Whodunnit? Inferring what happened from multimodal evidence
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Abstract

Humans are remarkably adept at inferring the causes of events
in their environment; doing so often requires incorporating in-
formation from multiple sensory modalities. For instance, if a
car slows down in front of us, inferences about why they did
so are rapidly revised if we also hear sirens in the distance.
Here, we investigate the ability to reconstruct others’ actions
and events from the past by integrating multimodal informa-
tion. Participants were asked to infer which of two agents per-
formed an action in a household setting given either visual evi-
dence, auditory evidence, or both. We develop a computational
model that makes inferences by generating multimodal simu-
lations, and also evaluate our task on a large language model
(GPT-4) and a large multimodal model (GPT-4V). We find that
humans are relatively accurate overall and perform best when
given multimodal evidence. GPT-4 and GPT-4V performance
comes close overall, but is very weakly correlated with par-
ticipants across individual trials. Meanwhile, the simulation
model captures the pattern of human responses well. Multi-
modal event reconstruction represents a challenge for current
Al systems, and frameworks that draw on the cognitive pro-
cesses underlying people’s ability to reconstruct events offer a
promising avenue forward.

Keywords: causal inference; mental simulation; multimodal
integration; language models; multimodal models.

Introduction

In Sir Arthur Conan Doyle’s Sherlock Holmes story, “The
Adventure of Silver Blaze”, Sherlock is presented with the
case of a murder in the Dartmoor horse stables (Doyle, 1894).
He ultimately identifies the culprit as somebody close to the
family based on the fact that the dog who slept in the stables
did not bark during the murder (“the curious incident of the
dog in the night-time”). Like Sherlock, we often make sense
of the world around us by looking at information from mul-
tiple sense modalities. Imagine seeing crumbs in the hallway
outside your roommate’s bedroom; you might at first suspect
that they had taken some food into their room. However, if
this were accompanied by the sound of their dog chewing
on the other side of the door, the most likely cause of the
crumbs in the hallway changes suddenly. People have a re-
markable ability to draw on evidence from different senses
to make causal inferences about behaviors and events from
the past. The advent of large language models (LLMs) and
large multimodal models (LMMs) raises exciting questions
about the potential of Al systems for multisensory reasoning
as well. While these systems have shown impressive capac-
ities for instruction following and knowledge retrieval (e.g.

Bitton et al., 2023; Li et al., 2023; Z. Yang et al., 2023), lit-
tle work has studied whether they possess deep causal under-
standing of their inputs. In this paper, we study how people
integrate visual and auditory information to infer others’ ac-
tions and events, and benchmark this ability in a state-of-the-
art LLM (GPT-4) and LMM (GPT-4V). We compare human
and large model performance to a Bayesian model that relies
on multimodal simulations to reconstruct past events.

Multimodal inference in humans

We first review findings related to people’s ability to under-
stand actions and reconstruct events from visual evidence,
then highlight more recent results with multimodal evidence.

Action understanding and event reconstruction How
people make sense of others’ actions has long been a cen-
tral question in psychology (Heider, 1958; Ross & Nisbett,
1991). Our theory of mind (ToM), the ability to interpret oth-
ers’ behavior as resulting from mental states such as beliefs,
goals, and desires (Dennett, 1989; Gopnik & Meltzoff, 1997;
Premack & Woodruff, 1978; Wellman, 2014), lies at the heart
of everyday action understanding (Malle, 2004; Woodward,
1998). Prior work shows that people can work backwards
from observed actions to hidden mental states by modeling
others as rational planners (Baker et al., 2009, 2017; Jara-
Ettinger et al., 2016, 2020).

However, these results typically rely on agents’ present ac-
tions as evidence for their underlying goals or beliefs. Mak-
ing Sherlock-style inferences about who, why, or how some-
one did something in the past using only clues they left be-
hind requires an additional understanding of how behavior
leaves detectable traces in the environment. Adults and chil-
dren as young as 12 months old make inferences about agents
from the appearance of the environments they were in or ob-
jects they interacted with (Gosling et al., 2002; Jacobs et al.,
2021; Jara-Ettinger & Schachner, 2024; Lopez-Brau et al.,
2022; Newman et al., 2010; Pelz et al., 2020). This ability to
reconstruct events after the fact from “behavioral residues”,
combined with ToM, enables people to draw inferences about
actions and their actors even without seeing what originally
happened (Lopez-Brau et al., 2022).

