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Abstract

Unsupervised, category-agnostic, object-centric 3D representation learning for complex
scenes remains an open problem in computer vision. While a few recent methods can
discover 3D objects from a single image, they remain struggling on scenes with diverse
and complex object configurations as they discover objects mostly by appearance similarity,
which is insu�cient for textured objects. In this work, we propose Movable Object Radi-
ance Fields (MORF), aiming at scaling to complex scenes with diverse categories of objects.
Inspired by cognitive science studies of object learning in babies, MORF learns 3D object
representations via movable object inference. While obtaining 3D movable object signals
requires multi-view videos of moving objects, we propose lifting a 2D movable object in-
ference module that can be unsupervisedly pretrained on monocular videos. Thus, MORF
requires only multi-view images of static training scenes. During testing, MORF can dis-
cover, reconstruct, and move unseen objects from novel categories, all from a single image
of novel scenes. We propose a challenging simulated dataset with a diverse set of textured
objects for training and testing. Experiments show that MORF extracts accurate object
geometry and supports realistic object and scene reconstruction and editing, significantly
outperforming the state-of-the-art.

1 Introduction

Learning object-centric 3D representations of complex scenes is a critical precursor to a wide range of appli-
cation domains in vision, robotics, and graphics. The ability to factorize a scene into objects provides the
flexibility of querying the properties of individual objects, which greatly facilitates downstream tasks such as
visual reasoning, visual dynamics prediction, manipulation, and scene editing. Furthermore, we hypothesize
that building factorized representations provides a strong inductive bias for compositional generalization (Gr-
e� et al., 2020), which enables understanding novel scenes with unseen objects and configurations.

While supervised learning methods (Ost et al., 2021; Kundu et al., 2022; Müller et al., 2022) have shown
promise in learning 3D object representations (such as neural radiance fields (Mildenhall et al., 2020)) from
images, they rely on annotations of specific object and scene categories. A recent line of work (Yu et al.,
2022; Stelzner et al., 2021) has explored the problem of unsupervised discovery of object radiance fields.
These models can be trained from multi-view RGB or RGB-D images to learn object-centric 3D scene
decomposition without annotations of object segments and categories. However, these methods remain
struggling with textured objects and objects from diverse categories. A fundamental reason is that they
heavily rely on self-similarity of visual appearance to discover object entities, which limits their scalability
beyond simple texture-less objects with similar shapes.

In this work, we aim to scale unsupervised 3D object-centric representation learning to complex visual
scenes with textured objects from diverse categories. To this end, we propose Movable Object Radiance
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Figure 1: Illustration of unsupervised category-agnostic object-centric 3D representation learning. Given a single

image (an unseen real image here, although our model is trained on synthetic images), we infer object radiance

fields that allow photometric and geometric 3D reconstruction. This factorized representation enables 3D scene

manipulation, including moving objects, replacing objects, and replacing the background.

Fields (MORF), which learn to infer 3D object radiance fields from a single image. Rather than appearance
similarity, MORF uses material coherence under everyday physical actions as its underlying object definition,
i.e., an object is movable as a whole in 3D space (Spelke, 1990). However, it is challenging to obtain learning
signals to directly infer movable objects in 3D, which requires multi-view videos of moving objects. To
address this challenge, we propose to lift 2D movable object discovery to 3D. MORF integrates a pretrained
unsupervised 2D movable object segmentation module with di�erentiable neural rendering to bridge the gap
between 2D segmentation and 3D movable object representations. We show that our lifting design allows
learning 3D object-centric representations in complex category-agnostic scenes without multi-view videos.

Specifically, MORF integrates a recent unsupervised 2D movable object segmentation method, EISEN (Chen
et al., 2022), which is pretrained on optical flow from unlabeled videos. The EISEN module is pretrained to
segment objects in an image by perceptually grouping parts of a scene that would move as cohesive wholes.
To lift the 2D movable object inference to 3D, MORF learns to condition 3D radiance field generation with
2D segmentations. We extract object-centric latent representations from segmented images and generate
object radiance fields from the factorized latents. To allow high-quality reconstruction of textured objects,
our learned latent object representation consists of both an entity-level latent and a pixel-level latent that
better encodes spatially varying appearance details.

To evaluate our method, we propose a challenging simulated dataset Playroom with a diverse set of textured
objects, going beyond scenes with simplistic object appearances considered by most current unsupervised 3D
object discovery methods (Yu et al., 2022; Stelzner et al., 2021; Sajjadi et al., 2022b). We demonstrate that
MORF can learn high-quality 3D object-centric representations in complex visual scenes, allowing photomet-
ric and geometric reconstruction for these scenes from single views. Moreover, our learned representations
enable 3D scene manipulation tasks such as moving, rotating, replacing objects, and changing the back-
ground. Beyond systematic generalization to unseen spatial layouts and arrangements, we further show that
MORF is able to generalize to unseen object categories and even real images while maintaining reasonable
reconstruction and geometry estimation quality (Figure 1).

In summary, our contributions are three-fold. First, we propose scaling unsupervised object-centric 3D
representation learning to scenes with textured objects from diverse categories by discovering objects with
coherent motions. Second, we propose Movable Object Radiance Fields (MORF), which lifts 2D movable
object discovery to 3D to remove the requirements of multi-view videos of dynamic training scenes. Third,
we demonstrate that MORF allows photometric and geometric reconstruction and editing of complex 3D
scenes with textured objects from diverse unseen categories on the Playroom dataset.

