
WonderJourney: Going from Anywhere to Everywhere

Hong-Xing Yu1 Haoyi Duan1 Junhwa Hur2 Kyle Sargent1 Michael Rubinstein2

William T. Freeman2 Forrester Cole2 Deqing Sun2 Noah Snavely2 Jiajun Wu1 Charles Herrmann2

1Stanford University 2Google Research

Input (text or image) Generated wonderjourneys (rendering of generated sequences of 3D scenes)

Girl in wonderland …

Cyberpunk city …

Mad hatter … Tea party … Chessboard … Red queen …

More Examples

Serene lake …

Flamingos …

Figure 1. We propose WonderJourney—generating a sequence of diverse yet coherent 3D scenes from a text description or an arbitrary image
such as photos or generated art (“from anywhere”). WonderJourney can generate various journeys (which we refer to as “wonderjourneys”)
for a fixed input, potentially ending “everywhere” (Fig. 4). We show rendered images along the generated sequence of 3D scenes. We
strongly encourage the reader to see video examples at https://kovenyu.com/WonderJourney/.

1

ar
X

iv
:2

31
2.

03
88

4v
2

 [c
s.C

V
]

12
 A

pr
 2

02
4

https://kovenyu.com/WonderJourney/

Abstract
We introduce WonderJourney, a modular framework for

perpetual 3D scene generation. Unlike prior work on view

generation that focuses on a single type of scenes, we start

at any user-provided location (by a text description or an

image), and generate a journey through a long sequence of

diverse yet coherently connected 3D scenes. We leverage

an LLM to generate textual descriptions of the scenes in

this journey, a text-driven point cloud generation pipeline to

make a compelling and coherent sequence of 3D scenes, and

a large VLM to verify the generated scenes. We show com-

pelling, diverse visual results across various scene types and

styles, forming imaginary “wonderjourneys”. Project web-

site: https://kovenyu.com/WonderJourney/.

“No, no! The adventures first, explanations take such a
dreadful time.” – Alice’s Adventures in Wonderland

1. Introduction
In “Alice’s Adventures in Wonderland”, the story begins
with Alice falling down the rabbit hole and emerging into a
strange and captivating Wonderland. In her journey through
this wonderland, Alice encounters many curious characters
such as the Cheshire Cat and the Mad Hatter, and peculiar
scenarios, such as the tea party and the rose garden – eventu-
ally ending at the royal palace. These characters and settings
combine to form a compelling world that has fascinated
countless readers over the years. In this paper, we follow
in this creative tradition and explore how modern computer
vision and AI models can similarly generate such interesting
and varied visual worlds, which users can journey through,
much like Alice did in her own adventures in Wonderland.

Toward this goal, we introduce the problem of perpetual

3D scene generation. Unlike previous work on perpetual
view generation [21, 24] that only generates a single type of
scene, such as nature photos, our objective is to synthesize a
series of diverse 3D scenes starting at an arbitrary location
specified via a single image or language description. The
generated 3D scenes should be coherently connected along
a long-range camera trajectory, traveling through various
plausible places. The generated 3D scenes allow rendering a
fly-through video through a long series of diverse scenes to
simulate the visual experience of a journey in an imaginary
“wonderland”. We show examples in Fig. 1.

The main challenges of perpetual 3D scene generation
center around generating diverse yet plausible scene ele-
ments. These scene elements need to support the formation
of a path through coherently connected 3D scenes. They
should include various objects, backgrounds, and layouts
that fit in observed scenes and transit naturally to the next,
yet unobserved, scenes. This generation process can be bro-
ken down into determining what objects to generate for a
given scene; where to generate these objects; and how these

scenes connect to each other geometrically. Determining
what elements to generate calls for semantic understanding
of a scene (e.g., a lion might not be a great fit for a kitchen);
determining where to generate them calls for common sense
regarding the visual world (e.g., a lion should not be float-
ing in the sky); further, generating these elements in a new
connected scene requires geometric understanding (e.g., oc-
clusion and disocclusion, parallax, and appropriate spatial
layouts). Notably, these challenges are absent in prior work
on perpetual view generation, as they tend to focus on a
single domain [24] or a single scene [11].

Our proposed solution, WonderJourney, addresses each
of the above challenges in perpetual 3D scene generation
with its own module. WonderJourney leverages an LLM
to generate a long series of scene descriptions, followed by
a text-driven visual scene generation module to produce a
series of colored point clouds to represent the connected 3D
scenes. Here, the LLM provides commonsense and semantic
reasoning; the vision module provides visual and geometric
understanding and the appropriate 3D effects. In addition,
we leverage a vision-language model (VLM) to verify the
generation and launch a re-generation when it detects unde-
sired visual effects. Our framework is modular. Each of the
modules can be implemented by the best pretrained models,
allowing us to leverage the latest and future advancements in
the rapidly growing vision and language research. Our main
contributions are as follows:

• We study perpetual 3D scene generation and propose Won-
derJourney, a modular framework that decomposes this
problem into core components: an LLM to generate scene
descriptions, a text-driven visual module to generate the
coherent 3D scenes, and a VLM to verify the generated
scenes.

• We design a visual scene generation module that leverages
off-the-shelf text-to-image and depth estimation models to
generate coherent 3D point clouds. Our module handles
boundary depth inaccuracy, sky depth inaccuracy, and dis-
occlusion unawareness.

• We show compelling visual results and compare Won-
derJourney with SceneScape [11] and InfiniteNature-
Zero [21] in a user study, which shows that WonderJourney
produces interesting and varied journeys.