Integrating multiple senses The ability to reconstruct
events from visual clues speaks to the richness of human rea-
soning about the behavior of those around us. One limitation
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Figure 1: Experiment interface. A sample trial in which participants are presented with visual and auditory evidence. Note
that text was never shown for the auditory evidence; an audio clip played out loud instead. Participants first saw the initial
scene, clicked a button to reveal the evidence, and then responded to the inference question. Depending on the condition, the
visual or auditory evidence was occluded. For GPT-4, the prompt contained scene graph representations of the scenes as text

input, instead of the images.

of existing work is capturing the complexity of such infer-
ences from more than merely visual evidence. Integrating
information from multiple senses allows people to achieve
a more complete causal understanding of their surroundings
(Jin et al., 2024). Sometimes, like Sherlock’s adventures
show, multimodal reasoning is even necessary. However, this
poses a challenge in its own right: how do people extract and
combine relevant information from these multiple sources to
form a single cohesive narrative?

Early research on cue integration found that basic percep-
tion involves rapidly incorporating information from distinct
sensory inputs (Ernst & Banks, 2002; Kording et al., 2007).
In fact, people use multiple modalities to draw complex in-
ferences about the structure of the environment and agents’
behavior within it (Agrawal & Schachner, 2023; Gerstenberg
et al., 2021; Schachner & Kim, 2018; Siegel et al., 2021).
However, young children struggle with abstract multimodal
inferences (Agrawal & Schachner, 2023; Gori et al., 2008;
Outa et al., 2022) and models of adults have been limited
to reasoning about physical events (e.g., Gerstenberg et al.,
2021). Causal event reconstruction with multimodal evidence
in situations involving agents has yet to be studied.

Multimodal inference in Al systems

Solving mysteries is no easy feat — scaling up structured mod-
els of event reconstruction (e.g., Lopez-Brau et al., 2022) and
multimodal inference (e.g., Gerstenberg et al., 2021) to realis-
tic environments poses a computational challenge for human
reasoners. The growing competence of LLMs and LMMs on
a wide range of tasks previously considered out of reach for
Al has sparked active discussion about the general reasoning
capacities of these models (e.g. Bubeck et al., 2023). GPT-4V
and other LMMs are proficient at image captioning, visual

question answering, and broad knowledge retrieval (Bitton
et al., 2023; Li et al., 2023; OpenAl, 2023; Z. Yang et al.,
2023). But they still lag behind humans in benchmarks in-
volving ToM reasoning and contextual knowledge (Gandhi
et al., 2024; Jin et al., 2024; Li et al., 2023), and have not
been evaluated on any task involving causal reconstruction of
others’ actions and past events.

Experiment

The current work seeks to fill a gap in prior research on multi-
modal reasoning in humans and Al systems. We evaluate the
ability to reconstruct the cause of real-world behaviors using
visual and auditory evidence. To do so, we designed a task
where subjects were presented with evidence of agents engag-
ing in everyday actions like fixing a snack and watching TV.
Subjects had to evaluate which of two agents was most likely
to have performed the action given the available evidence. We
designed three versions of each scenario — one in which only
visual evidence was available, one in which there was only
auditory evidence, and one in which both visual and auditory
evidence were available. By comparing judgments across
these different modalities, we can better understand how hu-
mans and Al systems are able to integrate multiple sources
of information to reconstruct what happened. We tested our
scenarios on humans, GPT-4, and GPT-4V, and also present
a simulation-based model of multimodal event reconstruction
that attempts to computationally capture people’sreasoning.

Participants
The experiment was preregistered! and posted as a task on

Prolific.2 90 participants (age: M = 39, SD = 12; gender: 44

Thttps://osf.io/fzxre
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Figure 2: Inference accuracy on select scenarios. Each diagram illustrates the initial scene (correct agent is circled here,
but was not shown in the experiment), final scene, and transcription of the audio. For participants, an audio clip was simply
played out loud (no text was displayed). Bars show mean accuracy, small points show individual responses, large point shows
simulation model predictions, and error bars are bootstrapped 95% confidence intervals.

female, 40 male, 3 non-binary, 3 undisclosed) were recruited
and compensated $12/hour. Each participant was shown only
one version (visual, auditory, or multimodal) for each sce-
nario. All participants received a roughly equal distribution of
the three versions across the entire experiment; we obtained
n = 30 responses for each version of each scenario.

Procedure

Participants were first guided through instructions with ex-
ample animations and audio clips to familiarize them with
the stimuli. They were then required to answer three com-
prehension questions correctly before proceeding to the main
portion of the experiment.