2 Related Work

Unsupervised 2D object discovery. Our method is closely related to recent work on unsupervised scene
decomposition, which aims to decompose multi-object scenes into separate object-centric representations
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Figure 2: Illustration of Movable Object Radiance Fields (MORF). MORF takes as input a single image of a scene

with potentially diverse objects, and infers 3D object and background radiance fields. (a) MORF integrates an

image-based movable object inference method, EISEN, which infers a set of object masks. Masked images are used

to generate object radiance fields. (b) MORF generates object radiance fields conditioned on the latent object and

pixel codes. (c) During training, MORF reconstructs the novel view via compositional rendering and is supervised by

reconstruction losses. During inference, MORF takes a single view of a new scene, and infers object and background

radiance fields in a single forward pass.

from images without human annotations. Most works formulate the problem as learning compositional
generative models in the 2D image space. They decompose a visual scene into a set of localized object-
centric patches (Eslami et al., 2016; Crawford & Pineau, 2019; Kosiorek et al., 2018; Lin et al., 2020;
Jiang et al., 2019a) or a set of scene mixture components (Burgess et al., 2019; Gre� et al., 2019; 2016;
2017; Engelcke et al., 2019; Locatello et al., 2020; Monnier et al., 2021; Jiang et al., 2019b). The scene
mixture models typically generate single-object RGBA images and blend them to reconstruct the full-scene
images using iterative inference with recurrent networks (Burgess et al., 2019) or set-based convolutional
encoders (Locatello et al., 2020). However, these methods have so far been unable to scale to complex
real-world images. A recent branch of work on self-supervised or unsupervised object segmentations explores
additional supervision signals such as motions and depth for learning object segmentations (Bear et al., 2020;
Kipf et al., 2021; Chen et al., 2022; Bao et al., 2022; Elsayed et al., 2022; Ye et al., 2022). However, these
2D methods are not aware of the 3D nature of scenes, and thus they do not provide a 3D understanding of
the underlying scenes.

Unsupervised 3D object discovery. Discovering objects from image collections has been a long-standing
topic in computer vision, but previous work on object discovery (a.k.a. co-segmentation) represents objects
as 2D image segments without 3D information (Russell et al., 2006; Sivic et al., 2005; 2008; Grauman &
Darrell, 2006; Joulin et al., 2010; Rubio et al., 2012; Vicente et al., 2011; Rubinstein et al., 2013; Cho et al.,
2015; Li et al., 2019; Vo et al., 2020). Recently, some attempts have been made to discover 3D object
representations. A related set of methods focuses on 3D reconstruction from a single image (Ye et al., 2021;
Kulkarni et al., 2019; 2020; Kanazawa et al., 2018; Wu et al., 2021). However, it requires strong category-
specific shape priors, making it di�cult to scale to complex real-world data. Elich et al. (Elich et al., 2020)
infer object shapes (Park et al., 2019) from a single image of a scene. Chen et al. (Chen et al., 2020) extend
Generative Query Network (Eslami et al., 2018) to decompose 3D scenes. In particular, the closest to our
work are those that focus on inferring 3D neural object representations from single images (Yu et al., 2022;
Smith et al., 2022; Stelzner et al., 2021) or sparse views (Sajjadi et al., 2022b). However, these methods rely
on visual appearance to discover object entities. This fundamental assumption makes it di�cult for them to
scale to complex scenes with textured objects, diverse object categories, or objects under di�erent lighting.
In contrast, our approach leverages motions as the underlying object concept, which is category-agnostic
and generalizable to di�erent object appearances.

Scene de-rendering. Aiming to provide full scene understanding, a line of scene de-rendering works have
shown reconstructing 3D object-centric representations in specific types of scenes (Wu et al., 2017; Yao
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et al., 2018; Kundu et al., 2018; Ost et al., 2021; Kundu et al., 2022; Yang et al., 2021; Wu et al., 2022).
Recently, Ost et al. (Ost et al., 2021) propose to represent dynamic scenes as a scene graph, where each
node encodes object-centric information. Muller et al. (Müller et al., 2022) recover 3D object information
such as shape, appearance, and pose in autonomous driving scenes. However, these methods rely on manual
annotations of object categories (such as cars) and scene categories (such as street scenes). Similarly, Gkioxari
et al. (Gkioxari et al., 2022) propose a method that learns to predict the 3D shape and layout of 3D objects
relying on the supervision of the 2D bounding box. Our approach only requires object motion in video to
infer object segmentations during training, without requiring manual annotations.

Neural scene representations and rendering. Our object representation is based on recent progress
in neural scene representations (Park et al., 2019; Mescheder et al., 2019; Sitzmann et al., 2019) and neural
rendering (Tewari et al., 2020). Neural scene representations implicitly model 3D scenes using the parameters
of deep networks, which could be learned from only 2D images (Niemeyer et al., 2020; Sitzmann et al., 2019)
with di�erentiable rendering techniques (Kato et al., 2020; Tewari et al., 2020). Specifically, Neural Radiance
Fields (NeRFs) (Mildenhall et al., 2020) have shown photorealistic scene modeling of static scenes using
only images. The most relevant works in this line aim to infer NeRFs from a single image (Yu et al.,
2020; Kosiorek et al., 2021; Rematas et al., 2021). While these works focus on single objects or holistic
scenes, we address decomposing a multi-object scene without human supervision. Another relevant line
of work aims to incorporate NeRFs into compositional models (Niemeyer & Geiger, 2020; 2021), such as
GIRAFFE (Niemeyer & Geiger, 2020). While they target scene synthesis, we instead focus on multi-object
inference, which GIRAFFE cannot address (Yu et al., 2022).

3 Movable Object Radiance Fields (MORF)

We now describe the problem formulation and our approach, Movable Object Radiance Fields. Given a
single input image of a scene that potentially has objects from diverse categories, our goal is to factorize
the scene into a set of object-centric radiance fields. To allow unsupervised decomposition of such complex
3D scenes, we propose learning to discover 3D movable objects by integrating and lifting unsupervised 2D
movable object inference. The lifting is done by learning to condition 3D radiance fields with 2D object
segments using neural rendering.