2. Related Work
Perpetual view generation. The seminal work on perpetual
view generation is Infinite Images [18] which synthesizes the
effect of navigating a 3D world by stitching and rendering
images according to camera motions. Later works, such as
Infinite Nature [24] and InfiniteNature-Zero [21], learn to
auto-regressively generate next view based on the current
view. Follow-up works improve global 3D consistency [5]
and visual quality [4]. A recent work, SceneScape [11],

https://kovenyu.com/WonderJourney/

Visual scene generation

Input

A beautiful village

Input pairing

Text2ImageCaptioning

A beautiful village

Scene description generation

Scene description memory
- …

- Scene !: Village …
LLM

Next scene description
- Scene ! + 1	: Snowfield …

Point cloud

Visual validation

Submit

Re-generate

or go

Text-guided

Outpainting

Rendered partial image

VLM

Are there any unwanted effects in
the generated scene image?

Unwanted effects:
- Painting frame

- Photo border

- Out-of-focus objects

- …

Yes→ Re-generate

the scene.

No → Generate the

next scene.
Generated new scene

Figure 2. The proposed WonderJourney framework and workflow across modules. Our modular design does not require any training,
allowing easy future improvements from the quick advances in vision and language models.

explores text-driven perpetual view generation by gradually
constructing a single cave-like scene represented by a lengthy
mesh. While these methods study perpetual generation, they
are restricted to a single domain such as nature photos [21,
24] or a single scene [11].
3D scene generation. Considerable progress has recently
been made in text-to-3D or image-to-3D generation, many
of which focus on objects without background [9, 20, 22, 26,
27, 33, 34]. These works typically leverage a 2D image prior
from an image generation model, e.g., an image diffusion
model [36], and then build a 3D representation, such as a
NeRF [42], by distilling the supervision of the 2D image
generation model [33]. Other works on 3D object generation
focus on learning a 3D generative model directly from 2D
images [6, 7, 13, 14, 29, 30, 32, 37, 39].

Several works also focus on generating a single 3D scene
with background [2, 10]. For example, Text2Room [15]
generates a room-scale 3D scene from a single text prompt,
using textured 3D meshes for their scene representation.
Other relevant works have focused on generating (sometimes
called “reconstructing”) a scene from limited observations,
such as a single image. Long-Term Photometric Consis-
tent NVS [43] generates single scenes from a source image
by auto-regressively generating with a conditional diffusion
model. GeNVS [8] and Diffusion with Forward Models [40]
use an intermediate 3D representation but are trained and
evaluated on each scene separately. ZeroNVS [38] synthe-
sizes a NeRF of a scene from a single image. Their work
focuses on generating a single scene while ours targets gen-
erating a coherently connected sequence of diverse scenes.
Text-guided video generation. The idea of scene generation
has also been explored in video generation. Several concur-
rent works like TaleCrafter [12] and others [16, 23, 25] also
discuss the task of creating a series of videos which follow
an LLM-generated story or script. However, all these works
use different scenes as different clips in a video, resulting in

hard cuts, while our perpetual 3D scene generation aims at
generating sequences of coherently connected scenes.

3. Approach
Our goal is to generate a potentially endless sequence of
diverse yet coherently connected 3D scenes, which requires
both geometric understanding of 3D scenes and visual com-
mon sense and semantic understanding of scene structures.
To tackle this challenging task, we propose WonderJourney.
The main idea is to generate a text description of the visual
elements the next scene would contain, and then employ a
text-guided visual generation module to make that 3D scene.

WonderJourney is a modular framework that decomposes
this task into scene description generation, visual scene gen-
eration, and visual validation, as in Fig. 2. Given an input
image or text, we first pair it with the other modality by gener-
ating the image with a text-to-image model or by generating
the description with a Vision Language Model (VLM). Then
we generate the next-scene description by a Large Language
Model (LLM). A visual scene generation module takes in
the next-scene description and the current scene image to
generate the next 3D scene represented by a colored point
cloud. This generation process is then checked by a VLM
to make sure there is no unwanted effects, or it gets regen-
erated. We note that our framework is modular such that
each module can be implemented with the latest (pretrained)
models and thus can easily leverage the quick advances of
large language and vision models.

3.1. Scene description generation
We propose an auto-regressive scene description generation
process, i.e., the scene description generation takes a set of
past and current scene descriptions as input and predicts the
subsequent scene description:

Si+1 = gdescription(J ,Mi), (1)

Rendered
partial image

Refined depthEstimated depthCurrent scene image

New scene imageRefined depthOcclusion-resolved depthNew scene point cloud

Point cloud

Additional rendered views

Text-guided

Outpainting

Figure 3. The visual scene generation module. Each arrow represents a parametric vision model (e.g., a depth estimator) or an operation
(e.g., rendering). Our fully modular design easily benefits from advances in the corresponding research topics.

where Si denotes the i
th scene description, and gdescription de-

notes the scene description generator which is implemented
by an LLM that takes two inputs: 1) the task specification
J = “You are an intelligent scene generator. Please gener-

ate 3 most common entities in the next scene, along with a

brief background description.” ; and 2) the scene description
memory Mi = {S0,S1, · · · ,Si} which is a collection of
past and current scenes. The latest description memory is:

Mi+1 = Mi [{Si+1}. (2)

We define the scene description Si = {S,Oi, Bi}, which
consists of a style S that is kept consistent across scenes,
objects in the scene Oi, and a concise caption Bi describing
the background of the scene. We allow the LLM to output
natural language descriptions, and then use a lexical cate-
gory filter to process the raw text of Oi and Bi such that
we only keep nouns for entities and adjectives for attributes.
Empirically this generates more coherently connected scenes
compared to requiring the LLM to directly output this struc-
tured description.