Participants were presented 20 scenarios in a randomized
order. In each scenario, they were shown an image of an ini-

2Code for all models, analyses, and experiments can be found at:
https://github.com/cicl-stanford/whodunnit_multimodal_inference.

tial scene and clicked a button to reveal an image of the fi-
nal scene (visual evidence), an audio clip that played in the
browser (auditory evidence), or both (multimodal; see Fig-
ure 1). On audio and multimodal trials, participants were re-
quired to listen to the entire clip at least once before respond-
ing, and could replay it as many times as they liked. Par-
ticipants were asked which agent performed the action (e.g.,
“Who got a snack from the fridge?” or “Who was watching
TV?”) and answered on a slider with endpoints labeled “def-
initely [agent 1]” and “definitely [agent 2]”. The experiment
took an average of 14 minutes (SD = 4) to complete.

Design

In 13 of the 20 scenarios, an agent walked into the kitchen and
got a snack from the fridge then walked back to their starting
location, sometimes leaving behind crumbs or open/closed
doors as visual evidence. In the other seven scenarios, an
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Figure 3: Overall inference accuracy. Accuracy across all
scenarios for humans, GPT-4, and GPT-4V (n = 30 per condi-
tion). Bars show mean accuracy, error bars are bootstrapped
95% confidence intervals, points are simulation model accu-
racy, and the dashed line represents maximum uncertainty.

agent walked into the living room and watched TV for a short
period, sometimes moving the TV remote or leaving behind
open/closed doors before walking back. The audio clip ac-
companying each scenario included sounds associated with
all actions except when the agent dropped crumbs. We re-
served the crumbs as visual evidence only because in real
life, visual changes can often be silent, and this allowed us
to better differentiate the three versions of each trial. Across
scenarios we manipulated the agents’ starting locations and
the locations of the fridge, crumbs, TV, and remote.

Together, the visual and auditory evidence afford different
levels of diagnosticity about which agent performed the ac-
tion. In some scenarios, the visual information alone was un-
informative, while the audio information was revealing. For
example, in Figure 2 scenario 1, there is no visual evidence,
but the audio reveals a very long path to and from the fridge,
which is suggestive of the agent initially father away on the
left. Other scenarios have the opposite pattern. In scenario 2,
the audio is equally plausible for both agents, but the crumbs
implicate the agent on the bottom. We also designed a few
scenarios in which the visual and auditory evidence were am-
biguous or seemingly conflicting. For example, in scenario 4,
crumbs have been left closer to the agent on the bottom, but
the audio reveals a long path back from the fridge, making it
possible that either agent meandered back to their room.

Models

We compared participants’ performance to two models. The
first is a simulation-based model that combines prior work
on visual event reconstruction (Lopez-Brau et al., 2022) and
multimodal inference (Gerstenberg et al., 2021). It attempts
to capture the cognitive processes underlying human multi-
modal inference. Alongside this, we also compare responses
to GPT-4 and GPT-4V. These models have been successful at
solving a range of visual and social reasoning problems, al-
lowing us to explore whether their more domain-general ca-
pacities support multimodal reasoning in the current context.
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Figure 4: Multimodal event simulation. The simulation
model generates possible paths each agent could have taken
to produce the given visual evidence (crumbs near the right
door) and auditory evidence (sequence of sounds heard).

Multimodal event simulation model

The event simulation model is given a scene graph rep-
resentation of the initial state in each trial, as well
as “evidence” in the form of the final state (visual),
a transcript of sounds (auditory), or both (multimodal).
For an agent a € {agent 1, agent2}, the probability of
the agent performing the action given the evidence x €
{visual, auditory, multimodal} can be written as:

pxla)p(a)

plalx) = 200

The prior probability of each agent performing any given ac-
tion p(a) is assumed to be uniform (the identity of the agents
was not a useful predictor in the task), as was the probability
of receiving evidence in any particular modality p(x). Thus,
determining which of the two agents was most likely to have
caused the evidence is a function of the relative likelihoods
p(x|a = agent 1) and p(x|a = agent 2).

The model estimates these likelihoods using simulations
of the agents’ behavior to produce a distribution of visual
and auditory evidence for each agent (see Figure 4). The
model then estimates the probability of the evidence ob-
served (or heard) under the simulated evidence distribution
for each agent using rejection sampling. After determin-
ing the probability of each agent completing the event in a
given trial p(alx), the model produces a slider value j to

match participants’ responses by normalizing these probabil-
plalx)
Yiplailx)

Large language and multimodal models

ities: y =

The same scenarios shown to humans were also tested on
GPT-4 and GPT-4V. For GPT-4, we provided scene graph rep-
resentations of each room, including positions and dimen-
sions of all agents, furniture, and objects (see Figure 1). For