Movable Object Radiance Fields has three stages. First, it decomposes the input image by inferring its 2D
object segmentation masks (Figure 2a). The segmentation extraction network is trained with only optical
flow to group scene elements that often move together into an object segment. Second, for each mask,
MORF learns an object radiance field with object and pixel latent codes for object features and locally
varying details, respectively (Figure 2b). Finally, these object radiance fields are then composed to re-render
the scene from multiple views, supervised by the reconstruction loss (Figure 2c). We now describe each
component in detail.

3.1 Movable object inference in 2D

Given a single RGB image, we first compute a 2D object segmentation mask, represented as a set of H ◊
W dimensional binary-valued tensor {Mi}K

i=1
, where K is the number of object masks. We denote the

background mask as M0 which can be computed by taking the complement of the object masks union:
M0 = (

t
K

i=1
Mi)c.

We adopt the EISEN architecture (Chen et al., 2022) to generate high-quality object segmentation masks.
The core idea of EISEN is to construct a high-dimensional plateau map representation (of shape H

Õ◊W
Õ◊Q)

for each image, in which all feature vectors belonging to the same object are aligned (i.e., have cosine similarity
¥ 1) and all feature vectors belonging to other objects are nearly orthogonal (cosine similarity ¥ 0). Given
this representation, the object segments can be easily extracted from a plateau map by finding clusters of
vectors pointing in similar directions.

More specifically, EISEN first applies a convolutional backbone to the input image to obtain a feature grid,
followed by an a�nity prediction module that computes pairwise a�nities between the features at pixel
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location (i, j) and the features at its neighboring locations within a local window. Then EISEN constructs a
graph, with nodes represented by Q-dimensional feature vectors and edges represented by pairwise a�nities.
A message-passing graph neural network is run on the graph to construct the plateau map representations,
passing excitatory messages that align the feature vectors of nodes belonging to the same object and inhibitory
messages that orthogonalize the feature vectors of nodes belonging to distinct objects. Once the plateau map
representation is obtained, EISEN imposes winner-take-all dynamics on the plateau map to extract object
segments. We refer the readers to Chen et al. (2022) for more implementation details of EISEN.

During training, EISEN learns pairwise a�nities from optical flow estimates from a RAFT (Teed & Deng,
2020) network pretrained on Sintel (Mayer et al., 2016). Consider a pair of scene elements (a, b) that project
into image coordinates (i, j) and (iÕ

, j
Õ) respectively. If only one is moving, it is usually the case that they

do not belong to the same object; when neither is moving, there is no information about their connectivity.
We use this physical logic to construct a pairwise supervision signal for EISEN’s a�nity matrix. The EISEN
training loss is the masked row-wise KL divergence between the predicted and the target connectivity.
Although EISEN requires a frame pair as input for computing optical flow during training, it only requires
a single static image during inference time for computing the object segmentation masks, and subsequently
predicting the object radiance fields.

3.2 Lifting by learning to condition radiance fields

We represent 3D objects and the background in a scene as neural radiance fields (NeRFs). We incorporate
and lift the 2D movable object inference by learning to condition the NeRFs with the 2D segments. To
allow high-fidelity reconstruction of complex scenes with spatially varying appearances for objects, each
conditioning latent feature consists of both an entity-level slot-based latent and a pixel-level local latent, as
shown in Figure 2b. In the following, we elaborate on the latent representations.

Object-level latents. Given an input image I and object masks {Mi}K

i=0
inferred by a frozen pre-trained

EISEN, we extract a set of object latents (where i = 0 denotes the background) {si}K

i=0
, each of which

represents object-level features such as shape and position. We denote a masked image through Mi as Ii,
which is visualized on the left of Figure 2b. We extract an object latent si by a convolutional backbone
encoder Es that produces a feature map fi = Es(Ii), and average-pool it as si = avgpool(fi). We further
allow the object latent to be adaptively updated by a learnable Gated Recurrent Unit (Chung et al., 2014)
(GRU): si Ω GRU(si, u) for a few iterations, where u denotes an update signal given by aggregating features
fs

i
that are within the object mask:

u =
H◊Wÿ

j=1

wj · VT f(j)

i
, wj = (M(j)

i
/

H◊Wÿ

j=1

M(j)

i
),

where V denotes a learnable linear projection matrix. Note that we use a shared GRU and a shared V for
all objects, while we use separate ones for the background because of the inherent appearance and geometry
di�erences between foreground objects and background.

Pixel-level latents. Object-level latents fall short of capturing spatially varying fine details. Thus, we also
learn to extract pixel-level local latents p

i
(x) for each object i to condition the 3D object radiance field. To

obtain the pixel latent codes, we use convolutional encoder Ep that produces a feature map g
i

= Ep(Ii).
For each 3D query point x on a camera ray, we follow Yu et al. (2020) to retrieve the image features of
each object by projecting x onto the image plane coordinates fi(x) and extract latent codes p

i
(x) from the

feature map g
i

by bilinear interpolation.

