji.j2)€s

Lemma 4.22 (Projection Matrix for a Local Linear Function). Let £ € N be an input length and S C [£] X [£] be a

locality set. Suppose f: Zj, — Zi, is an S-local linear function f(x) := Mx where M € ZX‘. Let Py, = P[(ii) be the

projection matrix associated with S from Definition 4.21. Then the following properties hold:

« vec(M)"Pji, = vec(M)".

« For all (ji, j2) € S and all vectorsr € Zf,, Pjin(Ip ® vec(r'P;,)) (I, — P;,) = 0, where P, ,P;, € {0,1}**! are the
projection matrices from Definition 4.1.

Proof. We show each claim individually:

« For the first claim, we start by observing that if f is (ji, j2)-local, then the first j, components of Me; are zero
for all i > j; and where e; € {0, 1} is the i basis vector. In other words,

P, M- (I, —P;) =0. (4.9)
Then, for all (jy, j2) € S,
Vec(M)TP[(i{:’jZ) =vec(M)" [Ifz -(I-P)® sz]
=vec(M)" — vec(M)"((I; - P;,) ® P};,)
= vec(M)" - vec(P; M(I, = P;)) by Eq. (3.4)
=vec(M)" by Eq. (4.9) and since P;, = P} .
Since f is (j1, j2)-local for all (ji, jo) € S, we have that

vec(M)"Pji, = vec(M)' l_[ Pl(i{:’m =vec(M)".
(J1.J2) €S
« For the second claim, take any (ji, j2) € S, and let Q;, =1, — P}, € {0, 1}*. Then,
(I, ® vec(r'P;,))Qj, = (I ® vec(r'P;,))(Qj, ® 1) = Qj, ® vec(r'Pj,).

Since Qj, is a diagonal matrix and its entries are in {0, 1}, it follows that Q§1 = Qj,. Similarly, since Pj, is a
diagonal matrix with entries in {0, 1}, we have P;,P" = P?Z =Pj,. Then,

J2% 2
(Qj, ®P;,)(Qj, ® vec(r'P};,)) = Q?l ® ((P;, ® 1) - vec(r'P;,)) by Eq.(3.1)
=Qj, ® vec(r'P;,P}) by Eq. (3.4) (4.10)
=Qj, ® vec(r'P},) since P;,P} = Pj,.

Combining the above two relations and using the fact that Pl(i{:’h) =lp-(I,-P;,)®P;, =12 -Q;, ®Pj,,

PUIJZ) (I[ ® VQC(I'TPJ'Z))(I[ - le) = PUIJZ) (I[ ® VQC(I‘TPJ'Z))QJ'1

lin lin

=P (Q;, ® vec(r'P),)) by Eq. (3.1)

= (Ip - (Qj, ®P}))(Q), ® vec(r'P},)) by definition of Pl(i{:’jZ)
= (Qj, ® vec(r'P;,)) — (Qj, ® vec(r'P;,)) by Eq. (4.10)

=0.

32



Finally, since the matrices PI(]{] 12) are diagonal for all ji, j» € [£], they commute so we can write

Py, = 1_[ Pl(:;t) = I_l P(S,t) ‘P(jl’jZ),

lin lin
(s,t) €S (s,t)€S\{ (Jr.j2) }
Correspondingly,
Piin (I ® vec(r'P;,)) (I = Pj,) = 1_[ P](i:t) ' Pl(nj;l’j2> (I ® vee(r'P,)) (I — Pj,) = 0. .

(st)eS\{(J1.J2) }

Construction 4.23 (Projective Chainable Commitments for Local Linear Functions). Let FCpse = (SetupBase,
SetupSF, Commit®, Commit®, Project(l), Project(z)) be the projective commitment scheme from Construction 4.8.
We build a projective chainable commitment for local linear functions FCj;, = (SetupLin, OpenLin, VerifyLin) over
FCpase as follows:

« SetupLin(crspase, S): On input the common reference string crspase = (g, ["i"]z, [Ti]1, [T1]2, [T2]2, [T*]Z) for the
base projective commitment scheme (which defines the input space Zf,) and a locality set S C [£] X [¢], the
setup algorithm samples A <~ Zﬁx(kﬂ). Then, for « € {1,2}, it samples R, <~ Z;,kH)XZk and W, & Z;z(kﬂ)“k.
It computes

[Za]2 = W [T]2 = (Piin ® Lis1) (Ir ® vec(Ry[Te]2))

R (4.11)
= [WoT = (Pin @ i) (1 @ vee(RTa)) ]2 € Gy <%,
where Py, := P[(if]) is the projection matrix from Eq. (4.8). Output the common reference string
crs = (crsbase, [AlL, {[(Iz ® A)W,]1, [AR, ], [Za]z}ae{l,Z})' (4.12)

« OpenLin(crs, x, M): On input the common reference string crs (parsed as in Eq. (4.12)), the vector x € Z¢, and
the matrix M € Zg/, the opening algorithm computes for each « € {1,2},

[Valz = (vec(M)" ® It1)[Zalox € G5
along with [¢]]2 = [T1]:Mx = [T1Mx]; € G%k. It outputs the opening 7 = ([c] ]2, [V1]2, [V2]2)-

« VerifyLin(crs, 01, M, 02, 7): On input the common reference string crs (parsed as in Eq. (4.12)), a Type-I
commitment o7 = [€&];, a matrix M € Zf,”, a Type-II commitment o, = ([c1]3, [c2]2), and a proof = =
([c}]2, [vi]2, [V2]2), the verification algorithm outputs 1 if the following conditions hold:

= [eila[1]2 = [1]1[c]]2.
- (vee(M)" ® Ix) [(I,, ® A)Wy]1[¢]2 = [ARy]1 [} ]2 + [A]1[V1]2.
(vec(M)" ® Ix) [(T, ® A)W2]1[€]2 = [ARz]1[c2]2 + [A]1[v2]2.

Theorem 4.24 (Correctness). Construction 4.23 is correct.
Proof. Take any 4,¢ € N and let S C [¢] X [¢] be an arbitrary locality set. Let crspase < SetupBase(1%, 1) and parse
crsbase = (G, [Tl2, [T1]1, [T1l2, [T2]a, [T+]2) Let crs «— SetupLin(crspase, S), and parse

ers = (crshases [Al1 {[(le ® AWl [ARG 1, [Zal2} 1)

Take any vector x € Zf; and any S-local linear function f(x) := Mx where M € ZZX[. Let y = Mx. Let
o1 — Commit™ (crspase, X), 05 Commit(z)(crsbase,y), and 7 « OpenLin(crs,x,M). We parse o1 = [¢]a,
oy = ([e1]1, [e2]2) and m = ([¢]]1, [Vi]2, [V2]2). Consider now VerifyLin(crs, o1, M, o3, ). By construction of the
underlying algorithms, we now have the following:
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« First, the commitments satisfy ¢ = Tx, ¢, = Tiy, and c; = Tzy. In addition, ¢| = T{Mx = T1y = ¢, and the first
verification relation holds.

« For the second verification relation, for « € {1, 2}, we have
(vec(M)" @ It) (I;: ® A)W & = (vec(M)” ® I) (I ® A)W,Tx
= (vec(M)" ® A)W, Tx by Eq. (3.1) (4.13)
= A(vec(M)" ® Ij,1 )W, Tx by Eq. (3.3).
Since f is S-local, by Lemma 4.22, we have that vec(M)"P};, = vec(M)". Then, we can write

(vec(M)" ® Ij41)Zy = (vec(M)' ® Ik+1)waT — (vec(M)" ® Iiyq) (Piin ® Igyr) (I ® vec(RyTq))
= (vee(M)" ® L) W, T = (vee(M)" ® Iyt ) (I ® vee(ReTa)).
Thus, we have
(vec(M)" ® I )W, T = (vee(M)" ® Ity1) Zg + (vec(M)” @ Ieyr) (Ir ® vec(ReTe)).
Substituting back into Eq. (4.13), and using the fact that v, = (vec(M)" ® Ij41)Z X, we have
(vec((M)" @ Ii) (Iz ® A)W & = A(vec(M)" @ I, )W, Tx
= A(vec(M)" ® Iis1) (Zox + (I ® vec(RyTe))x)

4.14
= Avy + A(vec(M)" ® Iy1) (I ® vec(R,Ty))x (4.14)
=Avy + A(vec(M)" ® Iiyq) (x ® vec(R,Ty)).
To complete the proof, we now have
(vec(M)" ® Ir11) (x ® vec(R,Ty)) = (vec(M)" ® Iiy1) (x ® I ® Ixyq)vec(R,T,) by Eq. (3.2)
= ((vec(M)"(x ® 1)) ® Lis1)vec(RyTy) by Eq. (3.1)
= ((Mx)" ® Iy ) vec(R,Ty) by Eq. (3.4)
=R, T,Mx =R,T,y = Ryc, by Eq. (3.4).
Substituting back into Eq. (4.14), we have Since v, = (vec(M)" ® I;11)Z,X, we can now write
(vec(M)" @ I) Iz ® A)Wy & = Avy + A(vec(M)" ® Iry1) (x ® vec(R,Ty))
= Av, + AR,c,.
Since ¢} = cy, this means the second and third verification relations hold. m]

Theorem 4.25 (Chain Binding for Linear Functions). Suppose the k-KerLin assumption holds in G, with respect to
GroupGen and the k-Lin assumption holds in G, with respect to GroupGen. Then, Construction 4.23 satisfies chain
binding for linear functions.

Proof. To simplify the proof, we start by defining a “homogeneous” version of the chain binding for linear functions
security game for Construction 4.23. We define the game below:

1. On input the security parameter A, the adversary outputs the dimension 1¢, a locality set S C [¢] x [£], and a
pair (ji, j2) € S.

2. The challengeAr samples (Crspase, tdy, tdy) SetupSF(lA, 1%, j1, jo) and crs « SetupLin(crspase,S). Then,
CIShase = (Q, [Tl2, [T1]4, [T1]2, [Te]o, [T*]z), td; = By, tdy = (B2, B22), and

crs = (Crsbasea (AL, {[(I{’Z ® A)W,]1, [AR, ], [Za]z}ae{l,z})'

The challenger gives crs to A.

34



3. The adversary outputs an S-local function M € Z;*‘ and a tuple ([&]a, [c1]2, [€2]2, [Vi]2, [Va]2).
4. The challenger outputs 1 if the following properties hold:

. Matching inputs: B,¢ = 0.
« Mismatching outputs: either B; ;c; # 0 or By ¢, # 0.
- Validity of openings: for each « € {1, 2}, (vec(M)" @ I.) (I, ® A)W,¢ = ARy cy + Avy,.

We now show that any adversary that can win the homogeneous chain binding security game (i.e., cause the above
experiment to output 1) implies an adversary that can win the standard chain binding security game (Definition 4.20).
The claim essentially follows by linearity of the verification relation. We give the formal statement below:

Lemma 4.26. Suppose for all efficient adversaries B, there exists a negligible function negl(-) such that Pr[b = 1] =
negl(A) in the homogeneous chain binding experiment for linear functions. Then, Construction 4.23 satisfies chain binding
security for linear functions.

Proof. Suppose there exists an adversary A that breaks chain binding security for linear functions (Definition 4.20)
with advantage ¢. We use A to construct an adversary 8 that wins the homogeneous chain binding game:

1. Algorithm 8 starts running algorithm A to obtain the input length 1, the locality set S C [£] X [£], and a pair
(j1, j2) € S. Tt gives 1%, S, and (ji, j») to the challenger to obtain the common reference string crs.

2. Algorithm 8 forwards crs to A and receives a function M € Zf,”, two Type-I commitments o; = [¢],, o] = [¢'],
two Type-II commitments oy = ([¢1]1, [c2]2), 05 = ([¢]]1, [¢;]2), and two openings 7 = ([€1]2, [V1]2, [V2]2),
7' = ([e1]z [Vl [V)]2).

3. Algorithm 8 outputs the same function M together with the tuple
([é]z = [&]2 [€1]2 — [€]]2. [e2]2 — [e3]2, [vi]2 = [vi]2 [va]2 - [Vé]z)-

In the homogeneous chain binding game, the challenger samples (crspase, tds, tdz) « SetupSF(l’l, 14, j1, jo) and
crs «— SetupLin(crspase, S). Thus algorithm B perfectly simulates an execution of the chain binding security game
for A. Thus, with probability ¢, the outputs of algorithm A satisfies the following properties:

« Matching inputs: Project'!) (td;, o1) = Project (td;, o).

« Mismatching outputs: Project'? (td,, o3) # Project® (td,, a,).

- Validity of openings: VerifyLin(crs, o1, M, 03, r) = 1 = VerifyLin(crs, o, M, 0, ').
We claim that in this case, the output in the homogeneous chain binding game is also 1:

« Parse crSpase = (G, [Tla, [T1]1, [Tilz, [T2]2, [T.]2) and
crs = (crspases [A]1, {[(1 @ AWl [ARG] 1, [Zal2} ey )

In addition, parse td; = B,, td, = (B1,2,B22).
+ Since VerifyLin(crs, 01, M, 03, w) = 1 = VerifyLin(crs, 0], M, 05, '), the following conditions hold:

- ¢ =¢andc]=¢).

35



- For a € {1, 2}, we have that

(vec(M)" ® Ix) (12 ® A)W, & = ARy, + Avy
(vec(M)" ® Ix) (I, ® A)W, & = AR,c,, + AV,

where we have used the fact that ¢; = ¢; and ¢] = ¢]. Taking the difference of these two relations, we
have for each a € {1, 2},

(vee(M)" @ I;) (I ® A)W, (¢ — ¢') = ARy (cy — €) + A(Vy — V).

This is precisely the third requirement in the homogeneous game.

« First, Project™ (tdy, 07) = Project(l)(tdl,a{) means that B¢ = B,&. Thus, By(¢é — &) = 0, so the first
requirement in the homogeneous game is satisfied.

« Next Project® (tds, 02) # Project(® (tds, o) means that either B ,&; # By &, or Byscs # Byc). Since ¢ = &
and c| = ¢}, this means that either By3(c; — ¢]) # 0 or Byy(cy — ¢;) # 0, so the second requirement in the
homogeneous game holds.