3.2. Visual scene generation
Since we want the generated next scene to be coherent with
past scenes geometrically and semantically, we formulate
our visual scene generation as a conditional generation
problem, taking both the next-scene description and the 3D
representation of the current scene as conditions:

Pi+1 = gvisual(Ii,Si+1), (3)

where Pi denotes a colored point cloud that represents the
next 3D scene, and Ii denotes the image of current scene.
The visual scene generator gvisual consists of learning-free
operations such as perspective unprojection and rendering,
as well as components that use parametric (pretrained) vision

models, including a depth estimator, a segmentation-based
depth refiner, and a text-conditioned image outpainter. We
show an illustration in Fig. 3.
Lifting image to point cloud. Given the current scene
represented by an image Ii, we lift it to 3D by estimating
depth and unproject it with a pinhole camera model. We
use MIDAS v3.1 [35], one of the state-of-the-art depth esti-
mators, in our experiments. However, we find that existing
monocular depth estimators share two common issues. First,
depth discontinuity is not well modeled, witnessed by pre-
vious work [1, 28, 41], resulting in overly smooth depth
edges across object boundaries. Second, the depth of the
sky is always underestimated, also observed by previous
work [21, 24]. To address these two issues, we introduce
a depth refinement process that leverages pixel grouping
segments and sky segmentation.
Depth refinement. To enhance the depth discontinuity
across object boundaries, we model scene elements with
frontal planes when the elements have a limited disparity
range. We use SAM [19] to generate pixel grouping seg-
ments {segj}Ns

j=1 where segj 2 {0, 1}H⇥W is a segment
mask, sorted in descending order according to the size of the
segment ksegjk. We iteratively refine the estimated depth:

depth[segj]
⇢
median(depth[segj]), if �Dj <T,

depth[segj], otherwise,
(4)

for j = 1, · · · , Ns, where depth 2 RH⇥W

+ is initialized
with the estimated monocular depth, median(·) is a func-
tion that returns the median value of the input set, �Dj =
max(disparity[segj])�min(disparity[segj]) de-
notes the disparity (the reciprocal of depth) range within
the segment segj . We keep the estimated depth of segments
with high disparity range as they do not fit to a frontal-plane,
such as roads. Note that the idea of frontal-plane modeling

Input image Diverse wonderjourneys (rendering of generated sequences of 3D scenes)
Figure 4. Qualitative results for diverse journeys generated from the same input image, showing that WonderJourney can go everywhere.
The input in the top example is a real photo.

has also been explored in 3D Ken-Burns [31] with selected
semantic classes such as car and people. In contrast, as
we target at general scenes with diverse styles, we use the
criterion of the disparity range for keeping estimated depth
instead of selected semantic classes.

To handle the sky depth which is always underestimated,
we use OneFormer [17] to segment sky region and assign
a high depth value to it. However, this results in inaccu-
rate depth estimates along the sky boundary; if we were to
naively use the output segmentation, these errors result in
accumulated severe artifacts in later scenes. To resolve it,

we simply remove points along the sky boundary. Besides,
we find that depth at distant pixels are generally not reliable.
Thus, we also set a far background plane with depth F that
cuts off all pixels’ depth beyond it.

Description-guided scene generation. To generate a new
scene that is connected to the current scene, we place a
camera Ci+1 with an appropriate distance to the current
camera Ci. As shown in Fig. 3, we render the partial image
Îi+1 (more details on the camera and the renderer are in
Appendix E) and outpaint it with a text-guided outpainter to

generate a new scene image Ii+1:

Ii+1 = goutpaint(Îi+1,Si+1), (5)

where we use the Stable Diffusion model [36] for goutpaint
in our experiments. Note, we purposefully place the new
camera at a location that creates enough empty space in
the rendered image. We empirically find that text-guided
outpainters tend to avoid generating partial objects, likely
due to their curated training image datasets, which tend to not
include truncated or partial objects. Leaving too little empty
space therefore results in just a simple extrapolation of the
partial image Îi+1 and a lack of adherence to the text prompt
Si+1, especially in regards to new objects. After generating
the new scene image, we lift it to 3D by estimating and
refining depth for it, and we obtain the new point cloud
P̂i+1 = Pi[P 0

i+1 where P 0
i+1 denotes the additional points

from unprojecting the outpainted pixels.
New scene registration by depth consistency. However, as
the depth estimator is unaware of geometry constraints, the
depth for points in P 0 generally do not align with Pi. Thus,
we adapt the depth estimator by a depth alignment loss:

Ldepth = max(0,D⇤
bg �D0

bg) + kD⇤
fg �D0

fgk, (6)

where D⇤
bg denotes the analytically computed depth of back-

ground pixels from Ii, D0
bg denotes the estimated depth for

pixels corresponding to D⇤
bg, D⇤

fg denotes the computed depth
of all other visible pixels from Ii, and D0

fg denotes the esti-
mated depth for pixels corresponding to D⇤

fg.
Occlusion handling by re-rendering consistency. Another
geometric inconsistency is that disocclusion regions can have
a lower depth values than their occluders, as the depth es-
timator is not aware of this 3D geometric constraint. We
highlight the wrongly estimated disocclusion depth in the
refined depth in Fig. 3. To resolve this issue, we re-render
the new scene P̂i+1 at the camera Ci and detect all inconsis-
tent pixels. At each inconsistent pixel, we move back all the
rasterized additional points from P 0

i+1 that have lower depth
values than the one point from Pi. This removes the disoc-
clusion inconsistency and guarantees that the disocclusion
comes after the occluder.
Scene completion. We obtain the final point cloud Pi+1 by
adding more points to P̂i+1. We add points by repeating
the following “complete-as-you-go” process: we place an
additional camera along a camera trajectory connecting the
new scene to the current scene, render a partial image at that
camera, outpaint the image, and add the additional points
to the point cloud. Note that in our visual scene generation
formulation in Equation 3, one can replace the image input
Ii with the point cloud Pi from the current scene, forming
a persistent scene representation. This allows a trade-off
between 3D persistence and empirical requirements. In prac-
tice, maintaining a large point cloud leads to prohibitively

many points that require a large amount of GPU memory
when generating a long trajectory of high-resolution scenes.
Thus in our experiments we take the image formulation.