Conditioning NeRFs. Since the geometry of the background and foreground objects are inherently di�er-
ent, we parameterize the background NeRFs and object NeRFs using two separate conditional MLPs fb and
fo, respectively:

fb : (x, d, s, p) æ (‡, c), fo : (x, d, s, p) æ (‡, c), (1)

where x denotes a 3D position and d denotes a view direction. The MLP parameters of the object NeRFs
are shared across all foreground objects.
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3.3 Compositional neural rendering

At each point in the rendering of a scene, the final pixel value is a combination of contributions from each
individual scene element to the 3D volumes projecting to that point. We follow uORF (Yu et al., 2022)
and take a weighted average of the individual components to obtain the combined density ‡ and color c.
The composite volumetric radiance field is then rendered into a 2D image via the numerical integration of
volume rendering by sampling S discrete points along each pixel ray parameterized as r(t) = o+ td, with the
ray origin o and view direction d. The points on each ray are sampled between pre-specified depth bounds
[tn, tf ], with distance ”j between adjacent samples along the ray. Thus, the final pixel color is given by:

c =
Sÿ

i=1

Ti[1 ≠ exp(≠‡i”i)]ci, Ti = exp(≠
iÿ

j=1

‡i”i), (2)

‡ =
ÿ

j

pj‡j , c =
ÿ

j

pjcj , pj = ‡jq
k

‡k

, j, k œ {0, ..., K}, (3)

where we let i = 0 denote the background quantity, and similarly for j = 0 and k = 0.

3.4 Loss function

During training, we randomly select a single image of a scene as input and render multiple novel views. We
train the model using both reconstruction loss and perceptual loss: L = Lr + ⁄pLp with ⁄p = 0.006. The
reconstruction loss is the L2 loss between the rendered image and the ground-truth image Lr = ||I≠Î||2. Since
reconstruction loss is sensitive to small geometric imperfections and often results in blurry reconstructions,
especially due to uncertainties in rendering a novel view, we add a perceptual loss term to mitigate this
problem. We compute the perceptual loss as Lp = ||ek(I) ≠ ek(Î)||2 , where ek(·) is k-th layer of an o�-the-
shelf VGG16 (Simonyan & Zisserman, 2014) image encoder e with frozen pre-trained weights.

4 Experiments

We demonstrate our approach on three tasks: (a) novel view synthesis, (b) scene geometry reconstruction,
and (c) editing scenes by moving objects, replacing objects, and changing the background.

Datasets. We generated four variants of a complex synthetic scene dataset using the ThreeDWorld simula-
tion environment (Gan et al., 2020). Each scene includes four camera views with a random azimuth angle
and a fixed elevation; the camera always points to the center of the scene. In addition, we also train and
evaluate our models on the MultiShapeNet dataset (Stelzner et al., 2021).

Playroom contains a wide range of realistically simulated and rendered objects. Each scene includes 3 objects
randomly sampled from a set of 2000 object models. These models are drawn from a wide set of categories
and have a range of complex 3D shapes and textures. They are placed in random positions and poses
in rooms selected randomly from a collection of indoor environments with varying 3D room layouts and
floor/wall textures. In each scene, one object is invisibly pushed to generate object motion. There are 15,000
scenes for training and 600 for testing.

Playroom-novel contains a mixture of both novel object instances from categories seen during training, as
well as object instances from novel categories for evaluating the generalization performance of the models.
Object instances from novel categories are randomly sampled from 36 held-out categories. We randomly
sample 100 novel objects in total. They are placed in the same room environments seen in the Playroom
dataset. There are 600 scenes for evaluation.

Playroom-diverse extends Playroom dataset to include more diverse background environments. Playroom
dataset uses 3 environments, whereas Playroom-diverse contains 30 unique background environments. There
are 30,000 additional scenes for training and 600 for testing.
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Models Playroom Playroom-novel Playroom-diverse MultiShapeNet
LPIPS¿ SSIMø PSNRø LPIPS¿ SSIMø PSNRø LPIPS¿ SSIMø PSNRø LPIPS¿ SSIMø PSNRø

uORF 0.348 0.634 21.5 0.350 0.636 21.6 0.553 0.547 18.1 0.307 0.802 25.1

pixelNeRF 0.250 0.745 24.4 0.265 0.725 23.1 0.357 0.650 20.4 0.159 0.901 30.2
SRT 0.352 0.704 21.3 0.355 0.704 21.3 0.451 0.582 18.7 0.342 0.829 26.1

MORF-nopix 0.244 0.735 23.0 0.264 0.722 22.2 0.466 0.602 18.4 0.317 0.813 25.3

MORF (ours) 0.161 0.784 24.5 0.189 0.755 22.9 0.248 0.675 21.3 0.147 0.881 28.9

Table 1: Novel view synthesis performance measured by LPIPS, SSIM, and PSNR metrics on four datasets.

Playroom-edit is designed to evaluate a model’s ability to manipulate object radiance fields and synthesize
novel images. The dataset contains scenes that result from three types of editing: moving objects, replacing
objects, and changing the background. For moving objects, we randomly pick one object in the scene and
teleport it to a random position. For replacing objects, we switch a randomly selected object with an object
from a di�erent scene. For changing the background, we similarly switch the background with that of another
scene. For each scene editing task, we render 200 test scenes for evaluation.

MultiShapeNet is a challenging multi-object dataset in which the objects are shapes from the ShapeNet
dataset. Each scene contains 2–4 upright ShapeNet objects sampled from the chair, table, and cabinet
classes, for a total of approximately 12,000 objects (Stelzner et al., 2021). We train the models on 80,000
training scenes and report the quantitative results on 500 validation scenes. We cannot train EISEN on the
MSN dataset since there is no motion. We thus replace EISEN with a Mask2Former (Cheng et al., 2021)
model pretrained on the COCO dataset to compute the 2D segmentations of the dataset.

Baselines. We compare MORF to the slot-conditioned unsupervised object radiance field method uORF (Yu
et al., 2022) and nonfactorized pixel-conditioned method pixelNeRF (Yu et al., 2020). Both methods learn
radiance fields from RGB images without ground-truth object annotations or depth supervision. We also
compare to an ablated version of MORF trained without pixel latents to illustrate the benefits of local
conditioning in 3D representation learning. We adopt the same training procedures and hyperparameter
choices as reported in the original papers. For a fair comparison, all models receive input images with the
same resolution and are trained with the same batch size.