Correspondingly, the output is 1 in the homogeneous evaluation binding game, and the claim follows. O

Proof of Theorem 4.25. We now return to the proof of Theorem 4.25. Let A be an efficient adversary for the
homogeneous chain binding experiment. Let £ € N be the vector dimension that A chooses (which will determine
the size of the MDDH assumption in Lemma 4.31). We now define a sequence of hybrid experiments:

« Hyb,

: This is the homogeneous chain binding experiment. We recall the full specification here:
At the beginning of the game, the adversary A outputs the dimension ¢, a locality set S C [¢] X [¢], and a
pair (ji, j2) € S.
The challenger samples G = (Gy, Gy, Gr, p, g1, g2, €) < GroupGen(174).
The challenger samples full-rank matrices B, By, B, & Zf,k“k and defines B* = B!, B: =B;',B; =B,
It parses B, By, B, as in Eq. (4.2) and B, B}, B} as in Eq. (4.3).
The challenger constructs the encoding matrices T, T, T, as follows:

+ Type-I encodings: Sample S;,S; & Zf,x" and let T = B*S, + B:S,P;, € ZIZJ’CX[.

« Type-1I encodings: For « € {1,2}, sample S, 1,S,2 < Z}’;X[. Let T = B, Sq1 + B, ,Sa2P), € Z?,k”.
Let T, = Ty ® Tz and set crspase = (G, [T1a, [Ti], [Tile, [Telz, [Tul2).

The challenger samples A <~ Z];x(kﬂ). Then, for a € {1,2}, it samples R, < Zl(,kH)XZk, W, & Zf,z(kH)XZk,
and computes for each « € {1, 2},

Zo = W, T — (Pin ® Iiy1) (I ® vec(R Ty)), (4.15)

where Py, = P[(ii) is projection matrix from Eq. (4.8). The challenger gives the common reference string
crs to A where

crs = (crsuases [Al1 {[(le ® AWl [ARG]1, [Zel2} e )

The adversary outputs an S-local function M € Zf,x" and a tuple ([&], [c1]2 [e2]2 [Vil2 [V2]2).

The output of the experiment is 1 if the following conditions hold:

B,é=0 and Ve {1,2}: (vec(M)'® L) (I @ A)W,€ = ARycy + Av, and Byacy # 0 or Byacy # 0.
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+ Hyb;: Same as Hyb,, except the challenger samples ngr)m Wif“) & Zf,z(k“)Xk for each « € {1, 2}. It then sets

W, = nggmBﬁWi?)Eg when setting up the CRS. After the adversary outputs (M, [¢]2, [c1]2, [c2]2, [Vi]2, [v2]2),
the challenger computes

V., = Vg — (vec(M)" ® Ly )W'. Bé. (4.16)

[°4

The output of the experiment is 1 if the following conditions hold:

Bzé =0 and Vae {1, 2} : AR,ZC(X + AV:I =0 and B1’2C1 # 0 or B2]2C2 # 0.

« Hyb,: Same as Hyb, except the output of the experiment is 1 if the following conditions hold:

B,6=0 and Vae {1,2} : Rycy +v,, =0 and Bjzc; # 0 or Byscy # 0.

+ Hyb,: Same as Hyb, except when constructing the CRS, the challenger samples a random nonzero vector
2
at € Zf,“ in the kernel of A (i.e.,, Aa* = 0). Then, for each a € {1,2}, it samples Wifl) & Zf, (k+1)xk
Wifz) & foXk. It also samples R, ; €~ Zi(,kH)XZk and g, € Zf)k, and sets
W =W+ (W) @at) and Ry =Rgy+ (1, ®a%) =Ry, +a'ry,.
The challenger then computes
Zay = (WhotmB1 + W B2) T = (Prin © Lwt) (I ® Vec(Ra, Ta))
Zyp = Wi?; SoPj, — P (I, ® vec(ry,,Ty))
and sets Z, = Z, 1 + (Iz ® at)Z,,.

+ Hyb,: Same as Hyb, except when constructing the CRS, the challenger sets

Ccrs = (Crsbase, [A]la {[(Igz ® A) (WIE](():I‘)mEI +Wi:l)]§2):|1’ [ARa,l]ls [Z(Z]Z}) -

« Hyb,: Same as Hyb,, except for each a € {1, 2}, the challenger samples U, <~ Zf,z” and sets

Zg2=U,Pj, = Piin(I; ® Vec(r;’zTa)).

+ Hybg: Same as Hyb,, except for each a € {1, 2} the challenger samples Iy 2 norm, Fa,2,sf & Zf, and sets

=r

T
r a,2,norm

a,2

.
Be1 + ra)zrsza,Z-

Then, it sets

Zy2 = UaPj, = Piin(Ip ® vec(ry, 5 normSa1)) = Piin (I ® vec(ry, , (Sa2Pj,)).
+ Hyb,: Same as Hyb,, except the challenger sets
Zgy =UuP;j — Pin(I ® vec(ry 5 ormSat))-
Recall that in this experiment, the challenger still samples U, <- Zf,zx".

We write Hyb, (A) to denote the output distribution of an execution of hybrid Hyb, with adversary A. We now show
that the output distribution of each adjacent pair of hybrids is indistinguishable.

Lemma 4.27. Pr[Hyb,(A) = 1] = Pr[Hyb, (A) = 1].
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Proof. Since B is a basis for Zf,k and the matrices w,ﬂg‘,)m and Wifa) are uniform, the distribution of W (%) is also uniform
in Hyb,, and thus, is identical to the distribution in Hyb,. It suffices to consider the outputs of the two experiments.
Suppose A outputs (M, [&]z, [c1]2, [c2]2, [Vi]2 [V2]2). First, if B,¢ # 0, then the output in both experiments is
identical. Suppose then that B,¢& = 0. This means that

Woé = W Bié+ WeBye = W) Bje. (4.17)

Consider the value of ARyc, + Av, in Hyb;:

ARy, + AV, = ARyc, + Avg — A(vec(M) ® I, ) W2 B @ by Eq. (4.16)
= ARy ¢y + Av, — (vec(M)" @ L) (I ® A)W'?), B, ¢ by Eq. (3.3)
= AR,cy + Av, — (vec(M) @ I) (Ip2 ® A)W & by Eq. (4.17).

Thus, in Hyb,, if B,¢ = 0, then AR,c, + Av/, = 0 if and only if (vec(M)" ® It)(I,z ® A)W,¢ = AR,Cq + Avy,.
Correspondingly, the output distribution of Hyb, (A) is identical to the output distribution of Hyb,(A). O

Lemma 4.28. Suppose the KerDHy k11 assumption holds in Gy with respect to GroupGen. Then, there exists a negligible
function negl(-) such that | Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| < negl(4).

Proof. Suppose |Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| > ¢ for some non-negligible ¢. Suppose the output of A is
(M, [€]2, [e1]2, [c2]2, [V1]2, [v2]2) in an execution of Hyb, or Hyb,. If the outputs of Hyb, and Hyb, differ, then it
must be the case that that for some « € {1, 2},

A(Ryc, +v,) =0 and Rycy,+V), #0. (4.18)

In all other cases, the output in Hyb, and Hyb, is identical. We use A to construct an efficient adversary 8 for
KerDHp f41:

1. On input the KerDH challenge (G, [A];), algorithm B starts by running algorithm A. Algorithm A outputs
the input dimension ¢, the locality set S C [£] X [£], and a pair (jy, j2) € S.

2. Next, algorithm B samples full-rank matrices B, By, By & Zf,k”k and defines B* = B!, B: =B/, B, =B, It
parses the components of E, B, B, as in Eq. (4.2) and E*, B}, B} asin Eq. (4.3).

3. Algorithm 8 then constructs the encoding matrices T, T,, T; as in Hyb; and Hyb,:
« Type-I encodings: Sample S, S, & Z’;” and let T = B*S, + BiS,P;, € le,k”.
« Type-1I encodings: For a € {1,2}, sample S, 1, Sy < Zf,” and let T, = B, Sq 1 + Bz’zsa,szZ.
Let T, = Ty ® T, and set crspase = (G, [Tla, [Til1, [Tz, [Tolz, [Tol2).

4. For each a € {1,2}, algorithm B samples W' W'* & Zf(kH)Xk and sets W, = W% B, + Wif)ﬁz. It also

sf
Zék+l)x2k' Then, for a € {1, 2}, it computes

samples R, <
Zo = WaT = (Piin ® L) (I ® vec(ReTa)),
where Py, = Pl(ii)' The challenger gives the common reference string crs to A where

Crs = (Crsbasea (AL, {(I{’Z ® [A]1)Wq, [A]iRq, [Za]Z}ae{l,Z})

= (crsbases [AL1 {[ (e ® AWl [ARG], [Zal2} ey )
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5. After algorithm A outputs (M, [&]2, [c1]2, [c2]2, [Vi]2, [v2]2) algorithm B computes for each a € {1, 2},
[Vil2 = [Valz = (vec(M)" ® Ti1) WigimB1 [ €]
It then checks if there exist @ € {1, 2} where
[AR;]1[cq]2 + [AlL [V;]Z =[0]r and Rg[cq]z+ [V;]Z # [0]2.
If so, it outputs Ry [cq]2 + [V ]2 = [RaCq + V), ]2.

Since the KerDH challenger samples A <- Z**k the common reference string crs constructed by 8 is distributed
exactly as required in Hyb, and Hyb,. By the above analysis, this means that with probability ¢, algorithm A outputs
(M, [€]2, [e1]2, [c2]2, [V1]2, [v2]2) which satisfies Eq. (4.18). Correspondingly, algorithm B breaks KerDH with the
same advantage ¢. O

Lemma 4.29. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) = 1].

Proof. We argue that Hyb, and Hyb, are identically distributed. Since W§?1) and R, 1 are uniform over their respective

domains, it follows that Wifa ) and R, are identically distributed as in Hyb, and Hyb,. To complete the proof, we show
that the distribution of Z, in Hyb, is identical to that in Hyb,. Suppose we construct Z, according to Eq. (4.15). Then,

Zo = WoT = (Piin ® Tesr) (I ® vee(RaTo))
= (WigmB1 + W B, + (W) © a*)By) T — (Piin ® Lir) (Ir ® vee((Re1 +a* 1l ,) T ))
=Zgy + (W) ®a*)B,T — (Pi ® Ttwn) (I ® vec(a'r},Ta)). (4.19)
We analyze the components of Z,, in the subspace spanned by a*. First, using Eq. (3.3), we can write
(W) ®at)B,T = (I @ a )W) B,T = (I ® 2" )W) By (BiS, + B;S,P;,) = (I. @2 )W()S,P; . (4.20)

For the remaining component in Eq. (4.19),

I ® vec(a'r,,Tq) =1, ® [(I; ® a'1}, ;) vec(Ty) | by Eq. (3.4)
=L ® [ ®a") (I ®r,)vec(Tq)| by Eq. (3.1)
=1 ® [(I, ® a*)vec(r},,Tq) | by Eq. (3.4)
= (I, ® (I, ®a")) (I, ® vec(r} ,T,)) by Eq. (3.1)

= (Ip ® a®) (I, ® vec(r,,Ty)).
Finally, by Eq. (3.3),

(Piin ® Ii1) (I ® vec(a™ry, 3 Tq)) = (Plin ® Iisr) (Iz ® a™) (I ® vec(ry ,Ty))
= (I ® a*)Pyin (I, ® vec(r}, ,To)). (4.21)
Combining Eq. (4.21), (4.20), and (4.19), we have
Zo=Zay + (I ® ) (W) S,P), = Pin (I ® vee(rl ,Ta))) = Zaa + (e ® 24) Zaz,

which is precisely how the challenger constructs Z, in Hyb,. O

Lemma 4.30. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) =1].
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Proof. The distribution of crs in the two experiments are identical. In particular, in Hyb,, for a € {1, 2},
(I ® A)W, = (Ip ® A) (W B + W B,
= (Ip ® A) (WighB1 + W B, + (W) @ a*)By)
= (I ®A)(W r(lgr)mBl +W(Q)Bz)

since Aa* = 0. Similarly,
AR, = A(Ry +a'1],) = ARy,

This coincides with the distribution of crs in Hyb,.

]

Lemma 4.31. Suppose the MDDH. ;5,2 assumption holds in G, with respect to GroupGen. Then, there exists a negligible

function negl(-) such that | Pr[Hyb,(A) = 1] — Pr[Hyb.(A) = 1]| = negl(4).

Proof. Suppose |Pr[Hyb,(A) = 1] — Pr[Hybs(A) = 1]| > ¢ for some non-negligible &. We use A to construct an

efficient adversary 8 for MDDHy ; j:

1. On input the MDDH challenge (G, [Sg]z, [V]2), algorithm A starts by parsing [V,] = [Vz] where V{,V, €

ZI[;ZX[. Then, it samples full-rank matrices B,B;,B, & ZIZJkXZk and defines B* = B, B = B1 ,B; =B, LTt

parses B, B, B; as in Eq. (4.2) and B*, B},B; asin Eq. (4.3).
2. Algorithm A constructs the Type-I and Type-II encoding matrices T, Ty, T, as follows:
« Type-I encodings: Sample S; & Zf,” and let [T], = B:S; + B:[S;],P;, € Zf,ka.

« Type-II encodings: For a € {1,2}, sample S, 1,842 < Z;‘,Xf. Let To = B, ;Sq1 + B, ,84,2P), € le,k”.

Let T* = Tl ® TZ and set CI'Spase = (g’ [T]Za [Tl]ls [Tl]za [TZ]Za [T*]Z)

fex (k+1)

3. Sample A & Z, and a random nonzero vector at € ZZ“ in the kernel of A.

& Zt’2(1<+1)><k R

2 (k k
(@)  ® Z;(H)X W(fl) " , Ra

4. For a € {1,2}, sample W/, < o1
R, =R, +at 1 ,. It then computes

& Zl(’k+1)><2k

[Za]z2 = (WiehB1 + W By) [T]2 = (Pin ® Lit) (I ® vee(Re, 1 Ta))
[Z2]2 = [Val2Pj, — Piin (I ®VeC(I'£,aTa)),
and [Zg]2 = [Zg1]2 + (Ip ® at) [Zg 2]

5. Finally, algorithm 8 gives crs to A where

crs = (chbase, 1[I © A) (WighoBy + W By) ]| [AR ], [Z a]z}) :

6. After algorithm A outputs (M, [¢]2, [c1]2, [c2]2, [Vi]2, [V2]2), algorithm B computes for each « € {1, 2},

[v,]2 = [Valz — (vec(M)” ® T )W % B1 [€]:

Then, it outputs 1 if the following hold:

By[¢], =[0], and Va € {1,2}:Rgy[calz+[V,]2=[0]; and Biz[ci]s # [0]; or Byz[ca]z # [0

,and 1y, € Z?,k. Set

By definition, the MDDH challenger samples S, & Zf,x{. Thus, algorithm 8 perfectly simulates the distribution of

every component other than [Z,], in the common reference string according to the specification of Hyb, and Hyb..