3.3. Visual validation
Empirically, in a large portion of generated photos and paint-
ings, a painting frame or a photo border appears, disrupting
the geometry consistency. Additionally, there are often un-
wanted blurry out-of-focus objects near the borders of the
generated images. Thus, we propose a validation step to
identify and reject these undesired generated scenes.

We formulate this as a text-based detection problem,
where our objective is to detect a set of predefined unde-
sirable effects in the generated scene image. We reject and
regenerate the scene image if any unwanted effect is detected.
Specifically, right after we generate a new scene image Ii+1,
we immediately feed it to a VLM and prompt it with the
query J t

detect = “Is there any Xt in this image?” where
Xt 2 {X1, · · · , XT } is an unwanted effect specified by text,
such as “photo border”, “painting frame”, or “out-of-focus
objects”. If any unwanted effect is detected, we regenerate
Ii+1 with a new description Si+1 or a new random seed.

4. Experiments
Dataset and baselines. Since the perpetual 3D scene gen-
eration is a new task without an existing dataset, we use a
mixture of photos taken by ourselves, copyright-free pho-
tos from online, and generated examples, for evaluation
in our experiments. We perform the pairing process by
DALL-E 3 [3] for text-to-image pairing. We consider two
state-of-the-art perpetual view generation methods as our
baseline: image-based InfiniteNature-Zero and text-based
SceneScape.
Qualitative demonstration. We show qualitative examples
of the generated journey across different scenes and different
styles in Fig. 1 and Fig. 5. These results show that Wonder-
Journey is able to generate diverse yet coherently connected
scenes from various types of input images, i.e., it can go
from anywhere. We show more examples in the Appendix.
We further show examples of diverse generation samples
from the same input in Fig. 4. These diverse generated jour-
neys suggest that WonderJourney supports going to different
destinations at each run.
Additional evaluations. We show additional qualitative
results in Appendix B, longer “wonderjourneys” (up to 30
scenes) in Appendix C, controlled “wonderjourneys” (i.e.,
using user-provided full text, such as poems and haiku, in-
stead of LLM-generated text guidance) in Appendix D, and
ablation studies in Appendix F.
Human preference evaluation. Since a main application of
WonderJourney is for creative and entertainment purposes,
we focus on human preference evaluation as our quanti-

Input Generated wonderjourneys (rendering of generated sequences of 3D scenes)

French manor
house …

Swan swim …

Quiet village …

Dessert …

Figure 5. From diverse starting scenes with different styles, WonderJourney generates a sequence of diverse yet coherent 3D scenes,
showing that it can go from anywhere to everywhere (e.g., nature, village, city, indoor, or fantasy). The inputs in top two rows are real
photos. We strongly encourage the reader to see the video results in the project website.

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Input Generated journeys

In
fin

ite
N

at
ur

e-
Ze

ro
O

ur
s

Ukiyo-e style
village …

Image Image

Image

Image Image Image

Sc
en

eS
ca

pe
O

ur
s

Figure 6. Comparison with InfiniteNature-Zero [21] and SceneScape [11]. Note that InfiniteNature-Zero is trained on nature photos, so
we only compare with it using photorealistic nature images as input.

Table 1. Human preference of ours over baseline on diversity, visual
quality, scene complexity, and overall interesting-ness.

Div. Qual. Compl. Overall

Ours over InfiniteNature-Zero 92.7% 94.9% 91.5% 88.6%
Ours over SceneScape 88.8% 83.4% 80.0% 90.3%

tative metrics, using the following four axes: diversity of
generated scenes in a single journey, visual quality, scene
complexity, and overall interesting-ness. We generate videos
following each approach’s own camera trajectories setup.
Since InfiniteNature-Zero is trained on nature photos, we
only compare to it using photorealistic nature images. For
SceneScape, since it is text-based, we can use 3 examples
of different styles for comparison. We show a side-by-side
comparison of videos generated by WonderJourney and a
baseline with randomized positions. We then ask one binary-
choice question at a time. such as “Compare the two videos

below. Which video has a higher diversity? That is, which

video shows more various different places?”. We recruited
400 participants, 200 for the comparison with InfiniteNature-
Zero and 200 for SceneScape. Each participant answers 12
questions. We provide more details in Appendix H.

As shown in Table 1, WonderJourney is strongly preferred

over both baselines on all four axes. InfiniteNature-Zero
synthesizes only nature scenes, as shown in Fig. 6, while
WonderJourney generates more diverse scenes and objects
such as mountaineers and houses that are naturally connected
to the starting nature scene. SceneScape tends to generate
cave-like scenes due to the usage of a textured mesh, and
thus all examples converges to caves. Also, as discussed in
Section 3.2, SceneScape tends to not generate new objects
due to limited white space. All these factors might contribute
to the much greater user preference for WonderJourney.

5. Conclusion
We introduce WonderJourney to generate a long sequence
of diverse yet coherently connected 3D scenes starting at
any user provided location. WonderJourney achieves com-
pelling, diverse visual results across various scene types and
different styles, enabling users to journey through their own
adventures in the generated “wonderjourneys”.
Acknowledgments. This work was supported by NSF RI
#2211258, ONR N00014-23-1-2355, and ONR YIP N00014-
24-1-2117. The work was done in part when Hong-Xing Yu
was a student researcher at Google and has been supported
by gift funding and GCP credits from Google.

