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Abstract—Recent advances in vision-language models
(VLMs) have led to improved performance on tasks such as
visual question answering and image captioning. Consequently,
these models are now well-positioned to reason about the
physical world, particularly within domains such as robotic
manipulation. However, current VLMs are limited in their
understanding of the physical concepts (e.g., material, fragility)
of common objects, which restricts their usefulness for robotic
manipulation tasks that involve interaction and physical reason-
ing about such objects. To address this limitation, we propose
PHYSOBJECTS, an object-centric dataset of 39.6K crowd-
sourced and 417K automated physical concept annotations of
common household objects. We demonstrate that fine-tuning a
VLM on PHYSOBJECTS improves its understanding of physical
object concepts, including generalization to held-out concepts,
by capturing human priors of these concepts from visual
appearance. We incorporate this physically grounded VLM in
an interactive framework with a large language model-based
robotic planner, and show improved planning performance on
tasks that require reasoning about physical object concepts,
compared to baselines that do not leverage physically grounded
VLMs. We additionally illustrate the benefits of our physically
grounded VLM on a real robot, where it improves task success
rates. We release our dataset and provide further details and
visualizations of our results at

I. INTRODUCTION

Large language models (LLMs) have shown great promise
for converting language instructions into task plans for em-
bodied agents [1], [2]. The fundamental challenge in apply-
ing LLMs for this is grounding them to the physical world,
through sensory input such as vision. Prior work has made
progress towards grounding LLMs by using vision-language
models (VLMs) to indicate the presence of objects in a
scene, or to provide feedback about occurrences in a scene
[3]-[7]. However, vision could be used to further improve
grounding by extracting more detailed scene information.
For robotic manipulation, understanding physical concepts of
objects, such as their material composition or their fragility,
would help planners identify relevant objects to interact with,
and affordances based on physical or safety constraints. For
example, if a human wants a robot to get a cup of water,
the robot should be able to determine if a cup already has
water or something else in it. Also, the robot should handle
the cup with greater caution if it is more fragile.

How can we use vision to reason about physical object
concepts? Prior work has studied this problem using more
traditional vision techniques, such as self-supervised learning
on object interaction data. However, object interaction data
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can be challenging to collect when scaling up beyond a
small set of objects in well-defined settings. While precise
estimation of physical properties may sometimes be impos-
sible without interaction data, humans can use their visual
perception to reason at a high level about physical concepts
without object interactions. For example, humans can reason
that a glass cup is more fragile than a plastic bottle, and
that it would be easier to use a bowl to hold water than a
shallow plate. This reasoning is often based on prior semantic
knowledge of visually similar objects, and can be done from
static visual appearance alone.

Similarly, VLMs pre-trained using large-scale data have
demonstrated broad visual reasoning abilities and generaliza-
tion [8]—-[13], and thus have the potential to physically reason
about objects in a similar fashion as humans. Therefore, we
propose to leverage VLMs as a scalable way of providing
the kind of high-level physical reasoning that humans use to
interact with the world, which can benefit a robotic planner,
without the need for interaction data. The general and flexible
nature of VLMs also removes the need to use separate task-
specific vision models for physical reasoning. VLMs have
already been commonly incorporated into robotic planning
systems [3]-[7], [13], making them a natural solution for
endowing physical reasoning into robotic planning.

However, while modern VLMs have improved signifi-
cantly on tasks such as visual question answering (VQA),
and there has been evidence of their potential for object-
centric physical reasoning [14], we show in this work that
their out-of-the-box performance for this still leaves much
to be desired. Although VLMs have been trained on broad
internet-scale data, this data does not contain many ex-
amples of object-centric physical reasoning. This motivates
incorporating a greater variety and amount of such data
when training VLMs. Unfortunately, prior visual datasets
for physical reasoning are not well-suited for understanding
common real-world objects, which is desirable for robotics.
To address this, we propose PHYSOBIJECTS, an object-
centric dataset with human physical concept annotations of
common household objects. Our annotations include categor-
ical labels (e.g., object X is made of plastic) and preference
pairs (e.g., object X is heavier than object Y).