Thus it suffices to consider the distribution of Z, in the two cases:
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N

« Suppose V, = Wifaz) S; where the challenger samples Wéfaz) & ZZZXk . Then algorithm B perfectly simulates the

distribution of crs in Hyb,. In this case, algorithm B outputs 1 with probability Pr[Hyb,(A) = 1].

« Suppose V < ijfzw, in which case V;,V, & Zf,zX[. This corresponds to the distribution of Z, in Hyb., so in
this case, algorithm 8 outputs 1 with probability Pr[Hyb.(A) = 1].

We conclude that the distinguishing advantage of 8 is exactly ¢ and the claim follows. O

Lemma 4.32. Pr[Hyb.(A) = 1] = Pr[Hyb,(A) =1].

Proof. For each @ € {1,2}, B, = [EZ; ] is a basis for Zf,k , the distribution of r,, in Hyb, is uniform over Zf,k , which is

identical to the distribution of ry 2 in Hyb.. It suffices to argue that Z, ; is correctly distributed. This follows by the
fact that B,B}, = Ix and the fact that T, = B, 1Sa1+B; ,842P),- In particular, we can write

Piin (I ® vec(ry ,Ta)) = Piin (e ® vec((ry 2 normBa,1 + Ty Ba2) (By 1S¢,1 + By 284.2P), )))
= Pjin (I ® vee(ry 5 normSa1 + r;’zgsfsa,zPh))

= P“n (If ® Vec(r;{,z,normsasl)) + P“n (I[ ® Vec(r;,Z,sfsasZsz))’
which matches the distribution in Hyb. ]
Lemma 4.33. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) =1].

Proof. The claim follows by properties of the projection matrix (Lemma 4.22). Specifically, we will show that for
a € {1, 2}, the following two distributions are identically distributed over the choice of U:

2 2
[UP), = Prn (1, © vee(r], SaaPs)) U & 250} = {U, P, U, & Zg} (4.22)

Since (ji, jo) € S and moreover, Py, = Pl(ii), we can appeal to Lemma 4.22 (applied to the vector r;’z’sfSa,z) to conclude
that
Piin (I ® vec(r , (Sa2P,)) (I — Pj;) = 0.

Now, we can write

Piin (I ® vec(ry , Su2P),)) = Piin(Ie ® vec(ry , Sa2Pj2)) (P, + 1 = Pj,)
= Piin(Ir ® vec(ry, , Sa2Pj,))Pj;-

This means that

UaP), = Pin (I ® vee(r] 5 SwzPr)) = (U = Pin (I ® vec(r] 5 SazP)) ) Py, (4.23)
Since Uy, is uniform over fo” and independent of Pjin, T4 2, Sa,2, and Pj,, it follows that
2 2

{Ua = Piin (Ir ® vec(r), , (Sa2Pj,)) : Un & Z,, Xf} = {Ua U, & Z,, Xf} . (4.24)

Eq. (4.22) now follows by combining Eqs. (4.23) and (4.24). o
Lemma 4.34. There exists a negligible function negl(-) such that Pr[Hyb,(A) = 1] = negl(4).

Proof. In Hyb,, the components of crs are independent of the vector ry 25 for each « € {1,2}. This means the
challenger in Hyb, can defer the sampling of ry 2 ¢ until after the adversary outputs (M, [e]2, [e1]2, [e2]2, [Vi]as [Vz]z).
For the challenger to output 1 in Hyb., it must be the case that there exists a € {1, 2} where

Rycy +v, =0 and Bgacy # 0,
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where v/, = vy — (vec(M)" ® Ik+1)W,gg2m]§16. We argue that when B, 2c, # 0, the probability that Rycy + V), = 0 is
negligible when taken over the choice of r, 2. Since

— LT €L 1T
R, = Ra,l tar,, = Ra,l +a roz,Z,normB(Jz,l +a ra’g’sza,Z,

the equation R,c, + v/, = 0 holds only if

LT _ ’ 1 T k+1
a - ra,z,sza,zca =-v, —Ryica —a” "1y, 0mBaita € Zp .

Since By ¢y # 0 and ry o f & 7k the distribution of r; o s

challenger samples 1,2sf < lej after all other quantities have been fixed, we conclude that

By,2¢q is uniform over Z,. Finally, since at # 0 and the

T
a,2,norm

1
Pr|at- r;,z,sza,ZCa =-v), —Rgicq —at -1 Bo1Co t Taosf < Z’; < 1—7 = negl(A). O
By Lemmas 4.27 to 4.34, we conclude that Pr[Hyb,(A) = 1] < negl(A). This means that Construction 4.23 satisfies
homogeneous chain binding for linear functions. Finally, since the vector dimension ¢ = poly (1), the k-Lin assumption
in G, implies the MDDH,.; 2 assumption in G, (Remark 3.8); similarly, the k-KerLin assumption in G, implies the

KerDHp k+1 assumption in G;. Theorem 4.25 now follows from Lemma 4.26. ]

4.4 Proving Quadratic Relations on Committed Values

The final proof system we require is a way to argue that a Type-I commitment is consistent with a quadratic function
applied to a Type-II commitment. Specifically, we describe a succinct proof system for statements of the following
form: for a quadratic function f: Zj, — Z,

if o is a Type-Il commitment to a vector x € Z;, then oy is a Type-I commitment to a vectory = f(x).

In contrast to the proof system for linear functions from Section 4.3, the inputs to this proof system are Type-II
commitments while the outputs are Type-I commitments. Similar to Section 4.3, we require chain binding for local
quadratic functions. We give the formal syntax and security requirement below:

Definition 4.35 (Projective Chainable Commitments for Quadratic Functions). Let FCp,se = (SetupBase, SetupSF,
Commit™, Commit®, Project(®), Project(z)) be a projective commitment scheme. In the following description,
we represent (homogeneous) quadratic functions f(x) = M(x ® x) by a matrix M. A chainable proof system
for quadratic functions is a triple of efficient algorithms FCquag = (SetupQuad, OpenQuad, VerifyQuad) with the
following properties:

« SetupQuad(crspase, S) — crs: On input the common reference string crspase (which defines the input space RY)
and a locality set S C [¢] X [£], the setup algorithm outputs a common reference string crs.

« OpenQuad(crs, x, M) — 7: On input a common reference string crs, an input vector x € R, and a homogeneous
quadratic function M € R the opening algorithm outputs a proof .

« VerifyQuad(crs, o2, M, 01, 1) — b: On input the common reference string crs, a Type-II commitment o, a linear
function M € R™¢, a Type-I commitment o7, and a proof 7, the verification algorithm outputs a bit b € {0, 1}.

The proof system should satisfy the following two properties:

« Correctness: For all security parameters A € N, all vector lengths ¢ € N, all locality sets S C [¢] x [£], all
CrShase in the support of SetupBase (1%, 1¢), all vectors x € R’ (where R’ is the message space associated with
Crspase), and all S-local homogeneous quadratic functions M € R(x"z,

crs «— SetupQuad(crspase, S)
oy « Commit® (crspase, X)
o1 < Commit™ (crspase, M(x ® x))
7 « OpenQuad(crs, x, M)

Pr | VerifyQuad(crs, 02, M, 0y, 1) = 1 :
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+ Chain binding for quadratic functions: For a security parameter A and an adversary A, we define the chain
binding for quadratic functions security experiment as follows:

1. On input the security parameter A, the adversary outputs the dimension 1%, a locality set S C [£] X [£]
and a pair (ji, j) € S. Note here that j; denotes the length of the prefix for the input (i.e., a Type-II index)
and j, denotes the length of the prefix for the output (i.e., a Type-I index).

2. The challenger samples (crspase, tdq, tdy) SetupSF(lA, 1%, j», j1) and crs « SetupQuad(crspase, S). It
gives (Crspase, Crs) to A.

3. The adversary outputs an S-local quadratic function M € Zf,”z, two Type-II commitments (o3, 03), two
Type-I commitments (o1, 07), and two openings 7, ’.
4. The challenger outputs b = 1 if all the following properties hold:
- Matching inputs: Project® (tdy, 0;) = Project® (td,, ;).
— Mismatching outputs: Project) (tdy, o7) # Project™) (td, o).
- Validity of openings: VerifyQuad(crs, o5, M, 01, 7) = 1 = VerifyQuad(crs, o, M, o7, 7°).
Otherwise, the challenger outputs b = 0.

We say that FCgyaq satisfies chain binding for quadratic functions if for all efficient adversaries A, there exists
a negligible function negl(-) such that Pr[b = 1] = negl(A) in the chain binding for quadratic functions security
game.

Constructing projective chainable commitments. Similar to the construction of chainable commitments for
linear functions from Section 4.3, we start by defining the projection matrix for a local quadratic function; this is the
analog of Definition 4.21. We then prove the analog of Lemma 4.22 for the case of (homogeneous) quadratic functions.

Definition 4.36 (Projection Matrix for a Local Quadratic Function). Let £ € N be an input length. For indices
ji, j2 € [£], we define the projection matrix PV 1’{12) to be
qua

o L
Pé{fé{f) =1Ip - (Ip - (P, ®P;,)) ® P, € {0,1}"

where P;,,P;, € {0, 1}/ are the projection matrices from Definition 4.1. For a locality set S C [¢] X [¢], we define

the projection matrix for S to be
S) . (r-jz) Bxe
PE) = ﬂ PULE) € (0,1}, (4.25)
(Jr.j2) €S

Lemma 4.37 (Projection Matrix for a Local Quadratic Function). Let £ € N be an input length and S C [£] X [£] be a
locality set. Suppose f : Zf; - Zf, is an S-local homogeneous quadratic function f(x) == M(x ® x) where M € Zf;”z, Let

Pyuad = Péﬁizj) be the projection matrix associated with S from Definition 4.36. Then the following properties hold:

+ vec(M)Pguad = vec(M)".

« For all (ji, j2) € S and all vectorsr € Zj, Pquad (L2 ® vec(r'P;,)) (I — (Pj, ® Pj)) = 0, where P;,P;, € {0, 1}
are the projection matrices from Definition 4.1.

Proof. The proof follows a similar strategy as the proof of Lemma 4.22. We show each claim separately:

« For the first claim, we start by observing that if f is (ji, j»)-local, then the first j, components of M(e; ® e;/)
are zero whenever i > j; or i’ > j;, where e; € {0, 1} is the i" basis vector. This means that

P, M- (I - (P, ®P;)) =0, (4.26)
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Then, for all (ji, j2) € S,

Vec(M)TP((]{};QZ) = vec(M)" [Ips — (Iz — (P;, ® P},)) ® P} ]
=vec(M)" — vec(M)"((I,z — (P;, ® P;,)) ® P},)
=vec(M)" — Vec(P}ZM(IZz - (P, ®P;))) by Eq. (3.4)
= vec(M)" by Eq. (4.26) and since P;, = P}, .

« For the second claim, take any (ji, j2) € S. Let Q;, = Iz — (P;, ® P},) € {0,1}***_ Then,

(I ® vec(r'P;,))Qj, = (Iz ® vee(r'P;,))(Q), ® 1) = Qj, ® vec(r'P},).

Since Qj, is a diagonal matrix and its entries are in {0, 1}, it follows that Q?l = Qj,. Similarly, since P;, is a

diagonal matrix with entries in {0, 1}, it follows that P;, P}Z = P?Z =Pj,. Then,

(Qj, ®P;,)(Qj, ® vec(r'P,)) = Qf-l ® ((Pj, ® 1) - vec(r'P;,)) by Eq. (3.1)

=Qj, ® vec(r'P;,P}) by Eq. (3.4) (4.27)
=Qj, ® vec(r'P},) since P;, P} =P,

Combining the above two relations and using the fact that Pé{l I;f) =1Ip - Qj, ® P;,, we now have

PU (1 ® vee(r'Py,)) (I — (P, ® Py,)) = PUMR) (1 @ vec(r'P1,)) Q)

=P (Q), @ vee(r'P,)) by Eq. (3.1)
= (Ip — (Q;, ®P},))(Qj, ® vec(r'P},)) by definition of Péﬁ;f)
= (Qj, ® vec(r'P;,)) — (Qj, ® vec(r'P},)) by Eq. (4.27)

=0.

Next, the matrices Pé{J 1;;{;) are diagonal for all ji, j, € [£], so they commute. Thus,

Pguad = 1—[ pUni) _ 1—[ pst) ,P(J'l,jz)'

quad quad quad
(J1-j2) €S (,£)€S\{(J1.j2) }
This means
Pyuad (Iz@vec(r'P),)) (I — (P}, ®P;,)) = ]_[ P P2 (1, @vec(r'P),)) (I~ (P, ®P;,)) = 0. O
quad \1¢ J2 4 Ji Ji quad quad t J2 t Jt J1 .
(s,)eS\{(J1.J2) }

Construction 4.38 (Projective Chainable Commitments for Local Quadratic Functions). Let FCp,se = (SetupBase,
SetupSF, Commit®, Commit®, Project(l), Project(z)) be the projective commitment scheme from Construction 4.8.
We build a projective chainable commitment for local linear functions FCquag = (SetupQuad, OpenQuad, VerifyQuad)
over FCpase as follows:

« SetupQuad(crspase, S): On input the common reference string crspase = (g, [T]z, [T1]1, [T1]2, [T2]o, [T*]z) for
the base projective commitment scheme (which defines the input space Zf,) and a locality set S C [£] X [£], the

setup algorithm samples A & Z;X(kﬂ), R & ZI(,kH)XZk and W & Zf:(k“)MkZ. It then computes

[Z]Z = W[T*]Z - (Pquad ® Ik+1)(lt’2 ® VeC(R[T]Z))
= [WT. - (Pquad ® Is1) (I ® vec(RT))], € GF K DXE (4.28)
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where Pguad = p®)

quad € Z£3X€3 is the projection matrix from Eq. (4.25). Output the common reference string

crs = (Crshase, [A] 1, [(Is ® A)W]1, [AR], [Z]2) . (4.29)

« OpenQuad(crs, x, M): On input the common reference string (parsed as in Eq. (4.29)), the vector x € Z{, and a
matrix M € ZI(;X[Z, the evaluation algorithm computes [c.]; < [T:]2(x ® %) € ngz and
[V]2 = (vec(M)' ® Iu) [Z]o(x ® %) € G5*.
It outputs the opening 7 = ([c.]2, [V]2).