4.1 Novel view synthesis

We randomly select one camera view of each scene as input and use the remaining three images as ground
truth to evaluate the quality of novel view synthesis. In addition to uORF and pixelNeRF, we also compare
with the pixel feature–ablated version of MORF. All models are evaluated using the standard image quality
metrics PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018).

Results. As shown in Table 1 and Figure 3, MORF outperforms the baseline methods both quantitatively
and qualitatively. Figure 3a and Figure 3b show the novel view synthesis results on Playroom and Playroom-
novel. uORF and SRT (Sajjadi et al., 2022a) are able to learn rough object decomposition and position
estimates, but fail to represent the object shapes accurately, resulting in inaccurate rendering from novel
views. The version of MORF without pixel features as conditioning performs second best. Although both
uORF and pixel feature–ablated MORF use object latent conditioning, the latter attains substantially better
reconstructions, suggesting that accurate object segmentations help constrain the optimization of the neural
implicit function. Both MORF and pixelNeRF are able to render novel views reasonably well. We highlight
that pixelNeRF’s reconstructions are blurry both in background regions (such as floor tiles) and on objects
(such as the dumbbell), while MORF’s reconstructions are sharper. Figure 3c shows the reconstructed novel
views on MultiShapeNet dataset. Both uORF and the pixel feature-ablated MORF fail to decompose the
scenes into multiple object slots, resulting in blurry reconstructions of the objects. This demonstrates the
importance of accurate object decomposition in high-quality novel view synthesis. The comparison to the
pixel feature-ablated MORF illustrates the advantage of using pixel features over object latents in capturing
fine-grained details of scenes.
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(a)

(b)

Input view GT novel viewuORF PixelNeRF MORFMORF-nopixSRT

(c)

(d)

Figure 3: Novel view synthesis results on (a) Playroom, (b) Playroom-novel, (c) Playroom-diverse, and (d) Multi-
ShapeNet datasets. The objects in Playroom-novel dataset are not included in the training set. MORF outperforms

the baseline models on both foreground and background reconstruction. MORF is better at reconstructing fine-

grained textures and object geometries than the other models.

4.2 Geometry reconstruction

To evaluate the quality of 3D scene representations, we evaluate both scene segmentations in 3D and extracted
meshes from each model’s learned density field. The segmentations of uORF and MORF are obtained by
first volume-rendering density maps of objects and the background, and then assigning the pixel to the
one with the highest density. To extract the meshes of each object, we first compute the density field by
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(a)

(b)

Input view GTuORF PixelNeRF MORFMORF-nopix

(c)

N/A

N/A

Figure 4: 3D mesh reconstruction results on (a) Playroom, (b) Playroom-novel, and (c) MultiShapeNet datasets.

MORF produces more accurate mesh reconstructions than uORF and pixelNeRF, as well as the ablated model of

MORF trained without pixel features as conditioning. PixelNeRF only outputs a single mesh encompassing both the

foreground objects and the background. We remove the background mesh in pixelNeRF and visualize the foreground

objects only. Mesh reconstruction for SRT is not applicable due to the lack of explicit geometry representation. The

ground-truth meshes for MultiShapeNet are unavailable and therefore shown as N/A.

evaluating the foreground decoder at grid points in the world coordinate system, followed by the marching
cubes algorithm (Lewiner et al., 2003). For a fair comparison, all models are evaluated using the same grid
size of 256.

Metrics. To evaluate the quality of scene segmentations in 3D, we compute the mean Intersection over
Union (mIoU) between the segmentations of a novel view and the ground-truth segmentations. In addition,
we evaluate the quality of the meshes using Chamfer Distance (CD) (Sun et al., 2018). We compute two
types of CDs, object mesh Chamfer Distance (O-CD) and scene mesh Chamfer Distance (S-CD). The O-
CD metric measures the quality of mesh reconstruction for each individual foreground object, whereas the
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Figure 5: 3D static scene segmentation results on (a) Playroom, (b) Playroom-novel, and (c) MultiShapeNet datasets.

The left shows the 2D scene segmentations of the input view predicted by EISEN (Mask2Former for MultiShapeNet),

which are used to conditionally infer 3D object radiance fields. The right shows the scene segmentations for both the

input view and the novel view. Note that both uORF and MORF-nopix collapse on MultiShapeNet, and thus they

cannot generate meaningful object segmentations.

S-CD metric measures the quality of the objects’ layout in 3D. Due to the lack of object decomposition,
pixelNeRF only outputs a single mesh encompassing both the foreground objects and the background. For
a fair comparison of S-CD with MORF, we remove the background meshes by setting the density of the grid
points below a z-value threshold to zero before applying marching cubes. We search for the threshold with
the best S-CD on a validation set, and use the threshold to calculate pixelNeRF’s S-CD.

Results. We show the quantitative results in Table 2. MORF outperforms all methods in terms of mIoU,
O-CD, and S-CD. Figure 4 shows the quality of mesh reconstructions. uORF (Yu et al., 2022) is only able
to recover the coarse geometry of the objects. pixelNeRF (Yu et al., 2020) tends to miss the fine details
of small objects and thin objects, while MORF can learn more fine-grained object geometry given a single
image.
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A. Move object

B. Replace object

C. Replace background

Input image

Edited scene
(input view)

Input image

Input image

Edited scene 
(novel view)

uORF MORF GTMORF-nopix

Edited scene
(input view)

Edited scene 
(novel view)

Edited scene
(input view)

Edited scene 
(novel view)

Figure 6: Qualitative results on three scene scene editing tasks. The synthesis of the edited scene from both input

and novel views are shown in the top and bottom rows respectively. MORF is able to manipulate individual object

radiance fields to generate novel scenes. Both uORF and MORF (without pixel features) are able to perform scene

editing to a limited extent, but their reconstructions are blurry. This comparison shows the advantage of using both

EISEN segmentations and pixel latents for scene editing tasks.