Our main contributions are PHYSOBIJECTS, a dataset of
39.6K crowd-sourced and 417K automated physical concept
annotations of real household objects, and demonstrating that
using it to fine-tune a VLM significantly improves physical
reasoning. We show that our physically grounded VLM
achieves improved test accuracy on our dataset, including
on held-out physical concepts. Furthermore, to illustrate
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Fig. 1: (a) We collect physical concept annotations of common household objects for fine-tuning VLMs. (b) We use the
fine-tuned VLM in an LLM-based robotic planning framework, where the LLM queries the VLM about physical concepts
of objects in the scene, before producing a plan. (c) We evaluate LLM-generated plans on a real Franka Emika Panda robot.

the utility of improved physical reasoning for robotics, we
incorporate our physically grounded VLM with an LLM-
based robotic planner, where the LLM queries the VLM
about physical concepts of objects in its scene. Our system
achieves improved planning performance on tasks that re-
quire physical reasoning, compared to baselines that do not
use physically grounded VLMs. Finally, we demonstrate the
benefits of our physically grounded VLM for planning with
a real robot, where its usage improves task success rates.

II. RELATED WORK

We review prior work on physical reasoning, object at-
tribute datasets, VLMs, using LLMs for robotic planning,
and using LLMs and VLMs together in an interactive system.
Physical Reasoning. Prior works have studied estimating
physical object properties from vision by learning from in-
teraction data [15]-[17]. Other works focus on learning rep-
resentations that capture physical concepts, rather than direct
estimation [18], [19]. Unlike these works, we use pre-trained
VLMs and human annotations as a more scalable alternative
to learning from interaction. Mind’s Eye investigates physical
reasoning using LLMs [20], but relies on grounding using a
simulator, which would be difficult to scale to the real world.
VEC investigates physical reasoning with LLMs and VLMs
[21], but reasons from text descriptions, while we reason
from real images. OpenScene uses CLIP [22] to identify
objects in scenes using properties such as material and
fragility, but these results are only qualitative in nature [14].
In our work, we propose PHYSOBJECTS to better quantify
and improve object-centric physical reasoning, and leverage
this reasoning for robotic manipulation.

Object Attribute Datasets. There have been prior visual
object attribute datasets with concepts included in PHYSOB-
JECTS, such as material and transparency [23]-[26]. How-
ever, they focus more on visual attributes such as color,
while we focus on physical concepts. Physics 101 provides
a dataset of object interaction videos and property measure-
ments [16], but PHYSOBJECTS includes a greater variety of
objects that are more relevant for household robotics.

Vision-Language Models. VLMs have made large improve-
ments on multi-modal tasks such as VQA, by leveraging

internet-scale image and text data [8]-[10], [12]. In our
experiments, we use InstructBLIP [11] as our base VLM
for fine-tuning and comparison, as it was the state-of-the-art
open-source VLM at the time of our experiments. PaLM-E
has shown strong performance on general visual-language
tasks and robotic planning [13], but there has not been
focused evaluation of it for physical reasoning. SuccessVQA
fine-tunes VLMs on human data for success detection by
treating it as a VQA task, and achieves better generalization
than models designed specifically for success detection [27].
We similarly fine-tune VLMs on human data for physical
reasoning by casting it as a VQA problem, to benefit from
the generalization abilities and versatility of VLMs.

LLMs for Robotic Planning. Many recent works have
used LLMs as robotic planners. SayCan uses visual value
functions to provide affordances for grounding [2], but does
not benefit from VLMs. Follow-up works have used VLMs
for grounding LLM planners through object detection, or
providing feedback about what has happened (e.g., success
detection) [3]-[7]. Our work focuses on expanding the use of
VLMs for grounding through physical reasoning, to let LLM-
based planners perform tasks that require a deeper physical
understanding of the world.

LLM/VLM Interaction. Our planning evaluation falls in
the framework of Socratic Models [28], where large models
interact with each other through text to perform tasks such
as VQA [29], [30] and image captioning [31]. Most similar
to our evaluation is Matcha, where an LLM receives a task
instruction, obtains object-centric feedback from its environ-
ment, and uses this for task planning [32]. However, this
work does not focus on visual feedback, as their evaluation
is in a simulated environment where physical concepts are
not visually observable. In contrast, we focus on physical
reasoning from vision in real-world scenes.

III. PHYSOBIECTS DATASET

To benchmark and improve VLMs for object-centric phys-
ical reasoning, we propose PHYSOBIECTS, a dataset of
39.6K crowd-sourced and 417K automated physical concept
annotations for images of real household objects.