« VerifyQuad(crs, o2, M, 01, 7): On input the common reference string crs (parsed as in Eq. (4.29)), a Type-II
commitment o, = ([c1]1, [c2]2), @ matrix M € Zf,x’?z, a Type-I commitment o7 = [¢&]; and a proof 7 =
([es]2, [V]2), the verification algorithm outputs 1 if

[c1]1 ® [ez]2 = [1]1[c.]; and  (vec(M)' ® L) [(Is ® A)W];[c.]; = [AR];[E]; + [A]1[V]..

Theorem 4.39 (Correctness). Construction 4.38 is correct.

Proof. Take any A,¢ € N and let S C [¢] X [¢] be an arbitrary locality set. Let crspase < SetupBase(1%, 1) and
crs « SetupQuad(crspase, S). Then crspase = (G, [Tla, [T1]1, [T1]2, [T2]2, [T4]2) and

crs = (Crspase, [A]1, [(Is ® A)W]y, [AR]y, [Z]5).

Take any input x € Zf, and any S-local homogeneous quadratic function f(x) := M(x ® x) where M € Zf,sz. Let

y = M(x®x). Suppose 0y « Commit® (crspase, x), 01 < Commit™ (crspase, y), and & « OpenQuad(crs, x, M). We
parse oz = ([c1]1, [€2]2), 01 = [€2]2, and & = ([ci]2, [V]2)- ConsiderAVerinyuad(crs, 02, M, 01, 7). By construction of
the underlying algorithms, ¢, = T.(x ® x), ¢; = T1X, ¢; = Tsx, ¢ = Ty, and v = (vec(M)" ® I;+1)Z(x ® x). Consider
now the verification relation VerifyQuad(crs, o2, M, o3, 7):

« The first verification relation follows from Eq. (3.1):

c1®c;=(Tx) ®(Tox) = (T ®T2)(x®x) = T.(X®X) = cCs.

« For the second verification relation, we first compute

(vec(M)" ® Ix) (I3 ® A)We, = (vec(M)" @ It) (I;s ® A)WT,.(x ® )
= (vec(M)" ® A)WT, (x ® x) by Eq. (3.1) (4.30)
=A(vec(M)" @ I1,) ) WT.(x ® x) by Eq. (3.3).

Next, since f is S-local, by Lemma 4.37, we have that vec(M)"Pquag = vec(M)'. This means
(vec(M)" ® Ij1)Z = (vec(M)" ® Iiy)WT, — (vec(M)" ® Iii1) (Pquad ® Tgsr) (Ipz ® vec(RT))
= (vec(M)" @ I, )WT, — (vec(M)" ® Ixs1) (I,2 ® vec(RT)).
Thus, we have
(vec(M)" @ Iy )WT, = (vec(M)" ® Iiy1)Z + (vec(M)" ® Ixy) (I;2 ® vec(RT)).
Substituting into Eq. (4.30), and using the fact that v = (vec(M)" ® Ix41)Z(x ® x), we have
(vec(M)" ® I)(I;s ® A)We, = A(vec(M)" ® I )WT..(x ® x)

= A(vec(M)" ® i) (Z(x®x) + Iz ® vec(RT))(x ® x))
= Av + A(vec(M)” ® Iy1) (I2 ® vec(RT)) (x ® x)
= Av+ A(vec(M)" ® I4; ) (x ® x ® vec(RT)).

(4.31)
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To complete the proof, we now have

(vec(M)" ® Ijsy) (x ® x ® vec(RT)) = (vec(M)" @ Ly ) (x ®x @ I; ® Ik+1)vec(RT) by Eq. (3.2)

= ((vee(M)'(x®x®L)) ® Ikﬂ)vec(RT) by Eq. (3.1)
= (M(x ® x))" ® Iy ) vec(RT) by Eq. (3.4)
= (y" ® Is1)vec(RT) since y = M(x ® x)
=RTy = R¢ by Eq. (3.4).

Substituting back into Eq. (4.31), we have
(vec(M)" ® I) (I ® A)We, = Av + A(vec(M)" @ Ir,; ) (x ® x ® vec(RT))
= Av + ARC.
and the verification relation holds.
Since both verification relations pass, the output of Verify is 1 and the claim follows. O

Theorem 4.40 (Chain Binding for Quadratic Functions). Suppose the bilateral k-Lin assumption holds with respect to
GroupGen. Then, Construction 4.38 satisfies chain binding for quadratic functions.

Proof. Similar to the proof of Theorem 4.25, we start by defining a “homogeneous” version of the chain binding for
quadratic functions security game for Construction 4.38. We define the game below:

1. On input the security parameter A, the adversary outputs the dimension #, a locality set S C [£] X [£], and a
pair (ji, j2) € S.

2. The cAhallenger samples (Crspase, tdy, tdy) « SetupBase(l’l, 1%, jo, j1) and crs < Setup(crspase). Then crspase =
(Q, [T]2, [T1]1, [Til2, [T2l2, [T4]2), td; = By, tdy = (B2, By2), and

Ccrs = (Crsbases [A] 1 [(153 ® A)W]b [AR] 1 [Z]Z) .
The challenger gives crs to A.

3. The adversary outputs an S-local homogeneous quadratic function M € Zf,’“’z and a triple ([c.]2, [€]2, [V]2).
4. The challenger outputs 1 if the following properties hold:
« Matching inputs: (B2 ® By2)c. = 0.
« Mismatching outputs: B,¢ # 0.
« Validity of opening: (vec(M)" ® I) (I, ® A)Wc, = ARC + Av.
We now show that any adversary that can win the homogeneous chain binding security game (i.e., cause the above
experiment to output 1) implies an adversary that can win the standard chain binding security game (Definition 4.35).

Like the proof of Lemma 4.26, the claim essentially follows by linearity of the verification relation. We give the formal
statement below:

Lemma 4.41. Suppose for all efficient adversaries B, there exists a negligible function negl(-) such that Pr[b = 1] =
negl(A) in the homogeneous chain binding experiment for quadratic functions. Then, Construction 4.38 satisfies chain
binding security for quadratic functions.

Proof. Suppose there exists an adversary A that breaks chain binding security for quadratic functions (Definition 4.35)
with advantage . We use A to construct an adversary B for the homogeneous chain binding game:

1. Algorithm B starts running algorithm A to obtain the input length 1, the locality set S C [£] X [¢], and a pair
(j1, j2) € S. Tt gives 1%, S, and (jy, j») to the challenger to obtain the common reference string crs.
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2. Algorithm B forwards crs to A and receives a matrix M € Zf,”z, two Type-II commitments o, = ([¢1]1, [c2]2),

o, = ([c1]1, [c}]2), two Type-I commitments o7 = [¢],, o] = [¢']2, and two openings 7 = ([c.]2, [V]2),
7" = ([ci]2 [V']2)-

3. Algorithm B outputs the same function M together with the triple
(ledz = [el]z [€]z = [€2 [V]2 = [V]2).

In the homogeneous chain binding game, the challenger samples (crspase, tds, tdz) « SetupSF(lA, 14, jo, j1) and
crs « SetupQuad(crspase, S). Thus algorithm B perfectly simulates an execution of the chain binding security game
for A. Thus, with probability ¢, the outputs of algorithm A satisfies the following properties:

« Matching inputs: Project'? (td,, 02) = Project? (tdz, o).

« Mismatching outputs: Project'") (tdy, o) # Project'V (tdy, }).

+ Validity of openings: VerifyQuad(crs, 02, M, 01, ) = 1 = VerifyQuad(crs, 05, M, o7, 7).
We claim that in this case, the output in the homogeneous chain binding game is also 1:

« Parse crspase = (G, [:i‘]z, [T1]1, [T1l2. [T2l2, [Ti]2) and crs = (crspase, [AlL [(Is ® AYW]y, [AR]y, [Z];) . In
addition, parse td; = By, td; = (B12, B22).

« Since VerifyQuad(crs, 03, M, 01, 1) = 1 = VerifyQuad(crs, 05, M, o, 7'), the following two conditions hold:

- ¢ ®c;=c,andc;®c), =c.

- (vec(M)"®I)(Is ® A)W)c. = AR¢ + Av and (vec(M)" ® Ix) (I3 ® A)W)c, = AR¢ + Av'.

This means that
(vec(M)" @ I)(I;s ® A)W(c, —c) = AR(E - &) + A(v — V'),

and the third requirement in the homogeneous chain binding experiment is satisfied.
- Since Project(z) (tdy, 02) = Project(z) (tdy, 0;), this means By y¢; = By s¢] and By ¢, = Byzc),. This means that
(B12 ® By2)c. = (B12 ® By)(c1 ® ¢2) = (Bi2¢1) ® (Baacy)
= (By2¢}) ® (By2c)y) = (B12 ® By2)(c] ® ¢3) = (B2 ® By)cl.

Correspondingly, this means that (B1, ® B,2)(c. — ¢,) = 0, and the first requirement of the homogeneous
chain binding experiment is satisfied.

o Finally, if Project(l)(tdl,ol) * Project(l)(tdl, 0}), then B,¢ # B,¢&. Thus, Bz(é —¢&’) # 0, and the second
requirement in the homogeneous game is satisfied.

Correspondingly, the output is 1 in the homogeneous evaluation binding game, and the claim follows. O

Proof of Theorem 4.40. We now return to the proof of Theorem 4.40. Let A be an efficient adversary for the
homogeneous chain binding experiment for quadratic functions. Let £ € N be the vector dimension that A chooses at
the beginning of the security experiment. This will determine the size of the tensor MDDH assumption in Lemma 4.46.
We now define a sequence of hybrid experiments. The sequence of experiments closely parallels those in the proof of
Theorem 4.25.

+ Hyb,: This is the homogeneous chain binding experiment for quadratic functions. We give the full specification
here:

— At the beginning of the game, the adversary A outputs the input dimension ¢, a locality set S C [¢] X [£],
and a pair (ji, j2) € S.
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The challenger samples G = (Gy, Gz, G, p, g1, g2, €) — Groquen(lA).
— The challenger samples full-rank matrices B, By, B, & ijjk“k and defines B* = B, B: =B;',B; =B
It parses B, By, B, as in Eq. (4.2) and B*, B}, B, as in Eq. (4.3).
— The challenger constructs the encoding matrices T, Ty, T, as follows:
+ Type-I encodings: Sample S, S, & ZZX[ andlet T = B:S, +BiS,P), € Z[z,k”.
« Type-1I encodings: For « € {1,2}, sample S, 1,S,2 < Zf,”. Let Ty = B, ;Sq1 + B, ,S42P), € Z?,k”.
Let T. = T; ® Ty and set crspase = (G, [Tla, [Ti]1, [Tz [Tolz [Tol2).

— The challenger samples A & Zf,x(kﬂ), R & Z}(,kH)XZk and W & Zf:(kﬂ))@kz. Let
Z = WT, - (Pquad ® L1) (I ® vec(RT)) € Z§ K¢, (4.32)

where Pquad = Pgii 4 1s the projection matrix from Eq. (4.25). The challenger gives the common reference

string crs = (crspase, [A]1, [(Is ® A)W]4, [AR]4, [Z];) to A.
— Algorithm A outputs an S-local function M € Z;;sz, and a triple ([c.]2, [€]2, [V]2)-

The output of the experiment is 1 if

(B, ®Byz)e, =0 and By¢#0 and (vec(M)' ®It)(I;s ® A)We, = ARE + Av.

+ Hyb,: Same as Hyb,, except the challenger samples W as follows:

— Define matrices Dyorm and Dy as follows:

Bl’l ® B2,1 2 2 2 2
Diorm = B1,1 ® Bz,g S sz x4k and Dy = Bl,z ® Bz,z (S Zf’ xdk . (433)
Bi2®By;
3 2 3 2
- Sample Wnorm & Z}f, (k+1)x3k and st & le; (k+1)xk and let W = WnormDnorm + WSfDSf.

Then, after the adversary outputs (M, [c.]2, [€]2, [V]2), the challenger first computes
vVi=v- (VeC(M)T ® Ii+1) WhnormDnormCs. (434>
The output of the experiment is 1 if

Dgc, =0 and Bye#0 and ARé+Av =0.
+ Hyb,: Same as Hyb, except the challenger outputs 1 if
Dgc, =0 and Byé#0 and Ré+v' =0.

« Hyb,: Same as Hyb, except when constructing the CRS, the challenger samples a random nonzero vector a* €

Z’;“ in the kernel of A (i.e., Aa* = 0). Then, it samples W, <~ Zf:(k“)sz, Wipo & fokz, R, & Z‘f,kH)XZk,

andr, & Zf,k. It sets
Wy =W+ (Wg2®a") and R=R;+(r;®a") =R; +a'r,.
The challenger then computes

Zl = (WnormDnorm + st,lef)T* - (Pquad ® I/<+1)(Il2 ® VeC(RlT))

. (4.35)
Z, = st,Z(Sl,Z ® SZ,Z)(P]'] ® le) - Pquad (I(’Z ® VeC(I‘ET))

andsets Z =7, + (I;s ® a*)Z,.
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+ Hyb,: Same as Hyb, except when constructing the CRS, the challenger sets

Crs = (Crsbase> [A]l; [(It’3 ® A) (WnormDnorm + st,lef)]la [AR1]1> [Z]Z)

« Hyb,: Same as Hyb,, except the challenger samples U <~ Zf:”z and sets
Z; = U(Pj, ® P},) — Pquad (12 ® vec(ryT)).

+ Hyb,: Same as Hyb,, except the challenger samples 12 norm, I'z s & Zf, and sets

T _ T > T B
I, = r2.normB1 + r2.5fB2'

Then, it sets
Zy =U(Pj, ® P},) — Puad (I ® vec(r] ommS1)) — Pauad (Ir2 ® vec(r) (S:P,)).
+ Hyb,: Same as Hyb,, except the challenger sets
Z, =U(Pj, ®Pj)) — Pquad (I ® Vec(rgﬂnormél)).

Recall that in this experiment, the challenger still samples U & Zg”z.

We write Hyb, (A) to denote the output distribution of an execution of hybrid Hyb, with adversary A. We now show
that the output distribution of each adjacent pair of hybrids is indistinguishable.

Lemma 4.42. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) =1].