GPT-4V, we used the same images shown to participants. The
auditory evidence was presented as a transcribed list of the
sounds heard at each time step (e.g., “step”, “door opened”).
In each trial, models were provided the initial scene (as ei-
ther a scene graph or an image) and then either visual evi-
dence (scene graph or image of the final scene), auditory ev-
idence (transcribed audio), or both. The task prompt encour-
aged models to analyze state changes, positions of objects,
and any new elements in the visual clues, and to focus on the
number of steps and different sounds in the audio clues. Both
models were prompted with a temperature of 0.7 and zero-
shot chain-of-thought prompt optimization (i.e. “Take a deep
breath. Let’s think step-by-step.”’; Kojima et al., 2023; C.
Yang et al., 2024). We queried each model n = 30 times. The
models were prompted to produce a continuous numerical re-
sponse on the same scale as the slider shown to participants.

Results

For each trial, the correct answer was coded as O if the evi-
dence was generated by the agent presented on the left end of
the slider (see Figure 1), and 100 if it was the agent on the
right. We computed accuracy as the absolute difference be-
tween the correct answer and participants’ slider responses.
Note that in some trials, the evidence could have been gen-
erated by either agent. In those cases, we would not expect
participants or models to achieve full accuracy, especially in
the single modality conditions.

Accuracy across modalities

We hypothesized that participants’ inferences would be more
accurate in the multimodal condition for each scenario than
with either modality alone. Figure 3 shows inference accu-
racy for participants, GPT-4, and GPT-4V in each condition
across all scenarios as well as predictions of our multimodal
event simulation model. As predicted, humans performed
best when presented with multimodal evidence. Meanwhile,
GPT-4 exhibits a qualitatively similar pattern, while GPT-4V
accuracy is similar across all modalities.

To quantify these comparisons, we fit Bayesian linear
mixed effects models to predict accuracy values for human
and GPT responses in each modality condition. The mod-

Table 1: Effects of modality on accuracy. ‘Intercept’
and ‘Modality’ show the posterior means of each predictor
along with 95% highest density intervals (HDIs) in brack-
ets. The model was given by the formula accuracy ~ 1 +
modality + (1 | participant) for humans and without
the random intercept for GPT-4 and GPT-4V. Modality was
dummy coded as either 0 = “single” or 1 = “multimodal”.

Subject Intercept Modality

Humans 60.75 [58.61, 62.96] 8.38 [5.44, 11.36]
GPT-4 60.29 [58.07, 62.52] 4.17[0.27,7.97]
GPT-4V 49.40 [47.08, 51.76] 1.77[-2.11, 5.82]

els include fixed intercepts and fixed effects of the modality
(dummy coded as either 0 = “single” or 1 = “multimodal”).
For participants, it also includes a random intercept for each
participant. Table 1 shows that modality was a credible posi-
tive predictor for both humans and GPT-4, but not GPT-4v.3
Finally, to understand how participants integrated visual
and auditory evidence, we measured correlation in mean ac-
curacy across the three conditions. Accuracy was most cor-
related between the visual and multimodal conditions, (r =
0.75, p < .001), moderately correlated between auditory and
multimodal (r = 0.48, p = .04), and not correlated between
visual and auditory (r = —0.04, p = .87). We fit a Bayesian
linear mixed effects model to predict multimodal accuracy us-
ing z-scored visual and auditory accuracy as fixed effects, and
further compared the difference in the posteriors. We found
a credible positive effect of both predictors (posterior on vi-
sual: 15.09 [10.67, 19.42], posterior on auditory: 9.83 [5.31,
14.30]), and there was a credibly larger effect of the visual
predictor compared to the auditory predictor on multimodal
accuracy (difference in posteriors: 5.26 [5.17, 5.36]).

Accuracy across trials

The trials in the current experiment were designed to elicit in-
ferences that varied substantially across modalities and when
combining them; we compare human and model performance
at the level of individual trials to isolate the accuracy of these
inferences. Figure 2 shows results for a subset of scenarios
that illustrate how visual and auditory evidence can be differ-
entially diagnostic. In scenario 1, visual evidence alone was
uninformative but participants became more accurate with the
addition of auditory information. GPT-4 and GPT-4V did not
extract relevant information from the audio evidence particu-
larly in the multimodal condition. In scenario 2, the audio ev-
idence was uninformative, but visual evidence improved par-
ticipants’ accuracy in the visual and multimodal conditions.
GPT-4V also performed well in those conditions, while GPT-4
did not. In scenarios 3 and 4, the evidence was ambiguous or
conflicting. Scenario 3 shows successful multimodal integra-
tion from participants, but not models. In contrast, scenario 4
illustrates a case of poor multimodal integration by partic-
ipants (notably failing to incorporate audio evidence in the
multimodal condition) while GPT-4 was far more accurate.
To extend this comparison to the full range of trials, we
calculate the correlation in trial accuracy between partici-
pants and GPT-4 (Figure 3A), GPT-4V (3B), and our event
simulation model (3C). Despite the similarities in overall ac-
curacy across modalities, participant and GPT-4 responses
are only weakly correlated for individual trials (r = 0.37,
p = 0.003). Human and GPT-4V accuracy exhibits almost no
relationship (r = 0.17, p = 0.19). In contrast, the simulation
model strongly captures participants’ responses (r = 0.87,
p < 0.001). Broken down by modality, the simulation model
was most strongly correlated with human accuracy on visual