Models Playroom Playroom-novel
mIoUø O-CD ¿ S-CD ¿ mIoUø O-CD ¿ S-CD¿

uORF 59.1 0.324 0.113 58.4 0.324 0.150

pixelNeRF - - 0.133 - - 0.128

MORF-nopix 65.4 0.239 0.096 61.8 0.260 0.122

MORF (ours) 72.7 0.208 0.078 66.4 0.224 0.110

Table 2: Quantitative results on geometry reconstruction

For pixelNeRF (Yu et al., 2020), O-CD is not re-
ported as it lacks object decomposition. Geometry
reconstruction metrics are not reported for SRT, since
SRT does not have explicit geometry representations.
Figure 5 shows the quality of scene segmentations.
Compared to MORF, uORF and the pixel feature-
ablated version produce less accurate scene segmenta-
tions on Playroom and Playroom-novel. Furthermore,
they both collapse in training and, thus, fail to decompose the scene into multiple objects on MultiShapeNet.
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MORF outputs less accurate scene segmentations on MultiShapeNet because the 2D segmentations from the
pretrained Mask2Former model are prone to generalization error.

4.3 Scene editing

Models Move object Replace object Replace background
LPIPS¿ SSIMø PSNRø LPIPS¿ SSIMø PSNRø LPIPS¿ SSIMø PSNRø

uORF 0.381 0.573 20.7 0.384 0.575 20.8 0.371 0.593 20.4

MORF-nopix 0.302 0.706 21.9 0.328 0.701 21.4 0.319 0.700 20.9

MORF (ours) 0.223 0.758 22.7 0.250 0.751 22.1 0.232 0.758 21.7

Table 3: Quantitative comparison on scene editing tasks

We consider three scene editing
tasks: moving objects, replacing
objects, and replacing the back-
ground. For moving and replac-
ing objects, we follow the protocol
of uORF (Yu et al., 2022) and se-
lect the object that has the largest
IoU with the ground-truth masks
of the target object for editing.
pixelNeRF (Yu et al., 2020) is not comparable on scene editing due to the lack of object decomposition.
We report LPIPS, SSIM, and PSNR on the Playroom-edit dataset. Ground-truth masks are only used to
select which object to edit. EISEN segmentation masks from a pretrained model are used in the feedfor-
ward pass of MORF on all the images. We show the results in Table 3 and Figure 6. MORF outperforms
uORF on all metrics across the three editing tasks. MORF trained without pixel features results in blurry
reconstruction on some of the objects.

4.4 Ablation studies

Mask

types

slot

feat.

pixel

feat.

Playroom
LPIPS ¿ SSIMø PSNRø O-CD ¿ S-CD ¿

EISEN 3 7 0.266 0.727 22.8 0.239 0.096

EISEN 7 3 0.170 0.776 24.3 0.198 0.079

EISEN 3 3 0.162 0.781 24.4 0.208 0.080

GT 3 3 0.140 0.791 25.0 0.147 0.036

Table 4: Ablation study results.

MORF’s performance on Playroom drops slightly (ex-
cept for O-CD) when object latents are not used. In
contrast, pixel latents are crucial for MORF to per-
form well on both novel view synthesis and geometry
reconstruction. This implies that although object-
centricity provides a strong optimization constraint
for learning object radiance fields, local pixel features
are still critical for modeling the fine details of object
textures and shapes.

Finally, we compare MORF trained with EISEN segmentation masks with MORF trained with GT masks.
Unsurprisingly, the latter shows better performance in all metrics. Qualitatively, we observe that MORF
occasionally misses small objects or parts, which is likely a direct consequence of EISEN failing to accurately
segment these fine-scale scene elements. This indicates that improving unsupervised 2D segmentation should
lead to further improvement of MORF’s 3D representation learning.

5 Conclusion

In this work, we propose Movable Object Radiance Fields (MORF), which scales unsupervised 3D object-
centric scene representation learning to complex and diverse multi-object scenes. Our key technical innovation
is to allow learning 3D representations by integrating and lifting a 2D object segmentation module. We show
that once high-quality segmentations are obtained through an independent unsupervised module, we can
learn 3D object-centric representations in complex category-agnostic scenes. This innovation addresses the
limitations of the previous methods and allows substantial progress to be made on this di�cult and important
problem.

We demonstrate that MORF enables faithful photometric and geometric reconstruction of scenes with unseen
configurations from a single view, generalizes well to unseen object categories, and supports complex editing
tasks. We believe that our positive results suggest the promise of further scaling unsupervised 3D factorized
representation learning to more complex scenes.
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A Appendix

A.1 Dataset details

The Playroom dataset is generated with ThreeDWorld (Gan et al., 2020) using custom code. The dataset
contains 15,000 training scenes and 600 test scenes. Each scene includes 3 objects randomly sampled from
a set of unique 2,086 object models in 231 object categories. The objects have complex geometry and
textures. Table 5 and Figure 7 show the comparison between the Playroom dataset and the MultiShapeNet-
Easy dataset. We also generate an additional dataset Playroom-diverse containing 30 unique background
environments, 10 times more than the Playroom dataset.

We simulate 2 video frames for each scene, with a randomly selected object invisibly pushed at the first
frame to generate object motion. At each time step, we render 4 views at resolution 128 with random
camera azimuth angles. It is important to note that we only use the video frame pairs for training EISEN.
Once EISEN is trained, only a single static image is required for inference. We only use static images at
a single time step for learning radiance fields. Figure 8 shows examples of the video frame pairs from the
dataset, along with the EISEN segmentations and ground truth segmentation masks.