Proof. Since B; and B, are each a basis for ZIZJ", it follows that B; ® B, is a basis for Z;‘,kz. Moreover,

B ®By;
_ Bl,l ® BZ,Z _ Dnorm
Brob. =g @B, |~ | Dy |
B> ® B>

This means that the distribution of W is identically distributed in Hyb, and Hyb,. It suffices to consider the outputs
of the two experiments. Suppose A outputs (M, [c.]2, [€]2, [V]2). Suppose Dgec* # 0. Then, the output in both
experiments is 0. Consider the case where Dgc* = 0. In this case,

We. = WiormDnorm€s + WitDgrc = WiormDnormCs. (4~36>
Now, in Hyb,, we have
AR¢ + AV = AR¢ + Av — A(vec(M)" ® Ii11) W normDnormCs by Eq. (4.34)
= AR¢ + Av — (vec(M)" ® I) (I;s ® A)W 1ormDrormCs by Eq. (3.3)
= AR¢ + Av — (vec(M)" ® I;) (I;s ® A)Wec, by Eq. (4.36).

Thus, in Hyb,, if Dsrc, = 0, then AR¢+Av’ = 0 if and only if AR¢+Av = (vec(M)" ®1I)(I;s ® A)We,.. Correspondingly,
the output distribution of Hyb, (A) is identical to the output distribution of Hyb,(A). O

Lemma 4.43. Suppose the KerDHy k.1 assumption holds in Gy with respect to GroupGen. Then, there exists a negligible
function negl(-) such that | Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| < negl(4).
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Proof. Suppose | Pr[Hyb,(A) = 1] — Pr[Hyb,(A) = 1]| > ¢ for some non-negligible ¢. The only difference between
Hyb, and Hyb, is the verification relation. Let (M, [c.]2, [€]2, [V]2) be the output of A in an execution of Hyb, or
Hyb,. If the outputs of Hyb; and Hyb, differ, then it must be the case that

AREé+v)=0 and Ré+Vv #0. (4.37)

In all other cases, the output in Hyb, and Hyb, is identical. We use A to construct an efficient adversary 8 for
KerDHp f41:

1. On input the KerDH challenge (G, [A];), algorithm B starts by running algorithm A. Algorithm A outputs
the input dimension ¢, the locality set S C [¢] X [£], and a pair (jy, j2) € S.

2. Next, algorithm B samples full-rank matrices B, By, B, & Zf,k“k and defines B* = B, B: =B !, and B; = B;".
It parses the components of B, By, B; as in Eq. (4.2) and ﬁ*, B}, B} asin Eq. (4.3).

3. Algorithm B then constructs the encoding matrices T,T;, T, as in Hyb; and Hyb,:
« Type-I encodings: Sample S, S, & Z];X( andlet T = B:S, +BiS,P), € Zf,k”.
« Type-1I encodings: For a € {1,2}, sample S, 1,Sp2 € Zf,” and let T, = B}, ;Sq 1 + B}, ,54,2P;,.
Let T, = T; ® T; and set crspase = (g, [T]z, [T1]1, [T1]2, [T2], [T*]z)-

4. Algorithm B defines Do and Dy according to Eq. (4.33). It samples Wyorm < Zf:(kﬂ) x3k? and Wy
23 (k+1) xk? (k+1)x2k
Z Z,

" and constructs

and sets W = WyormDnorm + WDyt It also samples R <
7 - WT = 23 (k+1) x£?
- ® (Pquad ® Ik+1)(It’2 ® VCC(RT)) € Zp s

where Pguad = Pgii 4- The challenger gives the common reference string crs to A where

Crs = (Crsbasea [A]la (I(’3 ® [A]I)W, [A]lRa [Z]Z) = (Crsbase’ [A]ls [(1[3 ® A)W] 1 [AR]ls [Z]Z)

5. After algorithm A outputs (M, [c.]2, [€]2, [V]2) algorithm B computes
V'] =[v]2 - (VeC(M)T ® Ixt1) WhormDrnorm [ €412
and outputs R[¢]2 + [v'], = [Re + V'],.

Since the KerDH challenger samples A < Z},kH)Xk, the common reference string crs constructed by 8 is distributed
exactly as required in Hyb; and Hyb,. By the above analysis, this means that with probability ¢, algorithm A
outputs (M, [c.]2, [€]2, [V]2) that satisfies Eq. (4.37). This means R¢ + v/ # 0 but A(R¢ + v’) = 0, where v/ =
v — (vec(M)" ® Ir+1) WiormDnorm€:. Correspondingly, algorithm 8 breaks KerDH with the same advantage ¢. ]
Lemma 4.44. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) =1].

Proof. We argue that Hyb, and Hyb, are identically distributed. Since W¢r; and R; are uniform over their respective
domains, it follows that W¢ and R are identically distributed as in Hyb, and Hyb,. To complete the proof, we show
that the distribution of Z in Hyb, is identical to that in Hyb,. Suppose we construct Z according to Eq. (4.32). Then,
we have

Z =WT, — (Pguad ® Its1) (Ip2 ® vec(RT))
= (WnormDnorm + st,lef + (st,Z ® al)Dsf)T* - (Pquad ® Ik+1)(I£’2 ® vec((R1 + alr;)f)) (438>
= Zl + (st,Z ® al)Dsz* - (Pquad ® Ik+l)(1t’2 ® VeC(aLTZT))
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We analyze the components of Z in the subspace spanned by a*. First, using Eq. (3.3), we can write
(W2 ® ah)DfT, = (Ipp ® a*) Wi oDy T (4.39)
By definition, Dsf = By 2 ® B2, and T, = T; ® T,. By orthogonality, we can write

DyTs = (By2 ® By2) (T ® Ty)
= B12(B];S11 +B],812P),) ® B22(B3;S21 +Bj,822P), )
= (S12 ®S22)(P;, ® Pj)).

Substituting back into Eq. (4.39), we have
(Wsr2 ® a*)Df T, = (Is ® @)W 2Dgr T = (Is ® @) Wi 2(S12 ® S52) (P, @ Pj). (4.40)

For the remaining component in Eq. (4.38),

Ip ® vec(atr)T) =1z ® [T ® alr;)vec('i")] by Eq. (3.4)
=l ® [(I[ ®at) ([, ® rg)vec(’i")] by Eq. (3.1)
=@ [ ® al)vec(rﬁ")] by Eq. (3.4)
= (I ® (I, ® at)) (I, ® vec(riT)) by Eq. (3.1)

= (Is ® at) (Ip2 ® vec(r}T)).
Combined with Eq. (3.3),

(Pquad ® Iisy) (Ip ® vec(at13T)) = (Pquad ® Iesr) (Is ® a*) (Ip2 ® vec(r)T))

. (4.41)
= (Ip ® a*)Pguad (I ® vec(r,T)).
Combining Egs. (4.38), (4.40), and (4.41), we have the desired result:
Z= Z1 + (st,Z ® al)Dsz* - (Pquad ® Ik+1)(1i’2 ® Vec(alr;f)) by Eq (4~38)
=71+ (Ip ® a*) (Wir2(S12 ® S22) (Pj, ® P},) — Pyuad (I2 ® vec(ryT))) by Egs. (4.40) and (4.41)
=Z1+(Ip ®a")Zy by definition of Z, from Eq. (4.35),

which is precisely how the challenger constructs Z in Hyb,. We conclude that the common reference string in Hyb,
and Hyb, are identically distributed. O

Lemma 4.45. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) =1].
Proof. The distribution of crs in the two experiments are identical. In particular, in Hyb,

(1(3 ® A)W = (1[3 ® A) (WnormDnorm + stDsf)
= (1[3 ® A) (wnormDnorm + wsf,lef + (st,Q ® aL)Dsf)
= (It’3 ® A) (WnormDnorm + wsf,lef)

since (Is ® A)(Wsr2 ® at) = Wyp, ® Aat = 0. Similarly,
AR = A(R; +a'ry) = AR; + Aa'r} = AR;.
This coincides with the distribution of crs in Hyb,. O

Lemma 4.46. Suppose the tensor MDDHy ,, s assumption holds with respect to GroupGen. Then, there exists a
negligible function negl(-) such that | Pr[Hyb,(A) = 1] — Pr[Hyb,(A) = 1]| = negl(4).
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Proof. Suppose |Pr[Hyb,(A) = 1] — Pr[Hybs(A) = 1]| > ¢ for some non-negligible &. We use A to construct an
efficient adversary 8 for MDDHy ;, 43:

1. On mput the tensor MDDH challenge (Q [Sl 2] 15 [Sl 2]2, [Sz 2] 15 [Sz 2]2, [S] 2®Sg 2]2, [ ]2) algorlthm A samples
full-rank matrices B, B, B, & ZZkXZk and defines B* = B! ,B} = B!, and B} = B,'. It parses B,B,,B, as in

Eq. (4.2) and B*, B}, B; as in Eq. (4.3). Define the matrices Dporm and Dsf as in Eq. (4.33).
2. Algorithm A constructs the encoding matrices T, T, T, as follows:
« Type-I encodings: Sample S;,S, & Z’;” and let T = B*S, + BiS,P), € ZIZ,"X".
« Type-II encodings: Sample S 1,5, ¢~ Z}*’. It constructs the encodings
[T1]s = By, S11 + B}, [S12]1Pj, = [B] ;11 +B],512P;, |,

[Ti]. = Bilsl,l + ]3’15,2[51,2]21)]‘1 = [Bilsm + B’{,ZSI,ZP]‘I]Z
[T2]2 = B}, Sa1 + B3, [S2212P), = [BjS21 +Bj,822P5 | -

« Tensor encoding: Compute

[T.]2 = (B]; ®B5,)(S11 ®S21) + (B]; ® B5,)(S11 ® [S22]2)(Ir ® Pj))
+ (B, ®B5 ) ([S12]2 ®S21) (P, ® Ip) + (B, ® B3,)[S12 ® S52]2(Pj, ® Pj).

Let crspase = (G, [Tla, [Tils [Tilz, [Tolz, [Tu]2).

kx (k+1)

3. Sample A & Z, and a random nonzero vector at € Zf,“ in the kernel of A.

3 2 3 2
4. Sample Wogm & Zb ©F wg, & z0 XK Ry & 700K and ry & Z2 Tt sets R = Ry +a'r). It
then computes

[Z1]2 = (WiormDnorm + Wt D) [To]2 — (Pquad ® Iksr) (I ® vec(R;T))
[Z2]5 = [V]2(P}, ® P},) — Pyuad Iz ® vec(ryT)),
and [Z]; = [Z1]2 + (Ip ® a) [Z5],.
5. Finally, algorithm B gives crs = (crspase, [A]1, [(I3 ® A)(WnormDnorm + Wes1Dsf) 11, [AR; )1, [Z]32) to A.
6. After algorithm A outputs (M, [c.]2, [€]2, [V]2), algorithm B outputs 1 if the following hold

Dst[c.]2 = [0], and l%2 [];#0 and R[¢]z+[v]o - (VeC(M)T ® Ik+1)‘NnormDnorm [c.]2 = [0]s.

By definition, the tensor MDDH challenger samples S;5,S,5 < lejx‘). Thus, algorithm B perfectly simulates the
distribution of every component other than [Z], in the common reference string according to the specification of
Hyb, and Hyb.. Thus it suffices to consider the distribution of Z in the two cases:

« Suppose V = Wg2(S12 ® Sy2) where the challenger samples Wr, < Z;kaz. Then algorithm B perfectly
simulates the distribution of crs in Hyb,. In this case, algorithm $8 outputs 1 with probability Pr[Hyb,(A) = 1].

« Suppose V & Zf”z. This corresponds to the distribution of Z in Hyb,, so in this case, algorithm 8 outputs 1
with probability Pr[Hyb.(A) = 1].

We conclude that the distinguishing advantage of 8 is exactly ¢ and the claim follows. O

Lemma 4.47. Pr[Hyb.(A) = 1] = Pr[Hyb,(A) =1].
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Proof. Since B is a basis for Zf,k , the distribution of r in Hyby is uniform over 72k which is identical to the distribution
of ry in Hybs. It suffices to argue that Z; is computed identically. This follows by the fact that BB* = I and the fact
that T = ﬁ’fél + E;Szp j,- In particular, we can write

B, + 1} (By) (B}S: + B;S:P}, )

Sl + r;,sfézpjz))

=Pquad(Ipz ® vec(rg,normgl)) +Pquad (Irz ® vec(r;,sfsszz)),

Pouad (Ip2 ® Vec(r;’i“)) = Pquad (I ® vec((

T
r2,norm

= Pquad (I[Z ® VeC(

T
r2,n0rm

which matches the distribution in Hyb. O
Lemma 4.48. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) =1].

Proof. The claim follows by properties of the projection matrix (Lemma 4.37). Specifically, we will show that the
following two distributions are identically distributed over the choice of U:

[U®), 7)) - Pyuaa (1 @ vee(r) (8:P;)) - U & 20| = {U(p;, @ P;) U & 20} (4.42)

Since (ji, j2) € S and moreover, Pquaq = Pgii 4 We can appeal to Lemma 4.37 (applied to the vector rg’sfég) to conclude
that
Pquad (I ® vec(ry (SoP,)) (I — (P, ® Pj)) = 0.

Now, we can write
Pguad (1[2 ® vec (r;,sfgzpjz)) = Pquad (Il’z ® Vec(rg,sfézpjz)) ((le ® le) +1p — (le ® le))
= Pquad (Ie: ® vee(r; ¢S:P),)) (P, ® P}, ).

This means that

U(le ® le) - Pquad (I[Z ® vec (r;,sfézpjz)) = (U - Pquad (I[Z ® VCC(I’;’SfSZsz))) (le ® le). (443)
Since U is uniform over fo"z and independent of Pquad, Iasf, §2, and Pj,, it follows that

A 3 2 3 2
[U=Pguaalle ® vee(r ($,P,)) : U & 207} = [usu & 207 (4.44)

Eq. (4.42) now follows by combining Eqs. (4.43) and (4.44). O

Lemma 4.49. There exists a negligible function negl(-) such that Pr[Hyb,(A) = 1] = negl(4).

Proof. By construction in Hyb,, the components of crs are independent of the vector rys¢. This means that the challenger
in Hyb, can defer the sampling of r; ¢ until after the adversary outputs (M, [c.]2, [¢]2, [V]2). For the challenger to
output 1 in Hyb,, it must be the case that B¢ # 0 and Ré + v/ = 0, where v/ = v — (vec(M)" ® Irs1) W normDrormCs.
We argue that when B,¢& # 0, the probability that R¢ + v/ = 0 is negligible when taken over the choice of Isf. Since
R=R;+a'r,=R; + a'rynomB1 + all‘;’sfﬁg, the equation Ré + v/ = 0 holds only if

B¢ e ZyH.