Image Source. We use the publicly released challenge
version of the EgoObjects dataset [33] as our image source.
To our knowledge, this was the largest object-centric dataset
of real images that was publicly released when constructing
PHYSOBIJECTS. The dataset consists of frames from egocen-
tric videos in realistic household settings, which makes it par-
ticularly relevant for household robotics. It includes 117,424
images, 225,466 object bounding boxes with corresponding
category labels from 277 object categories, and 4,203 object
instance IDs. PHYSOBJECTS consists of physical concept
annotations for a large subset of this image data.

We construct random training, validation, and test sets
based on object instance IDs. We split the dataset per object
category to ensure each object category is represented in
each set when possible. Our training, validation, and test sets
consist of 73.0%, 14.8%, and 12.2% of objects, respectively.

Concept Description

Mass how heavy an object is

Fragility how easily an object can be broken/damaged
Deformability how easily an object can change shape without breaking
Material what an object is primarily made of

Transparency how much can be seen through an object

Contents what is inside a container

Can Contain Liquid if a container can be used to easily carry liquid

Is Sealed if a container will not spill if rotated

Density (held-out)
Liquid Capacity (held-out)

how much mass per unit of volume of an object
how much liquid a container can contain

TABLE I: Our physical concepts and brief descriptions

Physical Concepts. We collect annotations for eight main
physical concepts and two additional concepts reserved for
held-out evaluation. We select concepts based on prior work
and what we believe to be useful for robotic manipulation,
but do not consider all such concepts. For example, we do not
include friction because this can be challenging to estimate
without interaction, and we do not include volume because
this requires geometric reasoning, which we do not focus on.

Of our main concepts, three are continuous-valued and
applicable to all objects: mass, fragility, and deformability.
Two are also applicable to all objects, but are categorical:
material and transparency. Transparency could be consid-
ered continuous, but we use discrete values of transparent,
translucent, and opaque. The other three are categorical and
applicable only to container objects: contents, can contain
liquid, and is sealed. We define which object categories are
containers, resulting in 956 container object instances.

Our two held-out concepts are density, which is continuous
and applicable to all objects, and liquid capacity, which is
continuous and applicable only to containers. We only collect
test data for these held-out concepts. We list all concepts and
their brief descriptions in .

For categorical concepts, we define a set of labels for each
concept. Annotations consist of a label specified for a given
object and concept. For the concepts material and contents,
when crowd-sourcing, we allow for open-ended labels if
none of the pre-defined labels are applicable.

'We publicly release our dataset on our . Because the EgoObjects
license does not permit incorporating it into another dataset, we release our
annotations separately from the image data.

For continuous concepts, annotations are preference pairs,

where given two objects, an annotation indicates that either
one object has a higher level of a concept, the objects have
roughly equal levels, or the relationship is unclear. We use
preferences because it is generally more intuitive for humans
to provide comparisons than continuous values [34], [35].
This is especially true when annotating static images with
physical concepts, where it is difficult to specify precise
grounded values. For example, it would be difficult to specify
the deformability of a sponge as a value out of 10. Compar-
isons have also been used to evaluate LLMs and VLMs for
physical reasoning in prior work [21]. Therefore, the kind of
grounding studied in PHYSOBJECTS for continuous concepts
is only relational in nature.
Automatic Annotations. Before crowd-sourcing, we first
attempt to automate as many annotations as possible, so that
crowd-workers only annotate examples that cannot be easily
automated. For categorical concepts, we assign concept val-
ues to some of the defined object categories in EgoObjects,
such that all objects in a category are labeled with that value.
For continuous concepts, we define high and low tiers for
each concept, such that all objects from a high tier category
have a higher level of that concept than all objects from a
low tier category. Then, we automate preference annotations
for all object pairs between the two tiers.

Which side is more fragile?

House/Car Key

I3 TN T T T

Water glass

Fig. 2: Annotation UI for fragility. Here, the label is right,
i.e., the water glass is more fragile than the house/car key.

Crowd-Sourcing Annotations. We obtain additional an-
notations via crowd-sourcing, using 573 crowd-workers on
the Prolific platform. Crowd-workers use a web-based user
interface (example for fragility shown in ) where they
are presented with object bounding boxes in the context
of their overall image, and provide annotations using on-
screen buttons or their keyboard. For categorical concepts,
we collect annotations for the majority of objects that
were not automatically annotated. For continuous concepts,
because it is impractical to annotate every pair of objects
in the dataset, we randomly sample pairs to annotate. We
enforce that 20% of the sampled pairs are between objects
of the same category, to prioritize understanding differences
between objects of the same category. We collect annotations
from three crowd-workers for each example. To promote
high-quality data, we include attention checks as 10% of
provided examples, which have known labels, and only keep
data from annotators that achieve 80% accuracy on these.