References
[1] Filippo Aleotti, Fabio Tosi, Pierluigi Zama Ramirez, Matteo

Poggi, Samuele Salti, Stefano Mattoccia, and Luigi Di Ste-
fano. Neural disparity refinement for arbitrary resolution
stereo. In 2021 International Conference on 3D Vision (3DV),
pages 207–217. IEEE, 2021. 4

[2] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Wal-
ter Talbott, Alexander Toshev, Zhuoyuan Chen, Laurent Dinh,
Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, et al. Gaudi: A
neural architect for immersive 3d scene generation. Advances

in Neural Information Processing Systems, 35:25102–25116,
2022. 3

[3] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng
Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee,
Yufei Guo, Wesam Manassra, Prafulla Dhariwal, Casey Chu,
Yunxin Jiao, and Aditya Ramesh. Improving image generation
with better captions. Technical report, 2023. 6

[4] Shengqu Cai, Eric Ryan Chan, Songyou Peng, Mohamad
Shahbazi, Anton Obukhov, Luc Van Gool, and Gordon Wet-
zstein. DiffDreamer: Towards consistent unsupervised single-
view scene extrapolation with conditional diffusion models.
In ICCV, 2023. 2

[5] Lucy Chai, Richard Tucker, Zhengqi Li, Phillip Isola, and
Noah Snavely. Persistent nature: A generative model of
unbounded 3d worlds. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,
pages 20863–20874, 2023. 2

[6] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit generative
adversarial networks for 3d-aware image synthesis. In Pro-

ceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 5799–5809, 2021. 3
[7] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,

Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 16123–16133, 2022. 3
[8] Eric R Chan, Koki Nagano, Matthew A Chan, Alexander W

Bergman, Jeong Joon Park, Axel Levy, Miika Aittala, Shalini
De Mello, Tero Karras, and Gordon Wetzstein. Genvs: Gen-
erative novel view synthesis with 3d-aware diffusion models,
2023. 3

[9] Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexan-
der G Schwing, and Liang-Yan Gui. Sdfusion: Multimodal
3d shape completion, reconstruction, and generation. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 4456–4465, 2023. 3
[10] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,

Graham W. Taylor, and Joshua M. Susskind. Unconstrained
scene generation with locally conditioned radiance fields. In
ICCV, 2021. 3

[11] Rafail Fridman, Amit Abecasis, Yoni Kasten, and Tali Dekel.
Scenescape: Text-driven consistent scene generation. arXiv

preprint arXiv:2302.01133, 2023. 2, 3, 8
[12] Yuan Gong, Youxin Pang, Xiaodong Cun, Menghan Xia,

Haoxin Chen, Longyue Wang, Yong Zhang, Xintao Wang,

Ying Shan, and Yujiu Yang. Talecrafter: Interactive story
visualization with multiple characters. arXiv preprint

arXiv:2305.18247, 2023. 3
[13] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.

Stylenerf: A style-based 3d-aware generator for high-
resolution image synthesis. arXiv preprint arXiv:2110.08985,
2021. 3

[14] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu.
Gancraft: Unsupervised 3d neural rendering of minecraft
worlds. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pages 14072–14082, 2021. 3
[15] Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson,

and Matthias Nießner. Text2room: Extracting textured
3d meshes from 2d text-to-image models. arXiv preprint

arXiv:2303.11989, 2023. 3
[16] Hanzhuo Huang, Yufan Feng, Cheng Shi, Lan Xu, Jingyi

Yu, and Sibei Yang. Free-bloom: Zero-shot text-to-video
generator with llm director and ldm animator. arXiv preprint

arXiv:2309.14494, 2023. 3
[17] Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita

Orlov, and Humphrey Shi. OneFormer: One Transformer to
Rule Universal Image Segmentation. In CVPR, 2023. 5

[18] Biliana Kaneva, Josef Sivic, Antonio Torralba, Shai Avidan,
and William T Freeman. Infinite images: Creating and ex-
ploring a large photorealistic virtual space. Proceedings of

the IEEE, 98(8):1391–1407, 2010. 2
[19] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,

Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross
Girshick. Segment anything. In ICCV, pages 4015–4026,
2023. 4

[20] Gang Li, Heliang Zheng, Chaoyue Wang, Chang Li, Chang-
wen Zheng, and Dacheng Tao. 3ddesigner: Towards photo-
realistic 3d object generation and editing with text-guided
diffusion models. arXiv preprint arXiv:2211.14108, 2022. 3

[21] Zhengqi Li, Qianqian Wang, Noah Snavely, and Angjoo
Kanazawa. Infinitenature-zero: Learning perpetual view gen-
eration of natural scenes from single images. In European

Conference on Computer Vision, pages 515–534. Springer,
2022. 2, 3, 4, 8

[22] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler, Ming-
Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-
to-3d content creation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,
pages 300–309, 2023. 3

[23] Han Lin, Abhay Zala, Jaemin Cho, and Mohit Bansal.
Videodirectorgpt: Consistent multi-scene video generation
via llm-guided planning. arXiv preprint arXiv:2309.15091,
2023. 3

[24] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Maka-
dia, Noah Snavely, and Angjoo Kanazawa. Infinite nature:
Perpetual view generation of natural scenes from a single
image. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pages 14458–14467, 2021. 2, 3,
4

[25] Chang Liu, Haoning Wu, Yujie Zhong, Xiaoyun Zhang, and
Weidi Xie. Intelligent grimm–open-ended visual storytelling

via latent diffusion models. arXiv preprint arXiv:2306.00973,
2023. 3

[26] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov,
Sergey Zakharov, and Carl Vondrick. Zero-1-to-3: Zero-shot
one image to 3d object. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 9298–
9309, 2023. 3