Playroom

Playroom-diverse

MultiShapeNet - Easy

Figure 7: Qualitative comparison between Playroom and MultiShapeNet.

Dataset scenes objects categories environment
maps

object per
scene views

Playroom 15,000 2,000 231 3 3 4
Playroom-diverse 30,000 2,000 231 30 3 4
MultiShapeNet-Easy 80,000 12,000 3 1 2-4 3

Table 5: Dataset statistics comparison.

A.2 Implementation details

Convolutional backbone encoder. To compute object and pixel latents, we use two separate convo-
lutional encoders to extracts feature pyramids from the input image respectively. We show the encoder
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Frame 1

GT 
segments

Frame 2

EISEN 
segments

Figure 8: Playroom video frames, EISEN segmentation, and ground truth segmentation.

architectures in Table 6 and Table 7. All the encoder weights from initialized from scratch without any
pretraining. All the activation layers are ReLU.

NeRF decoder. We adapt the NeRF architecture from uORF (Yu et al., 2022). We show the architecture
detail in Figure 9. The input to the NeRF network consists of positional embeddings, ray directions, object
latents, and pixel latents. In all experiments, we set the positional embedding frequency to 5. Note that
we do not apply high-frequency encoding to the ray directions. The feature dimension of object and pixel
latents are set to 64 respectively. Following uORF, the background decoder is slightly di�erent from the
foregorund decoders in that it does not have the second last layer and third last layer.

Layer name Input shape Output shape Concatenate

conv1 64◊64◊7 64◊64◊64

conv2 64◊64◊64 32◊32◊64

conv3 32◊32◊64 16◊16◊64

conv4 16◊16◊64 16◊16◊64

Upsample 16◊16◊64 32◊32◊64

conv5 32◊32◊128 32◊32◊64 with conv2
Upsample 32◊32◊64 64◊64◊64

conv6 64◊64◊128 64◊64◊64 with conv1

Table 6: Backbone encoder for computing object latents.

A.3 Experiment details

Training. In each batch, we input one image and render 2 reconstructed images for supervision, one from the
input view and the other from a randomly selected novel view. We render each pixel with 128 samples. For
perceptual loss, we uses the output of the fourth convolutional block in a VGG16 (Simonyan & Zisserman,
2014) pretrained on ImageNet. We use Adam optimizer with an initial learning rate 0.0003. We adopt a
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Layer name Input shape Output shape Concatenate

block1 64◊64◊3 32◊32◊64

block2 32◊32◊64 16◊16◊64

block3 16◊16◊64 8◊8◊128

block4 8◊8◊128 4◊4◊256

Upsample 4◊4◊256 8◊8◊256 with block3
Upsample 8◊8◊384 16◊16◊384 with block3
Upsample 16◊16◊448 32◊32◊448 with block2
Upsample 32◊32◊448 64◊64◊448 with block1
Linear 64◊64◊512 64◊64◊64

Table 7: Backbone encoder for computing pixel latents.

256 RGBRGB

RGB

30

3

64

64

+

256 256 256 256 256 256 256

Figure 9: NeRF decoder network architecture. Input vector are shown in green, full-connected hidden layers are

shown in blue, output vectors are shown in red. The input vector is a concatenation of positional embeddings “(x),

ray direction d, pixel latents p, and object latents s. The number inside each block indicates the dimension of the

vectors. Black arrows indicate layers with ReLU activations, orange arrows indicate layers with no activation, dashed

black arrows indicate layers with sigmoid activation. “+” indicates vector concatenation.

linear learning rate warm-up for the first 1000 iterations. The learning is exponentially decreased by half
for every 200 thousand iterations. We train our model with a batch size of 16 for 500 thousand steps, which
takes about 10 days on 8 NVIDIA A40 GPUs.

Inference Figure 10 shows the inference procedure. MORF takes a single view of a new scene as input and
infers object and background radiance fields in a single forward pass. Given an arbitrary camera pose, a
novel view can be synthesized via compositional rendering.

Spatial sampling for memory e�ciency. Rendering multiple radiance fields for all the objects in a scene
is memory expensive, especially when there are a large number of objects per scene. To improve the memory
e�ciency of the training, we only compute object radiance field at a small subset of world coordinates.
Specifically, we only compute object radiance field at world coordinates whose projected 2D coordinates
onto the input view resides in the segmentation mask of the corresponding object. Otherwise, we set the
density as zero. This significantly reduces for the number of forward passes through the NeRF decoder
networks. We add padding around the object segments to account for potential incomplete segmentation
due to occlusion.

Metric details. We use PSNR and SSIM from the Pytorch Image Quality (PIQ) package as in uORF.
LPIPS is computed using the code provided by the LPIPS authors Zhang et al. (2018) after normalizing the
pixel values to [-1, 1]. We compute Scene Chamfer Distance (S-CD) on the foreground object meshes in a
scene. Points are uniformly sampled on the mesh surface to create a dense point cloud; then N points are
randomly sampled from the point cloud, where N is 1,024 per object mesh and 3,072 per scene mesh. We
normalize the point cloud coordinates into a unit cube before CD calculation.

20



Published in Transactions on Machine Learning Research (03/2024)

E
IS

E
N

Background
NeRF

Object
NeRFs

Obj. 2 Image

Obj. 3 Image

Scene NeRF

Novel
view

Obj. 1 Image

Background

B
G

 
M

LP
FG

 M
LP

BG
latent

Object 
latent

Pixel 
latent

Compose

(a) 2D decomposition (b) Lifting to 3D (c) Compositional rendering

Pixel 
latent

Figure 10: Model inference. MORF takes as input a single image of a scene with potentially diverse objects, and

infers 3D object and background radiance fields. (a) MORF infers a set of object masks using a pre-trained segmenter.