Most Common  Text Only InstructBLIP  Single Concept FT (ours) PG-InstructBLIP (ours)
Mass 42.2 73.3 62.2 80.0 80.0
Fragility 64.9 64.9 78.4 91.2 94.6
Deformability 46.5 62.8 67.4 95.3 93.0
Material 37.1 73.9 67.1 83.7 84.6
Transparency 77.6 82.2 85.8 89.4 90.1
Contents 39.5 50.9 35.1 81.6 83.3
Can Contain Liquid 56.3 92.2 59.4 84.4 87.5
Is Sealed 80.6 80.6 74.2 80.6 87.1
Average 55.6 72.6 66.2 85.8 87.5

TABLE II: Test accuracy for main concepts on crowd-sourced PHYSOBJECTS

Dataset Statistics. We crowd-source 39.6K annotations for
13.2K examples, and automate annotations for 417K addi-
tional examples. For crowd-sourced annotations, 93.7% of
examples have at least 2/3 annotator label agreement, and
58.1% have unanimous agreement.

IV. PHYSICALLY GROUNDING VISION-LANGUAGE
MODELS

Fine-Tuning VLMs. We work with the FlanT5-XXL [36]
version of InstructBLIP [11]. InstructBLIP takes as input
a single RGB image and text prompt, and predicts text as
output. In our setup, we choose the model inputs to be a
single bounding box of an object, and a question text prompt
corresponding to each concept.

Learning From Preferences. Learning for categorical con-
cepts amounts to maximum likelihood of annotated labels.
However, it is not as straightforward to train a VLM on pref-
erences for continuous concepts, because preference learning
requires a continuous score. To do this with VLMs, which
naturally have discrete text outputs, we prompt the VLM with
questions that can be answered with yes or no for continuous
concepts. Then, we extract the following score function:

o.e) _ Pves 0.0

p(no | o, c)
where o is an object bounding box image, c is a concept, and
p(+|o, ¢) is the likelihood under the VLM of text, conditioned
on the object image and concept. We use this as our score
function because it can take any non-negative value, and
log s(0,¢) has the intuitive interpretation as the difference
of log-likelihoods between yes and no.” We then use the
Bradley-Terry model [37] to estimate the probability of a
human indicating that object o; has a higher value than object
09 for concept c as:

s(o1,¢)
s(o1,¢) + s(o2,¢)’

We assume a dataset D of preference annotations
(01,02,¢,7), where y € {[1,0], 0, 1],[0.5,0.5]} corresponds

P(ogy >0 |c) =

2We experimented with other choices of score functions, and found that
while all performed similarly with respect to test accuracy on PHYSOB-
JECTS, we found this score function to produce the most interpretable range
of likelihoods for different responses, which we hypothesize to be beneficial
for downstream planning.

to if o is preferred, oy is preferred, or if they are indicated
to be equal. We then fine-tune the VLM by minimizing the
following objective:

L(D) = —E(o,,00,c,y)~p Y1 l0g P(01 > 02 | ¢)
+ yalog(l — P(o1 > 02 | ©)].

In practice, this is the binary cross-entropy objective where
the logits for each object image o is the difference of log-
likelihoods log s(o, ¢) = log p(yes | 0, ¢) — logp(no | o, ¢).

V. EXPERIMENTAL RESULTS

We evaluate VLMs for physical reasoning using 1) test
accuracy on PHYSOBIJECTS, 2) planning accuracy on real
scenes for physical reasoning tasks, and 3) task success rate
on a real robot.