[27] Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, and
Andrea Vedaldi. Realfusion: 360deg reconstruction of any
object from a single image. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,
pages 8446–8455, 2023. 3

[28] S Mahdi H Miangoleh, Sebastian Dille, Long Mai, Sylvain
Paris, and Yagiz Aksoy. Boosting monocular depth estima-
tion models to high-resolution via content-adaptive multi-
resolution merging. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
9685–9694, 2021. 4

[29] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian
Richardt, and Yong-Liang Yang. Hologan: Unsupervised
learning of 3d representations from natural images. In Pro-

ceedings of the IEEE/CVF International Conference on Com-

puter Vision, pages 7588–7597, 2019. 3
[30] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-

ing scenes as compositional generative neural feature fields.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11453–11464, 2021. 3
[31] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d

ken burns effect from a single image. ACM Transactions on

Graphics (ToG), 38(6):1–15, 2019. 5
[32] Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman,

Jeong Joon Park, and Ira Kemelmacher-Shlizerman. Stylesdf:
High-resolution 3d-consistent image and geometry generation.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 13503–13513, 2022. 3
[33] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall.

Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint

arXiv:2209.14988, 2022. 3
[34] Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer,

Nataniel Ruiz, Ben Mildenhall, Shiran Zada, Kfir Aber-
man, Michael Rubinstein, Jonathan Barron, et al. Dream-
booth3d: Subject-driven text-to-3d generation. arXiv preprint

arXiv:2303.13508, 2023. 3
[35] René Ranftl, Katrin Lasinger, David Hafner, Konrad

Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 44(3), 2022. 4, 1
[36] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution diffusion
models. In Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pages 10684–10695,
2022. 3, 6

[37] Kyle Sargent, Jing Yu Koh, Han Zhang, Huiwen Chang,
Charles Herrmann, Pratul Srinivasan, Jiajun Wu, and De-
qing Sun. Vq3d: Learning a 3d-aware generative model on
imagenet. arXiv preprint arXiv:2302.06833, 2023. 3

[38] Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann,
Hong-Xing Yu, Yunzhi Zhang, Eric Ryan Chan, Dmitry La-
gun, Li Fei-Fei, Deqing Sun, et al. Zeronvs: Zero-shot 360-
degree view synthesis from a single real image. arXiv preprint

arXiv:2310.17994, 2023. 3
[39] Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao,

and Andreas Geiger. Voxgraf: Fast 3d-aware image synthesis
with sparse voxel grids. Advances in Neural Information

Processing Systems, 35:33999–34011, 2022. 3
[40] Ayush Tewari, Tianwei Yin, George Cazenavette, Semon

Rezchikov, Joshua B Tenenbaum, Frédo Durand, William T
Freeman, and Vincent Sitzmann. Diffusion with forward
models: Solving stochastic inverse problems without direct
supervision. arXiv preprint arXiv:2306.11719, 2023. 3

[41] Fabio Tosi, Yiyi Liao, Carolin Schmitt, and Andreas Geiger.
Smd-nets: Stereo mixture density networks. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8942–8952, 2021. 4
[42] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Vic-

tor Adrian Prisacariu. Nerf–: Neural radiance fields without
known camera parameters. arXiv preprint arXiv:2102.07064,
2021. 3

[43] Jason J Yu, Fereshteh Forghani, Konstantinos G Derpanis,
and Marcus A Brubaker. Long-term photometric consistent
novel view synthesis with diffusion models. arXiv preprint

arXiv:2304.10700, 2023. 3

WonderJourney: Going from Anywhere to Everywhere

Appendix

A. Overview

We compile a set of video results in our project website. We
strongly encourage the reader to see these video results.
Please use a modern browser such as Chrome, since we use
advanced JavaScript libraries to control the carousels and
video auto-play.

In the following, we summarize the contents in this sup-
plementary document:

• [Section B] Additional qualitative results.
• [Section C] Longer “wonderjourneys”. Each “wonderjour-

ney” consists of 30 generated scenes.
• [Section D] Controlled “wonderjourneys” using user-

provided descriptions (rather than LLM-generated descrip-
tions), such as poems, story abstracts, and haiku.

• [Section E] Additional details on our renderer, camera
paths, and depth processing.

• [Section F] Ablation study on white space ratio, the visual
validation, and depth processing.

• [Section G] Additional details on the LLM and VLM we
use.

• [Section H] Details on human preference evaluation set-
ting.

B. Additional Results

We show additional results in Fig. 7 (going from anywhere)
and Fig. 8 (going to everywhere).

C. Longer “Wonderjourneys”

We show examples of longer “wonderjourneys” in Fig. 9. We
observe that the longer “wonderjourneys” allow including
more diverse scenes with high visual quality.

D. Controlled “Wonderjourneys”

We may replace the LLM-generated scene descriptions with
user-provided descriptions to control the generated “won-
derjourneys”. For example, one can use poems, haiku, or
story abstracts. We show examples of classical Chinese po-
ems, haiku, a nonsense poem “Jabberwocky” from Alice’s

Adventures in Wonderland, abstract of Walden by Henry
David Thoreau, Stopping by Woods on a Snowy Evening by
Robert Frost, and Lines Written in Early Spring by William
Wordsworth in Fig. 10.