Masked images are used to generate object radiance fields. (b) MORF generates object radiance fields conditioned

on the latent object and pixel codes. (c) MORF reconstructs the novel view via compositional rendering.

Models Playroom Playroom-novel
ARIø mIoU ø ARI ø mIoU ø

SlotAttn 7.7 22.8 7.5 22.5

Unsup. SAVi 2.0 14.6 2.0 14.8

DOM 73.6 57.2 71.9 56.4

EISEN 93.3 87.3 92.2 87.4

Table 8: Quantitative comparison of scene segmentations in 2D.

A.4 Static scene segmentation in 2D

We evaluate the segmentation quality of EISEN and compare it to other unsupervised segmentation methods:
Slot attention (Locatello et al., 2020), unsupervised SAVi (Kipf et al., 2021), and DOM (Bao et al., 2022).
To evaluate segmentation quality, we compute both the Adjusted Rand Index (ARI) and mean Intersection
over Union (mIoU) metrics, following previous works in unsupervised 2D segmentations. As shown in Table
8 and Figure 11, Slot attention and unsupervised SAVi remain struggling with segmenting the Playroom
objects. DOM uses optical flow to self-supervise the segmentation masks. However, it underperforms EISEN
and outputs incomplete object segmentations, especially for objects with complex geometry details. The
output segmentations of the baseline methods are not accurate enough to be used for training downstream
object radiance fields.

A.5 Additional qualitative results

More novel view synthesis results Figure 12 shows additional view synthesis results on Playroom
dataset. Figure 13 shows additional results on Playroom-diverse dataset. Figure 14 shows additional results
on MultiShapeNet dataset. For each image, the top row shows the reconstructions from the input view, the
bottle row shows the reconstructions from a randomly selected novel view.

Scenes with di�erent numbers of objects We create additional testing scenes with a random number
of objects between 1 and 6. We show MORF is able to generalize well to test scenes with a di�erent number
of objects. Figure 15 shows qualitative results of the challenging scenarios with 4 to 6 objects in a scene.
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Input image SlotAttn SAVi (uncond.) DOM EISEN GT

Figure 11: Qualitative results on static scene segmentation in 2D.

Scenes with object occlusion The training and validation sets contain examples with partial object
occlusion since we are rotating the camera with random azimuth angles. We show qualitative examples of
partial object occlusion in the first two rows of Figure 16. To further test the ability of MORF in handling
scenes with more object occlusion, we create additional test scenes with objects placed closer to each other, as
shown in the last two rows of Figure 16. MORF is generally capable of handing partial object occlusion and
performing approximate amodal completion of the occluded objects. The quality of geometric reconstruction
slightly deteriorates as compared to the unoccluded objects in the input view.

Scenes with object stacking Playroom dataset simulates an infant playing environment with toys placed
on the floor. In real-world scenarios, objects are often stacked on top of one another. We create additional
scenes with three types of stacking configuration: (a) a cup on top of a coaster, (b) a food item on the
plate, and (c) an object on top of a microwave. We generate 1000 scenes for each stacking configuration
and fine-tune a MORF model on the additional scenes. Figure 17 shows the qualitative results of novel view
synthesis on held-out scenes.
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Models LPIPS¿ SSIMø PSNRø
uORF 0.336 0.577 19.8
MORF-nopix 0.323 0.580 19.9
MORF (ours) 0.064 0.903 31.0

Table 9: Quantitative comparison on real-world scenes

Generalization to real world scenes We go beyond the synthetic data to test the pretrained model’s
generalization on real images. Given a few real photos taken using a cellphone, we first use an unsupervis-
edly pretrained EISEN to compute the segmentations, followed by novel views reconstruction using MORF
pretrained on Playroom. We show the reconstructions and 3D segmentations in Figure 18. Our method is
able to predict plausible geometry and segmentations for all the objects from a novel view.

Training on real-world scenes Besides training on synthetic data, we train on a real-world dataset
including scenes with four plant pots or vases on a tabletop decorated with tablecloths. We gathered 9
plant pots, 8 vases, and 6 tablecloths and captured 745 scenes for training and 140 for evaluation, each
with 3 images from di�erent poses. We cannot train EISEN on this dataset since there is no motion. We
thus replace EISEN with a Mask2Former (Cheng et al., 2021) model pretrained on the COCO dataset to
compute the 2D segmentations of the dataset. Table 9 and Figure 19 show novel view synthesis results on the
testing real-world scenes. MORF synthesizes the novel view accurately, whereas uORF fails to decompose
the scenes, resulting in inaccurate 3D object radiance fields.
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uORF PixelNeRF SRT MORF-nopix MORFInput view Novel view (GT)

Figure 12: Additional novel view synthesis results on Playroom
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Input view uORF SRT MORF-nopix MORFPixelNeRF Novel view (GT)

Figure 13: Additional novel view synthesis results on Playroom-diverse
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uORF PixelNeRF SRT MORF-nopix MORFInput view Novel view (GT)

Figure 14: Additional novel view synthesis results on Playroom
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Figure 15: Novel view synthesis results of testing scenes with arbitrary objects
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Figure 16: Novel view synthesis results of scenes with object occlusion
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Figure 17: Novel view synthesis results of scenes with stacking configuration
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Figure 18: Novel view synthesis and 3D scene segmentations on real images taken using a cellphone.
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Input view uORF MORF-nopix MORF Novel view (GT)

Figure 19: Novel view synthesis results on real-world scenes
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