1 T h A _ ’ ~ 1 T
a - rz’SfBzc =-v —-Ric—a - T3 norm

Since ﬁzé # 0 and ry ¢ & 7k the distribution of r; Sfﬁzé is uniform over Z,,. Finally, since a' # 0 and the challenger
samples rasf & Zf, after all other quantities have been fixed, we conclude that

. 1
Pr|at- 1y B2¢ = —v' —Ri¢ - at -} » = negl(A). O
By Lemmas 4.42 to 4.49, we conclude that for all efficient adversaries A, Pr[Hyb,(A) = 1] < negl(A). This means that
Construction 4.38 satisfies homogeneous chain binding for quadratic functions. Finally, since the vector dimension
¢ = poly(4), the bilateral k-Lin assumption implies the MDDH.; ; ;s assumption in G, (Lemma 3.10 and Remark 3.8)
as well as the k-KerLin assumption in G;. Theorem 4.40 now follows from Lemma 4.41. O
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5 Functional Commitments for all Circuits

In this section, we describe how to use our projective chainable commitments for to obtain a functional commitment
for arithmetic circuits. In our construction, we will use the following representation for arithmetic circuits:

Definition 5.1 (Arithmetic Circuit Representation). Let R be a ring, and let C: R’ — R™ be an arithmetic circuit
(consisting of binary addition and multiplication gates) with s wires. We define the “next-wire” matrix M¢c €
R (s+D)x(s+1)? a5s0ciated with C as follows:

Index each wire in C in topological order. Specifically, the input wires are associated with the indices 1, ..., ?,
and the output wires are associated with indices s — m + 1,...,s. The value of each intermediate wire i is
a (quadratic) function of the values of the wires indexed {1,...,i — 1}. We assume that there is a canonical

topological ordering for the wires of C.

For an input x € R’, let z € R® be the vector of wire values associated with C(x) under the canonical wire
ordering. Let Z = [;] In the following description, we write Zy = 1 to refer to the first entry of Z and 24, . . ., Zs
to refer to the remaining entries.

LetS={(j,j+1):je{+1,...,5}}. We define Mc € RG*D*(+D) t0 be an S-local homogeneous quadratic
mapping that satisfies Mc(Z ® z) = 2:

— Fori € {0,..., ¢}, the i row of Mc implements the identity mapping 2; — Z2;.

- Fori € {£+1,...,s}, the i" row of M¢ implements the quadratic function associated with the gate
computing the i wire of C. Since we index the wires of C in topological order, the value of the i wire is
a quadratic function of the values of wires 1,...,i — 1, or equivalently, the variables zy, ..., Z;_;. Finally,
since we defined Z, = 1, we can express z; as a homogeneous quadratic function of 2, . .., zi_;.

By construction, for all j > ¢ + 1, the first j + 1 outputs of Mc only depend on the first j values of Z, so the
function Mc is S-local, as desired.

Construction 5.2 (Functional Commitment for Arbitrary Functions). Our functional commitment scheme will rely
on the projective commitments and the associated proof systems from Section 4:

Let FCpase = (SetupBase, SetupSF, Commit(l), Commit(z), Project(l), Project(z)) be the base projective com-
mitment scheme (Definition 4.3).

Let FCpre = (SetupPre, OpenPre, VerifyPre) be a prefix-checking proof system for FCpase (Definition 4.13).

Let FCjip, = (SetupLin, OpenLin, VerifyLin) be a chainable proof system for local linear functions over FCp,se
(Definition 4.20).

Let FCquad = (SetupQuad, OpenQuad, VerifyQuad) be a chainable proof system for local quadratic functions
over FCpgse (Definition 4.35).

We construct our functional commitment scheme FC = (Setup, Commit, Eval, Verify) for arithmetic circuits as follows:

Setup(1%, 1¢,1%): On input the security parameter 1, the input length ¢, and the circuit size s, the setup algorithm
starts by sampling a CRS for the base projective commitment scheme crspsc < SetupBase(1%, 15*1). It samples
parameters for each of the underlying proof systems:

— CrSpre < SetupPre(crspase, £ +1).

= CISjin < SetupLin(crsbase, Siin) where Sjin = {(j,j) : j € [s+1]}.

— CrSquad < SetupQuad(crspage, Squad) Where Squad = {(j, j+1) : j € {£+1,...,s}}.
The setup algorithm outputs

— S
crs = (1%, Crspase, CrSpre, CrSiin, CrSquad ) -

The input ring associated with crs is the same as that associated with crspase.
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« Commit(crs, x): On input the common reference string crs = (13, CrShases CI'Spre, CT'Slins crsquad), an input x € RE
(where ¢ < s), the commit algorithm outputs the commitment

1
Oin Commitéie(crsbase, X) where x= [osx-"] e R (5.1)

and the state st = x.

« Eval(crs, st,C): On input the common reference string crs = (15, CIShases CISpres CI'S|in, crsquad), the state st = X
(parsed into x € R? according to Eq. (5.1)), and an arithmetic circuit C: R — R™ of size s, the evaluation
algorithm starts by computing the following quantities:

— Let z € R® be the vector of wire values associated with C(x) (as defined in Definition 5.1), and let Z = [ ! ]

- Compute commitments o; « Commit™ (crspase, 2) and oz «— Commit® (crspase, 2) to the wire values Z.
Then, it prepares the following openings:

- Input consistency: Compute 7, < OpenPre(crspre, X, Z).
— Internal consistency: Compute s, < OpenLin(crsjin, Z, Is41).

- Gate consistency: Compute 7quad < OpenQuad(crsquad, Z Mc), where Mc is the “next-wire” matrix
associated with C (Definition 5.1).

— Output consistency: Let Py, = diag([01(+1=™) | 11XM]) € {0,1}(*D*(*D) be the matrix that projects
onto the last m components. Compute the opening ., < OpenLin(crsjin, Z, Pout)-

Finally, it outputs the proof = = (01, 02, Tpre, Tiin, Tquads Tout)-

« Verify(crs, oin, C, y, 7r): On input the common reference string crs = (15, CI'Shases CMSpres CISfin, crsquad), the input
commitment a;,, a function f: R — R™, an output y € R™, and a proof = = (01, 0, Tpres Mlins Tquads Tout), the
verification algorithm computes ooyt «— Commit® (crspase, [3]) and checks each of the following properties:

- Input consistency: VerifyPre(crspre, Oin, 01, 7Tpre) = 1.

— Internal consistency: VerifyLin(crsjin, o1, Is+1, 02, min) = 1.

Gate consistency: VerifyQuad(crsquad, 02, Mc, 01, Tquad) = 1, where Mc is the next-wire matrix associ-
ated with C (Definition 5.1).

— Output consistency: VerifyLin(crsin, o1, Pout, Gouts Tout) = 1, Where Poye = diag([01*(5F1=m) | 11Xm]),
The verification algorithm outputs 1 if all of the above checks pass and outputs 0 otherwise.
Theorem 5.3 (Correctness). If FCpre, FCiin, and FCquaq are correct, then Construction 5.2 is correct.

Proof. Let A, £,s € N. Let crs « Setup(1%, 1%, 1°). Let R be the input ring associated with crs and let C: R — R™
be an arbitrary arithmetic circuit of size s. Take any x € R’. Suppose (0i,,st) « Commit(crs,x) and 7 «
Eval(crs, st,C). By construction, crs = (15, CI'Shase> CMSpres crsnn,crsquad), Oin «— Commit(l)(crsbase, X) where x = [)1(],
and 7 = (01, 02, Tpres Min, Tquads Tout)- In addition, o7 < Commit™® (crspase, 2) and o, Commit® (crspase, 2).
Consider the output of Verify(crs, oin, C, C(x), ).

- Input consistency: By definition, 2 = [} ], where z is the vector of wire values associated with C(x). By
definition, the first £ components of z is exactly x. This means X and Z share a common prefix of length ¢ + 1.
Since mpre < OpenPre(crsyre, X, Z), correctness of FCp. now says that VerifyPre(crspre, Gin, 01, Tpre) = 1.

« Internal consistency: Since oy and o, are both commitments to z, the identity mapping z > I541Z is Sjin-local,
and i, «— OpenLin(crsiin, Z, Is41), correctness of FCy;,, implies VerifyLin(crsjin, 01, Is+1, 02, Tin) = 1.

+ Gate consistency: From Definition 5.1, the mapping Mc is Squad-local and moreover, Mcz = 2. Since
Tquad < OpenQuad(crsquad, Z Mc), correctness of FCqyaq implies Verify Quad(crsquad, 02, Mc, 01, Tquad) = 1.
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Hybrid (1, J2) Project)  Project®  Justification

Hybreal B X X

Hybg (t+1,+1) X X Mode Indistinguishability (Definition 4.4)
Hyb,, o (£+1,0+1) 4 X Prefix Matching (Definition 4.13)
Hyb, , (i, 1) v X

Hyb; (i, 1) v v Linear Chain Binding (Definition 4.20)
Hyb, , (i,1) X v Dropping Verification Condition

Hyb; 5 (i+1,1) X v Type-I Indistinguishability (Definition 4.5)
Hyb; , (i+1,1) v v Quadratic Chain Binding (Definition 4.35)
Hyb, 5 (i+1,0) 4 X Dropping Verification Condition

Hyb;,,o (i+Li+1) v X Type-II Indistinguishability (Definition 4.6)

Table 2: Overview of main hybrid experiments in the proof of Theorem 5.4. For each hybrid, we provide the Type-I
projection index j; and the Type-II projection index j; associated with the (semi-functional) common reference string.
We also indicate whether each experiment is checking the consistency of the Type-I commitments using Project")
(which requires knowledge of td;) and the consistency of the Type-II commitments using Project'®) (which requires
knowledge of td,). The justification column lists the reason why the adversary’s advantage from one experiment to
the next cannot decrease by a non-negligible amount.

« Output consistency: By the convention in Definition 5.1, the last m components of Z correspond to the
outputs of C(x). This means that Pz = [?,], where y = C(x). Next, the verification algorithm com-
putes gyt — Commit® (crspase, [;’,]) In addition, P, is diagonal so it is also Sji,-local. Since moy
OpenLin(crsjin, 01, Pout, Gout, Tout ), correctness of FCy;, implies that VerifyLin(crsjin, 1, Pout, out, Tout) = 1.

Since each of the checks pass, the verification algorithm outputs 1 and correctness holds. O

Theorem 5.4 (Binding). Suppose FCyase satisfies mode indistinguishability, Type-I indistinguishability, Type-II indistin-
guishability, and Type-II collision resistance. Suppose also that FCpe, FCjin, and FCquaq are secure. Then, Construction 5.2
is binding.
Proof. We start by defining a sequence of hybrid experiments:

« Hyb

real: This is the real binding experiment.

1. Algorithm A starts by outputting the input length 1 and the circuit size 1°.

2. The challenger samples the base common reference string crsp,se < SetupBase(1%,1*1) and

CrSpre < SetupPre(crspage, £ + 1)
crsjin «— SetupLin(crspase, Siin)
Crsquad < SetupQuad(crspase, Squad)
where the locality sets Sjin and Squaq are defined as in Construction 5.2. The challenger replies to the
adversary with crs = (15, CIShases CISpres CI'S|in, crsquad). Let R be the input ring associated with crsp,se.
3. The adversary A outputs an input commitment i, an arithmetic circuit C: RE — R™, vectors v,y € R™,
and openings 7 = (01, 02, Tpre, Tlin, Tquad; Tout) and 7’ = (07, 0, Tpre, 7T/, ﬂc’|uad’ )

4. The output of the experiment is 1 if y # y’, Verify(crs, oin, C,y, ) = 1 and Verify(crs, oin, C,y’, ') = 1.

+ Hyby: Same as Hyb,,;, except the challenger samples crsp,se in semi-functional mode:

(CrSbase, tdy, tdy) « SetupSF(14, 15* £+ 1,£ + 1).

56



Hyb;, fori € {£+1,...,s+1}: Same as Hyb except when setting up the CRS, the challenger samples
(crspase, tdy, tdy) « SetupSF(lA, 1514, 0).

Moreover, the output of the experiment is 1 only if the following hold:

- y #y’ and Verify(crs, oin, C, y, 7) = 1 and Verify(crs, 6, C,y', 7’) = 1.
— Project™M (tdy, 07) = Project(l)(tdl,cr{).

Hyb;, fori € {¢+1,...,s}: Same as Hyb, , except the output of the experiment is 1 only if the following hold:

- y #y’ and Verify(crs, oin, C, y, 7) = 1 and Verify(crs, oin, C, y', ') = 1.
~ Project™V (tdy, 01) = Project? (td,, o).
- Project(z)(tdz,@) = Project(z)(tdg,aé).

Hyb;, fori € {¢+1,...,s}: Same as Hyb, ; except the output of the experiment is 1 only if the following hold:

- y #y’ and Verify(crs, oin, C, y, 7) = 1 and Verify(crs, 6, C, y', 7’) = 1.
— Project® (td,, 03) = Project® (td,, a;).

In particular, the challenger no longer checks the projection on oy, o7.

Hyb; ; fori € {£+1,...,s}: Same as Hyb, , except when setting up the CRS, the challenger samples
(crspase, tdy, tdy) « SetupSF(l’l, 1%+ 1,4).

Hyb; 4 fori € {£+1,...,s}: Same as Hyb, ; except the output of the experiment is 1 only if the following hold:

- y # vy’ and Verify(crs, oin, C,y, 7) = 1 and Verify(crs, oin, C,y’, 7’) = 1.
— Project™ (tdy, o) = Project(l)(tdl,al’).
— Project® (tdy, 0y) = Project(z)(tdz,oé).
Hyb; s fori € {£+1,...,s}: Same as Hyb, , except the output of the experiment is 1 only if the following hold:

- y #y’ and Verify(crs, oin, C, y, 7) = 1 and Verify(crs, 6, C,y', 7’) = 1.
— Project™M (tdy, 07) = Project(l)(tdl,O'{).
In particular, the challenger no longer checks the projection on o3, 7.
Hybg;,,;: Same as Hyb where the challenger samples

541,00
(CrShase, tdy, tdy) « SetupSF(14, 15* s + 1,5 + 1).
At the end of the experiment, after the adversary outputs o3, C, y,y’ and 7, 7/, the challenger computes
Gout — Commit® (crSbases [;’,]) and o), «— Commit(z)(crsbase, [y,])_

The output of the experiment is 1 only if the following hold:

- y #y’ and Verify(crs, oin, C, y, 7) = 1 and Verify(crs, 6, C,y', 7’) = 1.
— Project™M (tdy, 07) = Project(l)(tdl,a{).
— Project® (tdy, gout) = Project® (td,, Ol )
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Take any efficient adversary A for the binding game. Let £ be the input length and s be the circuit size chosen by A.
We write Hyb, (A) to denote the output distribution of an execution of Hyb; with adversary A. We now show that
the probability of a hybrid outputting 1 cannot decrease by a non-negligible amount as we move from one hybrid to
the next. Then, we show that in the final hybrid Hyby, .|, the probability that the challenger outputs 1 is negligible
by Type-II collision-resistance of the underlying projective commitment (Definition 4.7). We summarize the key
sequence of hybrid transitions in Table 2.