E. Details on Visual Scene Generation

Depth processing. As mentioned in the main paper, we
find that depths of sky and distant pixels are estimated incor-
rectly. This is a general issue in monocular depth estimators,
although we choose to use MiDaS v3.1 [35]. For the seg-
mented sky pixels, we set the depth to 0.025. For distant
pixels, we set the background far plane F = 0.0015. Since
MiDaS is shift-invariant, we manually add a depth shift
0.0001 to ensure that the near objects do not collapse to the
optical center due to extremely small depth values. Note that
all these values (and all the depth estimator-related values
below) are specific to MiDaS v3.1, and it may need to be
changed for other depth estimators due to different normal-
ization schemes used in their respective training procedures.

The disparity threshold T in depth refinement is set to 2.
Empirically, we use the 30% and 70% depth values instead
of min and max depth values within a segment to compute
�Dj to improve robustness due to segmentation inaccuracy.

In new scene registration by depth consistency, we adapt
MiDaS v3.1 for 200 iterations with learning rate 0.000001.
In occlusion handling, we set the depth of disoccluders to
0.05. In scene completion, we set the depth of newly in-
painted points to be the same as the depth of its valid nearest
neighbor pixel.
Sky processing. Empirically, we find that sky segmenta-
tion is generally not accurate enough especially along the
boundary of sharp shapes (such as tower spires) and complex
shapes (such as tree leaves). Therefore, we use the following
process to combat the inaccuracy. After using SAM to refine
depth, we use an aggressively eroded sky segmentation to
set depth values for sky pixels. Since SAM also segments
sky slightly more accurately (although it often gives over-
segments and it does not have semantic labels), we then use
SAM to refine depth again to take advantage of the added
accuracy. However, even SAM has difficulty in accurately
segmenting complex sky-object boundaries. Thus, we dilate
our outpainting mask a bit in the upper part of the image to
cover the potentially inaccurately segmented boundary.
Rendering. We use a perspective pinhole camera model. To
render the point cloud, we transform the points to a normal-
ized device coordinate space and rasterize them to determine
visibility. For each camera ray, we allow up to 8 points to re-
side in the z-buffer, and composite them using the following
softmax-based function to avoid alias:

disparity =

P
i
exp(disparityi) ⇤ coloriP

i
exp(disparityi)

, (7)

where i = 1, · · · , 8 indexes the points in the z-buffer. Higher

Input image Generated wonderjourneys (rendering of generated sequences of 3D scenes)

Figure 7. Additional qualitative results for “wonderjourneys”. The inputs in the top four rows are real photos. The inputs in top four rows
are real photos.

Input image Diverse wonderjourneys (rendering of generated sequences of 3D scenes)

Figure 8. Qualitative results for diverse “wonderjourneys” generated from the same input image. The inputs in the top example is a real
photo.

disparity values put higher weights on nearer points. At the
boundary of objects, occluded points can also provide some
blending for anti-aliasing. Our image resolution is 512⇥512.

Camera paths. To generate visual scenes, we move our
camera either following a straight line, or to do a rotation.
For the straight line, we use a camera movement of 0.0005
to the backward. For rotation, we move our camera with a
rotation of 0.45 radians with a translation of 0.0001.

To generate the additional camera paths, we use the fol-
lowing rules: For a generated scene by rotation, we inter-
polate linearly among the camera rotation radians. For a
generated scene by straight line, we linearly interpolate the
translation. The additional cameras are also used in making
our video results. Therefore, we also add a random sine
perturbation to the height of the additional cameras. For
the starting scene, the ending scene, and scenes right before

Real input photo Long wonderjourneys (rendering of generated sequences of 3D scenes)

Figure 9. Qualitative results for long “wonderjourneys” generated from real input photos. Each long “wonderjourney” here consists of 30
scenes, yet we show 15 of them. See our website for video results.

and right after rotation happens, we add a linear acceleration
process to make the video smoother.

F. Ablation Study

Outpainting white space. In Fig. 11, we show a comparison
with the following variant, “Ours-slower”. “Ours-slower”
uses a 1/10 speed and generating 10 scenes following a

straight line camera path (see Section E for more details
on the camera path), so that it ends up at the same camera
location as “Ours”. We use the same input image and the
same scene description which includes “houses” in it. From
Fig. 11 we observe that when we have insufficient empty
space for outpainting, new objects like houses do not appear.
This empirical observation may be due to that in the curated
training set of the Stable Diffusion model, there may be few

Input text Generated wonderjourneys (rendering of generated sequences of 3D scenes)

莫笑农家腊酒浑，
丰年留客足鸡豚。
山重水复疑无路，
柳暗花明又一村。
箫鼓追随春社近，
衣冠简朴古风存。
从今若许闲乘月，
拄杖无时夜叩门。

双飞燕子几时回，
夹岸桃花蘸水开。
春雨断桥人不渡，
小舟撑出柳阴来。

遠山に，
日の当たりたる，
枯野かな。

千山鸟飞绝,
万径人踪灭。
孤舟蓑笠翁，
独钓寒江雪。

Jabberwocky:

Fighting…
Hero returns…

Storyteller…

Walden:

Thoreau’s arrival…
Self-sufficiency…
Pond in winter…

Lines Written in
Early Spring:

Sit in grove…
Flower breathes…
Birds around me…

Stopping by woods
on a snowy evening:

Whose woods…
My little horse…

Frozen lake…

Figure 10. Qualitative results for controlled “wonderjourneys” generated from text descriptions (except for the “Jabberwocky” example
where we manually pair it with an image). Each controlled “wonderjourney” here consists of 2N scenes where N is the number of parts of
the text (e.g., a classical Chinese poem often has 4 or 8 parts). See our website for video results.

Input image Ours-slower
Small outpainting space

Ours
Sufficient outpainting space

Figure 11. Ablation comparison on sufficient outpainting space.
Both examples use the same scene descriptions including “houses”
in it. Only “Ours” that has sufficient outpainting space can generate
houses.