3We adopt the convention of calling an effect credible if the 95%
HDI of the estimated parameter in the Bayesian model excludes 0.
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Figure 5: (A) GPT-4, (B) GPT-4V, and (C) simulation model accuracy. Inference accuracy for participants compared to
GPT-4 accuracy, GPT-4V accuracy, and simulation model predictions across all conditions.

trials (r = 0.96), followed by multimodal (» = 0.83) and then
audio (r = 0.79; all ps < .05).

Discussion

In this paper, we investigate the ability to reconstruct events
from naturalistic agent behaviors. We explore how people do
this by drawing on multimodal evidence from vision and au-
dio to acquire a rich causal understanding of the events that
occurred. Prior work shows that people can use “behavioral
traces” left behind in an environment to infer how an agent
previously acted (e.g., Lopez-Brau et al., 2022). In physi-
cal settings like Plinko games, people can successfully in-
tegrate visual and auditory information to account for game
outcomes (Gerstenberg et al., 2021; Schachner & Kim, 2018).
However, such multimodal causal reasoning for more com-
plex scenarios involving agent behavior has not yet been stud-
ied. Furthermore, the recent rise of large language models
such as GPT-4, and large multimodal models such as GPT-4V
equipped to process visual and textual input opens the door to
exploring these same questions in modern Al systems.

Multimodal event reconstruction

We find evidence that people incorporate multimodal reason-
ing in causal event reconstructions. Overall accuracy with
multimodal evidence exceeded accuracy with either visual
or auditory evidence alone. Our results suggest that multi-
modal reasoning in this context was more strongly affected
by the visual evidence than by the auditory evidence. In fact,
scenario 4 in Figure 2 illustrates a case where accuracy de-
creased with the addition of visual evidence (relative to audio
alone), perhaps as a result of this overreliance on (sometimes
misleading) visual cues in multimodal reasoning. Such a pat-
tern might arise if the visual evidence was easier to process
(compared to, for example, counting steps in the audio signal
to determine the most likely agent). However, it is also pos-
sible that the visual evidence caused participants to consider
a broader set of explanations or simulated behaviors than the
auditory evidence, leading to greater uncertainty in their re-
sponses. In this vein, future work should consider the ways

evidence across modalities constrains or supports simulation.
A benchmark for Al

While GPT-4’s and GPT-4V’s overall accuracy was not far be-
hind participants (Figure 3), the weak correlation across indi-
vidual trials (Figures SA and B) suggests no systematic rela-
tionship and likely different underlying mechanisms in how
humans and GPT-4 solve the inference task. In contrast, the
multimodal event simulation model captured participants’ re-
sponses across trials well (Figure 5C). This model combines
inverse planning, in which observers assume those around
them choose efficient paths to attain their goals, with an inter-
nal model that can perform mental simulations of how such
actions can lead to different patterns of evidence, visual or au-
ditory, in the environment (Gerstenberg et al., 2021; Lopez-
Brau et al., 2022). Our results indicate that causal event re-
construction is still a challenging task for foundation models.
However, the ability of our more structured simulation model
to capture successful human reasoning in this task raises an
opportunity for future work integrating such processes into
large language and multimodal models.

Conclusion

Most of us aren’t detectives like Sherlock Holmes, but we
all reason about the world around us by drawing on infor-
mation from different senses. In this paper, we studied the
ability to reconstruct actions and events from the past by inte-
grating visual and auditory evidence. We found that humans
were successful at making causal inferences, followed closely
by GPT-4 and then GPT-4V. Participants were most accurate
when given multimodal evidence compared to either visual or
auditory evidence alone. Across individual trials, their accu-
racy was weakly correlated with GPT-4 and GPT-4V, but cap-
tured well by a computational model that draws on cognitive
processes of inverse planning and mental simulation. Multi-
modal event reconstruction presents an outstanding challenge
for current Al systems; computational models inspired by hu-
man multimodal reasoning may offer a way to improve them.
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