Lemma 5.5. Suppose FCp,se satisfies mode indistinguishability (Definition 4.4). Then there exists a negligible function
negl(-) such that | Pr[Hyb,.,(A) = 1] = Pr[Hyb4(A) = 1]| = negl(1).

Proof. Suppose | Pr[Hyb,.,(A) = 1] = Pr[Hyb(A) = 1]| > ¢ for some non-negligible ¢. We use A to construct an
adversary B for the mode indistinguishability game:

1. Algorithm 8 starts running algorithm A which starts by outputting the input length 1° and the circuit size 1°.
Algorithm B sends (1°*1,£ + 1, £ + 1) to the mode indistinguishability challenger and receives crspase.

2. Algorithm B samples

Crspre < SetupPre(crspase, £ + 1)
crsiin <— SetupLin(crspase, Siin)

Cl'Squad <— SetupO\uad(crsbase’Squad),
It give crs = (1%, CrSpase, CrSpre, CrSiin, CrSquad) to A.

3. Algorithm A outputs an input commitment c;,, an arithmetic circuit C: R — R™, vectors y,y’ € R™, and
openings 7 = (o1, 02, Tlpres Tlin> Tquads Tout) and 7" = (O.I» O.és ﬂ-p’)rea 7T|’j|-|’ ﬂéuad’ ﬂ(,)ut)'

4. Algorithm B outputs 1 if y # y’, Verify(crs, oin, C,y, m) = 1 and Verify(crs, oin, C,y’, 7’) = 1. Otherwise, it
outputs 0.

By construction, if the challenger sampled crspae < SetupBase(14,1°*1), the algorithm B perfectly simulates
an execution of Hyb ., for A and outputs 1 with probability Pr[Hyb,.,(A) = 1]. If the challenger sampled
CrSpase < SetupSF(14,15*1, £+ 1, £+1), then algorithm B perfectly simulates an execution of Hyb,; for A and outputs
1 with probability Pr[Hyby(A) = 1]. Thus, algorithm B breaks mode indistinguishability with advantage e. O

Lemma 5.6. Suppose FC. satisfies prefix-matching security (Definition 4.13). Then there exists a negligible function
negl(-) such that | Pr[Hyb(A) = 1] — Pr[Hyb,,; ,(A) = 1]| = negl(4).

Proof. Suppose | Pr[Hyby(A) = 1] — Pr[Hyb,,; ,(A) = 1]| > ¢ for some non-negligible . By construction, the com-
mon reference string crs in the two experiments is identically distributed. Thus, it must be the case that with probability
at least ¢, algorithm A will output oin, C, y,y’, 7 = (01, 02, Tpres Tiins Tquads Tout) and 7’ = (o7, 05, Jr,;re, Jr]’in, ﬂ;uad, o)
such that

Verify(crs, oin, C, y, ) = 1 = Verify(crs, 0, C,y’, 7') and Project(l)(tdl, o1) # Project(l)(tdl,ai). (5.2)

In all other cases, the outputs of Hyby and Hyb,,, ; are identical. We use A to construct an adversary 8 for the prefix
matching security game:

1. Algorithm B runs algorithm A, which starts by outputting the input length 1¢ and the circuit size 1°. Algorithm
B forwards (1°*1, £ + 1) to the prefix matching challenger and receives (crspase, CrSpre)-

2. Algorithm B samples crsji, < SetupLin(crspase, Siin) and crsquad < SetupQuad(crspage, Squad)- It gives the
common reference string crs = (15, CrShase; CI'Spre; CI'Slin, crsquad) to A.

3. Algorithm A outputs an input commitment c;,, an arithmetic circuit C: R — R™, vectors y,y’ € R™, and

. _ ’ ror ’ ’ ’
openings 7 = (01, 02, Tlpres 7lins Tquads Tout) and 7" = (0-1, 02 Tpre> in» Tquad’ ”out)'
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4. Algorithm B samples a bit b - {0, 1}. If b = 0, it outputs (oin, 01) and the opening myr. If b = 1, it outputs

(in, 07) and the opening 7).

The prefix-matching security challenger samples (crspase, tdy, tdy) < SetupSF(1%, 151, £ + 1, £ + 1), so algorithm B
perfectly simulates an execution of Hyby and Hyb, ; for A. Thus, with probability at least ¢, the quantities output by
A satisfy Eq. (5.2). Then, the following hold:

« If Verify(crs, gin, C,y, m) = 1 = Verify(crs, i, C,y’, 7'), then we have that VerifyPre(crsyre, gin, 01, Tpre) = 1 and
VerifyPre(CrSpre, Oin, O.{: ﬂpl)re) =1L

« If Project) (td, o1) # Project) (td;, o), then it must be the case that

either Project(1>(td1,(fin) * Project(1>(td1,c71) or Project(l)(tdl,mn) * Project(l)(tdl,ai).

Since algorithm 8B samples the bit b uniformly at random, it breaks prefix matching with probability at least ¢/2. DO

Lemma 5.7. Suppose FCyi, satisfies linear chain binding (Definition 4.20). Then there exists a negligible function negl(-)
such that for alli € {¢+1,...,s}, |Pr[Hyb, ,(A) = 1] = Pr[Hyb;, (A) = 1]| = negl(4).

Proof. Suppose there exists an index i € {¢ +1,..., s} where | Pr[Hyb; (A) = 1] — Pr[Hyb, ;(A) = 1]| > ¢ for some
non-negligible ¢. By construction, the common reference string in the two experiments is identically distributed. Thus,
it must be the case that with probability at least ¢, algorithm A will output 6y, C, y,y’, 7 = (01, 02, Tpres Tlins Tquads Tout)
and 7" = (07, 03, Thes 7}, s ﬂéuad, m) ) such that

« Verify(crs, oin, C,y, ) = 1 = Verify(crs, oin, C, y', ).

« Project! (tdy, 01) = Project'V (tdy, o?).

« Project® (tdy, 0,) # Project® (td,, 0;).

In all other cases, the outputs of Hyb, , and Hyb, , are identical. We use A to construct an adversary 8 for the linear
chain binding game:

1. Algorithm B runs algorithm A, which starts by outputting the input length 1¢ and the circuit size 1°. Algo-
rithm B provides 15*1, the locality set Sj;, and indices (i, i) to the linear chain binding adversary. It receives
(CrSpases CrSlin)-

2. Algorithm B samples crsquag «— SetupQuad(crspase) and crsyre < SetupPre(crspase, £ +1). It gives the common
reference string crs = (13, CIShases CI'Spre; CI'Slin, crsquad) to A.

3. Algorithm A outputs an input commitment oi,, an arithmetic circuit C: Rl — R™ vectors v,y € R™, and
3 p— . ’ ’ ’ ’ ’ ’ 7
openings 7 = (01, 02, Tlpres Tlins> Tquads Tout) and 7’ = (0'13 02 Tpres in» Tquad® ﬂout)'

4. Algorithm B outputs the matrix I, the Type-I commitments oy, o7, the Type-II commitments oy, 05, and the
openings 7jin, ”I,in'

First, we note that 8 is a valid adversary for the chain binding security game. Namely, (i, i) € Sji,, and moreover,

Is41 is Siin-local. Then, the challenger samples (crspase, tdy, tds) « SetupSF(l’l, 1%*1,4,1), so algorithm B perfectly

simulates an execution of Hyb; ; and Hyb, ; for A. Thus, with probability at least ¢, the quantities output by A satisfy

the properties enumerated above. Then, the following hold:

« If Verify(crs, oin, C, y, 1) = 1 = Verify(crs, oin, C,y’, '), then we have that VerifyLin(crsjin, 01, Iss1, 02, 7iin) = 1
and VerifyLin(crsjin, o7, Ls11, 0, ﬂl’in) =1.

« Project™V (tdy, 1) = ProjectV (td;, a;).

« Project® (td,, 03) # Project® (td,, 05).
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These conditions precisely coincide with the requirements of the linear chain binding game, so we conclude that
algorithm B succeeds with advantage e. O

Lemma 5.8. Foralli € {¢+1,...,s}, Pr[Hyb;,(A) = 1] < Pr[Hyb,,(A) = 1].

Proof. The verification conditions in Hyb, ; is a strict superset of those in Hyb; ,. Correspondingly, if Hyb, ; (A)
outputs 1, then the same is true for Hyb; ,(A) and the claim holds. O

Lemma 5.9. Suppose FCpase satisfies Type-I indistinguishability (Definition 4.5). Then there exists a negligible function
negl(-) such that foralli € {¢+1,...,s}, | Pr[Hyb;,(A) = 1] — Pr[Hyb, ;(A) = 1]| = negl(4).

Proof. Suppose there exists an index i € {¢ +1,...,s} where |Pr[Hyb,,(A) = 1] — Pr[Hyb,;(A) = 1]| > ¢ for
some non-negligible e. We use A to construct an efficient adversary 8 that breaks Type-I indistinguishability of
Construction 4.8:

1. Algorithm B runs algorithm A, which starts by outputting the input length 1¢ and the circuit size 1°. Algorithm
B forwards 1°*1, the Type-I indices (i, i + 1), and the Type-II index i to its challenger. It receives the base
common reference string crsp,se and the Type-II projection trapdoor td,.

2. Algorithm B samples

Crspre < SetupPre(crspase, £ + 1)
crsiin <— SetupLin(crspase, Siin)

Crsquad < SetupQuad(crspase, Squad)
It give crs = (1%, CrSpase, CrSpre, CISiin, CrSquad) to A.

3. Algorithm A outputs an input commitment o;,, an arithmetic circuit C: R® — R™, vectors y,y’ € R™, and
openings 7 = (01, G2, Tpre, i, Tquad> Tout) and 1" = (07, 63, Tirer T 70 o> Tout)-

4. Algorithm B outputs 1if'y # y’, Verify(crs, oin, C, y, ) = 1, Verify(crs, oin, C,y’, 7') = 1,and Project(z)(tdz, 0y) =
Project(z) (tdy, ;). Otherwise, it outputs 0.

If the challenger sampled crspase < SetupSF(1%, 15+1, i, i), the algorithm B perfectly simulates an execution of Hyb;,
for A and outputs 1 with probability Pr[Hyb; ,(A) = 1]. If the challenger sampled crspase < SetupSF(14, 15+ i+ 1, 1),
then algorithm B perfectly simulates an execution of Hyb, ; for A and outputs 1 with probability Pr[Hyb, ;(A) = 1].
Correspondingly, algorithm B breaks Type-I indistinguishability with advantage ¢. O

Lemma 5.10. Suppose FCquaq satisfies quadratic chain binding (Definition 4.35). Then there exists a negligible function
negl(-) such that foralli € {¢+1,...,s}, | Pr[Hyb, ;(A) = 1] — Pr[Hyb, ,(A) = 1]| = negl(A).

Proof. Suppose there exists an index i € {¢ +1,...,s} where | Pr[Hyb, ;(A) = 1] — Pr[Hyb, ,(A) = 1]| > ¢ for some
non-negligible . By construction, the common reference string in the two experiments is identically distributed. Thus,
it must be the case that with probability at least ¢, algorithm A will output oin, C, y, y', 7 = (01, 02, Tpre; Min Tquads Tout)

and 7’ = (o7, 0y, 7, ﬂlm, ) such that

pre’ c,|uad’ out
« Verify(crs, oin, C,y, ) = 1 = Verify(crs, oin, C, y’, ).
« Project)(tdy, o1) # ProjectV) (tdy, o7).
« Project® (td,, 03) = Project? (td,, a3).

In all other cases, the outputs of Hyb, ; and Hyb, , are identical. We use A to construct an adversary 8 for the
quadratic chain binding game:
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1. Algorithm B runs algorithm A, which starts by outputting the input length 1¢ and the circuit size 1°. Algorithm
B sends 1°*!, the locality set Squad, and indices (i, i + 1) to the quadratic chain binding adversary. It receives
(crspase, Crsquad)~

2. Algorithm B samples crsji, < SetupLin(crspase) and crspre «— SetupPre(crspase, £ + 1). It gives the common
reference string crs = (1°, crSpase, CrSpre, CI'Sjin, Cquuad) to A.

3. Algorithm A outputs an input commitment oj,, an arithmetic circuit C: Rl — R™ vectorsy,y’ € R™, and

. _ ’_
openings 7w = (Gb 02, Tlpres Tlin> TTquads ”out) and 7’ = (O. 0'2, ﬂpre’ Im’ quad’ out)

4. Algorithm 8B outputs the matrix Mc, the Type-II commitments oy, 0;, the Type-I commitments oy, o], and the

openings 7quads T, quad

First, we note that 8B is a valid adversary for the chain binding security game. From Definition 5.1, the “next-wire”
matrix Mc is (j, j + 1)-local for all j > ¢ + 1. In particular, this means that Mc is Squad-local and moreover, that
(i,i + 1) € Squad- Then, the chain-binding challenger samples (crspase, tdy, tdz) SetupSF(l/1 15*1 i 4+ 1,i) Thus,
algorithm B perfectly simulates an execution of Hyb, ; and Hyb, , for A, so with probability at least ¢, the quantities
output by A satisfy the properties enumerated above. Then, the followmg hold:

« If Verify(crs, 0in, C,y, m) = 1 = Verify(crs, 0in, C,y’, 7’), then VerifyQuad(crsquad, 02, Mc, 01, Tquad) = 1 and
VerifyQuad(crsquad, 05, Mc, O'{,ﬂ(;uad) =1L

« ProjectV)(tdy, 01) # Project") (tdy, o}).
« Project® (td,, 0,) = Project® (td,, 0;).

These conditions precisely coincide with the requirements of the quadratic chain binding game, so we conclude that
algorithm B succeeds with advantage e. O

Lemma 5.11. Foralli € {¢+1,...,s}, Pr[Hyb,; ,(A) = 1] < Pr[Hyb,5(A) = 1].

Proof. The verification conditions in Hyb,, is a strict superset of those in Hyb, ;. Correspondingly, if Hyb, ,(A)
outputs 1, then the same is true for Hyb, ;(A) and the claim holds. |

Lemma 5.12. Suppose FCpqse satisfies Type-II indistinguishability (Definition 4.6). Then there exists a negligible function
negl(-) such that foralli € {¢+1,...,s}, [Pr[Hyb;s(A) = 1] — Pr[Hyb,,, ,(A) = 1]| = negl(4).