Input image w/o visual validation (a border appears and disrupts)

w/ visual validation (no border problem)Input image

Figure 12. Ablation comparison on using a VLM to visually
check if borders appear. Without visual validation, borders often
appear and it disrupts the following scenes. Red boxes highlight
the border disruptions.

partial cropped objects around the image borders. Thus, the
outpainting model does not prefer generating partial objects
along the borders.

Visual validation by a VLM. As mentioned in Section E, the
painting frame and photo border can be a strong disruption.
We show an example in Fig. 12, where the photo border
appears and disrupts the next generated scene. The visual
validation can effectively detect borders and launch a re-
generation process to handle it.

Depth processing. Our depth processing is essential in
generating geometrically coherent scenes. In Fig. 13, we
show a visual comparison, where we show the rendered
partial images using the original estimated depth and using
our processed depth. Without our depth processing, the
partial rendered images show strong distortions due to depth
inaccuracy in object boundary, sky, and distant areas. For
example, see the distortions in the sky (bottom example),
the bird (middle example), and the tower (top example) in

Input image w/o depth processing w/ our depth processing

Figure 13. Ablation comparison on our depth processing. Zoom
in to see more details. Without our depth processing, the rendered
partial image demonstrates strong distortions. For examples, see
the sky (bottom example), the bird (middle example), and the tower
(top example).

Fig. 13.

G. Details on the LLM and VLM
We use GPT-4 for generating scene descriptions. Specifically,
we use the following prompt J for the system call:

“You are an intelligent scene generator. Imaging you are

flying through a scene or a sequence of scenes, and there

are 3 most significant common entities in each scene. Please

tell me what sequentially next scene would you likely to

see? You need to generate the scene name and the 3 most

common entities in the scene. The scenes are sequentially

interconnected, and the entities within the scenes are adapted

to match and fit with the scenes. You also have to generate

a brief background prompt about 50 words describing the

scene. You should not mention the entities in the background

prompt. If needed, you can make reasonable guesses.”

The input is the scene description memory M which is
a collection of past and current scene descriptions Mi =
{S0, · · · ,Si} as defined in Equation 2. In particular, Si =
{S,Oi, Bi} where S denotes a style, Oi denotes the object
description, and Bi denotes the background description. We
use a lexical category filter to extract nouns and adjectives.
An actual scene description Si looks like (the following is
the actual text prompts of the “girl in wonderland” example
in Fig. 1):

• Scene 1: {Background: Alice in the wonderland. Entities:

[’ Alice’, ’ flowers’, ’ cat’]; Style: Monet painting}
• Scene 2: {Background: luminous painting, way, vibrant

bizarre croquet field, player, flamingo, mallet, Hedgehogs,

balls, croquet, balls, life, domineering presence, atmo-

sphere. Entities: [’flamingos’, ’hedgehogs’, ’The Queen

of Hearts’]; Style: Monet painting}
• Scene 3: {Background: scene, bizarre tea, party, great elm,

tree, eccentric gentleman, top hat, presides, celebration,

jittery hare, sleepy rodent, Cups, plates, assorted pastries,

ancient misshapen, table, atmosphere, chaotic random

bouts, nonsensical poetry, riddles. Entities: [’Mad Hatter’,

’March Hare’, ’Dormouse’]; Style: Monet painting}
• Scene 4: {Background: impressionist strokes, endless

checkerboard, landscape, animate chess, pieces, rules,

game, sense, tension, serene, countryside, ambiance, trees,

strange fruits, flowers. Entities: [’White Queen’, ’Red

Queen’, ’Pawn’]; Style: Monet painting}
We use GPT-4V as the VLM for visual validation. The

most significant unwanted effects are the painting frame and
photo border that appear along some of the four boundaries
of the outpainted image. We use the following system call:

“Along the four borders of this image, is there anything

that looks like thin border, thin stripe, photograph border,

painting border, or painting frame? Please look very closely

to the four edges and try hard, because the borders are very

slim and you may easily overlook them. If you are not sure,

then please say yes.”

We also use similar prompt for detecting out-of-focus
blurry objects. If GPT-4V fails due to network connection
or other practical reasons, we instead generate an 560⇥ 560
image and then center-crop it to bypass the frame problem.
This is not as good as using visual validation, because it can
lead to cropped partial foreground objects such as a half of
a person, and the partial objects can become floaters due to
low depth values when we move camera to generate new
scenes.

H. Details on Human Preference Evaluation
We use Prolific1 to recruit participants for the human prefer-
ence evaluation. We use Google forms to present the survey.
The survey is fully anonymized for both the participants
and the host. We attach the anonymous survey link in the
footnote2 for reference.

1https://www.prolific.com/
2Comparison to InfiniteNature-Zero: https://forms.gle/

mKxyJUT3qZLs2f8h9; Comparison to SceneScape: https://
forms.gle/pt7NBj73Fnd5apjM8. Google forms require signing
in to participate, but it does not record participant’s identity.

https://www.prolific.com/
https://forms.gle/mKxyJUT3qZLs2f8h9
https://forms.gle/mKxyJUT3qZLs2f8h9
https://forms.gle/pt7NBj73Fnd5apjM8
https://forms.gle/pt7NBj73Fnd5apjM8

	. Introduction
	. Related Work
	. Approach
	. Scene description generation
	. Visual scene generation
	. Visual validation

	. Experiments
	. Conclusion
	. Overview
	. Additional Results
	. Longer ``Wonderjourneys''
	. Controlled ``Wonderjourneys''
	. Details on Visual Scene Generation
	. Ablation Study
	. Details on the LLM and VLM
	. Details on Human Preference Evaluation