A. Dataset Evaluation

We refer to InstructBLIP fine-tuned on all main concepts
in PHYSOBIJECTS as Physically Grounded InstructBLIP, or
PG-InstructBLIP. -~ We focus our evaluation on crowd-
sourced examples, because as described in , these
were collected with the intent for their labels to not be
discernible from object category information alone, and thus
they are generally more challenging. We report test accuracy
on these examples in . Our baselines include Most
Common, where the most common label in the training data
is predicted, Text Only, where an LLM makes predictions
using in-context examples from PHYSOBIJECTS, but using
object category labels instead of images, and InstructBLIP.
We also compare to versions of InstructBLIP fine-tuned on
single concept data. We find that PG-InstructBLIP outper-
forms InstructBLIP on all concepts, with the largest improve-
ment on contents, which InstructBLIP has the most difficulty
with. We also find that PG-InstructBLIP performs slightly
better than the single concept models, suggesting possible
positive transfer from using a single general-purpose model
compared to separate task-specific models, although we ac-
knowledge the improvement here is not extremely significant.
PG-InstructBLIP also generally outperforms Most Common
and Text Only, suggesting that our evaluation benefits from
reasoning beyond dataset statistics, and from using vision.

3We release the model weights for PG-InstructBLIP on our



Instruct- PG-InstructBLIP
BLIP (ours)
Density 54.2 70.3
Liquid Capacity 65.4 73.0
Average 59.8 71.7

TABLE III: Test accuracy for held-out concepts on
crowd-sourced PHYSOBJECTS

Generalization Results. We additionally evaluate both In-
structBLIP and PG-InstructBLIP on test data for our held-
out concepts, which we report in . We find that
PG-InstructBLIP improves upon InstructBLIP by 11.9%,
despite having never seen these evaluated concepts nor object
instances during fine-tuning. We believe this suggests that
fine-tuning VLMs can offer possible generalization benefits
to concepts that are related to those seen during fine-tuning.

Instruct- PG-InstructBLIP

BLIP (ours)
Mass 55.6 82.2
Fragility 70.3 83.8
Deformability 76.7 88.4
Material 67.7 834
Transparency 81.5 83.8
Contents 325 81.6
Can Contain Liquid 56.3 89.1
Is Sealed 71.0 80.6
Average 64.0 84.1

TABLE IV: Test accuracy for main concepts with
paraphrased prompts

In , we report results for main concepts on unseen
paraphrased question prompts. We find that PG-InstructBLIP
still outperforms InstructBLIP, with limited degradation from
the original prompts, suggesting robustness to question vari-
ety from using a large pre-trained VLM.

9. PhysObjects Scaling Dataset Scaling. In ,
we illustrate how average

>\85* performance scales with
& g0 dataset size, by fine-tuning
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__________ tively, but the models still
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only 10% of our dataset,
suggesting that the phys-
ical reasoning of VLMs
can be improved with rel-
atively small amounts of
annotated data.

% Training Data

== InstructBLIP
PG-InstructBLIP (ours)

Fig. 3: Performance scaling
with dataset size

Additional Results. We include additional results in our Ap-
pendix (found on our ). These include showing that
PG-InstructBLIP has limited degradation on general VQA
benchmarks compared to InstructBLIP, suggesting that ex-
isting systems using VLMs can benefit from PHYSOBJECTS
for physical reasoning, without sacrificing other reasoning

abilities. We also include results using different question
prompts, using a smaller version of InstructBLIP, evaluating
on automatically annotated data, transfer to held-out con-
cepts, and ablations on our fine-tuning process.

B. Real Scene Planning Evaluation

Next, we evaluate the efficacy of PG-InstructBLIP for
robotic planning on unseen images of real scenes. We provide
an example scene in . We evaluate on tasks with
language instructions, and assume a library of primitive
robotic operations with language descriptions.

Planning  Framework.
The LLM used in our
planning framework is

GPT-4 [38]. It is first
given object detections
in the scene, a list of

primitives, and the task
instruction, and then asks
a VLM questions about
objects in the scene. There
are no constraints on the
questions. Afterwards, the
LLM either indicates the task is not possible, or produces a
plan consisting of primitives to execute.

Fig. 4: Example scene in our
planning evaluation

Task Categor No Instruct- PG-InstructBLIP
ask Lategory VLM BLIP (ours)
Single Concept 36.8 68.4 84.1
Multi-Concept 27.8 27.8 944
Common Knowledge 35.7 78.6 85.7
Overall 333 56.9 88.2

TABLE V: Task plan accuracy on 51 real scenarios

Results. We report task planning accuracy using Instruct-
BLIP and PG-InstructBLIP in . We also compare to
a planner that does not use VLM interaction for grounding.
We evaluate on 51 task scenarios across 8 scenes, using
a non-author human to evaluate task plans. We divide our
task scenarios into three categories. Single Concept requires
identifying objects using one physical concept, e.g., finding
the heaviest object. Multi-Concept requires reasoning about
multiple physical concepts, e.g., asking for a metal container
that can hold water. This may include concepts outside
of PHYSOBJECTS. Common Knowledge requires additional
reasoning about common knowledge of objects, e.g., un-
derstanding the label of a container. While our tasks focus
on physical concepts in PHYSOBJECTS, the LLM can ask
questions about other concepts that may also be useful,
particularly for Common Knowledge tasks.