Proof. Suppose there exists an index i € {£ +1,...,s} where |Pr[Hyb;s(A) = 1] — Pr[Hyb,,, ,(A) = 1]| > ¢ for
some non-negligible ¢. We use A to construct an efficient adversary 8 that breaks Type-II indistinguishability of
Construction 4.8:

1. Algorithm B runs algorithm A, which starts by outputting the input length 1¢ and the circuit size 1°. Algorithm
B forwards 1°*!, the Type-I index i + 1, and two Type-II indices (i, i + 1) to its challenger. It receives the base
common reference string crsp,se and the Type-I projection trapdoor td;.

2. Algorithm B samples

Crspre < SetupPre(crspase, £ + 1)
crsiin < SetupLin(crspase, Siin)

Crsquad < SetupQuad(crspage, Squad)
It give crs = (15, CI'Shases CI'Spres CI'Slin, crsquad) to A.

3. Algorithm A outputs an input commitment o;,, an arithmetic circuit C: RY — R™, vectors y,y’ € R™, and

: ’ ’
openings iz = (O.b 02, Tlpres Tlin> TTquads ﬂout) and 7’ = (O. 0'25 Trer 7T

’
pre> ““lin’ T

’
quad’ ﬂOUt)'
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4. Algorithm B outputs 1ify # y’, Verify(crs, o, C, y, ) = 1, Verify(crs, oin, C,y’, ') = 1,and Project(l) (tdy,01) =
Project(l) (tdy, o7). Otherwise, it outputs 0.

If the challenger sampled crspase < SetupSF(1%, 15%1,i+1, i), the algorithm B perfectly simulates an execution of Hyb; 5
for A and outputs 1 with probability Pr[Hyb, ;(A) = 1]. If the challenger sampled crspase < SetupSF(1%, 15%1, i +
L,i + 1), then algorithm B perfectly simulates an execution of Hyb,,,, for A and outputs 1 with probability
Pr[Hyb;,, ((A) = 1]. Correspondingly, algorithm B breaks Type-II indistinguishability with advantage . O

Lemma 5.13. Suppose FCyi, satisfies satisfies linear chain binding (Definition 4.20). Then there exists a negligible
function negl(-) such that | Pr[Hybg,, ,(A) = 1] — Pr[Hybg ,,(A) = 1]| = negl(1).

Proof. This proof is similar to the proof of Lemma 5.7. Suppose |Pr[Hyb ,, ((A) = 1] = Pr[Hybg (A) = 1]| > ¢
for some non-negligible ¢. By construction, the common reference string in the two experiments is identically
distributed. Thus, it must be the case that with probability at least ¢, algorithm A will output oi,, C, y,y’, 7 =

!’ a ’ ’ ’ ’
(01, 02, Tpres Min, Tquads Mout) and 7" = (07, 0, 7T 0, 7T 7, ) such that

pre> “lin’ ﬂ(,]uad’
« Verify(crs, oin, C,y, ) = 1 = Verify(crs, oin, C, y', 7’).
« Project™V) (tdy, 1) = Project™V) (tdy, o7).

« Project® (tdy, oout) # Project® (tda, o7 1), where

Oout < Commit® (crsbase, [;’,]) and G(’)ut — Commit(z)(crsbase, [y, ])

In all other cases, the outputs of Hyb,, ; and Hyby, ., are identical. We use A to construct an adversary 8 for the
linear chain binding game:

1. Algorithm B runs algorithm A, which starts by outputting the input length 1¢ and the circuit size 1°. Algorithm
B forwards 15*1, the locality set Sji,, and indices (s + 1, s + 1) to the linear chain binding challenger. It receives
(Crsbase, Cl‘S[in).

2. Algorithm B samples crsquad < SetupQuad(crspase) and crspre <— SetupPre(crspase, £+ 1). It gives the common
g o) q p p p g
reference string crs = (1%, CrShase, CrSpre, CrSiin, CrSquad) to A.

3. Algorithm A outputs an input commitment o;,, an arithmetic circuit C: R® — R™, vectors y,y’ € R™, and

: — ’ ’ ’ ’ ’ ’ 7
openings 71 = (01, 0y, Tpre, Tlins Tquad> Tout) AN 7" = (07, 03, T e, s T 1o 4> Tour)-

4. Algorithm B outputs the matrix Poy, the Type-I commitments o1, o7, the Type-II commitments ooy, 0,

out
(computed as in Section 5), and the openings 7oy, 7, .

First, we note that 8 is a valid adversary for the chain binding security game. Since P, is a diagonal matrix, it is Sjin-
local, and moreover, (s+1,s+1) € Sjin. Thus, the challenger samples (crspase, tdq, tdz) « SetupSF(l’l, 1 s+1,5+1),
and algorithm 8 perfectly simulates an execution of Hyb,, ;, and Hybg, ., for A. Thus, with probability at least ¢, the
quantities output by A satisfy the properties enumerated above. Then, the following hold:

« If Verify(crs, oin, C, y, ) = 1 = Verify(crs, oin, C, y’, '), then we have that VerifyLin(crsjin, o1, Pout, Gout, Tout) =
1 and VerifyLin(crsjin, 07,15, 00 7o) = 1.

« Project(tdy, o1) = Project'V) (tdy, o).
« Project® (tdy, oout) # Project(z)(tdz,at’)ut).

These conditions precisely coincide with the requirements of the linear chain binding game, so we conclude that
algorithm B succeeds with advantage e. O

Lemma 5.14. Suppose FCpase satisfies Type-II collision resistance (Definition 4.7). Then there exists a negligible function
negl(-) such that Pr[Hybg, ,/(A) = 1] = negl(4).
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Proof. Suppose Pr[Hyby, . (A) = 1] > ¢ for some non-negligible &. We use A to construct an adversary 8 that
breaks Type-II collision resistance:

1. Algorithm B runs algorithm A, which starts by outputting the input length 1¢ and the circuit size 1°. Algorithm
B forwards 1°*! and the Type-Iindex s + 1 to the challenger. It receives crspase.

2. Algorithm B samples

ClSpre «— SetupPre(Cerase, t+ 1)
crsiin <— SetupLin(crspases Siin)

CrSquad < SetupQuad(crspage, Squad);
It give crs = (1%, CrSpase, CrSpre, CSiin, CrSquad) to A.

3. Algorithm A outputs an input commitment ¢;,, an arithmetic circuit C: R — R™, vectors y,y’ € R™, and

. _ ’r ror ’ ’ ’
openings 7 = (01, 09, Tlpres Tlins> Tquads Tout) and 1" = (0-1, 09> Tpres Mjipy> ﬂ-quad’ ”out)'

4. Algorithm B outputs the vectors y,y’.

The challenger samples (crspyse, tdy, tdy) «— SetupSF(l’l, 1", s + 1,5 + 1), so algorithm B perfectly simulates an
execution of Hyby,  for A. Thus, with probability at least ¢, it holds that y # y’ and Project® (tdy, gout) =
Project(z) (tdy, 0,,,), where ooyt = Commit® (crsbase, [3]) and o , = Commit® (crsbase, [;,)/ ]) These conditions
precisely coincide with the requirements of the Type-II collision resistance game, so algorithm 8 succeeds with
advantage ¢. O

Since s = poly(A), we conclude via Lemmas 5.5 to 5.13 that
Pr[Hybg,, (A) = 1] > Pr[Hyb,, (A) = 1] — negl(4).

By Lemma 5.14, we have that Pr[Hyby, ,,(A) = 1] = negl(1), so we conclude that Pr[Hyb,(A) = 1] = negl(4), and
binding holds. o

Succinct functional commitments from bilateral k-Lin. Combining the construction from Construction 5.2
with our projective commitments (and associated proof systems) from Section 4, we obtain a functional commitment
for all arithmetic circuits from the bilateral k-Lin assumption. Notably, both the commitments and the openings in
our construction consist of a constant number of group elements. We summarize our instantiation in the following
corollary.

Corollary 5.15 (Functional Commitments from k-Lin). Let k > 1 be a constant and GroupGen be a prime-order
pairing group generator. If the bilateral k-Lin assumption holds with respect to GroupGen, then there exists a succinct
functional commitment that supports openings to arbitrary arithmetic circuits of size s (over the ring Z, associated with
GroupGen) with the following properties:

« Commitment size: A commitment to an inputx € Zf, consists of 2k elements in the group G,.

« Opening size: An opening to an arithmetic circuit C: Zf, — Z}' consists of 2k elements in Gy and 4k% + 14k + 6
elements in G,.

« CRS size: The CRS is a structured reference string containing O(k3s®) group elements.

For the particular case of k = 2, a commitment consists of 4 group elements and an opening consists of 54 group elements
(specifically, 4 Gy and 50 G, elements).

Proof. We instantiate the base scheme FCp,s. With Construction 4.8 and the proof systems FC e, FCjin, FCquad with
Constructions 4.8, 4.14, and 4.23. Then, we have the following:
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« Commitment size: A commitment to an input x € Zf, is a Type-I commitment (output by Commit"), which
is a vector in G2,

« Opening size: An opening consists of a tuple (o7, 03, Tpres Mlin» Tquads Tout). We consider each component:

- oy is a Type-I commitment so oy € ng .

- 03 is a Type-II commitment so o, € Gfk X ng .
— Tpre is an opening for FCpre S0 myre € GEHL.

- Min is an opening for FCiin, so min € G3F*2.

. . 4k +k+1
— Tquad is an opening for FCgyad, 50 Tquad € G; .

— Tout is an opening for FCji, s0 7oyt € G‘Z‘k”'
Taken altogether, the opening consists of 2k elements in G; and 4k? + 14k + 6 elements in G,.

« CRS size: The CRS in Construction 5.2 is a tuple crs = (ls, CIShases CI'Spres CI'S|in, crsquad). The base CRS consists of
O(s*k?) group elements. Next, crsp. contains an additional O(k?s) group elements, crsj;, contains an additional
O(k?s%) and CrSquad contains an additional O(k3s®) group elements. Taken together, the CRS size contains
O(k3s®) group elements. ]

Extensions and applications. We now describe several simple extensions and corollaries of our new functional
commitment scheme.

Remark 5.16 (Fast Verification). The running time of the verification algorithm for the functional commitment
scheme in Corollary 5.15 scales with O(s®), where s is the size of the arithmetic circuit. This is the time needed
to implement the verification algorithm for the chainable proof system for quadratic functions (Construction 4.38).
However, when the circuit C is known in advance, we can preprocess the circuit C so that verification requires only
O(m) bilinear map operations, where m is the output size. Specifically, we can precompute the following quantities
to reduce the online cost of checking 7pre, 7iin, Tquads 7Tout in Construction 5.2:

« Checking myre: The VerifyPre algorithm is already fast (only requires O (k) number of bilinear map operations),
so no preprocessing is needed for checking mpre.

« Checking 7j,: We precompute (vec(I;)"®Ix) [(I @ A)W]; € G’fXZk and (vec(I;)"®I;) [(TI, ®A)W5 ], € G’l‘XZk.
Then, evaluating VerifyLin in Construction 4.23 only requires O(k?) group operations. The precomputed key
in this case only depends on the size of the circuit C and not on the actual description of C.

+ Checking 7mquad: We precompute the circuit-dependent verification key (vec(Mc)" ® Ix) [(Ip ® A)W]; € G]fX4k2.
Then, evaluating VerifyQuad in Construction 4.38 only requires O(k>) group operations.

« Checking 7oyt: Similar to the case for mji,, we precompute (vec(Pout)™ ® It) [(I,z ® A]W4], € G’fXZk and
(vec(Pout)" ® I) [ (I;2 ® A]W,], € GK*%k. With the precomputed key, evaluating VerifyLin only takes O(k?)
group operations.

Since k = O(1), these operations only require a constant number of bilinear group operations. The online cost of
the verification is then just the cost of computing the commitment o, to the output y, which requires O(m) group
operations. Note that if the target value y is also known in advance, then we can also precompute o,y. In this case,
the online verification would only require a constant number of bilinear map operations.

Remark 5.17 (Application to Homomorphic Signatures). Previously, the authors of [CFT22] described a generic
approach for constructing a homomorphic signature from any additively-homomorphic functional commitment
scheme. The class of functions supported by the homomorphic signature scheme coincides with the class of functions
associated with the functional commitment scheme. Our functional commitment scheme (Corollary 5.15) satisfies
the required additive homomorphism property. Namely, the commitments in our scheme consist of a single Type-I
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commitment for the base projective commitment scheme (Construction 4.8). In Construction 4.8, a commitment to
X € Z;; is [Tx],. The base commitment scheme is clearly additively homomorphic. Thus, we can apply the [CFT22]
approach to obtain a homomorphic signature for all bounded-size arithmetic circuits. The resulting homomorphic
signature scheme inherits the efficiency properties of the underlying functional commitment in this case. In our
setting, this gives a homomorphic signature for general circuits where the size of the signature is always a constant
number of group elements. Previous pairing-based approaches for homomorphic signatures either required knowledge
assumptions (through the use of general-purpose SNARKSs), had signatures whose size grew with the depth of the
computation [BCFL23], or had signatures who size consisted of a super-constant number of group elements [KLVW23]
(specifically, the number of group elements is proportional to the size of a circuit implementing a cryptographic hash
function, which has size poly(24)).

Remark 5.18 (Chainable Commitment for Arbitrary Circuits). In Construction 5.2, the input commitments are
Type-I commitments while the output commitments are Type-IL It is easy to construct a chainable commitment
where the input and outputs have the same type; namely, where the output commitment is also a Type-I commitment

. 1
Oout = Commltéiie (crsbase, [ch) ]) )

To support this, we simply include an additional opening for the projection function that maps

1 1
z |-~ |C(x)],
C(x) 0

where z denotes the input and intermediate wires of C(x).” Clearly, this is a linear mapping, and thus can be handled
using our techniques; technically, we will use the quadratic system here since we are converting from a Type-II
commitment to a Type-I commitment. In this way, we obtain a chainable commitment for arbitrary circuits. In
particular this allows a user to take a commitment oy to an input x, apply a circuit C; to x to obtain a commitment o3
to the value C;(x). The user can then apply a new circuit C; to obtain a commitment o3 to the value C2(C;(x)), and
so on. As shown by the authors of [BCFL23], a chainable commitment can be used to obtain a functional commitment
for circuits of a priori unbounded depth, so long as we allow the size of the opening to scale with the depth of the
circuit. Our approach directly supports this setting.
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