PG-InstructBLIP outperforms InstructBLIP on all task
categories, especially Multi-Concept. It does slightly better
on Common Knowledge, suggesting that it can reason about
non-PHYSOBJECTS concepts at a similar level as Instruct-
BLIP. Using no VLM performs substantially worse than
using VLM interaction, indicating that our tasks require
additional grounding beyond object detection. We provide
further details of results on our



C. Real Robot Evaluation

Lastly, we evaluate plans on real scenes using a Franka
Emika Panda robot. We use a similar planner as in the
previous section, but with different prompts and primitives.
We assume a library of primitives for pick-and-place tasks.
We evaluate on two scenes, with five tasks per scene, which
we provide in . We report success rates using
InstructBLIP and PG-InstructBLIP in . We ensure
the primitives execute successfully, so our success rates only
reflect plan quality.

Scene Image Task Instructions

1) Move all objects that are not
plastic to the side.

2) Find a container that has met-
als. Move all metal objects
into that container.

3) Move all containers that can
be used to carry water to the
side.

4) Put the two objects with the
least mass into the least de-
formable container.

5) Move the most fragile object
to the side.

1) Put all containers that can
hold water to the side.

2) Put all objects that are not
plastic to the side.

3) Put all objects that are
translucent to the side.

4) Put the three heaviest objects
to the side.

5) Put a plastic object that is not
a container into a plastic con-
tainer. Choose the container
that you are most certain is
plastic.

TABLE VI: Scene images and task instructions for our real
robot evaluation

We find that using PG-InstructBLIP leads to successful
robot executions more often than InstructBLIP. For example,
when asked “Is this object not plastic?” about the ceramic
bowl in , InstructBLIP incorrectly assigns a likeli-
hood of 0.89 to yes, while PG-InstructBLIP only assigns
0.18. However, when asked “Is this object translucent?”
about the glass jar in , both InstructBLIP and PG-
InstructBLIP incorrectly assign likelihoods of 0.95 and 0.91
to yes, respectively. We note that while these questions relate
to physical concepts in PHYSOBJECTS, neither are formatted
like the training questions for PG-InstructBLIP. For example,
the training prompt for fransparency was “Is this object
transparent, translucent, or opaque?”’. This suggests that
despite using a large pre-trained VLM, PG-InstructBLIP may
sometimes still fail due to out-of-distribution questions. We
provide more results and visualizations on our

Instruct- PG-InstructBLIP
BLIP (ours)
Scene 1 2/5 5/5
Scene 2 2/5 4/5
Overall 4/10 9/10

TABLE VII: Success rates for real robot evaluation

(a) Ceramic bowl

(b) Glass jar
Fig. 5: Objects from our real robot evaluation
VI. DISCUSSION

Summary. In this work, we propose PHYSOBIJECTS, the
first large-scale dataset of physical concept annotations of
real household object images, and demonstrate that fine-
tuning a VLM on it significantly improves its physical
reasoning abilities, including on held-out physical concepts.
We find that using the fine-tuned VLM for real-world robotic
planning improves performance on tasks that require physical
reasoning. We believe our work makes progress toward
expanding the applicability of VLMs for robotics.
Limitations and Future Work. While we show PHYSOB-
JECTS can improve the physical reasoning of a VLM, it
still makes errors relative to human judgment. Also, while
our proposed methodology for continuous concepts improves
relational grounding, which we show can be useful for
robotic planning, the model outputs are not grounded in
real physical quantities, which would be needed for some
applications, e.g., identifying if an object is too heavy to be
picked up. Future work can investigate incorporating data
with real physical measurements to improve grounding.

While we believe the physical concepts in this work to
have broad relevance for robotics, future work can expand on
these for greater downstream applications. This could include
expanding beyond physical reasoning, such as geometric
reasoning (e.g., whether an object can fit inside a container),
or social reasoning (e.g., what is acceptable to move off a
table for cleaning). We believe our dataset is a first step
towards this direction of using VLMs for more sophisticated
reasoning in robotics.
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